Burrows-Wheeler Transform and FM Index

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaS$Sab
abaaba$ abaSaba abba$aa
T 4 abaabas BWT(T)
C baSabaa
Ong baaba S a Last column
Sort Burrows-Wheeler
Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

def rotations(t):
" Return list of rotations of input string t """
tt =t * 2
return [tt[i:i+len(t)] for i in xrange(9, len(t))]

def bwm(t):

" Return lexicographically sorted list of t’s rotations """

return sorted(rotations(t))

def bwtViaBwm(t):
" Given T, returns BWT(T) by way of the BWM """
return ''.join(map(lambda x: x[-1], bwm(t)))

>>> bwtViaBwm("Tomorrow_and tomorrow_and tomorrow$")

'‘wdwwdd__ nnoooaattTmmmrrrrrrooo 000’

Make list of all rotations

Sort them

Take last column

>>> bwtViaBwm("It was the best of times it was the worst of times$")

's$esttssfftteww hhmmbootttt ii woeeaaressIi

>>> bwtViaBwm('in_the jingle jangle morning I11 come following you$')

'u_gleeeengj mlhl nnnnt$nwj 1ggIolo iiiiarfcmylo oo

Python example: http://nbviewer.ipython.org/6798379

http://nbviewer.ipython.org/6798379
http://nbviewer.ipython.org/6798379

Burrows-Wheeler Transform

final
char sorted rotations

(L)

o

to decompress. It achieves compression
to perform only comparisons to a depth

transformation} This section describes
transformation} We use the example and
treats the right-hand side as the most

tree for each 16 kbyte input block, enc
tree in the output stream, then encodes
turn, set $L[i]$ to be the

turn, set $R[1i]$ to the

unusual data. Like the algorithm of Man
use a single set of probabilities table
using the positions of the suffixes in

value at a given point in the vector $R
we present modifications that improve t
when the block size is quite large. Ho
which codes that have not been seen in

with ch appear in the {\em same order
with chs. In our exam
with Huffman or arithmetic coding. Bri
with figures given by Bell \cite{bell}.

Characters of the BWT are sorted
by their right-context

This lends additional structure to
BWT(T), tending to make it more
compressible

O O F-F- - @ ® F ® ® O F - ® O O O O
== = R = - - B - -2 - B B - - R = - = R= R B B =

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

Sabaaba 6($
aSabaab 5/a$
aabaSab 2laabas$
abaSaba 3labas$
abaabas$ Olabaaba$
baSabaa 41bas$
baaba$a l1lbaaba$
BWM(T) SA(T)

Sort order is the same whether rows are rotations or suffixes

Burrows-Wheeler Transform

In fact, this gives us a new definition / way to construct BWT(T):

T[SA[i] —1] if SA[i] > 0

BWTli] = { 3 if SA[i] = 0

"“BWT = characters just to the left of the suffixes in the suffix array”

Sabaaba 6|$
aSabaab 5/a$
aaba$Sab 2laaba$
abaSaba 3laba$
abaabas$ Olabaaba$
baSabaa 4ba$
baaba$a 1lbaaba$

BWM(T) SA(T)

Burrows-Wheeler Transform

def suffixArray(s):
" Given T return suffix array SA(T). We use Python's sorted
function here for simplicity, but we can do better. """
satups = sorted([(s[i:], 1) for i in xrange(9, len(s))])
Extract and return just the offsets
return map(lambda x: x[1], satups)

Make suffix array

def bwtViaSa(t):

" Given T, returns BWT(T) by way of the suffix array. """ Take characterSjUSt

bw = []
for si in suffixArray(t): to the left of the
if si == 0: bw.append('$")
else: bw.append(t[si-1]) sorted suffixes
return ''.join(bw) # return string-ized version of List bw

>>> bwtViaSa("Tomorrow and tomorrow_and tomorrow$")
'wdwwdd___nnoooaattTmmmrrrrrrooo 000

>>> bwtViaSa("It was the best of times it was the worst of times$")
's$esttssfftteww hhmmbootttt ii woeeaaressIi '

>>> bwtViaSa('in_the jingle jangle morning I1ll come following you$')

'u_gleeeengj mlhl nnnnt$nwj 1gglolo iiiiarfcmylo oo

Python example: http://nbviewer.ipython.org/6798379

http://nbviewer.ipython.org/6798379
http://nbviewer.ipython.org/6798379

Burrows-Wheeler Transform

How to reverse the BWT?

?
R Sabaaba
aSabaab
v aabas$ab
abaaba$ abaSaba abbasaa
T ” abaabas BWT(T)
%y, baSabaa
N b aa b a $ a Last column
Sort Burrows-Wheeler
Matrix

BWM has a key property called the LF Mapping...

Burrows-Wheeler Transform: T-ranking

Give each character in T a rank, equal to # times the character occurred
previously in T. Call this the T-ranking.

aoboaiaxbiaz $

Now let’s re-write the BWM including ranks...

Burrows-Wheeler Transform

F L
BWM with T-ranking: as
as
ai
a> ai
do
d>
do

Look at first and last columns, called Fand L

And look at just the s

as occur in the same orderin Fand L. As we look down columns, in both

cases we see: A3, d1,d2, Ao

Burrows-Wheeler Transform

F
BWM with T-ranking:

Same with bs: b1, bo

Burrows-Wheeler Transform

Reversible permutation of the characters of a string, used originally for compression

Sabaaba
aSabaab
aabaS$Sab
abaaba$ abaSaba abba$aa
T 4 abaabas BWT(T)
C baSabaa
Ong baaba S a Last column
Sort Burrows-Wheeler
Matrix

How is it useful for compression? How is it reversible? How is it an index?

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform: LF Mapping

F L

BWM with T-ranking: S ao bo a1 a> b1 as
as S ao bo ar a2 by
ai a2 by az $ ao bo
a: biaz $ ao bo a;
aoboaiazbiaz $
bias $ ap by a; az
boaiazbiaz $ ao

LF Mapping: The ith occurrence of a character cin L and the ith occurrence of ¢
in F correspond to the same occurrencein T

However we rank occurrences of ¢, ranks appear in the same order in Fand L

Burrows-Wheeler Transform: LF Mapping

Why does the LF Mapping hold?

Why are these

as in this order

relative to
each other?

$abaaba;

"b1a$abaaz
boaabas$ a

They're sorted by
right-context

$ abaabla:

az S$abaab;
atabas$ abo

a> b a$ abla;

aobaabas$

b:aSabala

aO|

boaabas$

They're sorted by
right-context

Occurrences of ¢ in F are sorted by right-context. Same for L!

\ Why are these

as in this order
« relative to

/each other?

Whatever ranking we give to characters in T, rank orders in F and L will match

Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

F L

$ do bo d] A2 b1 as
as $ ao bo ay az b,
a1 42 b1 ds $ do bo
ax b1 as $ ao bo a;
aoboaiazbiaz $
biaz $ ao bo a; a>
bo a; a2 by as $ ao

We'd like a different ranking so that for a given character, ranks are in
ascending order as we look down the F / L columnes...

Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

F L

S do

do bo

a b1

a> a1 Ascending rank
ds3 $

bo -)

\ 4 b1 d3 v

F now has very simple structure: a $, a block of as with ascending ranks, a
block of bs with ascending ranks

Burrows-Wheeler Transform

L

a0

bo

b1 «<— Which BWM row begins with b7
ai Skip row starting with $ (1 row)
$ Skip rows starting with a (4 rows)

Skip row starting with bo (1 row)
a2

Answer: row 6

ds

Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gsand 700 Tsand $ <A< C<G<T

Which BWM row (0-based) begins with G100? (Ranks are B-ranks.)

Skip row starting with $ (1 row)

Skip rows starting with A (300 rows)

Skip rows starting with € (400 rows)

Skip first 100 rows starting with G (100 rows)

Answer:row 1 + 300 + 400 + 100 = row 801

Burrows-Wheeler Transform: reversing

Reverse BWT(T) starting at right-hand-side of T and moving left

Start in first row. F must have $. L contains F L
character just prior to $: ao

_)S

ao: LF Mapping says this is same occurrence of a do

as firstain F. Jump to row beginning with ag. L

contains character just prior to ao: bo.

Repeat for bo, get a2 asy;
Repeat for a2, get a1 bo

Repeat for a1, get b1

Repeat for b1, get a3

Repeat for a3, get §, done Reverse of chars we visited=az b1aiazboao$=T

Burrows-Wheeler Transform: reversing

Another way to visualize reversing BWT(T):

F L F L F L F L F L F L
—— $S—ao

ao—>b

b1—>a3

T: azsbiatazboao$

asz-»$S

def

def

def

Burrows-Wheeler Transform: reversing

rankBwt (bw) :

' Given BWT string bw, return parallel list of B-ranks. Also
returns tots: map from character to # times it appears. '''

tots = dict()

ranks = []

for ¢ in bw:
if ¢ not in tots: tots[c] = ©
ranks.append(tots[c])
tots[c] += 1

return ranks, tots

firstCol(tots):

' Return map from character to the range of rows prefixed by

the character. '''

first = {}

totc = 0

for ¢, count in sorted(tots.iteritems()):
first[c] = (totc, totc + count)
totc += count

return first

reverseBwt(bw):
" Make T from BWT(T) "'’
ranks, tots = rankBwt(bw)
first = firstCol(tots)
rowi = @ # start in first row
t = '$" # start with rightmost character
while bw[rowi] != '$"':
c = bw[rowi]
t =c + t # prepend to answer
jump to row that starts with c of same rank
rowi = first[c][@] + ranks[rowi]
return t

Calculate B-ranks and count
occurrences of each char

Make concise representation
of first BWM column

Do reversal

Python example:
http://nbviewer.ipython.org/6860491

http://nbviewer.ipython.org/6860491
http://nbviewer.ipython.org/6860491

Burrows-Wheeler Transform: reversing

>>> reverseBwt("w$wwdd nnoooaattTmmmrrrrrrooo ooo")
'‘Tomorrow_and_tomorrow _and tomorrow$'

>>> reverseBwt("s$esttssfftteww hhmmbootttt ii woeeaaressli ")
'It was_the best of times it was_the worst of times$'

>>> reverseBwt("u gleeeengj mlhl nnnnt$nwj 1ggIolo iiiiarfcmylo oo ")
'in_the_jingle jangle morning I1l come_ following you$'

def reverseBwt(bw):
"'' Make T from BWT(T) "'’

ranks list is m integers > ranks, tots = rankBwt(bw)
| / first = firstCol(tots)
Iong. We'll fix later. rowi = @ # start in first row
t = '$" # start with rightmost character
while bw[rowi] != "$':

c = bw[rowi]
t =c+ t # prepend to answer
jump to row that starts with c of same rank
rowi = first[c][@] + ranks[rowi]
return t

Burrows-Wheeler Transform

We've seen how BWT is useful for compression:

Sorts characters by right-context, making a more compressible string

And how it's reversible:

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

FM Index

FM Index: an index combining the BWT with a few small auxilliary

data structures

“FM” supposedly stands for “Full-text Minute-space.”’
(But inventors are named Ferragina and Manzini)

Core of index consists of Fand L from BWM:

F can be represented very simply
(1 integer per alphabet character)

And L is compressible

Potentially very space-economical!

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data
structures with applications." Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

ST Y Y WM M
QO WNY T 9 -~

Not stored in index

FM Index: querying

Though BWM is related to suffix array, we can't query it the same way

S a 6|S

a b 5|la$

a b 2laabas$

a a 3laba$

a S Olabaaba$
b a 4lba$

b a 1lbaaba$

N

We don't have these columns; binary search isn't possible

FM Index: querying

Look for range of rows of BWM(T) with P as prefix

Do this for P’s shortest suffix, then extend to successively longer
suffixes until range becomes empty or we've exhausted P

P=aba

F L

S as
Easy to find all the ao b
rows beginning with | (a, bo
a, thanks to F's a> ai
simple structure as S

bo d>2

FM Index: querying

We have rows beginning with @, now we seek rows beginning with ba

P=aba p=aba
F L F L
3 ao $ ao
ao bo: do bo
ai b1 <« Look at those rows in L. ai b1
a2 ai bo, b1 are bs occuring just to left. az ai
as S 1 ~as S
bo a2 Use LF Mapping. Let new bo a>
—>
b; as range delimit those bs b as

Now we have the rows with prefix ba

FM Index: querying

We have rows beginning with ba, now we seek rows beginning with aba

P=aba P=aba
F L F [
S ao S ao
ao bo do bo
di o di b
a> ail , d> di
Use LF Mapping —
bo o a2, @3 occur just to left. bo a
b as; b1 as

Now we have the rows with prefix aba

FM Index: querying

Now we have the same range, [3, 5), we would

P=aba have got from querying suffix array
F L
S ao 6|$
do bo 5la $
_a b [2]laaba$
a: a abal$
3,3 3,5
[)__33 $ |)__abaaba$
bo a> 4bas$
Where are b as Tlbaabas$

these?

Unlike suffix array, we don't immediately know where the
matches areinT...

FM Index: querying

When P does not occur in T, we will eventually fail to find the next character
in L:

P=bba
F L
S do
do bo
ai b1
d> ai
a3 S
Rows with ba prefix I bo 92 14— No bs!
b ds3

FM Index: querying

If we scan characters in the last column, that can be very slow, O(m)

P=aba
F L
S as
do b1
a b
1 % | Scan, looking for bs
a>z ai
as S v
bo a>2

FM Index: lingering issues

(1) Scanning for preceding

character is slow

S ao
ao bo
di of
a> ai
as S
bo d2
b as

O(m)
scan

(2) Storing ranks takes too much space

def reverseBwt(bw):

m/

integers

'" Make T from BWT(T) '
ranks, tots = rankat(bw)
first = firstCol(tots)
row1 = 0

wh11e bw[row1] I= "$":

c = bw[rowi]
t=c+ t
rowi = first[c][0] + ranks[rowi]

return t

(3) Need way to find where matches

occurinT:

Where?

$

do

FM Index: fast rank calculations

F L
S ao
Is there an O(1) way to :‘1’ g‘:
determine which bs as a
precede the as in our range? (33 S
bo a2
b a3
Tally
F L ab
$ a 0|«
alb 1 .
Idea: pre-calculate # as, alb 2 ;/Ve Ien:f:nbLoi&rlmnt(:\il::an .
bsin L up to every row: ala 2|2 PP J
als 22|
b a 32
b a 412 O(1) time, but requires

m X | X | integers

FM Index: fast rank calculations

Another idea: pre-calculate # as, bs in L up to some rows, e.g. every 5t row.
Call pre-calculated rows checkpoints.

Tally
ab

110 |«— Lookup here succeeds as usual

<— Qops: not a checkpoint

3| 2 |<— Butthere’s one nearby

0 O WnNNoY T O —

C T O O 9 N ™

To resolve a lookup for character ¢ in non-checkpoint row, scan along L until
we get to nearest checkpoint. Use tally at the checkpoint, adjusted for # of cs
we saw along the way.

FM Index: fast rank calculations

What's my rank?
482 +2-1=483

/! b\
Checkpoint tally -> rank

as along the way

What's my rank?
439-2-1=436

Assuming checkpoints are spaced O(1)
distance apart, lookups are O(1)

O VO OO YO QT O VY v 99 9 T T QO e

Tally
a b
482 | 432
488 | 439

FM Index: a few problems

Solved! At the expense of adding checkpoints (O(m) integers) to index.

(1) F | (2) Ranking takes too much space
$ aO def reverseBwt(bw):
b — '" Make T from BWT(T) """
ranks, tots = rankBwt(bw)
ao bo /first = firstCol(tots)
i i rowi = 0
ai 1| This scanll(s mintegers ¢ - s il 1 s
while bw[rowi] != "$':
a2 a1 O(m) wor c = bw[rowi]
t=c+ t
a3 $ rowi = first[c][0] + ranks[rowi]
bO a2 - return t
b1 as

With checkpoints, we greatly reduce

#int ded f k
With checkpoints it’s O(1) Integers needed forranks

But it's still O(m) space - there’s literature
on how to improve this space bound

FM Index: a few problems

Not yet solved:

(3) Needaway to find where
these occurrences arein T:

If suffix array were part of index, we
could simply look up the offsets

F

L

>

>

T 9 9 W»n

0 9 N OO0 Y

Offsets: 0, 3

SA

—= | PO WIN|ULI O

S
as
aabas$
abas$
abaaba$
ba$
baaba$

S ao
do bo
dai b,
a2 G
ds $
bo a2
b as

But SA requires
m integers

FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

F L SA
S a 6
a b

a b 2
a a—>X

a < >[0
b a 4
b a

Lookup for row 4 succeeds - we kept that entry of SA

Lookup for row 3 fails - we discarded that entry of SA

FM Index: resolving offsets

But LF Mapping tells us that the a at the end of row 3 corresponds to...
...the a at the begining of row 2

F SA

ST 9 99 99 O W»n
mmm4rml~
ND

And row 2 has a suffix array value = 2

So row 3 has suffix array value = 3 =2 (row 2's SA val) + 1 (# steps to row 2)

If saved SA values are O(1) positions apartin T, resolving offset is O(1) time

FM Index: problems solved

At the expense of adding some SA values (O(m) integers) to index
Call this the “SA sample”

Solved!

(3) Need a way to find where these
occurrences arein T:

S do
do bo
ai b
d2 di
as S
bo a2
b1 as

With SA sample we can do this in
O(1) time per occurrence

FM Index: small memory footprint

Components of the FM Index:

First column (F): ~ |2 | integers
Last column (L): m characters
SA sample: m - a integers, where a is fraction of rows kept
Checkpoints: m x| 2 | - b integers, where b is fraction of

rows checkpointed

Example: DNA alphabet (2 bits per nucleotide), T = human genome,
a=1/32,b=1/128

First column (F): 16 bytes
Last column (L): 2 bits * 3 billion chars =750 MB

SA sample: 3 billion chars * 4 bytes/char / 32 = ~ 400 MB
Checkpoints: 3 billion * 4 bytes/char/ 128 =~ 100 MB

Total < 1.5 GB

