
C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Number Literals

Integers

0b11111111 binary 0B11111111 binary

0377 octal 255 decimal

0xff hexadecimal 0xFF hexadecimal

Real Numbers

88.0f / 88.1234567f

single precision float (f suffix)

88.0 / 88.123456789012345

double precision float (no f suffix)

Signage

42 / +42 positive -42 negative

Binary notation 0b... / 0B... is available on GCC and most but not all C

compilers.

Variables

Decl ​aring

int x; A variable.

char x = 'C'; A variable & initialising it.

float x, y, z; Multiple variables of the same type.

const int x = 88; A constant variable: can't assign to after

declar ​ation (compiler enforced.)

Naming

johnny5IsAlive; Alphanumeric, not a keyword, begins with a

letter.

2001ASpaceOddysey;  Doesn't begin with a letter.

while;  Reserved keyword.

how exciting!;  Non-alphanumeric.

iamaverylongvariablenameohmygoshyesiam; 

Longer than 31 characters (C89 & C90 only)

Constants are CAPITALISED. Function names usually take the form of a

verb eg. plotRobotUprising().

Primitive Variable Types

*applicable but not limited to most ARM, AVR, x86 & x64 installations

[class] [qualifier] [unsigned] type/void name;

by ascending arithmetic conversion

Inte ​gers

Type Bytes Value Range

char 1 unsigned OR signed

Primitive Variable Types (cont)

unsigned char 1 0 to 2 -1

signed char 1 -2 to 2 -1

int 2 / 4 unsigned OR signed

unsigned int 2 / 4 0 to 2 -1 OR 2 -1

signed int 2 / 4 -2 to 2 -1 OR -2 to 2 -1

short 2 unsigned OR signed

unsigned short 2 0 to 2 -1

signed short 2 -2 to 2 -1

long 4 / 8 unsigned OR signed

unsigned long 4 / 8 0 to 2 -1 OR 2 -1

signed long 4 / 8 -2 to 2 -1 OR -2 to 2 -1

long long 8 unsigned OR signed

unsigned long

long

8 0 to 2 -1

signed long long 8 -2 to 2 -1

Floats

Type Bytes Value Range (Norma ​lized)

float 4 ±1.2×10 to ±3.4×10

double 8 / 4 ±2.3×10 to ±1.7×10 OR alias to float

for AVR.

long double ARM: 8, AVR: 4, x86: 10, x64: 16

Qualifiers

const type Flags variable as read-only (compiler can optimise.)

volatile type Flags variable as unpredictable (compiler cannot

optimise.)

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 1 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

8

7 7

16 31

15 15 31 32

16

15 15

32 64

31 31 63 63

64

63 63

-38 38

-308 308

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Primitive Variable Types (cont)

Storage Classes

register Quick access required. May be stored in RAM OR a register.

Maximum size is register size.

static Retained when out of scope. static global variables are confined

to the scope of the compiled object file they were declared in.

extern Variable is declared by another file.

Typecasting

(type)a Returns a as data type.

char x = 1, y = 2; float z = (float) x / y;

Some types (denoted with OR) are architecture dependant.

There is no primitive boolean type, only zero (false, 0) and non-zero (true,

usually 1.)

Extended Variable Types

[class] [quali ​fier] type name;

by ascending arithmetic conver ​sion

From the stdint.h Library

Type Bytes Value Range

int8_t 1 -2 to 2 -1

uint8_t 1 0 to 2 -1

int16_t 2 -2 to 2 -1

uint16_t 2 0 to 2 -1

int32_t 4 -2 to 2 -1

uint32_t 4 0 to 2 -1

int64_t 8 -2 to 2 -1

uint64_t 8 0 to 2 -1

From the stdbo ​ol.h Library

Type Bytes Value Range

bool 1 true / false or 0 / 1

The stdint.h library was introduced in C99 to give integer types

archit ​ect ​ure ​-in ​dep ​endent lengths.

Structures

Defi ​ning

struct strctName{ type x;

type y; };

A structure type strctName with two members,

x and y. Note trailing semicolon

struct item{ struct item

*next; };

A structure with a recursive structure pointer

inside. Useful for linked lists.

Declaring

struct strctName

varName;

A variable varName as structure type

strctName.

struct strctName

*ptrName;

A strctName structure type pointer, ptrName.

struct strctName{ type a;

type b; } varName;

Shorthand for defining strctName and

declaring varName as that structure type.

struct strctName

varName = { a, b };

A variable varName as structure type

strctName and initialising its members.

Accessing

varName.x Member x of structure varName.

ptrName->x Value of structure pointer ptrName member x.

Bit Fields

struct{char a:4, b:4} x; Declares x with two members a and b, both

four bits in size (0 to 15.)

Array members can't be assigned bit fields.

Type Defini ​tions

Defining

typedef unsigned short uint16; Abbreviating a longer type name to

uint16.

typedef struct structName{int a,

b;}newType;

Creating a newType from a

structure.

typedef enum typeName{false,

true}bool;

Creating an enumerated bool type.

Declaring

uint16 x = 65535; Variable x as type uint16.

newType y = {0, 0}; Structure y as type newType.

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 2 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

7 7

8

15 15

16

31 31

32

63 63

64

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Unions

Defining

union uName{int

x; char y[8];}

A union type uName with two members, x & y. Size is

same as biggest member size.

Declaring

union uN vName; A variable vName as union type uN.

Accessing

vName.y[int] Members cannot store values concur ​rently. Setting y

will corrupt x.

Unions are used for storing multiple data types in the same area of

memory.

Enumer ​ation

Defining

enum bool { false,

true };

A custom data type bool with two possible states:

false or true.

Declaring

enum bool

varName;

A variable varName of data type bool.

Assigning

varName = true; Variable varName can only be assigned values of

either false or true.

Evaluating

if(varName ==

false)

Testing the value of varName.

Pointers

Declaring

type

*x;

Pointers have a data type like normal variables.

void

*v;

They can also have an incomplete type. Operators other than

assignment cannot be applied as the length of the type is

unknown.

struct

type

*y;

A data structure pointer.

type

z[];

An array/ ​string name can be used as a pointer to the first array

element.

Accessing

x A memory address.

Pointers (cont)

*x Value stored at that address.

y->a Value stored in structure pointer y member a.

&varName Memory address of normal variable varName.

*(type *)v Dereferencing a void pointer as a type pointer.

A pointer is a variable that holds a memory location.

Arrays

Decl ​aring

type name[int]; You set array length.

type name[int] = {x, y, z}; You set array length and initialise elements.

type name[int] = {x}; You set array length and initialise all

elements to x.

type name[] = {x, y, z}; Compiler sets array length based on initial

elements.

Size cannot be changed after declaration.

Dimensions

name[int] One dimension array.

name[int][int] Two dimens ​ional array.

Accessing

name[int] Value of element int in array name.

*(name + int) Same as name[​int].

Elements are contiguously numbered ascending from 0.

&name[int] Memory address of element int in array

name.

name + int Same as & ​nam ​e[i ​nt].

Elements are stored in contiguous memory.

Measuring

sizeof(array) /

sizeof(arrayType)

Returns length of array. (Unsafe)

sizeof(array) /

sizeof(array[0])

Returns length of array. (Safe)

Strings

'A' character Single quotes.

"AB" string Double quotes.

\0 Null termin ​ator.

Strings are char arrays.

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 3 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Strings (cont)

char name[4] = "Ash";

is equivalent to

char name[4] = {'A', 's', 'h', '\0'};

int i; for(i = 0; name[i]; i++){}

\0 evaluates as false.

Strings must include a char element for \0.

Escape Characters

\a alarm (bell/beep) \b backspace

\f formfeed \n newline

\r carriage return \t horizontal tab

\v vertical tab \\ backslash

\' single quote \" double quote

\? question mark

\nnn Any octal ANSI character code.

\xhh Any hexadecimal ANSI character code.

Functions

Declaring

type/void funcName([args...]){ [return var;] }

Function names follow the same restrictions as variable names but must

also be unique.

type/void Return value type (void if none.)

funcName() Function name and argument parenthesis.

args... Argument types & names (void if none.)

{} Function content delimi ​ters.

return var; Value to return to function call origin. Skip for void type

functions. Functions exit immediately after a return.

By Value vs By Pointer

void f(type

x); f(y);

Passing variable y to function f argument x (by value.)

void f(type

*x);

f(array);

Passing an array/string to function f argument x (by pointer.)

Functions (cont)

void f(type *x);

f(structure);

Passing a structure to function f argument x (by

pointer.)

void f(type *x);

f(&y);

Passing variable y to function f argument x (by

pointer.)

type f(){ return x; } Returning by value.

type f(){ type x;

return &x; }

Returning a variable by pointer.

type f(){ static type

x[]; return &x; }

Returning an array/string/structure by pointer. The

static qualifier is necessary otherwise x won't exist

after the function exits.

Passing by pointer allows you to change the originating variable within the

function.

Scope

int f(){ int i = 0; } i++; 

i is declared inside f(), it doesn't exist outside that function.

Prototyping

type funcName(args...);

Place before declaring or referencing respective function (usually before

main.)

type

funcName([args...])

Same type, name and args... as respective function.

; Semicolon instead of function delimiters.

main()

int main(int argc, char *argv[]){return int;}

Anatomy

int main Program entry point.

int argc # of command line arguments.

char *argv[] Command line arguments in an array of strings. #1 is

always the program filename.

return int; Exit status (inte ​ger) returned to the OS upon program exit.

Command Line Arguments

app two 3 Three arguments, "ap ​p", "tw ​o" and "3".

app "two 3" Two arguments, "ap ​p" and "two 3".

main is the first function called when the program executes.

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 4 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Condit ​ional (Branc ​hing)

if, else if, else

if(a) b; Evaluates b if a is true.

if(a){ b; c; } Evaluates b and c if a is true.

if(a){ b; }else{ c; } Evaluates b if a is true, c otherwise.

if(a){ b; }else if(c){ d; }else{ e; } Evaluates b if a is true, otherwise d if c

is true, otherwise e.

switch, case, break

switch(a){ case b: c; } Evaluates c if a equals b.

switch(a){ default: b; } Evaluates b if a matches no other

case.

switch(a){ case b: case c: d; } Evaluates d if a equals either b or c.

switch(a){ case b: c; case d: e;

default: f; }

Evaluates c, e and f if a equals b, e

and f if a equals d, otherwise f.

switch(a){ case b: c; break; case

d: e; break; default: f; }

Evaluates c if a equals b, e if a equals

d and e otherwise.

Iterative (Looping)

while

int x = 0; while(x < 10){ x += 2; }

Loop skipped if test condition initially false.

int x = 0; Declare and initialise integer x.

while() Loop keyword and condition parenthesis.

x < 10 Test condition.

{} Loop delimiters.

x += 2; Loop contents.

do while

char c = 'A'; do { c++; } while(c != 'Z');

Always runs through loop at least once.

char c = 'A'; Declare and initialise character c.

do Loop keyword.

{} Loop delimiters.

c++; Loop contents.

while(); Loop keyword and condition parenthesis. Note semicolon.

c != 'Z' Test condition.

for

Iterative (Looping) (cont)

int i; for(i = 0; n[i] != '\0'; i++){} (C89)

OR

for(int i = 0; n[i] != '\0'; i++){} (C99+)

Compact increment/decrement based loop.

int i; Declares integer i.

for() Loop keyword.

i = 0; Initialises integer i. Semicolon.

n[i] != '\0'; Test condition. Semicolon.

i++ Increments i. No semicolon.

{} Loop delimiters.

continue

int i=0; while(i<10){ i++; continue; i--;}

Skips rest of loop contents and restarts at the beginning of the loop.

break

int i=0; while(1){ if(x==10){break;} i++; }

Skips rest of loop contents and exits loop.

Console Input/ ​Output

#include <stdio.h>

Characters

getchar() Returns a single character's ANSI code from the input

stream buffer as an integer. (safe)

putchar(int) Prints a single character from an ANSI code integer to

the output stream buffer.

Strings

gets(strName) Reads a line from the input stream into a string

variable. (Unsafe, removed in C11.)

Alternative

fgets(strName,

length, stdin);

Reads a line from the input stream into a string

variable. (Safe)

puts("string") Prints a string to the output stream.

Formatted Data

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 5 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Console Input/ ​Output (cont)

scanf("%d", &x) Read value/s (type defined by format string) into

variable/s (type must match) from the input stream.

Stops reading at the first whitespace. & prefix not

required for arrays (including strings.) (unsafe)

print ​f("I love %c

%d!", 'C', 99)

Prints data (formats defined by the format string) as a

string to the output stream.

Alternative

fgets(strName,

length, stdin);

sscanf(strName,

"%d", &x);

Uses fgets to limit the input length, then uses sscanf to

read the resulting string in place of scanf. (safe)

The stream buffers must be flushed to reflect changes. String terminator

characters can flush the output while newline characters can flush the

input.

Safe functions are those that let you specify the length of the input. Unsafe

functions do not, and carry the risk of memory overflow.

File Input/ ​Output

#include <stdio.h>

Opening

FILE *fptr = fopen(filename, mode);

FILE

*fptr

Declares fptr as a FILE type pointer (stores stream location

instead of memory location.)

fopen() Returns a stream location pointer if successful, 0 otherwise.

filename String containing file's directory path & name.

mode String specifying the file access mode.

Modes

"r" / "rb" Read existing text/binary file.

"w" /

"wb"

Write new/over existing text/binary file.

File Input/ ​Output (cont)

"a" / "ab" Write new/append to existing text/binary file.

"r+" / "r+b" / "rb+" Read and write existing text/binary file.

"w+" / "w+b" / "wb+" Read and write new/over existing text/binary file.

"a+" / "a+b" / "ab+" Read and write new/append to existing text/binary

file.

Closing

fclose(fptr); Flushes buffers and closes stream. Returns 0 if

successful, EOF otherwise.

Random Access

ftell(fptr) Return current file position as a long integer.

fseek(fptr, offset,

origin);

Sets current file position. Returns false is

successful, true otherwise. The offset is a long

integer type.

Origins

SEEK_SET Beginning of file.

SEEK_CUR Current position in file.

SEEK_END End of file.

Utilities

feof(fptr) Tests end-of-file indicator.

rename(strOldName,

strNewName)

Renames a file.

remove(strName) Deletes a file.

Characters

fgetc(fptr) Returns character read or EOF if unsucc ​essful.

(safe)

fputc(int c, fptr) Returns character written or EOF if unsucc ​essful.

Strings

fgets(char *s, int n,

fptr)

Reads n-1 characters from file fptr into string s.

Stops at EOF and \n. (safe)

fputs(char *s, fptr) Writes string s to file fptr. Returns non-ne ​gative on

success, EOF otherwise.

Formatted Data

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 6 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

File Input/ ​Output (cont)

fscanf(fptr, format, [...]) Same as scanf with additional file pointer

parameter. (unsafe)

fprintf(fptr, format, [...]) Same as printf with additional file pointer

parameter.

Alternative

fgets(strName, length,

fptr); sscanf(strName,

"%d", &x);

Uses fgets to limit the input length, then uses

sscanf to read the resulting string in place of

scanf. (safe)

Binary

fread(void *ptr,

sizeof(element),

number, fptr)

Reads a number of elements from fptr to array

*ptr. (safe)

fwrite(void *ptr,

sizeof(element),

number, fptr)

Writes a number of elements to file fptr from

array *ptr.

Safe functions are those that let you specify the length of the input. Unsafe

functions do not, and carry the risk of memory overflow.

Placeh ​older Types (f/printf And f/scanf)

printf("%d%d...", arg1, arg2...);

Type Example Description

%d or %i -42 Signed decimal integer.

%u 42 Unsigned decimal integer.

%o 52 Unsigned octal integer.

%x or %X 2a or 2A Unsigned hexadecimal integer.

%f or %F 1.21 Signed decimal float.

%e or %E 1.21e+9 or 1.21E+9 Signed decimal w/ scientific

notation.

%g or %G 1.21e+9 or 1.21E+9 Shortest representation of

%f/%F or %e/%E.

%a or %A 0x1.207c8ap+30 or

0X1.207C8AP+30

Signed hexadecimal float.

%c a A character.

%s A String. A character string.

%p A pointer.

Placeh ​older Types (f/printf And f/scanf) (cont)

%% % A percent character.

%n No output, saves # of characters printed so far. Respective printf

argument must be an integer pointer.

The pointer format is architecture and implementation dependant.

Placeh ​older Formatting (f/printf And f/scanf)

%[Flags][Width][.Precision][Length]Type

Flags

- Left justify instead of default right justify.

+ Sign for both positive numbers and negative.

Precede with 0, 0x or 0X for %o, %x and %X tokens.

space Left pad with spaces.

0 Left pad with zeroes.

Width

integer Minimum number of characters to print: invokes padding if

necessary. Will not truncate.

* Width specified by a preceding argument in printf.

Precision

.integer Minimum # of digits to print for %d, %i, %o, %u, %x, %X. Left

pads with zeroes. Will not truncate. Skips values of 0.

 Minimum # of digits to print after decimal point for %a, %A, %e,

%E, %f, %F (default of 6.)

 Minimum # of significant digits to print for %g & %G.

 Maximum # of characters to print from %s (a string.)

. If no integer is given, default of 0.

.* Precision specified by a preceding argument in printf.

Length

hh Display a char as int.

h Display a short as int.

l Display a long integer.

ll Display a long long integer.

L Display a long double float.

z Display a size_t integer.

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 7 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Placeh ​older Formatting (f/printf And f/scanf) (cont)

j Display a intmax_t integer.

t Display a ptrdiff_t integer.

Prepro ​cessor Directives

#include

<inbuilt.h>

Replaces line with contents of a standard C header file.

#include

"./custom.h"

Replaces line with contents of a custom header file. Note

dir path prefix & quotations.

#define

NAME value

Replaces all occurrences of NAME with value.

Comments

// We're single-line comments!

// Nothing compiled after // on these lines.

/* I'm a multi-line comment!

 ​ ​ ​Nothing compiled between

 ​ ​ ​these delimi ​ters. */

C Reserved Keywords

_Alignas break float signed

_Alignof case for sizeof

_Atomic char goto static

_Bool const if struct

_Complex continue inline switch

_Generic default int typedef

_Imaginary do long union

_Noreturn double register unsigned

_Static_assert else restrict void

_Thread_local enum return volatile

auto extern short while

_A-Z... __...

C / POSIX Reserved Keywords

E[0-9]... E[A-Z]... is[a-z]... to[a-z]...

LC_[A-Z]... SIG[A-Z]... SIG_[A-Z]... str[a-z]...

mem[a-z]... wcs[a-z]... ..._t

GNU Reserved Names

Header Reserved Keywords

Name Reserved By Library

d_... dirent.h

l_... fcntl.h

F_... fcntl.h

O_... fcntl.h

S_... fcntl.h

gr_... grp.h

..._MAX limits.h

pw_... pwd.h

sa_... signal.h

SA_... signal.h

st_... sys/stat.h

S_... sys/stat.h

tms_... sys/times.h

c_... termios.h

V... termios.h

I... termios.h

O... termios.h

TC... termios.h

B[0-9]... termios.h

GNU Reserved Names

Heap Space

#include <stdlib.h>

Allocating

malloc(); Returns a memory location if

succes ​sful, NULL otherwise.

type *x; x =

malloc(sizeof(type));

Memory for a variable.

type *y; y = malloc(sizeof(type)

* length);

Memory for an array/string.

struct type *z; z =

malloc(sizeof(struct type));

Memory for a structure.

Deallocating

free(ptrName); Removes the memory allocated to

ptrName.

Reallocating

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 8 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html
http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Heap Space (cont)

realloc(ptrName,

size);

Attempts to resize the memory block assigned to

ptrName.

The memory addresses you see are from virtual memory the operating

system assigns to the program; they are not physical addresses.

Referencing memory that isn't assigned to the program will produce an OS

segmentation fault.

The Standard Library

#include <stdlib.h>

Randomicity

rand() Returns a (predictable) random integer between 0 and

RAND_MAX based on the randomiser seed.

RAND_MAX The maximum value rand() can generate.

srand(unsigned

integer);

Seeds the randomiser with a positive integer.

(unsigned)

time(NULL)

Returns the computer's tick-tock value. Updates every

second.

Sorting

qsort(array, length, sizeof(type), compFunc);

qsort() Sort using the QuickSort algorithm.

array Array/string name.

length Length of the array/string.

sizeof(type) Byte size of each element.

compFunc Comparison function name.

compFunc

int compFunc(const void *a, const void b*){ return(*(int *)a - *(int *)b); }

int compFunc() Function name unimportant but must return an integer.

const void *a,

const void *b

Argument names unimportant but must identical

otherwise.

return(*(int *)a

- *(int *)b);

Negative result swaps b for a, positive result swaps a for

b, a result of 0 doesn't swap.

C's inbuilt randomiser is cryptographically insecure: DO NOT use it for

security applications.

The Character Type Library

#include <ctype.h>

tolower(char) Lowercase char.

toupper(char) Uppercase char.

isalpha(char) True if char is a letter of the alphabet, false otherwise.

islower(char) True if char is a lowercase letter of the alphabet, false

otherwise.

isupper(char) True if char is an uppercase letter of the alphabet, false

otherwise.

isnumber(char) True if char is numerical (0 to 9) and false otherwise.

isblank True if char is a whitespace character (' ', '\t', '\n') and

false otherwise.

The String Library

#include <string.h>

strlen(a) Returns # of char in string a as an integer. Excludes \0.

(unsafe)

strcpy(a, b) Copies strings. Copies string b over string a up to and

including \0. (unsafe)

strcat(a, b) Concat ​enates strings. Copies string b over string a up to

and including \0, starting at the position of \0 in string a.

(unsafe)

strcmp(a, b) Compares strings. Returns false if string a equals string

b, true otherwise. Ignores characters after \0. (unsafe)

strstr(a, b) Searches for string b inside string a. Returns a pointer if

succes ​sful, NULL otherwise. (unsafe)

Alternatives

strncpy(a, b, n) Copies strings. Copies n characters from string b over

string a up to and including \0. (safe)

strncat(a, b, n) Concat ​enates strings. Copies n characters from string b

over string a up to and including \0, starting at the

position of \0 in string a. (safe)

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 9 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

The String Library (cont)

strncmp(a, b, n) Compares first n characters of two strings. Returns

false if string a equals string b, true otherwise. Ignores

characters after \0. (safe)

Safe functions are those that let you specify the length of the input. Unsafe

functions do not, and carry the risk of memory overflow.

The Time Library

#include <time.h>

Variable Types

time_t Stores the calendar time.

struct tm *x; Stores a time & date breakdown.

tm structure members:

int tm_sec Seconds, 0 to 59.

int tm_min Minutes, 0 to 59.

int tm_hour Hours, 0 to 23.

int tm_mday Day of the month, 1 to 31.

int tm_mon Month, 0 to 11.

int tm_year Years since 1900.

int tm_wday Day of the week, 0 to 6.

int tm_yday Day of the year, 0 to 365.

int tm_isdst Daylight saving time.

Functions

time(NULL) Returns unix epoch time (seconds since

1/Jan/1970.)

time(&time_t); Stores the current time in a time_t variable.

ctime(&time_t) Returns a time_t variable as a string.

x = localtime(

&time_t);

Breaks time_t down into struct tm members.

Unary Operators

by descending evaluation preced ​ence

+a Sum of 0 (zero) and a. (0 + a)

-a Difference of 0 (zero) and a. (0 - a)

!a Complement (logical NOT) of a. (~a)

~a Binary ones complement (bitwise NOT) of a. (~a)

++a Increment of a by 1. (a = a + 1)

--a Decrement of a by 1. (a = a - 1)

Unary Operators (cont)

a++ Returns a then increments a by 1. (a = a + 1)

a-- Returns a then decrements a by 1. (a = a - 1)

(type)a Typecasts a as type.

&a; Memory location of a.

sizeof(a) Memory size of a (or type) in bytes.

Binary Operators

by descending evaluation preced ​ence

a * b; Product of a and b. (a × b)

a / b; Quotient of dividend a and divisor b. Ensure divisor is non-zero.

(a ÷ b)

a % b; Remainder of integers dividend a and divisor b.

a + b; Sum of a and b.

a - b; Difference of a and b.

a << b; Left bitwise shift of a by b places. (a × 2)

a >> b; Right bitwise shift of a by b places. (a × 2)

a < b; Less than. True if a is less than b and false otherwise.

a <= b; Less than or equal to. True if a is less than or equal to b and

false otherwise. (a ≤ b)

a > b; Greater than. True if a is greater than than b and false

otherwise.

a >= b; Greater than or equal to. True if a is greater than or equal to b

and false otherwise. (a ≥ b)

a == b; Equality. True if a is equal to b and false otherwise. (a ⇔ b)

a != b; Inequality. True if a is not equal to b and false otherwise. (a ≠ b)

a & b; Bitwise AND of a and b. (a ⋂ b)

a ^ b; Bitwise exclusive-OR of a and b. (a ⊕ b)

a | b; Bitwise inclusive-OR of a and b. (a ⋃ b)

a && b; Logical AND. True if both a and b are non-zero. (Logical AND)

(a ⋂ b)

a || b; Logical OR. True if either a or b are non-zero. (Logical OR) (a ⋃
b)

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 10 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

b

-b

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

C Reference Cheat Sheet
by Ashlyn Black via cheatography.com/20410/cs/3196/

Ternary & Assignment Operators

by descending evaluation precedence

x ? a : b; Evaluates a if x evaluates as true or b otherwise. (if(x){ a; } else

{ b; })

x = a; Assigns value of a to x.

a *= b; Assigns product of a and b to a. (a = a × b)

a /= b; Assigns quotient of dividend a and divisor b to a. (a = a ÷ b)

a %= b; Assigns remainder of integers dividend a and divisor b to a. (a =

a mod b)

a += b; Assigns sum of a and b to a. (a = a + b)

a -= b; Assigns difference of a and b to a. (a = a - b)

a <<= b; Assigns left bitwise shift of a by b places to a. (a = a × 2)

a >>= b; Assigns right bitwise shift of a by b places to a. (a = a × 2)

a &= b; Assigns bitwise AND of a and b to a. (a = a ⋂ b)

a ^= b; Assigns bitwise exclus ​ive-OR of a and b to a. (a = a ⊕ b)

a |= b; Assigns bitwise inclus ​ive-OR of a and b to a. (a = a ⋃ b)

C Cheatsheet by Ashlyn Black

ashlynblack.com

By Ashlyn Black

cheatography.com/ashlyn-black/

Published 28th January, 2015.

Last updated 20th April, 2015.

Page 11 of 11.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

b

-b

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://ashlynblack.com
http://www.cheatography.com/ashlyn-black/
https://readability-score.com

	C Reference Cheat Sheet - Page 1
	Number Literals
	Variables
	Primitive Variable Types

	C Reference Cheat Sheet - Page 2
	Structures
	Extended Variable Types
	Type Defini­tions

	C Reference Cheat Sheet - Page 3
	Unions
	Arrays
	Enumer­ation
	Pointers
	Strings

	C Reference Cheat Sheet - Page 4
	Escape Characters
	Functions
	main()

	C Reference Cheat Sheet - Page 5
	Condit­ional (Branc­hing)
	Iterative (Looping)
	Console Input/­Output

	C Reference Cheat Sheet - Page 6
	File Input/­Output

	C Reference Cheat Sheet - Page 7
	Placeh­older Formatting (f/printf And f/scanf)
	Placeh­older Types (f/printf And f/scanf)

	C Reference Cheat Sheet - Page 8
	Header Reserved Keywords
	Prepro­cessor Directives
	Comments
	C Reserved Keywords
	Heap Space
	C / POSIX Reserved Keywords

	C Reference Cheat Sheet - Page 9
	The Character Type Library
	The Standard Library
	The String Library

	C Reference Cheat Sheet - Page 10
	The Time Library
	Binary Operators
	Unary Operators

	C Reference Cheat Sheet - Page 11
	Ternary & Assignment Operators
	C Cheatsheet by Ashlyn Black

