
programming
pearls

BUMPER-STICKER COMPUTER SCIENCE

Every now and then, programmers have to convert
units of time. If a program processes 100 records per
second, for instance, how long will it take to process
one million records? Dividing shows that the task takes
10,000 seconds, and there are 3600 seconds per hour, so
the answer is about three hours.

But how many seconds are there in a year? If I tell
you there are 3.155 X 107, you won’t even try to re-
member it. On the other hand, who could forget that, to
within half a percent,

rule is usually the person who sent me the rule, even if
they in fact attributed it to their Cousin Ralph (sorry,
Ralph). In a few cases 1 have listed an earlier reference,
together with the author’s current affiliation (to the
best of my knowledge]. I’m sure that 1 have slighted
many people by denying them proper attribution, and
to them I offer the condolence that

Plagiarism is the sincerest form of flattery.
Anon.

?r seconds is a nanocentury.
Tom Duff
Bell Labs

Without further ado, here’s the advice, grouped into
a few major categories.

So if your program takes lo7 seconds, be prepared to
wait four months.

Coding

February’s column solicited bumper-sticker-sized ad-
vice on computing. Some of the contributions aren’t
debatable: Duff’s rule is a memorable statement of a
handy constant. This rule about a program testing
method (regression tests save old inputs and outputs to
make sure the new outputs are the same) contains a
number that isn’t as ironclad.

When in doubt, use brute force.
Ken Thompson
Bell Labs

Avoid arc-sine and arc-cosine functions-you can usu-
ally do better by applying a trig identity or computing a
vector dot-product.

Jim Conyngham
Arvin/Cnlspan Advanced Technology Center

Regression testing cuts test intervals in half.
Larry Bernstein
Bell Communications Research

Bernstein’s point remains whether the constant is 30 or
70 percent: these tests save development time.

There’s a problem with advice that is even less quan-
titative. Everyone agrees that

Absence makes the heart grow fonder.
Anorl.

Allocate four digits for the year part of a date: a new
millenium is coming.

David Martin
Norristown, Petmsylvania

Avoid asymmetry.
Andy Huber
Data General Corporation

and

Out of sight, out of mind.

The sooner you start to code, the longer the program
will take.

Roy Carlson
Anon. University of Wisconsin

Everyone, that is, except the sayings themselves-they
are contradictory. There are similar contradictions in
the slogans in this column. Although there is some
truth in each saying in this column, all should be taken
with a grain of salt.

If you can’t write it down in English, you can’t code it
Peter Halpern
Brooklyn, New York

A word about credit. The name associated with a

Q1985 ACMOOOl-0782/85/0900-0896 750

Details count.
Peter Wrinberger
Bell Labs

a96 Communications of the ACM September 1985 Volume 28 Number 9

Programming Pearls

If the code and the comments disagree, then both are
probably wrong.

Norm Sch yer
Belt Labs

A procedure should fit on a page.
David Tribble
Arlington, Texas

If you have too many special cases, you are doing it
wrong.

Craig Zerouni
Computer FX Ltd.
London, England

Get your data structures correct first, and the rest of
the program will write itself.

David Iones
Assert, The Netherlands

User Interfaces
[The Principle of Least Astonishment] Make a user in-
terface as consistent and as predictable as possible.

Contributed by several readers

A program designed for inputs from people is usually
stressed beyond the breaking point by computer-
generated inputs.

Dennis Ritchie
Bell Labs

It takes three times the effort to find and fix bugs in
system test than when done by the developer. It takes
ten times the effort to find and fix bugs in the field than
when done in system test. Therefore, insist on unit tests
by the developer.

Larry Bernstein
Bell Communications Research

Don’t debug standing up. It cuts your patience in half,
and you need all you can muster.

Dave Storer
Cedar Rapids, Iowa

Don’t get suckered in by the comments-they can be
terribly misleading. Debug only the code.

Dave Storer
Cedar Rapids, Iowa

Testing can show the presence of bugs, but not their
absence.

Edsger W. Dijkstra
University of Texas

Each new user of a new system uncovers a new class of
bugs.

Brian Kernighan
Bell Labs

If it ain’t broke, don’t fix it.
Ronald Reagan
Santa Barbara, California

Twenty percent of all input forms filled out by people
contain bad data.

[The Maintainer’s Motto] If we can’t fix it, it ain’t
broke.

Vie Vyssotsky Lieutenant Colonel Walt Weir
Bell Labs United States Army

Eighty percent of all input forms ask questions they
have no business asking.

Mike Garey
Bell Labs

The first step in fixing a broken program is getting it to
fail repeatably.

Tom Duff
Bell Labs

Don’t make the user provide information that the sys-
tem already knows.

Rick Lemons
Cardinal Data Systems

For 80 percent of all data sets, 95 percent of the infor-
mation can be seen in a good graph.

William S. Cleveland
Bell Labs

Debugging
Of all my programming bugs, 80 percent are syntax
errors. Of the remaining 20 percent, 80 percent are triv-
ial logical errors. Of the remaining 4 percent, 80 per-
cent are pointer errors. And the remaining 0.8 percent
are hard.

Marc Donner
IBM T. 1. Watson Research Center

Performance
[The First Rule of Program Optimization] Don’t do it.

[The Second Rule of Program Optimization-For ex-
perts only] Don’t do it yet.

Michael jackson
Michael lackson Systems Ltd.

The fastest algorithm can frequently be replaced by one
that is almost as fast and much easier to understand.

Douglas W. Iones
University of lowa

On some machines indirection is slower with displace-
ment, so the most-used member of a structure or a
record should be first.

Mike Morton
Boston, Massachusetts

September 1985 Volume 28 Number 9 Communications of the ACM 097

Programming Pearls

In non-I/O-bound programs, a few percent of the
source code typically accounts for over half the run
time.

Don Knuth
Stanford University

Before optimizing, use a profiler to locate the “hot
spots” of the program.

Mike Morton
Boston, Massachusetts

[Conservation of Code Size] When you turn an ordinary
page of code into just a handful of instructions for
speed, expand the comments to keep the number of
source lines, constant.

Mike Morton
Boston, Massachusetts

If the programmer can simulate a construct faster than
the compiler can implement the construct itself, then
the compiler writer has blown it badly.

Gu:y L. Steele, jr.
Tartan Laboratories

To speed up an I/O-bound program, begin by account-
ing for all 1,/O. Eliminate that which is unnecessary or
redundant, and make the remaining as fast as possible.

David Martin
Norristown, Pennsylvania

The fastest I/O is no I/O.
Nil’s-Peter Nelson
Bell Labs

The cheapest, fastest, and most reliable components of
a computer system are those that aren’t there.

Gordon Bell
Encore Computer Corporation

[Compiler Writer’s Motto-Optimization Pass] Making
a wrong program worse is no sin.

Bill McKeeman
Wang Znstitute

Electricity travels a foot in a nanosecond.
Commodore Grace Murray Hopper
United States Navy

LISP programmers know the value of everything but
the cost of nothing.

Alan Perlis
Yale University

[Little’s Formula] The average number of objects in a
queue is the product of the entry rate and the average
holding time.

Peter Denning
RL4cs

Documentation
[The Test of Negation] Don’t include a sentence in doc-
umentation if its negation is obviously false.

Bob Martin
AT&T Technologies

When explaining a command, or language feature, or
hardware widget, first describe the problem it is de-
signed to solve.

David Martin
Norristown, Pennsylvania

[One Page Principle] A (specification, design, proce-
dure, test plan) that will not fit on one page of 8.5-by-l.1
inch paper cannot be understood.

Mark Ardis
Wang Institute

The job’s not over until the paperwork’s done.
Anon.

Managing Software
The structure of a system reflects the structure of the
organization that built it.

Richard E. Fairley
Wang Institute

Don’t keep doing what doesn’t work.
Anon.

[Rule of Credibility] The first 90 percent of the code
accounts for the first 90 percent of the development
time. The remaining 10 percent of the code accounts
for the other 90 percent of the development time.

Tom Cargill
Belt Labs

Less than 10 percent of the code has to do with the
ostensible purpose of the system; the rest deals with
input-output, data validation, data structure mainte-
nance, and other housekeeping.

May Shaw
Carnegie-Mellon University

Good judgment comes from experience, and experience
comes from bad judgment.

Fred Brooks
University of North Carolina

Don’t write a new program if one already does more or
less what you want. And if you must write a program,
use existing code to do as much of the work as possible.

Richard Hill
Hewlett-Packard S.A.
Geneva, Switzerland

Whenever possible, steal code.
Tom Duff
Bell Labs

898 Communications of the ACM September 1985 Volume 28 Number 9

Programming Pearls

Good customer relations double productivity.
Larry Bernstein
Bell Communications Research

Translating a working program to a new language or
system takes 10 percent of the original development
time or manpower or cost.

Douglas W. Jones
University of Iowa

Don’t use the computer to do things that can be done
efficiently by hand.

Richard Hill
Hewlett-Packard S.A.
Geneva, Switzerland

Don’t use hands to do things that can be done effi-
ciently by the computer.

Tom Duff
Bell Labs

I’d rather write programs to write programs than write
programs.

Dick Sites
Digital Equipment Corporation

[Brooks’s Law of Prototypes] Plan to throw one away,
you will anyhow.

Fred Brooks
University of North Carolina

If you plan to throw one away, you will throw away
two.

Craig Zerouni
Computer FX Ltd.
London, England

Prototyping cuts the work to produce a system by 40
percent.

Larry Bernstein
Bell Communications Research

[Thompson’s rule for first-time telescope makers] It is
faster to make a four-inch mirror then a six-inch mirror
than to make a six-inch mirror.

Bill McKeeman
Wang Institute

Furious activity is no substitute for understanding.
H. H. Williams
Oakland, California

Always do the hard part first. If the hard part is impos-
sible, why waste time on the easy part? Once the hard
part is done, you’re home free.

Always do the easy part first. What you think at first is
the easy part often turns out to be the hard part. Once
the easy part is done, you can concentrate all your
efforts on the hard part.

Al Schapira
Bell Labs

. ..‘.r.il-.!ii)‘~::,: ii tlr:

If you lie to the computer, it will get you.
Perry Farrar
Germantown, Maryland

If a system doesn’t have to be reliable, it can do any-
thing else.

H. H. Williams
Oakland, California

One person’s constant is another person’s variable.
Susan Gerhart
Microelectronics and Computer Technology Corp.

One person’s data is another person’s program.
Guy L. Steele, Jr.
Tartan Laboratories

If you’ve made it this far, you’ll certainly appreciate
this excellent advice.

Eschew clever rules.
Joe Condon
Bell Labs

Although this column has allocated just a few words to
each rule, most could be greatly expanded (say, into an
undergraduate paper or into a bull session over a few
beers). These problems show how one might expand
the following rule.

Make it work first before you make it work fast.
Bruce Whiteside
Woodridge, Ittinois

Your “assignment” is to expand other rules in a similar
fashion.

Restate the rule to be more precise. The example
rule might actually be intended as

Ignore efficiency concerns until a program is known
to be correct.

or as

If a program doesn’t work, it doesn’t matter how
fast it runs; after all, the null program gives a wrong
answer in no time at all.

Present small, concrete examples to support your
rule. In Chapter 7 of their Elements of Programming
Style, Kernighan and Plauger present 10 tangled
lines of code from a programming text; the convo-
luted code saves a single comparison (and inciden-
tally introduced a minor bug). By “wasting” an
extra comparison, they replace the code with two
crystal-clear lines. With that object lesson fresh on
the page, they present the rule

Make it right before you make it faster.

September 1985 Volume 28 Number 9 Communications of the ACM

Programming Pearls

3. Find “war stories” of how the rule has been used in
larger programs.
a. It is pleasant to see the rule save the day. Car-

negie-Mellon Computer Science Report CMU-
CS-83-108 describes how I made a system right
before I made it faster: I built several programs
in 2,000 lines of clean code, most of which
worked like a charm. Unfortunately, one 600-
line program to be ru:n several times a day re-
quire’d 14.6 hours. Profiling showed that 66
lines of code accounted for 13.6 hours of the
run time, and just 3 lines accounted for 11
hours (10 percent of the code took 94 percent of
the time, and 0.6 percent of the code took 7.8
percent of the time). I therefore concentrated
my efficiency efforts on those “hot spots,” and
properly ignored efficiency elsewhere.

b. It can be even more impressive to hear how
ignor:ing the rule 1ead.s to a disaster. When Vie
Vyssotsky modified a Fortran compiler in the

function maxheap(l,u, i] {Clifaheap
for (i = 2*1; i <= u; i++)

if (x[int(i/2)] < x[i]) return 0
return 1

1

function assert(cond. errmsg) {
if (Icond) {

print ">>> Assertion failed (<<n
print " Error message: I, errmsg

1
1

function siftdown(1.u. i,c,t) t
t pre maxheap(l+l,u]
t post maxheap(l,u)

assert(maxhteap(l+l.u), "siftdown pre")
i=l
while (I) {

maxheap(1.u) except between
i and its children
c = 2*i
if (c s u] break
if (c+l S= u &i x[c+l] s x[c]) c++
if (x[i] >= x[c]) break
t=x[i I ; x[i]=x[cl; x[cl=t t swap i, c
i a c

t
assert(maxbeap(1.u). "siftdown post")
)

function draw(i,s) {
if (i d:= n) {

print i ":", 8, x[i]
draw(2ci, 8'" ")
draw(2ri+l, s " ")

1
)

$I== "draw" { draw(1. ""1]
tl=="down" I siftdown(52, $3)]
Sl==“asserl:” { assert(maxheap(S2, $3), !'cmd") }
$l""X" { xtS21=$3 1
$la=“n” { n=$2 }

PROGRAM 1. An AWK Testbed for Heaps

early 1960s he spent a week making a correct
routine very fast, and thereby introduced a bug.
The bug surfaced two years later, because the
routine had never once been called in over
100,000 compilations. Vyssotsky’s week of pre-
mature optimization was worse than wasted: it
made a good program bad. [This story, though,
served as finetraining for Vyssotsky and gener-
ations of Bell Labs programmers.)

4. Critique the rules: which are always “capital-T
Truth” and which are sometimes misleading? Bill
Wulf of Tartan Laboratories took only a brief con-
versation to convince me that “if a program doesn’t
work, it doesn’t matter how fast it runs” isn’t quite
as true as I once thought. He used the case of a
document production system that we both used. Al..
though it was faster than its predecessor, at times it
seemed excruciatingly slow: it took several hours to
compile a book. Wulfs clincher went like this:
“That program, like any other large system, today
has 10 known, but minor, bugs. Next month, it will
have 10 different known bugs. If you could choose
between removing the 10 current bugs or making
the program run 10 times faster, which would you
pick?”

Solutions for July’s Problems
Several readers reported a horrible typographical error
on page 672 of the July column. In the fourth line of the
second paragraph in the right-hand column, the assign-
ment 1=m+7 should have been l=m+l ; the number
“one” was mistakenly typeset as a “seven.” Solutions 1,
2, and 3 refer to Program 1.
1.

2.

Program 1 is a testbed for the sif tdown routine.
The recursive draw routine uses indentation to
print the implicit tree structure of the heap (the
second parameter in the recursive call appends four
spaces to the indentation string s).
The modified assert routine in Program 1 in-
cludes a string variable that provides information
about the assertion that failed. Many systems pro-
vide an assertion facility that automatically gives
the source file and the line number of the invalid
assertion.

3. The sif tdown routine in Program 3 uses the
assert and maxheap routines to test the pre- and
post-conditions on entry and exit. The maxheap
routine requires 0(&L) time, so the assert calls
should be removed from the production version of
the code.

4. The tests in the last column missed a bug in my
first s if tup procedure. I mistakenly initialized i
with the incorrect assignment i=n rather than with
the correct assignment i=u. In all my tests, though,
u and n were equal, so they did not identify the
bug. (The published sif tup was correct, however,
as far as I know.)

5, I commonly use scaffolding to time algorithms.
6. For this solution, I gathered data on the run of

900 Communications of the ACM September 1985 Volume 28 Number 9

the “Quicksort 2” program described in the April
1984 column [with the CutOff parameter set to
15). My C program was 92 lines long: 41 lines of
scaffolding supported 51 lines of “real” code.
(The “real” code took just 26 lines of AWK,
and similar scaffolding took 10 lines.) The top
graph plots the run time of Quicksort on a
VAX-11/750@ as a function of the size of the
input array, N. The one hundred N values are uni-
formly spaced along the logarithmic scale. The
small times are discrete because the system mea-
sures time in sixtieths of a second. That graph

Further Reading -
If you like heavy doses of unadorned rules, try Tom
Parker’s RuZes of Thumb (Houghton Mifflin, 1983). The
following rules appear on its cover

798. One ostrich egg will serve 24 people for brunch.

888. A submarine will move through the water most
efficiently if it is 10 to 13 times as long as it is wide.

The book contains 896 similar rules.
Strunk and White’s classic Elements of Style (h4acmiL

Ian, third edition 1979) is built around 43 rules such as

Omit needless words.

That rule is elaborated in one and a half pages of vigor-
ous writing, much of which is before-and-after exam-
ples. The book is just 85 pages long. On a per page
basis, it is arguably the best style book ever written for
English.

Kernighan and Plauger’s Elemenfs of Programming Style
(McGraw-Hill, second edition 1978) is similar to Strunk
rend White both in title and in execution. They illus-
trate the rule

Keep it simple to make it faster.

on a 2%line sort from a programming text: a straightfor-
ward g-line program is 25 percent faster. John Shore
compares Kernighan and Plauger to Strunk and White
in his Sachertorte Algorithm, And Other Antidotes To Com-
puter Anxiety (Viking, 1985). His side-by-side presenta-

’ tion of 10 rules from each shows how good program-
ming is similar to good writing. He ends with the rule

Do not take shortcuts at the cost of clarity.

and the riddle of whether it is from Strunk and White
or from Kernighan and Plauger.

Fred Brooks’s Mythical Man Month (Addison-Wesley,
1975) contains dozens of rules about software, including
his classic

[Brooks’s Law] Adding manpower to a late software
project makes it later.

Butler Lampson’s “Hints for Computer System Design”
[IEEE Software, January 1984) summarize his experience
in building dozens of state-of-the-art systems.

Programming Pearls

shows that run time is strongly correlated to in-
put size, but provides little insight beyond that.

IO mscc --j

8.

Run
time

.

: . . -.
. .**.*‘:..-- .

** : . ..: .

Microseconds
per clcmcnt

loo-l * I I
I I

I
I I I

loo 200 500 1660 2666 5ooo
N

The y-scale in the bottom graph is the run time per
array element in microseconds (that is, the total
time divided by N). This graph displays the wide
variation in run time due to the randomizing Swap
operation. The straightness of the data indicates
that the run time per element grows logarithmic-
ally, which implies that the overall run time of
Quicksort is O(N log N). Most algorithms texts give
a mathematical proof of this fact.
To test that a sort routine permutes its input, we
could copy the input into a separate array, sort that
by a trusted method, and compare the two arrays
after the new routine has finished. An alternative
method uses only a few bytes of storage, but some-
times makes a mistake: it uses the sum of the ele-
ments in the array as a signature of those elements.
Changing a subset of the elements will change the
sum with high probability. (Summing involves
problems related to word size and nonassociativity
of floating-point addition; other signatures, such as
exclusive or, avoid these problems.)

VAX is a trademark of Digital Equipment Corporation.

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room Z-317,
600 Mountain Ave., Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

September 1985 Volume 28 Number 9 Communications of the ACh4 901

