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Abstract
The actor model of computation has gained significant popularity
over the last decade. Its high level of abstraction combined with its
flexibility and efficiency makes it appealing for large applications
in concurrent and distributed regimes.

In this paper, we report on our work of designing and building
CAF, the “C++ Actor Framework”. CAF targets at providing an ex-
tremely scalable native environment for building high-performance
concurrent applications and distributed systems. Based on our pre-
vious library libcppa, CAF significantly extends its scopes of ap-
plication and operation, as well as the range of scalability. The par-
ticular contributions of this paper are threefold. First we present
the design and implementation of a type-safe messaging interface
for actors that rules out a category of runtime errors and facili-
tates robust software design. Second we introduce a runtime in-
spection shell as a first building block for convenient debugging of
distributed actors. Finally we enhance the scheduling facilities and
improve scaling up to high numbers of concurrent processors. Ex-
tensive performance evaluations indicate ideal runtime behaviour
for up to 64 cores at very low memory footprint. In these tests,
CAF clearly outperforms competing actor environments.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent programming; C.2.4 [Distributed Systems]:
Distributed applications; D.3.4 [Processors]: Run-time environ-
ments

Keywords Actor Model, C++, Message-oriented Middleware,
Distributed Debugging

1. Introduction
In recent times, an increasing number of applications requires very
high performance for serving concurrent tasks. Hosted in elastic,
virtualized environments, these programs often need to scale up in-
stantaneously to satisfy high demands of many simultaneous users.
Such use cases urge program developers to implement tasks con-
currently wherever algorithmically feasible, so that running code
can fully adapt to the varying resources of a cloud-type setting.
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However, dealing with concurrency is challenging and handwritten
synchronisations easily lack performance, robustness, or both.

At the low end, the emerging Internet of Things (IoT) pushes
demand for applications that are widely distributed on a fine granu-
lar scale. Such loosely coupled, highly heterogeneous IoT environ-
ments require lightweight and robust application code which can
quickly adapt to ever changing deployment conditions. Still, the
majority of current applications in the IoT is built from low level
primitives and lacks flexibility, portability, and reliability. The envi-
sioned industrial-scale applications of the near future urge the need
for an appropriate software paradigm that can be efficiently applied
to the various deployment areas of the IoT.

Forty years ago, a seminal concept to the problems of concur-
rency and distribution has been formulated in the actor model by
Hewitt, Bishop, and Steiger [15]. With the introduction of a sin-
gle primitive—called actor—for concurrent and distributed entities,
the model separates the design of a software from its deployment
at runtime. The high level of abstraction offered by this approach
combined with its flexibility and efficiency makes it highly attrac-
tive for today’s elastic multicore systems, as well as for tasks dis-
tributed on Internet scale. As such, the actor concept is capable
of providing answers to urgent problems throughout the software
industry and has been recognized as an important tool to make ef-
ficient use of the infrastructure.

On its long path from an early concept to a wide adoption in
the real world, many contributions were needed in both, concep-
tual modeling and practical realization. In his seminal work, Agha
[1] introduced mailboxing for the message processing of actors,
and laid out the fundament for an open, external communication
[3]. Actor-based languages like Erlang [4] and frameworks such as
ActorFoundry—which is based on Kilim [27]—have been released
but remained in specific niches, or vendor-specific environments
(e.g., Casablanca [24]). Scala includes the actor-based framework
Akka [30] as part of its standard distribution, because the actor
model has proven attractive to application developers. The appli-
cation fields of the actor model also include cluster computing as
demonstrated by the actor-inspired framework Charm++ [17]. In
our previous work on libcppa [10], we introduced a full-fledged
C++ actor library to the native domain.

In this work, we report on the enhanced “C++ Actor Frame-
work” (CAF)1. CAF has evolved from our previous library libcppa
with significant improvements and additional capabilities. CAF
subsumes components for highly scalable core actor programming,
GPGPU Computing, and adaptations to a loose coupling for the
IoT [16], It has been adopted in several prominent application en-
vironments, among them scalable network forensics [31]. In the
present paper, we focus on three contributions.

1 http://www.actor-framework.org



1. We enhance robustness of future actor programming by intro-
ducing a type-safe message passing interface design.

2. We elaborate first steps towards a distributed actor debugging
by an inspection shell for remote actors.

3. We design, implement, and evaluate a scheduling infrastructure
for the actor runtime environment that improves scaling up to
high numbers of concurrent processors.

The remainder of this paper is organized as follows. Section 2
discusses related work along with our previous contributions and
issues we have identified. In section 3, we present our software de-
sign for type-safe messaging interfaces between actors. Our proto-
type infrastructure for runtime inspection is presented in Section 4.
Finally, design and implementation choices of our scalable schedul-
ing platform as well as a practical performance evaluation is pre-
sented in Section 5 and Section 6 concludes.

2. Background and Related Work
We believe that writing dynamic, concurrent, and distributed appli-
cations using a native programming language such as C++ is ill-
supported today. Standardized libraries only offer low-level prim-
itives for concurrency such as locks and condition variables. Us-
ing such primitives correctly requires a lot of expert knowledge
and can cause subtle errors that are hard to find [23] and a naı̈ve
memory layout can severely slow down program execution due to
false sharing [29]. The support for distribution is even less suf-
ficient and developers often fall back to hand-crafted networking
components based on socket-layer communication. Transactional
memory—either in software [26] or hardware [14]—and atomic
operations can help implementing scalable data structures [13] but
neither account for distribution nor for communication between
software components nor for dynamic software deployment.

The actor model of computation [15] describes computer pro-
grams in terms of independent software entities exchanging mes-
sages and addresses fault tolerance in a network-transparent way
[5]. The actor is the universal primitive for concurrency and dis-
tribution. Incoming messages are buffered in FIFO order using a
mailbox and are handled sequentially [1]. Implementations such as
Erlang allow actors to skip messages for later retrieval, while other
implementations require actors to handle messages in the order of
arrival.

2.1 Native Actors
The advent of multi-core machines and the proclaimed end of
Moore’s law [19] make inter-machine concurrency a necessity.
At the same time, native programming languages such as C++
are experiencing a renaissance. Since the clock speed no longer
increases significantly, computer programs need to make use of
existing resources as efficiently as possible.

Implementations of the actor model traditionally focused on vir-
tualized environments such as the JVM [18], while actor-inspired
implementations for native programming languages focus on spe-
cific niches. For example, Charm++ is directly aimed at software
development for supercomputers and a chare—the primitive for
currency abstraction in Charm++—only offers a subset of the typ-
ical actors characteristics. In our previous work on libcppa, we
presented the design and implementation of a full-fledged native
actor system with a strong emphasis of efficiency and runtime per-
formance. We have presented 1) a lock-free mailbox algorithm with
an average of O(1) for both enqueue and dequeue operations, 2) an
efficient network layer for dynamic distributed systems, 3) a copy-
on-write messaging system minimizing copying operations, and 4)
an adaptive runtime system able to integrate heterogeneous hard-
ware components via OpenCL.

Based on feedback from both academia and industry as well
as from our own experience with libcppa, we have identified
limitations we need to address. The dynamic typing and runtime
pattern matching for messages contradicts the philosophy of C++
developers that rely on the static, strong type checking. This is
not only an acceptance issue. Composing large systems out of
small software entities is prone to failure if the compiler is unable
to validate the (messaging) interfaces between the components.
Furthermore, analyzing, tweaking and debugging distributed actors
requires comprehensive support from the runtime system as well as
a convenient toolkit to aid software developers in this complex task.
Lastly, a comprehensive analysis of our previous implementation
revealed an inferior scalability of the runtime system when running
on massively parallel hardware platforms.

2.2 Verification and Debugging
Parallel execution and the inherent non-determinism of the actor
model render static verification of complex, distributed applications
using model checking techniques impossible [25]. Although com-
plexity analysis can help programmers to understand and predict
performance [2], static models of an application can neither be used
to verify their correctness nor to guarantee certain runtime charac-
teristics. Rather than verifying an application by modeling and ver-
ifying each state transition statically, applications can be partially
verified on a state-by-state basis using either recorded execution
traces or in real-time [8].

When implementing distributed applications, developers usu-
ally rely on systematic testing and ad hoc debugging. The actor
model aids developers in both cases. Since the actor model re-
quires developers to split the application logic into many inde-
pendent components, those components can be tested individu-
ally. For example, the property-based black-box testing tool “Quviq
QuickCheck” [6] demonstrates an approach to reveal obvious and
subtle bugs in Erlang applications using controllable random test
case generation. When facing the complex task of debugging dis-
tributed applications, developers can use a recorded message flow
of the distributed execution in a postmortem analysis. This ap-
proach has been examined by HP and lead to the development of
the distributed debugger Causeway [28]. An alternative approach to
tackle the complexity of distributed debugging has been made by
Dennis Geels, et. al. by using the recorded message flow to replay
messages in order to reproduce erroneous behavior [12].

Both verification and debugging rely on extensive support from
the runtime system. In this work, we focus on a runtime inspection
architecture as first stepping stone to a framework for debugging,
verification, and online performance analysis of distributed actor
applications.

3. Type-safe Messaging Interfaces
Traditional message passing systems are often implemented in lan-
guages performing dynamic type checking or in strongly typed lan-
guages but using a dynamic approach with runtime type checks.
Such a dynamic approach hides information from the compiler,
thus rendering a static analysis of the messaging interfaces impos-
sible. This validation step is crucial for composing large software
systems out of small software entities as developers otherwise need
to rely on systematic testing of each integration individually. With
CAF, we present a software design for strongly typed messaging
interfaces that enables the compiler to verify messaging protocols
statically at compile time.

3.1 Defining Messaging Interfaces using Patterns
Actors are defined in terms of the messages it receives and sends.
The behavior of an actor is hence specified as a set of messages han-
dlers that dispatch extracted data to associated functions. Defining



such handlers is a common and recurring task in actor program-
ming. Pattern matching facilities as known from functional pro-
gramming languages have proven to be a powerful, convenient and
expressive way to define such message handlers. Since C++ does
not provide pattern matching facilities, we have decided to imple-
ment an internal domain-specific language (DSL) for C++. This
DSL is limited to actor messages, because a solution for arbitrary
data structures cannot be implemented without a language exten-
sion. Unlike other runtime dispatching mechanisms, our pattern
matching implementation discloses all types of incoming messages
as well as the type of outgoing messages to the compiler. In this
way, the compiler can derive the interface of an actor from the def-
inition of its behavior.

Whenever an actors does not want the compiler to derive a
messaging interface from its behavior definition, it can store a
pattern using instances of the type behavior. This type-erasure step
is always performed for the dynamic actors we have introduced in
our previous work on libcppa [10].

A match expression, i.e., the definition of a partial function, usu-
ally begins with a call to the function on that returns an intermedi-
ate object providing the operator ”>>”. The right-hand side of the
operator denotes a callback—usually a lambda expression—which
should be invoked after a tuple matches the types given to on. The
example below illustrates four different ways of defining identical
match expressions.

on <int >() >> []( int i) { ... }, // (1)
on(val <int >) >> []( int i) { ... }, // (2)
on(arg_match) >> [](int i) { ... }, // (3)
[](int i) { /*...*/ } // (4)

Example (1) illustrates how on can be used with template pa-
rameters. When using the arguments-only notation, val<int> can
be used to match any value of type int, as shown in (2). To sim-
ply infer the types from the signature of the callback, arg_match
can be used. Usually, arg_match is not used as shown in (3),
because the constructor of message_handler will infer the types
from the signature of the callback automatically–as shown in (4)–
if it has not been constrained. Rather, arg_match can be used as
last argument to infer the remaining types from the callback. For
example, on(atom("add"), arg_match) >> [](int, int) {...}

matches only message that consists of an atom of value "add" fol-
lowed by to integers.

It is worth mentioning that our pattern matching implementa-
tion behaves as a functional programmer would it expect to, i.e.,
only the first matched expression is being executed. In our ex-
ample code above, only (1) could ever been invoked, since it al-
ways matches first. Our DSL-based approach has more syntactic
noise than a native support within the programming languages it-
self, for instance when compared to functional programming lan-
guages such as Haskell or Erlang. However, we only use ISO C++
facilities, do not rely on brittle macro definitions, and our approach
only adds negligible—if any—runtime overhead by making use of
expression templates [32].

An important characteristic of our pattern matching engine is its
tight coupling with the message passing layer. The runtime system
of CAF will create a response message from the value returned
from the callback unless it returns void. Not only is this convenient
for programmers, it also exposes the type of the response message
to the type system. This information is crucial to define type-safe
messaging interfaces.

It is wort mentioning that we support both function- and class-
based actors. The former are implemented as a free function return-
ing the initial behavior for the actor, whereas the first argument de-
notes the implicit self pointer. Class-based actors are derived from
either a type-safe or dynamically typed actor base class and must
override the virtual member function make_behavior() returning

the initial behavior. In our examples, we make only use of function-
based actors as they require less implementation overhead.

3.2 Strongly Typed Message Interfaces
Dynamically typed actors in CAF use handles of the type actor,
whereas type-safe actors use handles of type typed_actor<...>.
The template parameters denote the messaging interface using a
series of replies_to<...>::with<...> clauses. For example, the
following type testee identifies an actor that either receives two
integers and responds with a single integer or receives a floating
pointer number and responds with two floating point numbers.

using testee =
typed_actor <

replies_to <int , int >::with <int >,
replies_to <float >::with <float , float >>;

When trying to send anything else to an actor of this type, the
compiler will reject the code with the error message “typed actor
does not support given input”.

However, the example above is not an idiomatic typed messag-
ing interface. Since the actor receives primitive types only, the in-
terface lacks semantic information as to what the receiver is sup-
posed to do with those values. The following example models an
actor offering a simple service for addition and subtraction of inte-
ger values.

struct add_request { int a; int b; };
struct sub_request { int a; int b; };
using math =

typed_actor <
replies_to <add_request >::with <int >,
replies_to <sub_request >::with <int >>;

math:: behavior_type f(math:: pointer self) {
return {
[]( const add_request& req) {

return req.a + req.b;
},
[]( const sub_request& req) {

return req.a - req.b;
}

};
}
// announce custom types (only once)
announce <add_request >(& add_request ::a,

&add_request ::b);
announce <sub_request >(& sub_request ::a,

&sub_request ::b);
// usage example
math ms = typed_spawn(f);
send(ms , add_request {1, 2}); // ok
send(ms , 1, 2); // compiler error

This examples makes use of user-defined message types instead
of prefixing values with atoms. The type alias math::behavior_type
is a type that does not perform the type erasure we have previ-
ously seen by assigning the patterns to a behavior. Instead, input
and output types are exposed to the runtime system and—more
importantly—to the compiler. User-defined message types—as
showcased in the example—must be announced to the type sys-
tem of CAF to enable serialization and deserialization at runtime.

Whenever a message type changes, existing code will either still
works as expected if merely additional fields where added or the
compiler will reject the program and points the programmer to each
use of that particular message type individually.

3.3 Dynamic Message Interfaces
To illustrate the trade-offs and differences for typed and untyped
actors, we provide an implementation of the example in 3.2 using
the dynamically typed API as shown below.



behavior f(event_based_actor* self) {
return {
on(atom("add"), arg_match)
>> []( int a, int b) {

return a + b;
},
on(atom("sub"), arg_match)
>> []( int a, int b) {

return a - b;
}

};
}
// usage example
actor ms = spawn(f);
send(ms , atom("add"), 1, 2); // ok
send(ms , 1, 2); // invalid but compiles

The definition of user-defined messaging types is no longer
required. Instead, an idiomatic way to add semantic information
to a message is by prefixing it with atoms.

3.4 Message Passing Interfaces Summary
A dynamic approach has the benefit of being able to provide a
single primitive and actors can encode their acquaintances as list
over that primitive type. This resembles the original actor modeling
that did not specify how–or even if–actors specify the interface
for incoming and outgoing messages. Rather, actors are defined in
terms of names they use, access rights to acquaintances they grant,
and patterns they specify to dispatch on the content of incoming
data [15].

With strongly typed actors, the compiler statically verifies the
protocols between actors. Hence, the compiler is able to rule out a
whole category of runtime errors, because protocol violation cannot
occur once the program has been compiled. It is worth mentioning
that the compiler does not only verify the correct sending of a
message but it also can verify the handling of the result when using
sync_send. For instance, the following example would be rejected
by the compiler.

math ms = typed_spawn(f);
sync_send(ms , add_request {10, 20}). then(

[]( float result) {
// compiler error: math actor will
// send an int as result , not a float

}
);

When using sync_send, the sent message will have a unique
ID. The sending actor than can use .then to install a message han-
dler that is only used for the response message to that particular
ID. Please note that sync_send does not imply blocking. “Syn-
chronous” messages use the exact same message passing imple-
mentation as asynchronous messages and only add a convenient
way to uniquely identify a set of request / response messages.

When using a statically typed system, developers are trading
convenience for safety. Since software systems grow with their
lifetime and are exposed to many refactoring cycles, it is also
likely that the interface of an actor is subject to changes. This
is equivalent of the schema evolution problem in databases: once
a single message type–either input or output–changes, developers
need to locate and update all senders and receivers for that message.
When introducing a new kind of message to the system, developers
also need to identify and update all possible receivers by hand.

With CAF, we lift the type system of C++ and make it applica-
ble to the interfaces of actors. At the same time, we are aware of
the fact that dynamically typed systems do have their benefits and
that these approaches are not mutually exclusive. Rather, we be-
lieve a co-existence between the two empowers developers to make
the ideal tradeoff between flexibility and safety. Hence, we have

implemented a hybrid system with CAF. Type-safe and dynamic
message passing interfaces are equally well supported and interac-
tion between type-safe and dynamic actors is not restricted in any
way.

It is up to the architect of a software system to choose when to
make use of untyped actors and when to pay the initial program-
ming overhead for typed actors. As a general recommendation we
can give based on our experiences with CAF, typed actors should
be used for any kind of actor that can have non-local dependen-
cies. Such actors are usually central components of a larger sys-
tem and offer a service to a set of actors that is either not known
at coding time or might grow in the future. Type-safe messaging
interfaces allow the compiler to keep track of non-local dependen-
cies that exist between central actors and a—possibly large—set of
clients. Whenever all possible acquaintances of an actor are known
at coding time and if this set of actors is tightly coupled—ideally
only exist in the same translation unit—untyped actors are usually
a good choice, because they reduce code size.

4. Runtime Inspection
Debugging of distributed systems is inherently complex and well
known as a hard problem. In addition to difficulties that derive
from concurrent control loops within applications, distribution adds
a messaging layer to the list of challenges. Monitoring distributed
messaging including its temporal logic is tedious and requires a
complete observation infrastructure.

Actors can detect hard errors by monitoring each other and im-
plement recovery strategies, but this mechanism does not provide
software developers with sufficient intelligence to understand the
cause of an error. The (possibly correlated) state of an incident re-
mains invisible. Further, this mechanism does not help developers
in finding inefficiencies or bottlenecks in their software architec-
ture. In general, distributed systems easily attain non-trivial coin-
cident conditions that are harmful, but hard to find without proper
tool support.

The first building block required for implementing a high-level,
convenient toolkit for debugging is a runtime inspection infrastruc-
ture. This infrastructure must provide a full view on crucial infor-
mation of the distributed system to allow for understanding the run-
time behavior of an application. In particular, it must reveal the state
of distribution, interconnection and messaging of all participating
nodes. In this work, we make the collected information available to
developers by complementing the runtime inspection components
with an interactive shell.

4.1 Collecting Events in a Distributed System
Figure 1 illustrates the components of our runtime inspection in-
frastructure. It consists of 1) one configurable Probe at each node
that collects events and aggregates statistics of individual pro-
cesses, 2) a Nexus that receives events from Probe instances and
makes them accessible to others, and 3) one or several front-end
applications that query the Nexus and can subscribe to events. In
this work, we present an interactive shell for a basic inspection
front end. The Probes as well as the Nexus are modeled and imple-
mented as actors and communicate via message passing. By mon-
itoring each other, the Probe is able to detect a temporary failure
of the Nexus and periodically tries to reconnect. A Probe failure
indicates a disconnect from its node, either due to a program or
system failure.

4.1.1 Probes
Probes have access to the network layer of CAF. On startup, Probes
receive configuration input from command line arguments as well
as a configuration file. The minimal configuration needed to initial-
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Figure 1. Runtime Inspection Architecture of CAF

ize the probe is the network contact of the Nexus. Probes intercept
and forward three kinds of messages to the Nexus.

Activity events are triggered by incoming or outgoing connec-
tion and message exchange with actors on different nodes. For-
warding the entire message flow to the Nexus grants maximal trans-
parency, but induces high network traffic and runtime overhead.
This information corresponds to a complete logging of the distri-
bution system and can be crucial while investigating erroneous be-
havior. Whether or not the full message exchange between nodes is
protocoled to the Nexus can be configured at runtime.

Error events are triggered by network failures. For instance,
when the connection to a node was lost unexpectedly or the delivery
of a message has failed because the target node either does not exist
or a connection failure occurred during transmission.

Runtime statistics are periodically generated by the Probe and
include RAM usage, CPU load, and the number of currently active
actors. In this way, observers can spot uneven distribution of work
load in the distributed system and can react to over-utilization of
the distributed system, e.g., by adding more nodes.

4.1.2 The Nexus
The Nexus provides a global view of the distributed system. It
receives and collects events as well as runtime statistics from all
Probes and forwards them to front-end applications (clients). The
Nexus uses only type-safe messaging interfaces to communicate
to its clients and Probes, and statefully manages the configuration
of new Probes. New clients subscribe at the Nexus by sending
an add_listener message and in turn receive all messages in a
transparent way.

The Nexus also receives messages to configure the verbosity of
the probes, e.g., to enable or restrict the full mirroring of communi-
cation between nodes. Configuration messages are broadcasted to
all Probes in order to guarantee a consistent view over all nodes.
Furthermore, the Nexus serves as network hub for its clients by ex-
posing all of its connections. Hence, clients can send messages to
individual nodes or actors that are transparently forwarded by the
Nexus. This allows front-end applications to not only observe the
system but to interact with it.

4.1.3 Front-end Applications
With our design of the runtime inspection framework, we want to
enable front-end applications falling in the following three main
categories.

Observing autonomous agents — monitor a distributed sys-
tems and verify that it is running within its specified parameters. An
example for this kind of application is an automated alert system.
Users of such a system may specify thresholds and rules to trig-
ger system alerts. Those rules could query the throughput or load

of (parts of) the actor system, possibly revealing that the number
of requests cannot be handled in time with the available resources.
Other characteristic use cases are in stability and reliability moni-
toring. An alerting system may control how many node or connec-
tivity failures occur prior to alerting a system administrator.

Supervising autonomous agents — interactively monitor and
control certain characteristics of the distributed system. This task
includes an active manipulation of the system components and
allows for immediate reaction on information gathered, instead of
only passively observing it. Agents of this kind can for example
enable interactive intervention on errors or perform a distributed
load balancing by migrating actors from nodes working to capacity
to other nodes.

Performance monitoring & visualization — use runtime
statistics to extract a meaningful view of the state of the distributed
system. Such tools may grant users convenient access to aggre-
gated information about resource usage on each host as well as the
current state of deployment at runtime. Our interactive shell is an
example application for this use case and gives developers valuable
insights about the runtime characteristics of their system. Such live
views can be used to refactor the application for better performance
while it is still in development, or to optimize the deployment of a
system in production.

4.2 An Interactive Inspection Shell
Our runtime inspection infrastructure is a stepping stone towards
a debugging tool for distributed actors. Findings bugs or spotting
flaws in the architecture of a system is an interactive, iterative
process. Hence, our first focus was on writing an interactive shell.

The interactive shell bundled with CAF allows users to inter-
actively traverse through the actor system. It has a global mode as
well as a node mode. The user can query all participating nodes in
the actor system by using the command list-nodes. This com-
mand is available in both modes and prints the full list of nodes.
In the same way UNIX shells allow the user to navigate through
the file system, our shell enables the user to navigate through the
system using the command change-node. We store the last visited
nodes and enable users to return to the last node they have visited
by using back.

In the node mode, the user can access any relevant information
about the node using statistics. This command will display a)
the hostname, b) the name of the operating system in use, c) the
number of currently running actors, d) the CPU load, e) the amount
of available and allocated RAM, f) a full list of network interfaces,
g) a list of connected nodes (excluding the Nexus), and h) a list
of actors on this node that communicated to other actors in the
network.

Since the shell itself is an actor, users are also capable of in-
teracting with the system directly. The command send will dese-
rialize a message from its arguments and send it to an actor. For
example, send 5 "Hello Actor" sends the string “Hello Actor”
the actor with ID 5 on the current node. The mailbox of the shell
is also exposed the actor and its content can be queried by using
mailbox, which will print the FIFO numbered list of current mail-
box entries. The command dequeue accesses the full content of a
message and also removes it from the mailbox. Alternatively, users
can use pop-front to print and remove the oldest element from
the mailbox.

The shell enables users to interact with the system in a dynamic
and convenient fashion. Using the prototype can reveal bottlenecks
in the application that can occur if two or more actors have frequent
message exchange but are located on different nodes, causing high
network traffic and possibly needless overhead. In using the shell,
developers can get valuable feedback during the development pro-
cess. Still, the shell can currently not provide statistics for individ-



ual actors such as execution time, mailbox contents, idle times, etc.
Collecting scheduling-related information in the Probe is part of
ongoing and future work.

5. Scheduling Infrastructure
The design of CAF aims at scaling to millions of actors on hundreds
of processors. At a first glance, it seems straightforward to imple-
ment actors using kernel-level threads. Since an operating system
schedules threads in a preemptive manner, actors could not starve
other actors. Yet, this naı̈ve approach does not scale up to large-
scale actor systems, because threads have significant overhead at-
tached to them. Each thread requires its own stack, signal stack,
event mask, and other resources in kernel space. Mapping actors
onto threads thus contradicts idiomatic patterns of the actor pro-
gramming paradigm.

In our first lib [10], we addressed this issue by implementing a
userspace scheduler based on a thread pool. Actors were modeled
as very lightweight threads that either a) have at least one message
in their mailbox and are ready, b) have no message and are blocked,
or c) are currently executed. A central management component dis-
patched actors of state ready to a thread. This design was an opti-
mization over the naı̈ve approach of coupling actors with threads,
as an actor was only assigned to a thread when ready for execution.
Pre-allocated threads from the pool were shared with other actors
to minimize system overhead.

A first thorough performance evaluation on a 12-core machine
revealed that this scheduling policy reaches its maximum perfor-
mance on eight cores for classical divide & conquer algorithms.
Adding additional concurrency increased the runtime again, since
the communication overhead in our central management compo-
nent outweighed the benefit of additional resources.

A centralized scheduling architecture can efficiently schedule
tasks—or actors—based on known deadlines [22] even in multi-
processor environments [11]. However, without a priori knowledge
about the tasks, a central architecture cannot dispatch tasks more
efficiently than a fully dynamic, decentralized approach. It may in-
duce significant runtime overhead for short-lived tasks, though.

5.1 Work Stealing
Work stealing [9] is an algorithm to schedule multithreaded com-
putation using P worker threads, where P is the sum of all avail-
able CPU cores. It has been developed as an alternative to work
sharing scheduling approaches with centralized dispatching. Work
stealing replaces the central job queue by P job queues, one indi-
vidual queue for each worker. Each worker dequeues work items
from its own job queue until it is empty. Once this happens, the
worker becomes a thief, picking one of the other workers—usually
at random—as victim and tries to steal a work item from its queue.
This approach drastically reduces the communication between
workers, since they work completely independent from each other
as long as there is still work remaining in each queue. In conse-
quence, work stealing induces less communication overhead and
outperforms work sharing due to its higher scalability for most
application scenarios. Moreover, stealing is a rare event for most
work loads and implementations should focus on the performance
of the non-stealing case [20].

A widely used variant of work stealing is fork-join. Fork-join
models the work flow of an application in terms of divide & con-
quer. A task forks by dividing a large computation into smaller ones
and then joins the results of its child tasks. Because tasks do not
share state, they can be executed independently and in parallel us-
ing a work stealing algorithm. Fork-join has become particularly
popular in the Java community [21] and a framework for fork-join
scheduling is part of the standard distribution since Java 1.7.

An inherent characteristic of fork-join application is that each
task recursively creates new tasks that become smaller and smaller
until they become trivial. Consequently, the oldest elements in the
job queue of a worker demand large computations that will likely
fork into smaller computation. Newer tasks have been created by
forking from larger computations and the complexity decreases
over time.

To exploit this typical behavior, each worker dequeues work
items from its own job queue in LIFO order until there is no work
item left. Once it becomes a thief, it steals the oldest element, i.e., it
dequeues in FIFO order. In this way, the stolen work item is likely
to have a high complexity and to amortize the communication
overhead induced by stealing.

The fork-join work flow correlates to the work flow often seen
in actor applications. After receiving a task via a message, an
actor can divide it into smaller tasks and spawn one new actor
per newly created sub task. Because this is a common pattern,
newer implementations of the actor model—such as Akka—use
this scheduling algorithm per default.

5.2 A Configurable, Policy-based Scheduler Infrastructure
Despite suiting many work loads, work stealing schedulers have
limitations. When facing hard real-time requirements, for example,
central dispatching based on deadlines is crucial. Furthermore, a
priori knowledge about the runtime behavior of certain actors can-
not be exploited efficiently in a decentralized system with rigor-
ously restricted communication. Hence, an implementation of the
actor model should provide a default scheduling algorithm that fits
most application scenarios while allowing users to deploy a custom
implementation.

Independently from the scheduling algorithm in use, develop-
ers need to balance throughput, fairness, and latency. These three
criteria have different impact depending on the application do-
main. When optimizing for throughput, developers strive to maxi-
mize the number of messages a system can handle per second. A
fair scheduling, on the other hand, tries to split CPU time evenly
among all actors. Lastly, when minimizing latency, developers want
to have a short period of time between receiving and handling
incoming—usually external—messages. A fair scheduling usually
causes low latency although the overhead attached to evening out
CPU time can increase latency if system resources are not used ef-
ficiently.

These three criteria can be balanced by configuring the number
of messages an actor is allowed to handle before returning con-
trol back to the scheduler. This can be supplemented by adding a
time an actor should at least run before returning control to the
scheduler. In this way, large amounts of messages that cause only
minimal work will not pile up in the mailbox of an actor.

Allowing actors to fully drain their mailbox usually maximizes
throughput, because it minimizes scheduling overhead. This ap-
proach can nevertheless deliver suboptimal throughput if the actors
are running on an intermediate node in a distributed system that
consumes several work items via the network and produces new
work items that are consumed on different nodes. In such cases,
this scheduling strategy can lead to bursts, as arriving work items
for currently waiting actors pile up. Although the CPU on one host
will have efficient use, other CPUs of subsequent hosts might idle.

On the other extreme, actors would be only allowed to consume
one single message at a time before returning control to the sched-
uler. Combined with a round-robin scheduling, this strategy guar-
antees a very fair scheduling, given that no actor actively starves
others. Still, striving to achieve maximum fairness is not an efficient
scheduling strategy in most cases. CAF implements event-based ac-
tors and chains message handler invocations rather than performing
context switching. Nonetheless, chaining unrelated message han-



dlers causes frequent cache misses by changing the working set
constantly and maximizes access to the job queue of each worker.

As a general-purpose framework for actor programming, CAF
seeks to cover most use cases with an efficient default implementa-
tion. However, this default implementation is exposed to developers
to grant them full access to performance-critical components. This
includes configuring default implementations as well as replacing
them if they do not match the use case of the application.

Developers can install a user-defined scheduler with the func-
tion set_scheduler.

template <class Policy = work_stealing >
void set_scheduler(size_t num_workers = ...,

size_t max_msgs = 0);

The num_workers argument defines how many threads should
be allocated. Per default, this value is set to the number of CPU
cores found at runtime. The second argument, max_msgs, specifies
how many messages an actor is allowed to consume before return-
ing control back to the scheduler, whereas 0 means indefinite. The
template parameter Policy needs to implement the following con-
cept class.

struct scheduler_policy {
struct coordinator_data;
struct worker_data;
void central_enqueue(Coordinator*,

resumable *);
void external_enqueue(Worker*,

resumable *);
void internal_enqueue(Worker*,

resumable *);
void resume_job_later(Worker*,

resumable *);
resumable* dequeue(Worker *);

};

The scheduler itself consists of a central coordinator and
workers. Data fields needed for scheduling are configured using
coordinator_data and worker_data, respectively. Enqueue oper-
ations to the coordinator via central_enqueue are caused by “top-
level” spawns, i.e., actors that have been spawned either from a
non-actor context or from a detached actor. Whenever a coopera-
tively scheduled actor spawns actors, it uses internal_enqueue on
the worker it is being executed by. Since it is only being called from
the thread managed by the worker this enqueue operation does not
need to be synchronized. The function external_enqueue can be
used by the coordinator to delegate an enqueue operation to one of
its workers. Actors that have exceeded the number of allowed de-
queue operations call resume_job_later. Workers use the function
dequeue to get the next actor in line.

In our default implementation, i.e., work_stealing, the coordi-
nator does not have a queue and simply forwards enqueue opera-
tions to its workers in round-robin order.

An implementation based on a thread pool could do the oppo-
site, i.e., use a central queue in the coordinator and no data fields
in the workers. The max_msg parameter allows developers to fine-
tune the behavior of our default implementation. Furthermore, the
policy-based design enables users to deploy their own scheduling
algorithm in case their application domain requires a specialized
algorithm tailored to the needs of that particular work load.

5.3 Performance Evaluation
For a scalability study of our scheduling infrastructure, we use the
benchmark programs introduced in our previous work [10]. Instead
of a 12-core machine, we now employ a host consisting of four 16-
core AMD Opteron processors with 2299 MHz each. We vary the
number of active CPU cores from 4 to 64 to generate an evenly
distributed workload on each processor.

For comparative references, we use the implementations of Er-
lang, Charm++, ActorFoundry, and Scala with the Akka library. In
detail, our benchmarks are based on the following implementations
of the actor model: (1) C++ with CAF 0.10 (CAF) and Charm++
6.5.1 (Charm), (2) Java with ActorFoundry 1.0 (ActorFoundry), (3)
Scala 2.10.3 with the Akka library (Scala), and (4) Erlang in ver-
sion 5.10.2 (Erlang). CAF and Charm++ have been compiled as re-
lease versions using the GNU C++ compiler in version 4.8.1. Scala
and ActorFoundry run on a JVM configured with a maximum of
10 GB of RAM using the JDK in version 8. For compiling Actor-
Foundry, we have used the Java compiler in version 1.6.0 38, since
this version is required by its bytecode post-processor.

We measure both clock time and memory consumption. Mea-
surements were averaged over 10 independent runs to eliminate
statistical fluctuations. Our results on memory are visualized by
box plots to represent its variability in a transparent way. The
source code of all benchmark programs are published online at
https://github.com/actor-framework/benchmarks.

5.3.1 Overhead of Actor Creation
Our first benchmark considers a simple divide & conquer algo-
rithm. It computes 220 by recursively creating actors. In each step
N , an actor spawns two additional actors with N − 1 and waits for
the (sub) results of the recursive descend. This benchmark creates
more than one million actors, primarily revealing the creation over-
head. It is wort mentioning that this algorithm does not imply that
a total of one million actors exist at the same time.

Figure 2(a) shows the time to create about a million actors
as a function of available CPU cores. Charm++ and CAF scale
down nicely with cores, CAF being the fastest implementation with
less than a second on twenty or more cores. Erlang can run the
benchmark in about three seconds, while Scala fluctuates around
14 seconds and ActorFoundry takes around 19 seconds. For the
latter three, CPU gains cease with more than about 12 cores.

Figure 2(b) shows the memory consumption during the bench-
mark. Results largely vary in in values and variation. ActorFoundry
allocates significantly more memory than all other implementa-
tions, peaking around 3.5 GB of RAM with an average of ≈ 1.8ĠB.
Erlang follows with a spike above 2 GB of RAM and an average of
≈ 1 GB. Scala has an average RAM consumption of 500 MB, with
a spike about 750 MB. Charm++ and CAF show low values and
variations, CAF remaining below 57 MB. This low limit does not
imply that an actor uses less than 100 Bytes in CAF. Merely, CAF
releases system resources as soon as possible and efficiently re-uses
memory from completed actors.

5.3.2 Mailbox Performance in N:1 Communication Scenario
Our second benchmark measures the performance in an N:1 com-
munication scenario. This communication pattern can be observed
frequently in actor programs, e.g., whenever an actor distributes
tasks by spawning a series of workers and awaits the results.

We use 100 actors, each sending 1,000,000 messages to a single
receiver. The minimal runtime of this benchmark is the time the
receiving actor needs to process the 100,000,000 messages. It is
to be expected that the runtime increases because adding more
hardware concurrency increases the probability of write conflicts.

Figure 3(a) visualizes the time consumed by the applications to
send and process the 100,000,000 messages as a function of avail-
able CPU cores. The processing overhead increases steadily for Er-
lang from 20 cores onward after reaching a local maximum on 12
cores. Scala and ActorFoundry exhibit a nearly stable behavior up
to 36 cores with continuous, fluctuating increase in runtime after
that point. Charm++ slightly grows for lower core numbers, and
also shows fluctuations for higher concurrency, whereas CAF has
outliers on 24 and 32 cores but on the overall remains stable. On

https://github.com/actor-framework/benchmarks
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64 cores, CAF has an average runtime of 78 seconds, which is less
than a tenth of the 831 seconds of Erlang, or of the 1046 seconds
measured for Scala.

Figure 3(b) shows the resident set size during the benchmark
execution. In this scenario, a low memory usage can hint to a per-
formance bottleneck, as 100 writers should be able to fill a mail-
box faster than one single reader is able to drain it. To minimize
memory consumption, an implementation would need to actively
slow down senders, which cooperative scheduled systems cannot
do without blocking sending threads—a strategy that has the risk of
running into a deadlock. The preemptive scheduling strategy of Er-
lang seems to deliver a good tradeoff between runtime and memory
consumption at first, but fails to maintain a reasonable runtime for
high levels of hardware concurrency. Scala and ActorFoundry have
a high memory consumption while running more than six times
slower than CAF on average, indicating that writers do block read-
ers and messages accumulate in the mailbox while the receiver is
unable to dequeue them due to synchronization issues.

5.3.3 Mixed Operations Under Work Load
In this benchmark, we consider a realistic use case including a
mixture of operations under heavy work load. The benchmark
program creates a simple multi-ring topology with a fixed number
of actors per ring. A token with an initial value of 1,000 is passed
along the ring and decremented in each round. A client that receives
the token forwards it to its neighbor and terminates whenever the
value of the token is 0. Each of the 100 rings consists of 100
actors and is re-created 4 times. Thus, we continuously create and
terminate actors with a constant stream of messages. In addition,
one worker per ring performs prime factorization to add numeric
work load to the system.

Figure 4(a) shows the runtime behavior as a function of avail-
able CPU cores. An ideal characteristic would halve the runtime
when doubling the number of cores. All implementations except
for ActorFoundry exhibit an almost linear speed-up. The latter re-
mains at a runtime around 250 seconds. Since it never uses more
than 500% CPU at runtime, a better scalability cannot be expected.
For the first time, Akka is faster than Erlang and Charm++, though
it still does not reach the performance of CAF. The performance
gap between Erlang and Scala results from the fact that the JVM
performs the prime factorization at the same speed as C++ while
the VM of Erlang is about 50% slower.

Figure 4(b) shows the memory consumption during the mixed
scenario. Qualitatively, these values coincide well with our first
benchmark results on actor creation. CAF again has a very constant
and thus predictable memory footprint, while using significantly
fewer memory than all other implementations, i.e., less than 72 MB.

5.3.4 Discussion
ActorFoundry is the only implementation under test that is un-
able to utilize hardware concurrency efficiently in our mixed case
benchmark. In all three tested scenarios, CAF runs faster than
Charm++ and uses less memory despite both being implemented
in C++. It is worth mentioning though that Charm++ focuses on
performance on clusters and supercomputers and as a direct re-
sult might not be as optimized for single-host performance. Still,
there are overlapping use cases for those systems that make a com-
parison justifiable. For our runtime comparison, we have used the
standalone version of Charm++ instead of its charmrun launcher
that can be used to distribute an application or parallelize it using
processes.

On the overall, CAF is faster than any other implementation
in our three use cases and always scales almost ideally up to
64 cores. CAF uses significantly less memory than virtualized
implementations, but also outperforms the native Charm++ system.

The mailbox performance benchmark is the only case where CAF
consumes more memory than Erlang and Scala. However, the high
memory allocation is a direct result of its highly scalable, lockfree
mailbox implementation and allows CAF to outperform competing
implementation by orders of magnitude on 64 cores.

6. Conclusions and Outlook
Currently the community faces the need for software environments
that provide high scalability, robustness, and adaptivity to concur-
rent as well as widely distributed regimes. In various use cases, the
actor model has been recognized as an excellent paradigmatic fun-
dament for such systems, but there is still a lack of full-fledged pro-
gramming frameworks. The latter holds in particular for the native
domain.

In this paper, we presented CAF, the “C++ Actor Framework”.
CAF scales up to millions of actors on many dozens of proces-
sors including GPGPUs, and down to small systems (like Ras-
berry PIs) in loosely coupled environments as are characteristic
for the IoT. We introduced an advanced scheduling core and pre-
sented benchmark results of CAF that clearly confirmed its ex-
cellent performance. We further reported on our ongoing efforts
to make this framework a production tool set for reliable software
development: a strongly typed message interface design to reduce
error-proneness, and a distributed runtime inspection for monitor-
ing and debugging.

There are four future research directions. Currently, we are re-
ducing the resource footprint of CAF even further and port to the
micro-kernel IoT operating system RIOT [7]. Second we work on
extending scheduling and load sharing to distributed deployment
cases and massively parallel systems. Third we will extend our de-
sign to achieve more effective monitoring and debugging facilities.
Finally, a robust security layer is on our schedule that subsumes
strong authentication of actors in combination with opportunistic
encryption.
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