
CASEVision™/ClearCase
Administration Guide

Document Number 007-1774-020

CASEVision™/ClearCase Administration Guide
Document Number 007-1774-020

CONTRIBUTORS

Written by John Posner
Engineering contributions by Atria Software, Inc., Lisa Kvarda, and Trevor Bechtel.

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
© Copyright 1994, Atria Software, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. Apollo is a registered trademark of Apollo Computer, Inc.
ClearCase and Atria are registered trademarks of Atria Software, Inc. FrameMaker is
a registered trademark of Frame technology, Inc. Hewlett-Packard, HP, Apollo,
Domain/OS, DSEE, and HP-UX are trademarks or registered trademarks of the
Hewlett-Packard Company. IBM is a registered trademark of International Business
Machines Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
OPEN LOOK is a trademark of AT&T. OSF and Motif are trademarks of The Open
Software Foundation, Inc. PostScript is a trademark of Adobe Systems, Inc. Sun,
SunOS, Solaris, SunSoft, SunPro, SPARCworks, NFS, and ToolTalk are trademarks or
registered trademarks of Sun Microsystems, Inc.UNIX is a trademark of AT&T Bell
Laboratories. X Window System is a trademark of the Massachusetts Institute of
Technology.

iii

Contents

1. Administrator’s View of a ClearCase Network 1
Network Overview 1
ClearCase Hosts 2
ClearCase Data Storage 3

Versioned Object Bases (VOBs) 3
Views 4

ClearCase User Base 5
Registries for VOBs and Views 6

Network Regions 6
ClearCase Client-Server Processing 8

ClearCase Servers 8
Server Error Logs 9

ClearCase Startup and Shutdown 10

2. ClearCase Data Storage 11
Versioned Object Bases (VOBs) 11
VOB Database 12
VOB Storage Pools 13

Source Storage Pools 13
Cleartext Storage Pools 14
Derived Object Storage Pools 14
The vob_server Process 15

Default, Local, and Remote Storage Pools 15
Elements’ Source Pool Assignments 17
Commands for Working with Storage Pools 17
Views 18
View Database 19
View’s Private Storage Area 20

iv

Contents

3. Network-Wide Access to ClearCase Data 23
Storage Directories and Access Paths 23

Distributed VOBs and Views 23
Storage Registries 24
Object Registries 24
Tag Registries 25
Network-Wide Accessibility of VOBs and Views 27

Public and Private VOBs 27
Network Regions 28

Registries in a Multiple-Region Network 30
Tag Registry Implementation 31

Establishing Network Regions 33
Recording Multiple Network Interfaces 33
ClearCase Data and Non-ClearCase Hosts 34

Usage Restrictions 34
Building on a Non-ClearCase Host 34

Using automount with ClearCase 35
Use of –hosts Map Required 35
Specifying a Non-Standard Mount Directory 35

4. User-Level Access to ClearCase Data 37
Users: Usernames and Groups 37
Network-Wide ClearCase Administrator 39
VOBs and Views: Owner and Groups 39

The .identity Directory 40
Effect of Creator’s ‘umask’ Setting 42

Example: Two VOBs and Two User Groups 42
Creating the VOBs 43
Controlling Access to the VOBs 45

Contents

v

Access to Individual File System Objects 45
Access-Control Settings 45

Notes on VOB/View Interactions 46
Initialization of Access-Control Settings for VOB Objects 47
Initialization of Access-Control Settings for View Objects 47

Access-Control Settings for Physical Data Storage 47
How Processes Access ClearCase Data 48

Read Access by Processes 51
Write Access by Processes 51

ClearCase-Level Access Permissions 52
Locks on VOB Objects 53

Locking Type Objects 54

5. ClearCase User Licensing Scheme 55
Floating License Architecture 55

6. Setting Up ClearCase VOBs 57
Selecting a VOB Host 57
Planning for One or More VOBs 58

Planning for Release VOBs 60
Modifying a VOB Host for ClearCase 61

Kernel Resources 61
Optional Software Packages 61

Creating a New VOB 62
Adjusting the VOB’s Identity Information 63

Case 1: One Group for All VOBs, Views, and Users 64
Case 2: Accommodating Multiple User Groups 64
Example: Multiple Groups 64

Ensuring the VOB’s Global Accessibility 65
Case 1: Heuristic Guess Was Right 66
Case 2: Guess Was Wrong, But Global Pathname Does Exist 66
Case 3: Global Pathname Does Not Exist 66

Creating Remote Storage Pools 67
Coordinating the New VOB with Existing VOBs 68

vi

Contents

Populating a VOB with Data 68
Example: Importing RCS Data 69

Creating the Conversion Scripts 69
Running the Conversion Scripts 70

7. Setting Up ClearCase Views 71
Setting Up an Individual User’s View 71

View Storage Requirements 72
View Database 72
View’s Private Storage Area 72

Setting Up a Shared View 73
Setting Up an Export View for Non-ClearCase Access 74

Exporting Multiple VOBs 75
Multihop Export Configurations 76
Restricting Exports to Particular Hosts 78

8. Preventing Accidental Deletion of Data by crontab Entries 79
Preventing Recursive Traversal of ‘/’ 79

Crontab Modification During ClearCase Installation 80
Modifying a Crontab Entry 80

Preventing Accidental Deletion of the Lock Manager Socket 82

9. Data Backup: VOBs and Views 83
Backup Tools 83
Backing Up a VOB 83

Determining a VOB’s Location 84
Ensuring a Consistent Backup 84
Partial Backups 85
Example of Partial VOB Backup 86

Backing Up a VOB with Remote Storage Pools 86
Restoring a VOB from Backup 87

Reestablishing Consistency of a View’s “Derived Object State” 90
Backing Up a View 91
Restoring a View from Backup 92

Contents

vii

10. Periodic Maintenance of the Data Repository 95
VOB Storage Maintenance 95

Scrubbing VOB Storage Pools 96
Scrubbing VOB Databases 97
Database Scrubbing: Logical vs. Physical 97

View Storage Maintenance 98
Scrubbing View-Private Storage 99

User-Supplied Maintenance Procedures 99
Caution: ‘Local’ Scripts May Not Really be Local 100

11. Occasional VOB Maintenance 101
Moving a VOB (Same Architecture) 101
Moving a VOB (Different Architecture) 104
Removing Unneeded Versions from a VOB 108

Example 109
Restoring a Single Element From Backup 110
Creating Additional VOB Storage Pools 113

Caution on Remote Source Pools 114
Example: Assigning All Files in a Directory to a New Pool 115
Example: Moving an Existing Storage Pool to Another Disk 116

Adjusting Storage Pool Scrubbing 117
Scrubbing Derived Objects More Often 117
Fine-Tuning Derived Object Scrubbing 118
Scrubbing Less Aggressively 120

12. Occasional View Maintenance 121
Moving a View (Same Architecture) 121
Moving a View (Different Architecture) 123
Moving a View’s Private Storage Area 126
Manual Cleanup of a View 127

viii

Contents

13. ClearCase Performance Tuning 131
Improving VOB Host Performance 131

Eliminate Extraneous Processes 131
Manipulate Block Buffer Caches 132

Block Buffer Cache Statistics 133
Flushing of the Block Buffer Cache 133

Improving Client Host Performance 133
Increasing System Resources 133
Creating Remote Storage Pools 134

Caution on Remote Source Pools 134
Changing the MVFS Configuration (SunOS Only) 135

Selecting Alternative Cache Size Defaults—SunOS 4 Only 136
Compiling New Cache Sizes into the MVFS 137
SunOS 4 Cache Override Procedure 138
SunOS 5 Cache Override Procedure 139

Reconfiguring a View 140

14. Making a VOB or View Inaccessible 141
Alternative to VOB Deactivation 141
Taking a VOB Out of Service 141

Restoring the VOB to Service 143
Taking a View Out of Service 144

Restoring the View to Service 144
Permanent Removal of a VOB or View 144

15. Determining a Data Container’s Location 145
Scenario 145
Determining the ClearCase Status of Files 145
Determining the Full UNIX Pathnames of Files 146
Where is the VOB? 146
Where is the View? 147

Contents

ix

Where are the Individual Files? 147
Locating a Checked-Out Version 148
Locating a Checked-In Version’s Cleartext Container 148
Locating a Checked-In Version’s Source Container 149
Locating a View-Private File 149
Non-Local Storage 149
Links and Directories 150

16. Adjusting the ClearCase Startup/Shutdown Script 151
Name of Startup/Shutdown Script 151
Changing VOB Mounts to “Release 1 Style” 151
Changing Dynamic Loading of the MVFS 153

17. Adjusting ClearCase License Information 155

18. Adjusting ClearCase Registry Information 157
Registry Review 157

ClearCase Storage Registry 157
Object Registry Files 158
Tag Registry Files 158

cleartool Commands and Registry Files 159
lsvob and lsview (-long) 159
mkvob and mkview 160
mktag and rmtag 161

Adding a Network Region 162
When to Partition the Network 163
A Sample Network Partition 163
Procedure for Adding a Network Region 165

Moving a Host to a New Network Region 168
Removing a Network Region 169
Registry-Related Guidelines 169

Multiple Network Regions 171

x

Contents

19. Changing the Location of Network-Wide Resources 173
Changing the Location of the Release Area 173
Renaming the Release Host 173
Moving Licenses to Another Host and Renaming a License Server Host 174
Moving the ClearCase Registry 174
Renaming the Registry Server Host 175
Renaming a ClearCase Host 175

Index 177

xi

Figures

Figure 1-1 ClearCase Storage Registries 7
Figure 1-2 Client-Server Processing 9
Figure 2-1 VOB Database and VOB Storage Pools 13
Figure 2-2 Local and Remote VOBStorage Pools 16
Figure 3-1 ClearCase Object and Tag Registries

(Single Network Region) 26
Figure 3-2 Network with Global Naming 28
Figure 3-3 Network Regions and Their Tag Registries 32
Figure 4-1 Establishing a User’s Group Assignments 38
Figure 4-2 Multiple-Group Support for VOBs and Views 40
Figure 4-3 The .identity Directory of a VOB or View 41
Figure 4-4 Planning Access to Development Sources 43
Figure 4-5 Data Access Paths 50
Figure 4-6 Read’ Access through Group Membership 51
Figure 4-7 ‘Write’ Access through Group Membership 52
Figure 6-1 Linking Multiple VOBs Into a Single Directory Tree 60
Figure 7-1 Export View for Non-ClearCase Access 75
Figure 7-2 Avoiding Access Cycles in Non-ClearCase Access 77
Figure 8-1 Viewroot Directory as a Super-Root 80
Figure 10-1 Controlling VOB Growth 96
Figure 18-1 ClearCase Storage Registry 158
Figure 18-2 cleartool Commands and the ClearCase

Storage Registry 162
Figure 18-3 Sample Network with Two Regions 164

xiii

Tables

Table 9-1 VOB Components for Partial Backups 85
Table 13-1 Selecting the Default or Alternative MVFS

Cache Configuration 135
Table 13-2 Cache Parameters for MVFS module: ‘mvfs.o’ 137
Table 15-1 Storage Locations of MVFS Files 147

1

Chapter 1

1. Administrator’s View of a ClearCase Network

This chapter presents a system administrator’s overview of a local area
network using ClearCase. It also serves as a roadmap to other chapters
in this manual, and to detailed reference information in the
CASEVision™/ClearCase Reference Pages.

Network Overview

A local area network using ClearCase includes these principal components:

• Hosts—ClearCase can be installed and used on any number of hosts in
a network. Different hosts use ClearCase software in different ways; for
example, one host might be used only to store version-controlled data;
another might be used only to run ClearCase software development
tools.

• Data storage—ClearCase data is stored in VOBs and views, which can
be located on any or all the hosts where ClearCase is installed. A VOB
or view can have auxiliary data storage on hosts where ClearCase is not
installed; such storage is accessed through standard symbolic links.

For many organizations, the set of all VOBs constitutes a central data
repository, which you may need to administer as a unit. Most views are
used by individuals; it is likely, however, that one or more shared views
will be created, requiring some central administration.

• User base—ClearCase is used by a set of people, each of whom has a
username and is assigned to one or more groups. Any number of people
can use ClearCase on any number of hosts; the licensing scheme limits
the number of concurrent users, but does not limit the number of hosts.

2

Chapter 1: Administrator’s View of a ClearCase Network

ClearCase Hosts

ClearCase is a distributed application with a client-server architecture. This
means that any particular development task (for example, execution of a
single ClearCase command) may involve programs and data on several
hosts. It is important to classify hosts by the roles they play, because different
kinds of hosts require different administrative procedures. But keep in mind
that any particular host may play different roles at different times, or several
roles at once.

• Network-wide release host—One host in the network acts as the
network-wide release host. This host stores the entire ClearCase release,
exactly as it is supplied on the distribution medium (magnetic tape,
CD-ROM). Note that this release area is active storage, not archival
storage—some individual developers’ workstations may access
ClearCase programs and/or data through symbolic links to the release
area.

• License server host(s)—One or more hosts in the network act as
ClearCase license server hosts, authorizing and limiting ClearCase
usage according to the terms of your license agreement. Each host on
which ClearCase is installed is assigned to a particular license server
host, and periodically communicates with that host. (The albd_server
process on a license server host acts as the “license server process”.)

• Registry server host—One host in the network acts as the ClearCase
registry server host. This host stores a set of files that contain essential
access-path information concerning all the VOBs and views in the
network. ClearCase client and server programs on all other hosts
occasionally communicate with the registry server host, in order to
determine the actual storage location of ClearCase data. (The
albd_server process on the registry server host acts as the “registry
server process”.)

• Client hosts—Each user typically has his or her own workstation. It is
called a client host, because it runs ClearCase client programs: the
programs installed in /usr/atria/bin, including cleartool, clearmake,
and xclearcase.

ClearCase must be explicitly installed on each client host; installation
must include the multiversion file system (MVFS), a ClearCase virtual
file system extension. All access by client programs to ClearCase data
(in VOBs and views) goes through the host’s MVFS.

ClearCase Data Storage

3

• Server hosts—Some hosts may be used only as data repositories for
VOB storage directories and/or view storage directories. Such server
hosts run ClearCase server programs only: albd_server, vob_server,
view_server, and other programs installed in /usr/atria/etc.

ClearCase must be explicitly installed on each server host; installation
need not include the MVFS—it is required only for running client
programs.

• Non-ClearCase hosts—ClearCase need not be installed on every host
in your network. In fact, it may not even be possible to install it on some
hosts—those whose architectures are not (yet) supported by ClearCase.
Such hosts cannot run ClearCase programs, but they can access
ClearCase data, through standard UNIX network file system facilities.
You administer these “export” (or “share”) mechanisms using standard
UNIX tools.

ClearCase Data Storage

All ClearCase data is stored in VOBs and views. These data structures can be
distributed throughout the local area network—even an individual VOB or
view can be distributed. Users see these structures as global resources; after
a VOB or view is explicitly activated, users access it through its VOB-tag or
view-tag.

Versioned Object Bases (VOBs)

The network’s permanent data repository is conceptually a centralized
resource. Typically, however, the repository is distributed among multiple
versioned object bases (VOBs), located on multiple hosts. Each VOB is
implemented as a VOB storage directory (actually a directory tree), which
holds both developers’ file system objects and an embedded database.

Administration of a network’s VOBs includes:

• Registration—All VOBs are listed in a network-wide storage registry.
In a typical network, registry maintenance is minimal—certain
ClearCase commands update the registry automatically. You’ll need to
adjust the registry if you move a VOB to another location (for example,

4

Chapter 1: Administrator’s View of a ClearCase Network

to another host). You’ll also need to do some registry work if different
pathnames must be used on different hosts to access the same VOBs.

• Backup—As your organization’s “family jewels”, VOBs should be
backed up frequently and reliably. ClearCase does not include
data-backup tools; use system-supplied or third-party tools.

• Periodic maintenance—Administering the central repository requires
continual balancing of the need to preserve important data with the
need to conserve disk space. ClearCase includes tools for occasional
scrubbing of unneeded data. You can control the meaning of
“unneeded” on a per-VOB basis.

ClearCase installation automatically sets up crontab(1) scripts for a
host’s root user. By default, the scripts perform daily and weekly
scrubbing of all VOBs on that host. You can fine-tune VOB maintenance
by revising scrubbing parameters, by revising the scripts themselves, or
by adding your own scripts.

• Access control—Each VOB has a principal group and a supplementary
group list. Together, these control which developers can use the VOB. As
your organizational structure changes (for example, a new project is
launched), you may need to adjust a VOB’s group list.

• Growth—As new projects are launched (or existing projects are
brought under ClearCase control), you’ll need to create new VOBs,
define their accessibility to various groups, and incorporate them into
your data backup and periodic maintenance schemes.

• Reformatting—When you install a new major release of ClearCase, it
may be necessary to reformat your existing VOBs. This process updates
the schema of the embedded VOB database.

Views

Short-term storage for data created during the development process is
provided by ClearCase views. A view stores checked-out versions of file
elements, view-private files that have no counterpart in the VOB (for example,
text editor backup files), and newly-built derived objects.

Developers think of views and VOBs as being very different: briefly, a VOB
is where data resides; a view is a “lens” through which a developer sees VOB
data. From an administrator’s standpoint, however, views and VOBs are

ClearCase User Base

5

quite similar. Each view is implemented as a view storage directory (actually a
directory tree), which holds both developers’ file system objects and an
embedded database. View administration is similar to that for VOBs,
including registration, backup, periodic maintenance, and access control.

Like a VOB, a view includes both a storage area for file system data, and an
associated database:

• The view’s private storage area (subdirectory .s of the top-level view
storage directory) holds all view-private objects. It also holds the data
files (data containers) for derived objects built in the view.

• The view database tracks the correspondence between certain VOB
database objects and view-private objects.

Most VOBs are long-lived structures, created by an administrator; views are
usually created by individual developers, and tend to be shorter-lived.

ClearCase User Base

ClearCase does not, itself, maintain a registry of its users. Any user logged
in to a ClearCase host can use the software, if they can acquire a ClearCase
license.

Successful use of ClearCase depends on network-wide consistency in the
user base: users should have the same user-IDs and group-IDs on all hosts.
Consistency is usually achieved by using network-wide databases at the
operating system level, such as NIS passwd and group maps.

Each user has a user-ID, a principal group-ID (specified in the OS-level
password database), and a supplementary list of group-IDs (specified in the
OS-level group database). These identities control the user’s permission to
read and create ClearCase data:

• Many cleartool commands check the user’s identity before granting
access to particular objects—element, version, and so on.

• Standard commands that access ClearCase data are also subject to
access control.

6

Chapter 1: Administrator’s View of a ClearCase Network

Registries for VOBs and Views

All ClearCase data storage areas—all VOBs and views—in a local area
network are centrally registered, on the ClearCase registry server host. This
host has two kinds of registries:

• Object registry—records the physical storage locations of VOBs and
views

• Tag registry—records the user-level access paths to VOBs and views

For example, an object registry entry might record the fact that a VOB’s
storage directory is located on host neptune, at pathname /vobstore/project.vbs;
a corresponding tag registry entry might record the fact that on each
developer’s workstation, the VOB is to be activated (mounted) at the
location specified by its VOB-tag, /vobs/proj.

Similarly, an object registry entry might indicate that a view storage
directory is /usr/shared/integ.vws on host einstein; a corresponding tag registry
entry might enable developers to access the view using the view-tag
integration.

Network Regions

In an ideal network, all hosts would access ClearCase data storage areas
using exactly the same “global” pathnames. Many networks fall short of this
ideal, however. To address this situation, a network can be logically
partitioned into multiple network regions. Conceptually, each region has its
own tag registry—ClearCase data structures can be accessed with different
“global” pathnames in different regions. (Physically, all tag registries are
implemented in a single file.)

Figure 1-1 illustrates how registries mediate access to ClearCase data
structures. The administrative benefits of network-wide registries include:

• centralized control over all components of the network’s distributed
data repository

• independence from architecture-specific mechanisms for mounting file
systems

Registries for VOBs and Views

7

• ability to accommodate heterogeneous networks, and networks in
which hosts have multiple names and/or multiple network interfaces

• making VOBs and views globally accessible

Figure 1-1 ClearCase Storage Registries

record actual storage
locations of all

ClearCase data
structures

Object Registry

all ClearCase VOBs and views

optional partitioning,
to conform with
“global naming”

requirement

Network Regions

all ClearCase hosts

record user-level
access paths to all

ClearCase data
structures

Tag Registry

8

Chapter 1: Administrator’s View of a ClearCase Network

ClearCase Client-Server Processing

ClearCase is a distributed client-server application. This means that multiple
processes, running on multiple hosts, can play a role in the execution of
ClearCase commands—even the simplest ones. For example, when a user
checks out a file element:

• The user’s client process—cleartool or xclearcase—issues a “checkout”
request, in the form of an RPC call.

• The RPC call is fielded by server processes, which run on the host where
the element’s VOB resides.

• A view-private copy is made of the version being checked out. This
involves the view_server process that manages the user’s view. It can
also involve even more hosts:

– The user’s client process and the view may be on different hosts.

– The view might have a private storage area that is located on a
different host from the view storage directory.

– The VOB storage pool that holds the version being checked out
may be located on a different host from the VOB storage directory.

Fortunately, this is all handled automatically and reliably by the ClearCase
server processes. Users need not be concerned with server-level processing
at all. As an administrator, your concerns in this area typically are limited to
entering an occasional “stop all ClearCase processing” command on one or
more hosts; this terminates all ClearCase server processes currently active on
the host.

ClearCase Servers

Each ClearCase host runs a single Atria Location Broker Daemon process,
albd_server, which is invoked by the ClearCase startup script. (See
“ClearCase Startup and Shutdown” on page 10.) Other ClearCase server
processes are started, as needed, by the albd_server processes.

Most server processes manage a particular data structure; for example, a
view_server process manages a particular view storage directory. Such
servers always run on the host where that data structure resides. This kind
of ClearCase server includes:

ClearCase Client-Server Processing

9

view_server Manages the view storage directory of a particular view

vob_server Manages the storage pools of a particular VOB

db_server Fields requests from one ClearCase client program,
destined for one or more VOB databases on a host

vobrpc_server Fields requests from one or more view_server processes,
destined for a particular VOB database

Figure 1-2 shows the communications paths connecting a client process with
server processes.

Figure 1-2 Client-Server Processing

Server Error Logs

Each ClearCase server maintains an error log on the host where it executes,
in directory /usr/adm/atria/log. Given ClearCase’s distributed architecture, a
user can enter a command on one host that logs an error message on another
host. In such cases, the user is directed to the appropriate log file on the
appropriate host.

See the errorlogs_ccase manual page for details on the error logs.

VOB
databaseview database

view-private storage

view_server

cleartool
xclearcase
clearmake
abe

ClearCase client

db_server

vobrpc_server

vob_server

VOB
storage pools

10

Chapter 1: Administrator’s View of a ClearCase Network

ClearCase Startup and Shutdown

When UNIX is bootstrapped, the ClearCase startup script is executed
automatically by init(1M). On some systems, this script is named /etc/rc.atria;
on others, it is named /etc/init.d/atria.The startup script:

• Starts the host’s albd_server (Atria Location Broker Daemon) process.

• Starts a lockmgr process, which arbitrates concurrent access to VOB
databases by multiple client processes.

• Performs additional file system setup tasks, such as mounting of VOBs.

You can also invoke this script manually, as root. For example:

/etc/rc.atria stop

Stops all ClearCase processing on a host: terminates the albd_server and
lockmgr processes, along with any other ClearCase server processes running
on the host. User processes that are set to views on that host will also be
terminated.

/etc/rc.atria start

Restarts ClearCase processing on a host, by starting an albd_server process
and a lockmgr process.

See Chapter 16, “Adjusting the ClearCase Startup/Shutdown Script”, and
the init_ccase manual page for more on this topic.

11

Chapter 2

2. ClearCase Data Storage

This chapter describes the on-disk data structures that implement ClearCase
VOBs and views. File system objects stored in these structures are termed
MVFS objects, because client programs access them through the ClearCase
multiversion file system.

Versioned Object Bases (VOBs)

The ClearCase data repository for a network is implemented as a set of
versioned object bases (VOBs). Each VOB is implemented as a UNIX directory
tree, whose top-level directory is termed the VOB storage directory. The main
components of this directory tree are:

• VOB database—The db subdirectory contains the binary files managed
by ClearCase’s embedded DBMS. Each VOB has its own database; there
is no central database that encompasses all VOBs. The database stores
several kinds of data:

– version-control information: elements, their branch structures, and
their versions

– meta-data associated with the file system objects: version labels,
attributes, and so on

– event records and configuration records, which document ClearCase
development activities

– type objects, which are involved in the implementation of both the
version-control structures and the meta-data

Actual file system data (for example, the contents of version 3 of file msg.c)
is not stored in the VOB database.

• VOB storage pools—The c, d, and s subdirectories contain the VOB’s
storage pools, each of which is a standard UNIX directory. The storage

12

Chapter 2: ClearCase Data Storage

pools hold data container files, which store the VOB’s file system data:
versions of elements and shared binaries. Depending on the element
type, the versions of an element might be stored in separate data
container files, or might be combined into a single structured file that
contains deltas (version-to-version differences).

• Identity directory—The .identity subdirectory contains files that
establish the VOB’s owner, its principal group, and its group list.

The vob manual page provides a detailed description of the contents of a
VOB. (The .identity directory is not discussed further in this chapter—see
“VOBs and Views: Owner and Groups” on page 39 for more on this topic.)

Note: Users do not directly access a VOB storage directory. Rather, they
access a VOB through its VOB-tag, which specifies a location at which the
VOB is activated (mounted) as a file system of type MVFS. Chapter 3
discusses this in detail. ♦

VOB Database

Each VOB has its own database, implemented as a set of files in the db
subdirectory of the VOB storage directory. ClearCase server programs are
invoked automatically, as needed, to access a VOB’s database:

• A db_server process handles requests from a single ClearCase client
program.

• A vobrpc_server process handles requests from one or more ClearCase
view_server processes.

These server processes run on the host where the VOB storage directory
physically resides. The db subdirectory must also be on that same host. (As
explained below, storage pools can be remote.)

Caution: You cannot simply move the VOB database directory (db) to
another host. See Chapter 11, “Occasional VOB Maintenance”, for steps you
can take if a VOB database threatens to fill up its disk partition.

For the most part, ClearCase servers and crontab(1) scripts manage VOB
databases automatically. See Chapter 10, “Periodic Maintenance of the Data
Repository” and Chapter 11 for more on VOB maintenance.

VOB Storage Pools

13

VOB Storage Pools

Each VOB has a set of storage pools, which hold several different kinds of
data containers. Each storage pool holds data containers of one kind
(Figure 2-1).

Figure 2-1 VOB Database and VOB Storage Pools

Source Storage Pools

Each source storage pool holds all the source data containers for a set of file
elements. A source data container holds the contents of one or more of a file
element’s versions. For example, a single source data container holds all the
versions of an element of type text_file. The type manager program for this
element type handles the task of reconstructing individual versions from
deltas in the data container. Likewise, the type manager updates the data
container when a new version is checked in.

Source pools are accessed by checkout and checkin commands, and by
development operations (for example, cat(1), lp(1), cc(1)) that read the
contents of elements that are not checked-out. In many cases, however, a
cleartext pool is accessed instead of the source pool.

s subdirectory

= default storage pool

= user-created storage pool

db subdirectoryc subdirectory d subdirectory

all of a file element’s
versions are stored in

a particular source
pool

source storage pools
for some file elements,

recently-accessed
versions are also cached

in a cleartext pool

cleartext storage pools

stores all version-control structures:
elements, branches, versions

VOB database

all of a directory element’s derived
objects (pathnames within that

directory) are stored in a
particular DO pool

derived object storage pools

14

Chapter 2: ClearCase Data Storage

Cleartext Storage Pools

Each cleartext storage pool holds all the cleartext data containers for a set of file
elements. A cleartext data container holds the contents of one version of an
element. These pools are caches that accelerate access to elements for which
all versions are stored in a single data container: compressed files and text
files.

For example, the first time a version of a text_file element is required, the
text_file_delta type manager reconstructs the version from the element’s
source data container. The version is cached as a cleartext data container—an
ordinary text file—located in a cleartext storage pool. On subsequent
accesses, ClearCase looks first in the cleartext pool. A “cache hit” eliminates
the need to access a source pool, thus reducing the load on that pool; it also
eliminates the need for the type manager to reconstruct the requested
version.

Cache hits are not guaranteed, since cleartext storage pools are periodically
scrubbed. (See Chapter 10, “Periodic Maintenance of the Data Repository”.)
A miss simply means that the type manager must be invoked to reconstruct
the version again.

Derived Object Storage Pools

Each derived object storage pool holds a collection of derived object data
containers. A derived object data container holds the file system data
(typically, binary data) of one DO, created during clearmake or clearaudit
execution.

DO storage pools contain data containers only for the derived objects that
have been shared by two or more views, through ClearCase’s wink-in
feature. Each directory element is assigned to a particular DO storage pool;
the first time a DO that was created within that directory is winked-in to
some view, its data container is copied to the corresponding DO storage
pool. The data containers for never-shared derived objects reside in
view-private storage.

Derived object pools are periodically scrubbed, as described in Chapter 10.

Default, Local, and Remote Storage Pools

15

The vob_server Process

Most access to VOB storage pools goes through a ClearCase server program,
the vob_server. This process handles data-access requests from clients,
forwarded to it by the VOB’s db_server and vobrpc_server processes. As with
these other servers, a vob_server runs on host where the corresponding VOB
storage directory resides. Each VOB on a host has its own dedicated
vob_server process.

Default, Local, and Remote Storage Pools

As part of creating a new VOB, the mkvob command creates three
subdirectories for storage pools, with a single default storage pool within
each one:

You can create as many additional storage pools as desired (with mkpool),
and can adjust the assignment of elements to these pools (with chpool).

By default, the mkpool command creates new storage pools within the VOB
storage directory itself. Such pools are termed local. For example, mkpool
-source srcpl2 creates a local pool as subdirectory s/srcpl2 under the VOB
storage directory.

You can use mkpool -ln to create a remote storage pool, leaving behind a
standard UNIX-level symbolic link that points to the remote location:

cleartool mkpool -source -ln /net/ccsvr04/ccase_pools/srcpl3 srcpl3

In this example, a storage pool directory is created at the remote location
/net/ccsvr04/ccase_pools/srcpl3. Within the VOB storage directory, a symbolic

c directory for all cleartext pools

c/cdft default cleartext pool

d directory for all derived object pools

d/ddft default derived object pool

s directory for all source pools

s/sdft default source pool

16

Chapter 2: ClearCase Data Storage

link is created instead of a subdirectory; the text of the link is
/net/ccsvr04/ccase_pools/srcpl3.

The remote location can be on another host—even a non-ClearCase host—or
in another disk partition on the local host (Figure 2-2). Either way, this
capability enables a VOB to circumvent the UNIX limitation that restricts a
directory tree to be wholly contained within a single disk partition. It also
allows you to use high-capacity and/or high-speed file servers on which
ClearCase is not installed.

Figure 2-2 Local and Remote VOBStorage Pools

This is a powerful feature, enabling a single logical entity to be distributed
physically. But there are some provisos:

• The important task of data backup is considerably harder for a
distributed VOB than for a VOB wholly contained in a single disk
partition. See “Backing Up a VOB with Remote Storage Pools” on
page 86.

VOB database

can be located on another
disk partition on same host,

or on another host

remote storage pools

VOB storage pools

VOB host

remote host

local storage pool

Elements’ Source Pool Assignments

17

• You must be careful in devising the pathname of the remote location.
This pathname must be valid on all client hosts that will access the
VOB. In particular, you cannot use the network region facility to handle
network idiosyncrasies, such as hosts with multiple network interfaces.

Elements’ Source Pool Assignments

The mkvob command creates a single directory element, the VOB’s root
directory. Users access this directory at the VOB-tag location (the VOB’s
mount point). This top-level directory is assigned to the three default storage
pools; and by default, all newly-created elements inherit the pool
assignments of their parent directories. Thus, all elements in a VOB will use
the default storage pools, unless you create new pools and reassign elements
to them.

You can use the chpool command to change the source and/or cleartext pool
associated with an element. Changing the source pool of a file moves all its
data containers; for a directory element, this changes the source pool to
which new elements created within it will be assigned. (See also “Creating
Additional VOB Storage Pools” on page 113, and the mkvob manual page.)

Commands for Working with Storage Pools

The following commands are your basic tools for working with VOB storage
pools. Each has its own manual page, which provides complete details on its
usage.

cleartool subcommands:

mkpool Creates a new storage pool; with -update, adjusts an existing
pool’s scrubbing parameters.

lspool Lists basic information about one or more storage pools.
(The describe -pool command lists the same
information.)

rnpool Renames a storage pool.

rmpool Deletes a storage pool.

chpool Reassigns elements to a different pool.

18

Chapter 2: ClearCase Data Storage

utility commands:

scrubber Deletes unneeded data containers from derived object and
cleartext pools. (See also “Scrubbing VOB Storage Pools” on
page 96.)

view_scrubber With -p option, transfers data containers from view-private
storage to a VOB’s derived object storage pool. (See also
“Scrubbing View-Private Storage” on page 99.)

Views

A ClearCase development environment can includes any number of views.
A typical view is “private” to a single user, or perhaps to a small group of
users tackling a particular task as a team.

Each view implements a virtual workspace, which presents its user(s) with an
extended file system that superficially appears to be a standard UNIX file
system hierarchy. This workspace combines:

• Selected versions of elements (actually stored in VOB storage pools)

• Files that are being modified (checked-out file elements, stored in the
view’s private storage area)

• Directories that are being modified (checked-out directory elements,
maintained in the VOB database)

• Derived objects built by users working in this view (stored in the view’s
private storage area); configuration records that correspond to these
derived objects

• Derived objects originally built in another view, but them winked-in to
this view (stored in VOB storage pools)

• View-private objects: miscellaneous files, directories, and links that
appear only in this view (stored in the view’s private storage area)

View Database

19

Each view is a UNIX directory tree, whose top-level directory is termed the
view storage directory. The main components of this directory tree are:

• View database—The db subdirectory contains the binary files managed
by ClearCase’s embedded DBMS. The database tracks the
correspondence between VOB objects and view-private objects. For
example, a checkout of a file element creates a “checked-out-version”
object in the VOB database, and a corresponding data file in the view’s
data storage area. The view database records the relationship between
these two objects.

• Private storage area—The .s subdirectory is the top-level of a directory
tree in which all view-private objects are stored: checked-out versions
of file elements, unshared derived objects, text-editor backup files, and
so on. Each view-private file, which appears to be located in some
directory within some VOB, is actually stored in a data container in the
view’s private storage area.

• Identity directory—The .identity subdirectory contains files that
establish the view’s owner, its principal group, and its group list.

The view manual page provides a detailed description of the contents of a
view. (For more on the .identity directory, see “VOBs and Views: Owner and
Groups” on page 39.)

View Database

Each view has its own database, implemented as a set of files in the db
subdirectory of the view storage directory. On-disk overhead for the
database is quite small—usually less than 1Mb.

A single ClearCase server program, the view_server, is invoked when the
view is activated (for example, with a startview or setview command). This
enables ClearCase client programs and standard UNIX programs to use the
view—both to access VOB data and to access view-private data. The
view_server process runs on the host where the view storage directory
resides.

Caution: Never try to move the view database directory (db) to another
host. But see “Moving a View (Same Architecture)” on page 121.

20

Chapter 2: ClearCase Data Storage

View’s Private Storage Area

A view’s private storage area is a subtree in the view storage directory. It
provides disk storage for view-private files (including checked-out versions
of file elements) and for derived objects actually built in that view. clearmake
also caches configuration records of recently-built derived objects in this
area, to speed configuration lookup (build avoidance).

Typically, unshared derived objects make the greatest storage demand on a
view’s private storage area. When a derived object is first created, both its
data container file and its configuration record are stored in the view. The
first time the derived object is winked-in to another view:

The configuration record is moved to the appropriate VOB database, or
databases. If the build script creates derived objects in several VOBs, each
VOB database gets a copy of the same configuration record.

• The data container is copied (not moved) to a VOB storage pool. The
original data container remains in view storage, to avoid “pulling the
rug out from under” user processes that are currently accessing the data
container. From time to time, you (or whichever user “owns” the view)
may find it worthwhile to eliminate the redundant storage containers
from views with the view_scrubber utility. (See Chapter 10.)

A view’s private storage area can be located remotely from the view storage
directory, and accessed through a standard UNIX-level symbolic link. This
resembles the remote VOB storage pool facility, discussed in “Default, Local,
and Remote Storage Pools” on page 15, but the facility for views is less
elaborate:

• A VOB can have any number of storage pools, any of which can be
remote.

• A view has a single private storage area: the directory tree with
view-storage-dir/.s as its root. By default, the mkview command creates a
view storage directory with .s as an actual subdirectory; the mkview -ln
command creates a view with .s as a symbolic link to another location.

View’s Private Storage Area

21

The same restriction as for remote VOB storage pools applies: a remote
private storage area must be NFS-accessible at the same pathname from all
ClearCase hosts (for example, /net/cccvr02/view_storage/drp).

If a view storage directory threatens to fill up its disk partition, you can move
its .s directory to a larger partition. See Chapter 12, “Occasional View
Maintenance” for details.

23

Chapter 3

3. Network-Wide Access to ClearCase Data

This chapter describes the mechanisms by which ClearCase data
structures—VOBs and views—are made available throughout the local area
network.

Storage Directories and Access Paths

Each ClearCase VOB and view has both a physical location and a logical
location:

• Physical location—Each VOB storage directory and view storage directory
is actually a directory tree, located on some ClearCase host. For
day-to-day work, developers need not know the actual locations of
these storage directories.

• Logical location—Each VOB and view also has a tag, which specifies its
logical location. In their day-to-day work, developers use VOB-tags and
view-tags to access the data structures.

Distributed VOBs and Views

ClearCase allows you to distribute the data storage for a given VOB or view
to more than one host. You can create any number of additional VOB storage
pools that are remote to the VOB storage directory (mkpool command);
similarly, you can place a view’s private storage area on a remote host
(mkview -ln command).

In both cases, remote data storage is implemented at the UNIX level. As far
as ClearCase servers are concerned, the data is located within the VOB or
view storage directory—standard UNIX symbolic links cause the reference
to “go remote”.

24

Chapter 3: Network-Wide Access to ClearCase Data

Note: Remote data storage is outside the scope of this chapter; see Remote
data storage is outside the scope of this chapter; see Chapter 2, “ClearCase
Data Storage” for a discussion. In particular, the ClearCase storage registries
discussed in the remainder of this chapter are not used to resolve the
symbolic links that implement distributed data storage. ♦

Storage Registries

All VOB storage directories are registered in a set of files that constitute the
VOB registry; all view storage directories are registered in files that constitute
the view registry. These storage registries record physical
locations—hostnames and pathnames on those hosts; they also record the
logical access paths used by clients and servers to access VOB and view data.

A storage registry has two parts, implemented in separate files: an object
registry and a tag registry. The following sections provide an overview of
these components; for details, see the registry_ccase manual page.

Object Registries

The VOB object and view object registries record the location of each VOB and
view using a host-local pathname. That is, the pathname to the data
structure is one that is valid on the host where the storage directory resides.
These pathnames are used by the ClearCase server processes (view_server,
vob_server, and so on), which run locally.

An entry is placed in the appropriate object registry when a VOB or view is
first created (mkvob, mkview). The entry is updated automatically whenever
a reformatting is performed (reformatvob, reformatview); you can also update
or remove the entry manually (register, unregister).

Object registry entries are used mostly by ClearCase server processes.

Tag Registries

25

Tag Registries

For most purposes (including virtually all day-to-day development
activities), VOBs and views are not referenced by their physical storage
locations. Instead, they are referenced by their VOB-tags and view-tags:

• A VOB’s VOB-tag is its mount point as a file system of type MVFS.
Developers access all ClearCase data (MVFS files and directories) at
pathnames below VOB mount points.

• A view’s view-tag appears as a subdirectory entry in a host’s viewroot
directory, /view. For example, a view with tag oldwork appears in the
host’s file system as directory /view/oldwork. To access ClearCase data,
developers must use a view—either implicitly (by setting the view) or
explicitly (by using a view-extended pathname).

Thus, any reference to a ClearCase file system object involves both a
VOB-tag and a view-tag. These logical locations are resolved to physical
storage locations through lookups in the network-wide VOB-tag and
view-tag registries. Each tag registry entry includes a global pathname to the
storage area—a pathname that is valid on all ClearCase client hosts.
Figure 3-1 illustrates how tag registries and object registries are used to
access the network’s set of data storage areas.

Note: In some networks, it is not possible to devise global pathnames to all
ClearCase storage areas. The ClearCase network region facility handles such
situations—see “Network Regions” on page 28. For simplicity, Figure 3-1
illustrates a network that has a single network region. ♦

26

Chapter 3: Network-Wide Access to ClearCase Data

Figure 3-1 ClearCase Object and Tag Registries (Single Network Region)

provides user-level access
to all VOBs

VOB-Tag Registry

all VOBs and views in local area network

lists all views in the
 local area network

View Object Registry
lists all VOBs in the
 local area network

VOB Object Registry

provides user-level access
to all views

View-Tag Registry

ClearCase client programs

ClearCase server programs

Network-Wide Accessibility of VOBs and Views

27

Network-Wide Accessibility of VOBs and Views

ClearCase’s network-wide storage registries make all VOBs and views
visible to all users. You can use the lsvob and lsview commands to list them
all. But typically, VOBs and views have different usage patterns:

• Most users require access to most (or all) VOBs.

• Most users need to access only a small number of views.

Accordingly, there are different schemes for activating VOBs and views on
each client host. A set of public VOBs is activated automatically by the
ClearCase startup script on a client host. By contrast, no views are activated
automatically at ClearCase startup; the user(s) on a client host must activate
their view(s) with explicit commands.

Public and Private VOBs

To provide control over which VOBs are activated automatically, each VOB
is designated as public or private when it is created. More precisely, each
VOB-tag is either public or private. Only public VOBs are activated
automatically; a private VOB becomes active only when its owner enters an
explicit mount command.

Public VOBs can be activated and deactivated (mounted and unmounted)
by any ClearCase user. The actual mounting is performed by a short-lived
server process, mntrpc_server, which runs as the root user. A password facility
controls creation of these mountable-by-anyone data structures: when a
VOB-tag is created (during execution of a mkvob or mktag -vob command),
you must enter a password to match the one stored in the VOB-tag password
file: /usr/adm/atria/rgy/vob_tag.sec on the registry server host.

Note: Be careful when making public VOBs. Each ClearCase client host will
attempt to mount all public VOBs whenever the operating system is started
(and whenever ClearCase processing is restarted with an explicit
command). ♦

28

Chapter 3: Network-Wide Access to ClearCase Data

Network Regions

Ideally, your network’s VOB and view storage directories should be
accessible at the same pathnames throughout the network. Automatic
file-system mount utilities, such as automount(1M), are intended to achieve
the ideal of uniform, global naming. Figure 3-2 shows a simple network in
which global naming has been achieved.

Figure 3-2 Network with Global Naming

Uniform, global naming may not be achievable, however. The most common
reasons are:

• Multiple network interfaces—A VOB host or view host may have two
or more interfaces to the network, each corresponding to a different
UNIX-level hostname. For example, a host might be known to some

local pathname of VOB:
/vobstore/monet.vbs

hostname:
neptune

local pathname of VOB:
/V/releases.vbstg

hostname:
saturn

global pathnames of VOBs and views:

/net/saturn/V/releases.vbstg
/net/neptune/vobstore/monet.vbs
/net/einstein/home/akp/work.vws

hostname:
einstein

local pathname of view:
/home/akp/work.vws

Network Regions

29

hosts (and their automounter programs) as neptune, and to other hosts
as neptune-gw. (The “gw” suffix is commonly used, standing for
“gateway”.) In this case, the same VOB might have two “global”
storage pathnames:

/net/neptune/public/project.vbs
/net/neptune-gw/public/project.vbs

• Multiple aliases—The standard UNIX facilities for assigning names to
hosts—file /etc/hosts or NIS map hosts—allow each host to have any
number of alternate names, or aliases. This is a possible hosts entry:

195.34.208.17 betelgeuse bg (“gratuitous” alias)

If shared storage resides on this host, ClearCase clients might be able to
access the storage using either a “/net/betelgeuse/...” pathname or a
“/net/bg/...” pathname.

• Multiple architectures—A heterogeneous network may include hosts
that support very different file systems. For example, a VOB that is
accessed as /net/neptune/vobstore/incl.vbs on a UNIX host may be
accessed as X:\vobstore\incl.vbs on a Windows/NT host.

ClearCase servers require consistent pathnames to shared storage areas. If
you cannot achieve global consistency, then you must partition your network
into a set of network regions, each of which is a consistent naming domain:

• Each ClearCase host must belong to a single network region.

• All hosts in a given network region must be able to access ClearCase
physical data storage (that is, all VOB storage directories and the
storage directories of shared views) using the same full pathnames.

• Developers access VOBs and views through their VOB-tags (mount
points) and view-tags. All hosts in a given network region use the same
tags.

30

Chapter 3: Network-Wide Access to ClearCase Data

For example, a VOB and a view might be accessed in different network
regions as follows:

Region: core_dvt
VOB storage: /net/neptune/public/vega_project.vbs
VOB-tag: /vobs/vega
View storage: /net/saturn/shared_views/int_43.vws
View-tag: int_43

Region: lib_dvt
VOB storage: /net/neptune-gw/public/project.vbs
VOB-tag: /vobs/vega
View storage: /net/saturn-gw/shared_views/int_43.vws
View-tag: int_43

Registries in a Multiple-Region Network

Conceptually, each network region has its own view-tag registry and VOB-tag
registry. Each VOB can have at most one tag in a region; views can have
multiple tags in a region. In a typical network with N regions, each VOB or
view storage directory has N tag entries.

Note: A VOB or view need not have a tag in every region. However, a VOB
or view is inaccessible for development work on hosts in any region for
which it is “tagless”. This suggests that you might use network regions as
“access domains” instead of “naming domains”. ♦

If possible, keep the tag itself constant over all the regions. For example:

This set of tags provides a single developer-visible name for the VOB
(/vobs/project), even though network file system idiosyncrasies require
several different names for the VOB’s physical storage location.

Region VOB-tag Pathname to Storage Area in Region

uno /vobs/project /net/neptune/public/vega_project.vbs

dos /vobs/project /net/neptune-gw/public/vega_project.vbs

tres /vobs/project /netstorage/vega_project.vbs

Network Regions

31

Tag Registry Implementation

All view-tag registries are actually implemented in a single file, view_tags, on
the registry server host. Each view-tag entry has a region field, which places
the entry in a particular region. Similarly, a single vob_tags file implements
all the logically distinct VOB-tag registries.

Figure 3-3 illustrates a simple two-region network, each with its own logical
set of tag registries. All hosts in a network region use the same VOB-tags and
view-tags, and access ClearCase data storage areas using the same
pathnames, provided by registry lookups.

32

Chapter 3: Network-Wide Access to ClearCase Data

Figure 3-3 Network Regions and Their Tag Registries

hostname:
saturn

hostname:
saturn-gw

hostname:
neptune

hostname:
neptune-gw

network region
uno

network region
dos

for all hosts in this
network region

View-Tag Registry

for all hosts in this
network region

VOB-Tag Registry

for all hosts in this
network region

View-Tag Registry

for all hosts in this
network region

VOB-Tag Registry

pathname to VOB storage:
/net/neptune-gw/vobstore/incl.vbs

pathname to VOB storage:

VOB-tag:
/vobs/include

VOB-tag:
/vobs/include

Recording Multiple Network Interfaces

33

Establishing Network Regions

Just after you load a ClearCase release from its distribution medium, you
run a site_prep program. This program prompts you to specify the name of a
network region. This name becomes the default region, which can be
accepted or overridden during ClearCase installation on individual hosts. A
host’s network region assignment is recorded in file
/usr/adm/atria/rgy/rgy_region.conf on that host.

There is no formal mechanism for “defining” additional network regions.
Nor is there any centralized list of region names or assignments of hosts to
regions. For procedures relating to network regions, see Chapter 18,
“Adjusting ClearCase Registry Information”.

Recording Multiple Network Interfaces

Note: This section applies to all ClearCase hosts, not just to hosts where VOB
and view storage directories reside. ♦

If a host has two or more network interfaces (two or more separate lines in
the /etc/hosts file or the hosts NIS map), it must have a file called
/usr/adm/atria/config/alternate_hostnames, which records its multiple entries.
For example, suppose that the /etc/hosts file includes these entries:

 .
 .
159.0.10.16 widget sun-005 wid
 .
159.0.16.103 widget-gte sun-105
 .

In this case, the alternate_hostnames file should contain:

widget
widget-gte

Note that only the first hostname in each hosts entry need be included in the
file. In general, the file must list each alternative hostname on a separate line.
There is no commenting facility—all lines are significant. If a host does not
have multiple network interfaces, this file should not exist at all on that host.

34

Chapter 3: Network-Wide Access to ClearCase Data

ClearCase Data and Non-ClearCase Hosts

In large development shops, some groups might adopt ClearCase before
others. There is no problem with such “incremental adoption”—a host on
which ClearCase has not yet been installed can still mount VOBs and access
their data.

• A ClearCase host must use file /etc/exports.mvfs to explicitly export a
view-extended pathname to the VOB mount point (for example,
/view/exportvu/vobs/vegaproj).

• One or more non-ClearCase hosts mount the VOB through a
view-extended pathname. For example, a host might have an entry in
its file system table that begins:

mars:/view/exportvu/vobs/vegaproj /usr/vega nfs ...

Usage Restrictions

Users on the non-ClearCase host can only read data from such VOBs—they
cannot modify the VOB in any way. Moreover, they are restricted to using
the element versions selected by the specified view. They cannot use
version-extended or view-extended pathnames to access other versions of
the VOB’s elements.

There are techniques for relaxing these restrictions in practice. A user who
also has an account on the ClearCase host can reconfigure the “mounted”
view, by performing an rlogin(1) there and modifying the view’s config spec.
The same VOB can be mounted at several locations on a non-ClearCase host,
each mount using a different view.

Building on a Non-ClearCase Host

Although users cannot modify VOBs that are mounted through a view, they
can write to view-private storage. This enables editing and building—with
a native make program or with scripts, not with clearmake. Files created by
builds in the VOB’s directories do not automatically become derived objects;
they will be view-private files, unless developers take steps to convert them
to derived objects. (For more on this topic, the CASEVision/ClearCase User’s
Guide.)

Using automount with ClearCase

35

Since clearmake does not run on the non-ClearCase host, configuration
lookup and derived object sharing are not available to the make utility or
script that performs the native build.

Using automount with ClearCase

This section discusses use of the standard UNIX automount(1M) program
with ClearCase. Implementation of the facility vary from architecture to
architecture; be sure to consult the documentation supplied by your
hardware vendor.

Use of –hosts Map Required

You can use any automount maps, including both “direct” and “indirect”
maps, to access remote disk storage where VOB storage areas reside. For
proper ClearCase operation, every ClearCase host must also use the special
“–hosts” map to provide paths to remote VOB and view storage. ClearCase
looks for symbolic links to the mount points created through the “–hosts”
map in any of these directories:

If your site uses another directory for this purpose (for example, /remote),
create a UNIX symbolic link to provide access to your directory through one
of the expected pathnames. For example:

ln -s /remote /net

Specifying a Non-Standard Mount Directory

By default, automount mounts directories under /tmp_mnt. If a ClearCase
host uses another location for a host’s automatic mounts (for example, you
use automount –M), you must specify it in file /usr/adm/atria/config/
automount_prefix. For example, if your automatic mounts take place within
directory /autom, place this line in the automount_prefix file:

/autom

/net (the automount default)

/hosts

/nfs

37

Chapter 4

4. User-Level Access to ClearCase Data

“Smooth running” with ClearCase requires careful coordination of:

• the user base: user-IDs and group-IDs

• ClearCase data repositories (VOBs)

• private and shared ClearCase workspaces (views)

This chapter discusses the architecture of the user base, along with the
UNIX-compatible access-permissions model for VOBs, views, and the file
system objects they contain. We also discuss ClearCase-specific mechanisms,
which control access to VOB databases.

(Procedural details on implementing your desired data-access strategy are
deferred to Chapter 6, “Setting Up ClearCase VOBs”.)

Users: Usernames and Groups

ClearCase relies on standard UNIX facilities for identifying users and
assigning them to groups:

• Each user has a username (“login” name) and a principal group, which
are established by an entry in the password database.

• The user can also belong to any number of additional groups; the group
list is specified by entries in the group database.

Each host has a local passwd(4) and group(4) file. Many organizations
supplement these local files with network-wide NIS maps, named passwd
and group. Figure 4-1 shows how a user named derek gets his principal group
and an additional group-list assignment.

38

Chapter 4: User-Level Access to ClearCase Data

Figure 4-1 Establishing a User’s Group Assignments

Note: On HP-UX hosts, the file /etc/logingroup establishes a user’s initial
group assignments. See group(4) for details. ♦

Since ClearCase is a distributed application, it is essential that user/group
identities be consistent across the network. For example, ClearCase will not
work properly if a developer has user-ID 453 on one host, and user-ID 309
on another host.

.

.
dvt::50:derek, ...
expermnt::60: ...
libdvt::70:derek ...
maint::80: ...
.

group database adds groups
(dvt and libdvt) to user’s group list

.

.
derek::862:60:Derek Ross:/home/derek:/bin/csh
.
.

password database establishes username
(derek) and principal group (expermnt)

Network-Wide ClearCase Administrator

39

Network-Wide ClearCase Administrator

We recommend that you create a “ClearCase administrator” identity in your
network’s user base, and that all shared ClearCase data structures—VOBs
and shared views—be owned by that user. This is not a requirement, but it
will facilitate ClearCase administration.

In the remainder of this manual, we assume that a ClearCase administrator,
vobadm, has been created. If most developers belong to a single group, make
vobadm a member of that group, too.

Note: You may be tempted to let root perform all ClearCase administrative
tasks. But many organizations prefer to have a separate identity for
application-specific administration. Moreover, root is often not the “same
user” throughout the network—one host’s root is another host’s nobody. ♦

VOBs and Views: Owner and Groups

For purposes of determining access permissions, each ClearCase VOB and
view has an owner, a principal group, and an optional group list. (Note the
similarity to the user-identification structures introduced in the preceding
section.) The multiple-group facility for these data structures supports
development environments where (1) users don’t all belong to the same
group, and (2) non-group members are prohibited from accessing data:

• Rule: For a user to have permission to read a VOB’s data, one of the
user’s groups must be the VOB’s principal group.

• Rule: To read a VOB’s data through a particular view, one of the
view_server’s groups must be the VOB’s principal group.

• Rule: For a user to have permission to modify a VOB’s data, the user’s
principal group must be (any) one of the VOB’s groups.

Figure 4-2 illustrates these access paths; the mechanics are discussed in
“Read Access by Processes” on page 51.

40

Chapter 4: User-Level Access to ClearCase Data

Figure 4-2 Multiple-Group Support for VOBs and Views

The .identity Directory

At the operating system level, each file system object has a single group, not
a list. Accordingly, a ClearCase-specific mechanism is required to implement
the group list of a VOB or view. Each VOB storage directory and view
storage directory has a .identity subdirectory. Entries in this directory
establish the group list, and also the owner and principal group (Figure 4-3).

user in user in user in

belongs to groups A, B, C

VOB

enables users in multiple groups to
create data within a single VOB

VOB membership in multiple groups

user/view

VOB

belongs to
group A

VOB

belongs to
group B

VOB

belongs to
group C

belongs to groups A, B, C

enables a user or view to access existing
data in multiple VOBs

user/view membership in multiple groups

“write” access “read” access

VOBs and Views: Owner and Groups

41

Figure 4-3 The .identity Directory of a VOB or View

Use the describe -vob command to list a VOB’s identity information.
(There is no “-view” option to the describe command; use a standard ls -l

command on the .identity subdirectory of the view storage directory.)

To modify a VOB’s identity information, use the protectvob command. You
must be the root user to use this command:

% su
Password: <enter root password>
cleartool protectvob -add_group demos,guest
/vobstore/proj.vbs

<messages and verification prompts>

VOB ownership:
 owner drp
 group dvt
Additional groups:
 group demos
 group guest

Caution: Do not try to change this information directly, using standard
UNIX commands.

Note: There is no comparable command for modifying a view’s identity
information. ♦

% id -a
uid=884(drp)gid=20(dvt)groups=20(dvt),997(demo),998(guest)

% ls -l ~myviews/derek.vws/.identity
total 0
-r----l--- 1 drp dvt 0 Dec 9 10:26 gid
-r----l--- 1 drp demos 0 Dec 9 10:26 group.997
-r----l--- 1 drp guest 0 Dec 9 10:26 group.998
-r-S------ 1 drp dvt 0 Dec 9 10:26 uid

username, principal group,
and additional group list of

VOB or view’s creator

these entries record
VOB or view’s owner
and principal group

these entries record
VOB or view’s

additional group list

42

Chapter 4: User-Level Access to ClearCase Data

Effect of Creator’s ‘umask’ Setting

A user’s current umask(1) setting affects the way in which a mkvob or mkview
command creates a new data structure. In general, a more restrictive umask
produces a VOB or view that has more limited accessibility:

• For a new VOB, the user’s umask determines the access permissions on
the VOB’s top-level directory element—its root directory. (The umask is
subtracted from mode 777, in the standard manner.) This directory is
the “gateway” to the entire VOB, and thus provides an important
access-control point. To access any file system object that appears in
that VOB (including view-private objects created in VOB directories), a
user process must have permission to traverse the VOB’s directory
element hierarchy, starting with the VOB root directory.

• For a new view, the user’s umask determines the access permissions on
the view storage directory itself, and on all directories within the view’s
private storage area. (Again, the umask is subtracted from mode 777, in
the standard manner.) To access a view-private object, a user process
must have permission to traverse the directory structure in the view’s
private storage area.

Note that access to view-private objects is subject to two kinds of
permissions checking: on the VOB’s logical hierarchy of directory elements,
and on the view’s physical hierarchy of directories within its private storage
area.

Example: Two VOBs and Two User Groups

Suppose that you wish to place two source trees libpub and monet, into
separate VOBs, to be accessed by two groups, dvt and mon, as shown in
Figure 4-4.

Example: Two VOBs and Two User Groups

43

Figure 4-4 Planning Access to Development Sources

As suggested in “Network-Wide ClearCase Administrator” on page 39,
suppose that you are the VOB administrator, belonging to both groups. (It
really doesn’t matter which of these is your principal group, and which is
established in the group database.)

vobadm:@!bork%$:555:30:VOB administrator:/:/bin/csh
(/etc/passwd or NIS passwd map entry: group 30 is dvt)

mon::35:vobadm
(/etc/group or NIS group map entry: group 35 is mon)

Creating the VOBs

The following procedure creates the VOBs and adjusts their permissions.
(For more on creating VOBs, see Chapter 6, “Setting Up ClearCase VOBs”.)

1. Prepare a physical storage location—(This is the only step that requires
root privileges. If you do not have root access, you can enlist the aid of
someone who does, for this step only.) You will create VOB storage
directories within a globally-accessible directory tree, at /vobstore on
host sol.

% su
Password: <enter root password>
mkdir /vobstore

With many UNIX variants, the disk partition mounted as the root file
system (/) is quite small, and will not accommodate ClearCase VOBs.
In such cases, create the actual directory in a large partition, and link it
to /vobstore. For example:

dvt group

libpub VOB monet VOB

read-write
access

mon group

read-write
access

read-only
access

44

Chapter 4: User-Level Access to ClearCase Data

mkdir /usr/vobstore
ln -s /usr/vobstore /vobstore
exit

2. AssumSte the appropriate user identity—Make sure that you are
logged in as user vobadm, in group dvt.

% newgrp dvt
% id
uid=555(vobadm) gid=30(dvt)

3. Create the first VOB storage directory—Be sure to use the location you
prepared in Step #1. This command creates the libpub VOB.

% cd /vobstore
% cleartool mkvob -tag /vobs/libpub -public libpub.vbs
Vob tag registry password: <enter password>
Comments for "libpub.vbs":
Sources for libpub.a library
.
Created versioned object base "libpub.vbs".
VOB ownership:
 owner vobadm
 group dvt

4. Switch your principal group—Remain user vobadm, but group mon
your principal group.

% newgrp mon
% id
uid=555(vobadm) gid=35(mon)

5. Create the second VOB storage directory—This command creates the
monet VOB.

% cleartool mkvob -tag /vobs/monet -public monet.vbs
Vob tag registry password: <enter password>
Comments for "monet.vbs":
Sources for monet project
.
Created versioned object base "monet.vbs".
VOB ownership:
 owner vobadm
 group mon

Access to Individual File System Objects

45

Controlling Access to the VOBs

You (vobadm) are the owner of both new VOBs, by virtue of having created
them. By changing groups with the newgrp command, you created VOBs
that belong to different groups. In general, all members of the dvt group will
have complete access to the libpub VOB; likewise, all members of the mon
group will have complete access to the monet VOB.

To complete implementation of the VOB-access scheme depicted in
Figure 4-4, the only necessary adjustment is dictated by the first rule in
“VOBs and Views: Owner and Groups” on page 39, all members of the mon
group must have dvt as an additional group in order to enable read access to
the libpub VOB:

dvt::30:allison,david,ralph
 (all members of the mon group
 ... get group 30 (dvt—the libpub VOB’s principal group) as an additional group
 assignment in the /etc/group file or NIS group map)

Access to Individual File System Objects

On a day-to-day basis, developers deal with individual file system objects,
rather than entire VOBs and views. In general, the standard UNIX
access-permissions model applies to ClearCase-controlled file system data.
Files, directories, and links stored in VOBs and views all have stat(2) records,
which contain the familiar user-group-other and read-write-execute
information.

Access-Control Settings

To standard UNIX operations, a VOB appears to be a directory tree,
containing directories, files, and links. Each of these file system objects has a
single owner, a single group, and an access mode. That is, its access-control
settings seems completely “ordinary” to the ls –l command:

% ls -l
total 50
-r--r--r-- 1 drp dvt 224 Feb 19 15:34 Makefile
-rwxrwxr-x 1 drp dvt 14956 Feb 19 15:34 hello
-r--r--r-- 1 drp dvt 79 Feb 19 15:34 hello.c

46

Chapter 4: User-Level Access to ClearCase Data

-r--r--r-- 1 drp dvt 168 Feb 19 15:34 hello.h
-rw-rw-r-- 1 drp dvt 1504 Feb 19 15:34 hello.o
-r--r--r-- 1 drp dvt 232 Feb 19 15:34 msg.c
-rw-rw-r-- 1 drp dvt 2168 Feb 19 15:34 msg.o
-r--r--r-- 1 drp dvt 511 Feb 19 15:33 util.c
-rw-rw-r-- 1 drp dvt 3228 Feb 19 15:34 util.o

(Depending on the UNIX variant, the -g option to the ls command either
turns off display of group memberships, or turns it on.)

What the developer sees is a combination of view-resident objects and
VOB-resident objects (the view’s virtual workspace). The distinction is
important for this discussion, because different access-control mechanisms
apply:

• Each element and all of its versions have the same access-control
settings. The protect command controls these settings, with -chown,
-chgrp, and -chmod options. The -chmod option controls the “read”
and “execute” (r and x) fields only, not the “write” (w) field—all
versions in VOB storage are always read-only to standard UNIX
commands.

You might complain that checkout creates a version that is writable, not
read-only. But the checked-out version that a user edits is not a VOB
object—it is a view-private file. All the versions in VOB storage (that is,
in the VOB’s source storage pools) remain read-only after a checkout.

• Each view-private object has a standard UNIX access-control settings.
The standard chown(1), chgrp(1), and chmod(1) commands control these
settings.

Notes on VOB/View Interactions

The mechanisms for changing access modes work intuitively. There are
some special considerations, involving situations where both a VOB and
view are involved:

• The cleartool protect -chmod command is independent of the
standard chmod(1) command. If a file is checked-out, changing the
access mode of the element does not affect the mode of the view-private
file which is the checked-out version.

Access to Individual File System Objects

47

• The cleartool protect -chmod command cannot be used on an
unshared derived object. Using this command on a shared derived
object does not affect the current view, even if that derived object
appears in the view. The standard chmod command can be used on any
derived object that appears in a view—shared or unshared.

• To create a new view-private file, directory, or link, a user must have
“write” permission in the parent directory, which is a VOB object (a
directory element).

Initialization of Access-Control Settings for VOB Objects

When a new element or VOB symbolic link is created (with mkelem, mkdir, or
ln -s), its access-control settings are initialized in the standard UNIX manner:

• The creator of the element or link becomes its owner.

• The creator’s principal group becomes the group of the element or link.
(In some UNIX variants, a new object gets the group of its parent
directory; but ClearCase always uses the creator’s group.)

• The creator’s current umask determines the access mode of the element
or link.

Initialization of Access-Control Settings for View Objects

When a view-private object is created, its access-control settings are
initialized in the same way, from the creator.

Access-Control Settings for Physical Data Storage

All of the access-control information described in the preceding section is
maintained in VOB and view databases. But ultimately, version-controlled
data is stored in storage pool directories and data container files. (See
Chapter 2, “ClearCase Data Storage”.) These are ordinary UNIX file system
objects and, as such, are subject to standard UNIX access controls.

Note: Users don’t reference these objects directly, and so should not be
concerned with their access permissions. ♦

48

Chapter 4: User-Level Access to ClearCase Data

ClearCase manages the permissions on storage pools and data containers
automatically, preventing accidental (or mischievous) deletion of VOB data:

• All storage pools and data containers are owned by the VOB owner and
belong to the VOB’s principal group. (This is also the principal group of
the VOB owner, unless it has been “given away” with a cleartool

protectvob -chgrp command.)

• All storage pools have access mode 755, allowing them to be read and
searched by anyone.

• A version’s data container has the same access mode as the version
itself (which, in turn, has the same access mode as the element). Both
the version and its data container are maintained in a read-only state.

All changes to a VOB’s physical data storage is performed by its dedicated
vob_server process, which runs as the VOB owner. As appropriate, this
process temporarily makes certain data structures writable, performs the
change, then restores the data structures to their read-only state.

How Processes Access ClearCase Data

On UNIX systems, all data access is performed by processes, which run with
certain identities:

• A ClearCase client process (cleartool, xclearcase, clearmake, and so on)
runs with the user’s UID and with all of the user’s groups—principal
group and entire group list.

• All access to ClearCase data must go through a view. That is, data is
accessed by the associated view_server process, which runs with the UID
and all the groups of the view’s owner.

Most often, users work in their own “private” views, which they have
created themselves. This simplifies the access-control issues, since the user’s
ClearCase client processes and the view_server process run under the same
identity. The effective question is:

Does the user have permission to access the VOB data?

How Processes Access ClearCase Data

49

When users work in shared views, or attempt to “peek into” other users’
views, the access-control issues become more involved. Some or all of the
following access paths are traversed when a user attempts to use ClearCase
data:

• The user’s process accesses data in view storage.

• The user’s process accesses data in VOB storage.

• The view’s view_server process accesses its view-private storage.

• The view’s view_server process accesses VOB storage.

Figure 4-5 illustrates these access paths, all of which are subject to
permissions checking. Note that the view is “in the middle”—it is both a
data repository, accessed by a user process, and a process that accesses VOB
storage.

50

Chapter 4: User-Level Access to ClearCase Data

Figure 4-5 Data Access Paths

Usually, the owner of a file or directory has no trouble accessing it. The
following sections apply in situations where access to data is to be granted
at the group level—that is, where (1) users don’t all belong to the same
group, and (2) non-group members are prohibited from accessing data.

both running with user’s
UID, GID, and group list

user and view_server processes

existing objects have
individual access modes;
creation of new objects

controlled by .identity directory

VOB

running with user’s
UID, GID, and group list

user process

file system objects have
individual access modes

view-private storage

existing objects have
individual access modes;

creation of new objects controlled by
.identity directory

VOB

Simple
Case

Not-So-Simple
Case

running with UID, GID, and group list
specified in .identity directory

view_server process

How Processes Access ClearCase Data

51

Read Access by Processes

A process gains “read by group member” access to VOB or view data if any
of the process’s groups matches the group of the data (Figure 4-6). Note that
the process (potentially) has multiple groups; the data file or directory
necessarily has a single group. In addition, there is a VOB-level restriction:
one of the process’s groups must be the VOB’s principal group.

Figure 4-6 Read’ Access through Group Membership

Write Access by Processes

ClearCase’s mechanism for determining who can modify VOB data is
finer-grained than the standard UNIX mechanism. (See “ClearCase-Level
Access Permissions” on page 52.) But there is also an overall VOB-level
restriction: in order to create a new element or VOB symbolic link, a user’s
principal group must be (any) one of the VOB’s groups. This follows from
the fact that all file system objects in the VOB must belong to one of the
VOB’s groups.

VOB
owner/principal group/group list

owner/group

owner/group

any one of process’s groups
can match the group of the

file system object

group match for individual object

any one of process’s
groups must be VOB’s

principal group

group match at VOB level

user
username/principal group/group list

52

Chapter 4: User-Level Access to ClearCase Data

Figure 4-7 ‘Write’ Access through Group Membership

There are no comparable group-level restrictions on the creation of new
view-private objects.

ClearCase-Level Access Permissions

The standard UNIX model for handling the “write” (w) permission is
insufficient for ClearCase’s needs. ClearCase relies on a more elaborate
hierarchy to determine what in a VOB can be modified, and by whom:

• the root user (superuser)

• the VOB owner (that is, the user who owns the VOB storage area. The
user who creates a VOB becomes its owner. A subsequent chown_vob
command changes the owner.)

• the owner of the corresponding element (for modifications to branches
and versions)

• the creator of a type object (for modifications to these objects)

• the creator of a particular storage pool

owner/group

new object is
assigned to principal
group of its creator

group of new object

group of new object
(user’s principal group)

must be one of VOB’s groups

group match at VOB levelVOB
owner/principal group/group list

user
username/principal group/group list

ClearCase-Level Access Permissions

53

• the user associated with a particular event

• the creator of a particular version or derived object

• members of an element’s or derived object’s group

The root user and the VOB’s owner can perform all operations that modify a
VOB. Lower levels of the hierarchy have fewer permissions, and not all
levels are relevant to every command.

Whenever you enter a cleartool command that modifies one or more VOB
objects, this permissions hierarchy is applied automatically to each object, in
a command-specific manner. For example:

• Permission to remove an element with the rmelem command is granted
to root, to the VOB owner, and to that element’s owner. No one else can
remove that element.

• Permission to checkout an element is granted to all of the same users as
in the preceding example, and also to users in the element’s group. The
command fails if anyone else tries to execute it.

See the ct_permissions manual page for details on how individual commands
fit into the permissions hierarchy.

Locks on VOB Objects

The ClearCase permissions scheme is intended for use as a long-lived
access-control mechanism. ClearCase also provides for temporary access
control, through explicit locking of individual VOB objects. You can use the
lock command to restrict or completely prohibit changes at various levels. At
the lowest level, you can lock an individual element, or even an individual
branch of an element. At the highest level, you can lock an entire VOB,
preventing all modifications to it.

When an object is locked, it cannot be modified by anyone, even by root, the
VOB owner, or the user who created the lock. (But these users have
permission to unlock the object.) The lock command accepts an optional
exception list, specifying users for whom the object will not be locked.

54

Chapter 4: User-Level Access to ClearCase Data

Locking Type Objects

As an administrator, you will often find it useful to lock type objects; this
prevents changes to the instances of those types. For example:

• You might lock the branch type main to all but a select group of users.
This would allow the select group to perform integration or
release-related cleanup work on the main branches of all elements. All
other users can continue to work, but must do so on subbranches, not
on the main branch.

• Locking the label type RLS2.3 prevents anyone from creating or moving
that label.

55

Chapter 5

5. ClearCase User Licensing Scheme

On Silicon Graphics platforms, ClearCase licensing is handled through
NetLS. Refer to Chapter 7 of the CASEVision/ClearCase Release Notes to learn
more about ClearCase licensing. Read the NetWork License System
Administration Guide to learn more about NetLS.

Floating License Architecture

ClearCase implements an “active user” floating license scheme. To use
ClearCase, a user must obtain a license, which grants the privilege to use
ClearCase commands and data on any number of hosts in the local area
network. When a user runs a ClearCase program, it attempts to obtain a
license. If it gets one, the user can keep it for an extended period: entering
any ClearCase command automatically renews it; but if the user doesn’t
enter any ClearCase command for a substantial period—by default 60
minutes—another user can take the license.

57

Chapter 6

6. Setting Up ClearCase VOBs

This chapter presents a procedure for setting up your network’s ClearCase
data repository—a set of globally-accessible VOBs. The outline of this
chapter makes a handy checklist:

• Select a host for a new VOB

• Modify operating system resources, if necessary

• Create the VOB (and, if necessary, adjust its registry and identity
information, in order to ensure global accessibility and implement
access controls)

• Synchronize the VOB with other existing VOBs

• Populate the VOB with new or existing development data

The next chapter discusses the (quite similar) procedure for setting up
ClearCase views.

Selecting a VOB Host

A host on which one or more VOB storage directories reside is termed a VOB
host. A typical network distributes its VOBs among several VOB hosts. Any
host with a ClearCase-supported hardware/software architecture can be a
VOB host; selecting an appropriate host (and making necessary adjustments
to it) is crucial to obtaining satisfactory ClearCase performance.

The most important criteria for selecting a VOB host are:

• Main memory (RAM)—The minimum recommended main memory
size is 64Mb. This is the most important factor in VOB performance;
increasing the size of a VOB host’s main memory is the easiest (and
most cost-efficient) way to make VOB access faster and/or to increase
the number of concurrent users without degrading performance.

58

Chapter 6: Setting Up ClearCase VOBs

• Disk capacity—Adequate disk storage is also very important: a VOB
database must fit in a single disk partition, and VOB databases tend to
grow significantly as development proceeds and projects mature. We
recommend a disk capacity of at least 2Gb.

• Processing power—The recommended speed for a VOB host’s
processor is 20–35 MIPS. Make the most of the CPU cycles by keeping
“private” processes—ClearCase client tools and views—off the VOB
host.

• Availability—A VOB intended for shared access must be located in a
disk partition that can be mounted by all ClearCase client hosts.
Wherever possible, select a host that can be accessed with the same
hostname by all ClearCase hosts. (A host with multiple network
interfaces presents a different name through each interface.) If a VOB
host has multiple names, you will need to create multiple network
regions, to logically partition the network.

Planning for One or More VOBs

A VOB host that meets the description in the preceding section has this (very
approximate) overall capacity:

• 2500 source file elements, each with a version tree that contains many
versions

• 750 files that are build targets; the VOB typically stores multiple
instances of each target (that is, multiple derived objects built at the
same pathname), representing various build configurations in current
use

• ability to service requests from 20 concurrent users on ClearCase client
hosts around the network

It is up to your organization to decide how to allocate data to one or more
VOBs on a VOB host. Here are the principal tradeoffs:

• Splitting data into several small VOBs greatly increases your flexibility:
it is easy to move an entire VOB to another host; it is difficult to split a
VOB into two parts and move one of them to another host.

• Typically, having multiple small VOBs makes for fewer performance
bottlenecks than having one large VOB.

Planning for One or More VOBs

59

• Having fewer VOBs facilitates data backup.

• Having fewer VOBs facilitates synchronizing label, branch, and other
definitions across all the VOBs.

In your VOB planning, keep in mind that you can make several distinct
VOBs appear to be a single directory tree, using VOB symbolic links
(Figure 6-1).

Note: Be sure that the text of a VOB symbolic link is a relative pathname, not
a full pathname: ♦

% ls -l /vobs/project/lib (wrong)
/vobs/project/lib -> /vobs/lib
% ls -l /vobs/project/lib (right)
/vobs/project/lib -> ../lib

This ensures the link will be traversed correctly in all view contexts. See the
pathnames_ccase manual page for more on this topic.

60

Chapter 6: Setting Up ClearCase VOBs

Figure 6-1 Linking Multiple VOBs Into a Single Directory Tree

Planning for Release VOBs

VOBs are not just for source files—you can also use them to store product
releases (binaries, configuration files, bitmaps, and so on). Such VOBs tend
to grow quickly; we recommend that in a multiple-architecture
environment, releases for different platforms be stored in separate VOBs.

/vobs/project

lib cmd doc

lib cmd doc

doccmd

VOB symbolic links

Directory Tree Implemented as One VOB

Directory Tree Implemented as Four VOBs

lib

VOB

VOB

VOB VOB VOB

/vobs/project

Modifying a VOB Host for ClearCase

61

Modifying a VOB Host for ClearCase

Each VOB is managed by a battery of server processes, which run on the host
where the VOB storage directory resides. These servers make significant
demands on system resources. Accordingly, you should make sure that the
system’s configuration is adequate for ClearCase’s needs.

Kernel Resources

You may need to adjust the following kernel resources on a VOB host:

• Overall process table—The operating system’s process table should
support 96 or more concurrent user processes. If more than three or
four VOBs are to reside on the host, increase the size of the process table
to at least 128.

• Overall file descriptor table—The size of the operating system’s file
descriptor table should be at least 600. If more than three or four VOBs
are to reside on the host, increase the size of the file descriptor table
further.

You may also find it beneficial to adjust a VOB hosts’ kernel resources after
ClearCase has been up and running for some time. For more on this topic,
see “Manipulate Block Buffer Caches” on page 132.

Optional Software Packages

In order to ensure correct ClearCase operation, you may need to install one
or more optional software packages available from your hardware vendor.
Consult the installation instructions in the CASEVision/ClearCase Release
Notes for more information.

62

Chapter 6: Setting Up ClearCase VOBs

Creating a New VOB

Follow these steps to plan and execute the creation of each new shared VOB:

1. Log in to the VOB host—Log in to the host you’ve selected to be the
VOB host. As discussed in “Network-Wide ClearCase Administrator”
on page 39, we suggest that you log in as vobadm (or some other
“ClearCase administrator” identity).

2. Choose a location for the VOB storage directory—Make sure that the
location is in a disk partition that has plenty of room for VOB database
growth. This partition must be visible (mounted) on all ClearCase client
hosts that will need to access the VOB. For example:

/vobstore/flex.vbs

In this example, /vobstore could be a separate disk partition mounted on
an empty subdirectory of “/”. Just make sure you know where the disk
storage is really located, and that it is globally visible.

3. Choose a VOB-tag—Each ClearCase client host mounts the VOB as a
file system of type MVFS. Unless there is a compelling reason (perhaps
you are trying to drive yourself crazy), all clients should mount the
VOB at the same pathname. For example:

/vobs/flex

The full pathname of the VOB mount point is called its VOB-tag.

Note: VOB-tags and view-tags are different in form: a VOB-tag is a full
pathname; a view-tag is a simple directory name. ♦

4. Create the VOB storage directory—Using cleartool or xclearcase, enter a
“create new VOB” command. Continuing the example from the
preceding steps, the cleartool command would be:

% cleartool mkvob -public -tag /vobs/flex
/vobstore/flex.vbs

You’ll be prompted to enter a comment, which will be stored in an
event record (create versioned object base) in the new VOB’s
database. You’ll also be prompted to enter a password, because you’re

Creating a New VOB

63

creating a public VOB. mkvob validates your entry using the contents of
the VOB-tag password file—/usr/adm/atria/rgy/vob_tag.sec on the
network’s registry server host.

Making the VOB public has two effects:

• On each client host, the command cleartool mount -all will be
invoked by the ClearCase startup script to activate this VOB (and
all other public VOBs).

• If the VOB becomes unmounted for any reason, any user (not just
root or the VOB’s creator) will be able to remount it.

After the VOB is created, mkvob reports the new VOB’s registry and
access-control information:

Host-local path: ccsvr01:/vobstore/flex.vbs
Global path: /net/ccsvr01/vobstore/flex.vbs

VOB ownership:
 owner vobadm
 group dvt
Additional groups:
 group libdvt

In many cases, you’ve now completed the VOB-creation process. The
following sections describe special cases and optional adjustments you may
wish to make to the new VOB.

Adjusting the VOB’s Identity Information

This section discusses changes that you may need to make to a new VOB’s
identity information. We discuss both the no-change-required and the
change-required situations.

There are access-control issues to be addressed if (1) the prospective users of
the VOB do not all belong to the same group, and (2) non-group members
are to be prohibited from accessing data. (This issue was discussed in “VOBs
and Views: Owner and Groups” on page 39.)

64

Chapter 6: Setting Up ClearCase VOBs

Case 1: One Group for All VOBs, Views, and Users

Small development organizations, and ones in which data security is not a
major issue, sometimes place all users in the same group (for example, dvt).
In such organizations, all ClearCase data structures should also belong to the
common group—a VOB or view belongs to the principal group of its
creator—and will be fully accessible to all users.

The example commands in Steps #1–#4 in “Creating a New VOB” on page 62
are sufficient to create a VOB in such a situation.

Case 2: Accommodating Multiple User Groups

If your organization has multiple user groups, there are several questions to
be answered when you create a new VOB:

• Who should be granted “write” access?—Determine which users will
be doing development work in the VOB, and compile a list of their
principal groups. All these groups must be added to the VOB’s group
list. (If a user group is also the VOB’s principal group, it need not be
added to the group list.)

• Should all others be granted “read” access?—If so, then the VOB’s
mode should grant others (as opposed to user and group) “read” access.
But if some users are to be restricted even from examining a VOB’s
data, then:

– Make sure that the access mode of the VOB’s root directory
(top-level directory element) grants others no access rights at all.

– Make sure that if a user is to be prohibited from accessing the VOB,
his or her list of groups does not overlap the VOB’s list of groups at
all.

Example: Multiple Groups

Let’s revisit the example in “Creating a New VOB” on page 62. The VOB
created in Step #4 is owned by vobadm, with principal group dvt, and with
libdvt as its only additional group. Suppose that the VOB will be used by ten
developers, whose principal groups include dvt, libdvt, exper, and visitor.

Creating a New VOB

65

1. Add users’ principal groups to the VOB’s group list—In this example,
the groups exper and visitor are to be added to the VOB’s group list.
Only the root user can use the protectvob command.

% su vobadm
Password: <enter password>
cleartool protectvob -add_group exper,visitor \

 /vobstore/flex.vbs
... <confirmation prompts and messages> ...
VOB ownership:
 owner vobadm
 group dvt
Additional groups:
 group libdvt
 group exper
 group visitor
exit
%

2. Remove ‘other’ access to the VOB—To prevent users who do not
belong to any of the VOB’s groups from accessing the VOB, change the
access mode of the VOB’s root directory. This requires that the VOB be
mounted, so make the change on a ClearCase client host.

% rlogin neptune -l vobadm
Password: <enter password>
% cleartool mount /vobs/flex (just in case)
% cleartool protect -chmod o-rx /vobs/flex
Changed protection on "/vobs/flex".
% ls -ld /vobs/flex
drwxrwx--- 3 vobadm 30 Jan 31 13:24 /vobs/flex

Ensuring the VOB’s Global Accessibility

The output from the mkvob command (Step #4 above) includes a “global”
(network-wide) pathname for the VOB storage directory:

Global path: /net/ccsvr01/vobstore/flex.vbs

This pathname is heuristically derived—that is, it’s an intelligent guess.
Depending on the accuracy of the guess, you may have some more work to
do in guaranteeing the VOB’s accessibility to all users on all ClearCase hosts.

66

Chapter 6: Setting Up ClearCase VOBs

Case 1: Heuristic Guess Was Right

If all ClearCase client hosts can access the VOB at the “global pathname”
reported by mkvob, you have no more work to do.

Case 2: Guess Was Wrong, But Global Pathname Does Exist

It might be the case that there is a global pathname, which all ClearCase
client hosts can use to access the VOB storage directory, but mkvob’s
heuristically-derived pathname is not the right one. The most common
reasons are:

• use of a nonstandard auto-mount program

• use of a home-grown (perhaps manual) scheme for mounting file
systems around the network

In this case, use the mktag command to correct mkvob’s guess. For example:

% cleartool mktag -replace -vob -public -tag /vobs/flex \
-host ccsvr01 \
-hpath /vobstore/flex.vbs \

(the above information must be valid on the VOB host)
-gpath /allvobs/flex.vbs \

 (valid pathname to VOB on all hosts)
/vobstore/flex.vbs

 (valid pathname on the local host)
Vob tag registry password: <enter password>
.
.

Case 3: Global Pathname Does Not Exist

It may be that there is no global pathname for the VOB storage directory. The
most common reason is that the VOB host has multiple network interfaces
(is multihomed)—some client hosts might know it as ccsvr01, while others
know it as ccsvr01-gw.

In this case, you must partition your network into multiple network regions;
in each region, the global-pathname criterion must hold true. For
background information, see “Network Regions” on page 28.

Creating a New VOB

67

Continuing the example, suppose that the VOB host is named ccsvr01 in
region “uno”, and ccsvr01-gw in region “dos”. The mkvob command (Step #4)
created the VOB-tag in one of the regions—it doesn’t matter which one,
because you should now use mktag to update/create public VOB-tags in all
network regions:

% cleartool mktag -replace -vob -public -region uno \
 -tag /vobs/flex \
 -host ccsvr01 \
 -hpath /vobstore/flex.vbs \
 -gpath /net/ccsvr01/vobstore/flex.vbs \

(valid pathname to VOB on all hosts in network region “uno”)
 /vobstore/flex.vbs

Vob tag registry password: <enter password>
.
.

% cleartool mktag -replace -vob -public -region dos \
 -tag /vobs/flex \
 -host ccsvr01-gw \
 -hpath /vobstore/flex.vbs \

(valid pathname to VOB on all hosts in network region “dos”)
-gpath /net/ccsvr01-gw/vobstore/flex.vbs \

 /vobstore/flex.vbs
Vob tag registry password: <enter password>
.
.

Note: As in Case 2, your -gpath value may need to take into account usage
of a nonstandard auto-mount program or other mounting idiosyncrasies
within each network region. ♦

For additional registry-related procedures, see Chapter 18, “Adjusting
ClearCase Registry Information”.

Creating Remote Storage Pools

Typically, you won’t add remote storage pools to a VOB until a disk-space
crisis occurs. But as you gain more experience with how ClearCase is used
by your group and how VOBs grow, you may wish to add remote storage
pools when you first create a VOB. This can help to postpone the disk-space
crisis—perhaps even eliminate it altogether.

68

Chapter 6: Setting Up ClearCase VOBs

See “Creating Additional VOB Storage Pools” on page 113 for a step-by-step
procedure.

Coordinating the New VOB with Existing VOBs

A typical project involves multiple VOBs. To ensure that they all work
together, you will probably need to coordinate the VOBs’ type objects: branch
types, label types, and so on. (See the ClearCase Concepts Manual for an
introduction to type objects.)

For example, the following config spec might be used to create a view that
selects the source files that went into an old release:

element * RELEASE_3

In order for this strategy to succeed, all relevant VOBs must define version
label RELEASE_3—that is, label type RELEASE_3 must be created in each
VOB.

There is no single command that copies type objects from one VOB to
another. You may be able to automate this process somewhat with a
script—for example, using the output of an lstype -brtype -long

command in one VOB to form a series of mkbrtype commands for use in
another VOB.

Populating a VOB with Data

The new VOB is now ready to be populated with data by the development
group. At this point, the VOB contains a single directory element, the VOB’s
root directory. When the VOB is activated, this directory appears at the
VOB-tag pathname—that is, at the VOB mount point.

Note: The root directory also contains a lost+found directory. See the mkvob
manual page for a discussion of this directory. ♦

To users, a VOB appears to be a single UNIX directory tree. Thus, it makes
sense to consider how your sources “naturally” fall into logically separate
trees, and create one VOB for each one. If two projects do not share source
files, place the sources in different VOBs. Typically, several or all projects

Populating a VOB with Data

69

share some header (.h) files. Isolate these shared sources (for example, a
/vobs/project/include directory tree) in their own VOB.

If this approach concentrates too many elements in a single VOB, it can
produce a performance bottleneck in accessing the VOB database, causing
the VOB host to become “CPU-bound”. Adding users to a project also
increases the load on the VOB databases that they access and, thus, can also
produce “CPU-bound” problems.

Example: Importing RCS Data

To illustrate migration of sources to ClearCase, we present a simple
conversion scenario: using an entire RCS source tree to populate a
newly-created ClearCase VOB. Suppose that the root of the RCS tree is
/usr/libpub, located on a host where the empty VOB has already been
activated, at /proj/libpub.

Creating the Conversion Scripts

1. Go to the source data—Change to the root directory of the existing RCS
source tree:

% cd /usr/libpub

2. Run the conversion utility—Use the RCS-to-ClearCase import utility,
clearcvt_rcs, to create the scripts that will convert RCS files (,v files) to
ClearCase elements:

% clearcvt_rcs
Converting element "./Makefile,v" ...
Extracting element history ...
.
Completed.
Converting element ...
Creating element ...
Element "./Makefile" completed.
.
.

Element "./lineseq.c" completed.
Creating script file cvt_dir/cvt_script ...

70

Chapter 6: Setting Up ClearCase VOBs

A “master conversion script” is created in subdirectory cvt_dir of the
current working directory; the script’s full pathname is
/usr/libpub/cvt_dir/cvt_script.

Running the Conversion Scripts

3. Set a view configured with the default config spec—You can use the
catcs command to determine whether your current view (if any) has the
default configuration. If not, set another view:

% cleartool setview dft

4. Go to the target VOB—Change to the root directory of the
newly-created libpub VOB—that is, the directory specified by its
VOB-tag:

% cd /proj/libpub

5. Run the conversion script—Invoke the “master conversion script” to
populate the libpub VOB:

% /usr/libpub/cvt_dir/cvt_script
Converting files from /usr/libpub to .
You are using the default config_spec
Created element "././Makefile" (type "text_file").
Changed protection on "././Makefile".

Making version of ././Makefile

Checked out "././Makefile" from version "/main/0".
Comment for all listed objects:
Checked in "././Makefile" version "/main/1".
.
.

Note that there is no need to checkout or checkin the VOB’s root
directory element—this is handled automatically. If problems occur
that cause the conversion script to terminate prematurely, you can
simply fix the problem and restart the script.

71

Chapter 7

7. Setting Up ClearCase Views

This chapter discusses setting up of views for individual users, views to be
shared by groups of users, and views through which VOBs will be made
available to non-ClearCase hosts.

Setting Up an Individual User’s View

In a typical ClearCase development environment, most views are created by
individual developers, on their individual workstations, for their personal
use. This model conforms well to ClearCase’s client-server architecture, and
takes advantage of scalability: as new users join the environment, they bring
with them the processing power and disk storage of additional
workstations. If a user’s workstation has local storage, it makes sense for the
user’s view(s) to reside within his or her home directory. Alternatively, you
can place the storage for some or all views on a central, well-backed-up file
server host.

In deciding where to place views, keep in mind these architectural
constraints:

• Each view has an associated server process, its view_server, which
executes on the host where the view’s storage directory is created.

• ClearCase must be installed on the host where a view storage directory
is created and the view_server process runs.

• If a host is to keep several views (and their several view_server
processes) active concurrently, it should be configured with extra main
memory.

72

Chapter 7: Setting Up ClearCase Views

View Storage Requirements

Each ClearCase view is implemented as a view storage directory, a directory
tree that holds a small database, along with a private storage area that
contains view-private files, checked-out versions of elements, and unshared
derived objects.

View Database

The view database is a set of UNIX files, located in subdirectory db of the
view storage directory. Typically, this database is quite small (less than 1Mb),
and presents no significant disk space problems.

View’s Private Storage Area

A view’s private storage area is implemented as a directory tree named .s in
the view storage directory. By default, .s is an actual subdirectory, so that all
data stored in the view will occupy a single disk partition.

If you anticipate that a view will need a great deal of private storage, you can
use the mkview -ln command to create .s as a symbolic link, pointing to a
location in another disk partition, perhaps on another host:

% cleartool mkview -tag david -ln /net/sirius/viewstore/1 ~/my.vws

In making this decision, consider that unshared derived objects typically
make the greatest storage demand on a view. To obtain a useful estimate of
the maximum disk space required for a view, calculate the total size of all the
binaries, libraries, and executables for the largest software system to be built
in that view. If several ports (or other variants) of a software system will be
built in the same view, it must be able to accommodate the several kinds of
binaries.

Setting Up a Shared View

73

Setting Up a Shared View

Views can be shared by multiple users. For example, a project might
designate a shared view in which all of its software components are built in
preparation for a release. The entire application might be built each night in
such a view.

An ideal shared view is located on a dedicated host that is configured
similarly to a client workstation. If no dedicated host is available, distribute
shared views around the network on the least-heavily-used (or most richly
configured) client workstations. Avoid placing too many views on any single
machine; avoid placing shared views on VOB hosts (but see the next section
for an exception).

Here is a simple procedure for setting up a shared view:

1. Determine who will be using the view—In particular, determine
whether all of the view’s prospective users belong to the same group.

2. (if necessary) Change your group—If all of the view’s prospective
users belong to the same group, make sure that you are logged in as a
member of that group. You may need to use a newgrp(1) command to
switch your group.

3. Set your umask appropriately—A view’s accessibility is determined
by the umask(1) of its creator. If the view’s users are all members of the
same group, temporarily set your umask to allow “write by group
members”:

% umask 2

Otherwise, you must set your umask to allow any user write access:

% umask 0

4. Determine a location for view storage directory—Use the discussion
in “View Storage Requirements” on page 72 to decide whether the
view’s private storage area should be local or remote.

5. Choose a view-tag—Select a name that indicates the nature of the work
that will be performed in the view. For example, you might select
integ_r1.3 as the tag for a view that will be used to produce Release 1.3
of your application.

74

Chapter 7: Setting Up ClearCase Views

6. Create the view storage directory—Enter a “create new view”
command:

% cleartool mkview -tag integ_r1.3 \
 /net/ccsvr05/viewstore/integr13.vws

Created view.
Host-local path: ccsvr05:/viewstore/integr13.vws
Global path: /net/ccsvr05/viewstore/integr13.vws
It has the following rights:
User : vobadm : rwx
Group: dvt : rwx
Other: : r-x

(See “View’s Private Storage Area” on page 72 for a command that
creates a view with a remote private storage area.)

7. Verify your work—Examine the mkview command’s output to verify
that the access permissions are in accordance with your decisions in
Steps #1–#3. In addition, examine the “host-local path” and “global
path”. You may need to make adjustments similar to those discussed in
“Ensuring the VOB’s Global Accessibility” on page 65.

8. Restore your original umask and/or group—Enter a umask command
to restore your original umask setting; or just exit the shell process.
Exiting the shell is also the easiest course to take if you’ve changed your
group setting with a newgrp command.

Setting Up an Export View for Non-ClearCase Access

A ClearCase VOB can be made available to hosts on which ClearCase is not
installed. This non-ClearCase access feature involves setting up an export view,
through which the VOB will be seen on the non-ClearCase host (Figure 7-1):

1. A ClearCase client host—one whose kernel includes the
MVFS—activates (mounts) the VOB.

2. The host starts an export view, through which the VOB will be accessed
by non-ClearCase hosts.

3. The host uses a ClearCase-specific exports file to export a
view-extended pathname to the VOB mount point—for example,
/view/exp_vu/vobs/proj.

Setting Up an Export View for Non-ClearCase Access

75

4. One or more non-ClearCase hosts in the network perform an NFS
mount of the exported pathname.

Figure 7-1 Export View for Non-ClearCase Access

The exports_ccase manual page describes the simplest (and recommended)
setup, in which the VOB and the export view are located on the same host.
The following sections discuss this issue in greater detail, including advice
on how to proceed if you don’t wish to co-locate the VOB and export view.

Exporting Multiple VOBs

If you adopt the recommendation to co-locate VOBs and their export views,
it is likely that developers working on a non-ClearCase host will access
several export views at the same time. For example, a project might involve
three VOBs located on three different hosts. Since each VOB and its export
view are located on the same host, three different export views are involved.
On the non-ClearCase host, the NFS mount entries might be:

saturn:/view/beta/vobs/proj /vobs/proj nfs rw,hard 0 0
neptune:/view/exp_vu/vobs/proj_aux /vobs/proj_aux nfs
rw,hard 0 0 pluto:/view/archive_vu/vstore/tools /vobs/tools
nfs rw,hard 0 0

non-ClearCase host

VOB

on ClearCase
client host, as

MVFS file
system

mount VOB

on non-ClearCase host,
using standard NFS facilities

mount exported pathname to VOB

ClearCase host

export view

76

Chapter 7: Setting Up ClearCase Views

The three VOBs can be accessed on the non-ClearCase host as subdirectories
of /vobs. But developers must keep in mind that three views are involved, for
such operations as checkouts. Developers need not be concerned with
multiple-view issues when building software on the non-ClearCase host.

Multihop Export Configurations

In a non-ClearCase access situation, a single data-access can involve three
hosts:

• the host on which the VOB storage directory resides

• the host on which the storage directory of the export view resides

• the non-ClearCase host

This multihop situation is not supported in pure-NFS environments, but is
made possible by MVFS-level communication between the two ClearCase
hosts. But creating a multihop configuration introduces the possibility of
“access cycles”, in which two of the hosts depend on each other for
network-related services, or such a dependency is created through
“third-party” hosts. Such situations result in timeouts (if VOBs are
soft-mounted) or deadlocks (if VOBs are hard-mounted).

A sure way to avoid access cycles is to avoid multihop configurations
altogether, as described in the exports_ccase manual page:

• Locate the storage directory of the export view on the same host as the
storage directory for the VOB.

• Make sure that neither the VOB nor view has remote data storage. That
is, the VOB should not have any remote storage pools, and the view’s
private storage area (.s directory tree) must be an actual subdirectory,
not a symbolic link to another host.

If you wish to use a multihop configuration, you must ensure that the VOB
host (and its “pool hosts”, if any) never request services from the view host.
This ensures that no process on the VOB and pool hosts creates an access
cycle with the view host. Figure 7-2 illustrates an access-layering scheme
that avoids access cycles.

Setting Up an Export View for Non-ClearCase Access

77

Figure 7-2 Avoiding Access Cycles in Non-ClearCase Access

In this scheme, higher-layer hosts always request services from lower-layer
hosts. A request for any network service (not just ClearCase services) must
never be made back to the view host, where the view_server for the export
view runs, either directly or through some other host.

You might achieve the correct layering by never allowing any users to run
processes on a host used for an export view, either directly or indirectly—no
home directories, and no remote logins (except from non-ClearCase hosts).
In addition, make sure that no over-the-network backups of the view server
hosts are per- formed on the VOB server or pool hosts.

non-ClearCase host

VOB storage
directory

export view

view host

VOB host

remote VOB
storage pools

pool host

requests
for

network

78

Chapter 7: Setting Up ClearCase Views

Restricting Exports to Particular Hosts

In a multihop situation, we recommend using an -access option in each entry
in the ClearCase exports file, /etc/exports.mvfs. This restricts the export to
specified non-ClearCase host(s) and/or netgroups. This greatly reduces the
likelihood of creating access cycles. For example:

/view/exp_vu/usr/src/proj -access=galileo:newton:bohr:pcgroup

When combining -access with other options, be sure to specify them all as a
comma-separated list off a single hyphen.

79

Chapter 8

8. Preventing Accidental Deletion of Data by
crontab Entries

This chapter describes changes made automatically during ClearCase
installation to ensure that crontab(1) scripts do not accidentally delete
ClearCase data. In addition, we describe situations in which you may need
to take measures to prevent such accidents from occurring.

Preventing Recursive Traversal of ‘/’

When the ClearCase MVFS is active on a client host, the UNIX file system is
modified so that the root directory contains itself recursively (Figure 8-1).
This makes certain “recursive” pathnames valid. For example:

/view/alpha/view/beta/view/alpha/view/gamma/usr/src/lib

This situation causes commands that traverse the entire directory tree,
starting at the UNIX root directory (/), to loop infinitely. In particular, many
UNIX systems configure the root user to have a daily crontab(1) script that
performs a “cleanup” on the file system tree. If the script uses a find /
command, it runs the risk of looping infinitely.

Note: This situation applies equally to commands and programs executed
by any user, either interactively or through a script. ♦

80

Chapter 8: Preventing Accidental Deletion of Data by crontab Entries

Figure 8-1 Viewroot Directory as a Super-Root

Crontab Modification During ClearCase Installation

The ClearCase installation script, install_release, analyzes the crontab file of
the root user on a client host. It modifies entries in this file to prevent the
recursive traversal problem (or displays a message warning that it cannot
perform the modification).

After installation, you should verify the correctness of install_release’s
changes. In addition, you should modify the crontab entries of other users,
according to the instructions in the next section.

Modifying a Crontab Entry

Use the following procedure to analyze and, if necessary, modify all of a
host’s crontab entries.

1. Analyze the crontab entries—Determine what entries will encounter
the recursion problem:
% su
Password: <enter root password>
grep "find /" /usr/spool/cron/crontabs/*
/usr/spool/cron/crontabs/root:15 3 * * * find / -name .nfs*
 -mtime +7 -exec rm -f {} \; -o -fstype nfs -prune

(typical output)

view-tag-1

/view

view-tag-2 view-tag-3

viewroot directory
(super-root)

view-tags appear in
extended namespace

as subdirectories
of the viewroot

entire file system
appears under each

UNIX root directory
occurs here /

UNIX root directory
occurs here, too

Preventing Recursive Traversal of ‘/’

81

In the example above, and throughout this section, long lines are
broken for readability. In actual crontab files, each entry must be
contained on a single physical text line.

2. Revise crontab entries—You must modify each crontab file in which an
offending entry was found. For example:

su - username (switch user identity)
crontab -l > /tmp/C (create temporary file with that user’s crontab
entries)
vi /tmp/C (modify those entries)
crontab < /tmp/C (configure the modified entries)

During the edit session, change the command containing find / by
adding the host-appropriate options indicated by boldface below:

• SunOS host—Since the viewroot directory (typically, /view) is
mounted as a file system of type mvfs, use the –prune option to
prevent recursion:

15 3 * * * find / -name .nfs* -mtime +7
 -exec rm -f {} ';' -o -fstype nfs -prune

-o -fstype mvfs -prune

• HP-UX host—No crontab entry is provided by default. The
following entry searches file systems of type hfs and cdfs only (the
viewroot directory is neither of these):

15 3 * * * find / -path /view -prune
 -o -name .nfs* -mtime +7 -exec rm -f {} \;
 -o -fstype nfs -prune

• IRIX host—Make sure that the -local option is present, to prevent
crossing of mount points. Since the viewroot directory is mounted,
this prevents recursion:

0 5 * * * find / -local -type f
 '(' -name core -o -name dead.letter ')'
 -atime +7 -mtime +7 -exec rm -f '{}' ';'

• OSF/1 host—Make sure that the -xdev option is present, to prevent
crossing of mount points. Since the viewroot directory is mounted,
this prevents recursion:

15 3 * * * find filesys-1 filesys-2 ... -xdev
 -mtime +7 -exec rm -f {} \;

82

Chapter 8: Preventing Accidental Deletion of Data by crontab Entries

Preventing Accidental Deletion of the Lock Manager Socket

When it begins execution, the lockmgr program creates a socket, /tmp/.A/almd,
through which it communicates with local and remote calling processes. To
reduce the likelihood of accidental deletion, the socket is created within a
subdirectory of /tmp, and is owned by the root user.

On each ClearCase host, you should examine the root user’s crontab file,
modifying it if necessary to ensure that the lockmgr socket is not deleted
accidentally. For example, the following find command includes a “not a
socket” clause:

find /tmp ! \(-type s \) -exec rm -f {} \;

83

Chapter 9

9. Data Backup: VOBs and Views

The most important maintenance task for a system administrator is ensuring
frequent, reliable backups of essential disk storage. Because of this task’s
preeminent importance, we devote this chapter to it. The next chapter
discusses other regular maintenance tasks.

Backup Tools

ClearCase does not include any data backup tools. All ClearCase data is
stored in standard files, within standard directory trees; thus, you can use
any backup tools at your disposal. The standard UNIX utilities tar(1) and
cpio(1) are well-suited to backing up ClearCase data structures.

Backing Up a VOB

By default, a VOB storage directory is wholly contained in a single directory
tree, which resides in a single disk partition. If you use a file-oriented backup
tool, you need only specify the VOB storage directory to ensure a complete
backup. If you use a disk-partition-oriented backup tool, you need only
specify the partition name.

Note: The commands listed in the following sections don’t require a
ClearCase view context. The commands “don’t care” whether or not a VOB
is activated (mounted) on client hosts. ♦

84

Chapter 9: Data Backup: VOBs and Views

Determining a VOB’s Location

To determine the location of a VOB’s storage directory, use lsvob:

% cleartool lsvob -long /vobs/flex
VOB on host: ccsvr01
VOB server access path: /vobstore/flex.vbs

(use this information if your backup program works locally)
.
.
 Tag: /vobs/flex
 Global path: /net/ccsvr01/vobstore/flex.vbs

.

.
 Region: uno

(use this information if your backup program runs over the network)

Specify the appropriate pathname to your backup program. With a program
that backs up entire disk partitions, you’ll need to determine what partition
the VOB storage directory resides in.

Ensuring a Consistent Backup

A backup will represent a self-consistent snapshot of a VOB storage
directory’s contents only if the VOB remains unmodified while the backup
program is working. You need not unmount a VOB to ensure this—just lock
it before backing it up, and unlock it afterward.

% cleartool lock -vob /net/ccsvr01/vobstore/flex.vbs
Locked versioned object base
"/net/ccsvr01/vobstore/flex.vbs".

<perform backup>

% cleartool unlock -vob /net/ccsvr01/vobstore/flex.vbs
Unlocked versioned object base
"/net/ccsvr01/vobstore/flex.vbs".

Backing Up a VOB

85

Partial Backups

If you use a file-oriented backup program, you may wish to back up only
some subdirectories within the VOB storage directory, in order to save time.
Use the guidelines in Table 9-1 (carefully!) to determine the relative
importance of the various components of a VOB:

Backing up derived object storage pools is not crucial because, by definition,
DOs can be rebuilt from sources. The importance of backing up these pools
may change over time:

• In the early stages of a project, when the source base in changing
rapidly, the useful life of most derived objects is very short. Omitting
DO storage pools from a backup regimen probably won’t be much
noticed by developers.

• When a project is relatively stable, a VOB’s DO storage pools contain
many often-reused objects. At this stage, a complete build of a software
system might wink-in virtually all DOs, rather than building them. Loss
of a DO storage pool might increase the time requirement for such a
complete system build by an order of magnitude.

Caution: A shared derived object has two parts: an object in the VOB
database and a data container in a DO storage pool. Loss of DO data
containers (for example, through failure to back them up) throws the VOB’s
database “out of sync” with its DO storage pools. To resynchronize, you
must delete all the “dataless” DOs from the VOB database, using rmdo.

Table 9-1 VOB Components for Partial Backups

VOB Component Importance for Backup

top-level VOB storage directory absolutely essential

VOB database subdirectory absolutely essential

source storage pools absolutely essential

derived object storage pools important, but not essential

cleartext storage pools optional

86

Chapter 9: Data Backup: VOBs and Views

Backing up cleartext storage pools is not important at all, because they are
merely caches that enhance performance. ClearCase type managers recreate
cleartext data containers automatically, as necessary.

Example of Partial VOB Backup

Suppose you decide to back up all but the cleartext storage pools of the VOB
located at /vobstore/flex.vbs. This would entail:

• Backing up the files, but not the subdirectories of /vobstore/flex.vbs.

• Backing up the entire contents of directory /vobstore/flex.vbs/.identity,
which contains the VOB’s ownership and group membership
information.

• Backing up the entire directory tree at /vobstore/flex.vbs/db, which
contains the VOB database.

• Backing up the entire directory tree at /vobstore/flex.vbs/s, which
contains the VOB’s source storage pools.

• Backing up the entire directory tree at /vobstore/flex.vbs/d, which
contains the VOB’s derived object storage pools.

Backing Up a VOB with Remote Storage Pools

If a VOB has remote storage pools, then its on-disk storage is probably not
wholly contained within a single disk partition. It is quite likely that the
storage is distributed among two or more hosts. In this situation, the overall
procedure is:

1. Lock the VOB.

2. Back up the VOB storage directory.

3. Back up some or all of the VOB’s storage pools.

4. Unlock the VOB.

Restoring a VOB from Backup

87

For Step #3, use the lspool command in any view to determine which storage
pools are remote, and their actual locations:

% cleartool lspool -vob /vobs/flex
13-Jan.16:58 vobadm pool "cdft"
 "Predefined pool used to store cleartext versions."
26-Jan.22:02 vobadm pool "cltxt01"
 "remote cleartext storage pool for 'flex' VOB"

(only remote storage pool)

13-Jan.16:58 vobadm pool "ddft"
 "Predefined pool used to store derived objects."
13-Jan.16:58 vobadm pool "sdft"
 "Predefined pool used to store versions."
% c lspool -long -vob /vobs/flex cltxt01 pool "cltxt01"

.

.
 pool storage global pathname
 "/vobstore/flex.vbs/c/cltxt01"

.

.

If you are not sure which storage pools are remote, enter a lspool –long
command to list the “pool storage global pathname” of every pool, and
examine these pathnames to determine which ones specify remote locations.

Restoring a VOB from Backup

The following procedure restores a VOB backup without disrupting ongoing
work. We assume that the VOB is the same one discussed in “Backing Up a
VOB” on page 83.

Note: You can restore a VOB to a new location, on the same host or on
another host. In this case, you must reregister the VOB at its new location
(Step #8). ♦

1. Unmount the VOB—The VOB must be unmounted on each client host.
For example:

% cleartool umount /vobs/flex

88

Chapter 9: Data Backup: VOBs and Views

2. Go to the VOB host—Log in, as the root user, to the host where the
VOB storage directory resides:

% rlogin ccsvr01 -l root
Password: <enter root password>
#

3. Check disk space availability—Make sure there is enough free space in
the VOB’s disk partition to load the backup copy:

cleartool space /vobstore/flex.vbs
 Use(Mb) %Use Directory
 27.0 2% VOB database

 /net/ccsvr01/vobstore/flex.vbs
 33.0 3% cleartext pool

 /net/ccsvr01/vobstore/flex.vbs/c/cdft
 .
 .
-------- ---- --
 312.9 28% Subtotal
 828.4 74% Filesystem /net/ccsvr01/vobstore
(capacity 1115.1 Mb)

If the available space is insufficient, delete the VOB storage directory, or
use other means to make enough space available.

4. Shut down ClearCase on this host—This ensures that ClearCase
processes associated with the VOB are terminated. For example:

/etc/rc.atria stop

Note: The name of the ClearCase shutdown script varies from system to
system. See the init_ccase manual page. ♦

5. Move the original VOB aside—If it still exists, rename the VOB storage
directory:

mv /vobstore/flex.vbs /vobstore/flex.OLD

6. Restart ClearCase on this host—This reenables use of any other VOBs
located there. For example:

/etc/rc.atria start

7. Load the backup—Restore the VOB storage directory from the backup
medium. For example:

Restoring a VOB from Backup

89

mkdir /vobstore/flex.vbs
cd /vobstore/flex.vbs
tar -xvp

Note: Each VOB storage area includes a directory named .identity, which
stores files with special permissions: the setUID bit is set on file uid; the
setGID bit is set on file gid. You must preserve these special permissions
when you restore a VOB backup:

• If you used tar(1) to back up the VOB, use tar’s -p option when
restoring the VOB. In addition, make sure to enter the tar command
as the VOB owner or as the root user.

• If you used cpio(1) to back up the VOB, no special options are
required in the cpio command that restores the backup data.

If the VOB has remote storage pools, restore the backups of these pools
at this point. ♦

8. Reregister the VOB—This is necessary only if you restored the VOB to
a new location. For example, if you restored the VOB to new location
/vobst_aux/flex.vbs:

cleartool unregister -vob /vobst_aux/flex.vbs
cleartool register -vob /vobst_aux/flex.vbs

(Yes, unregister followed by register)
cleartool mktag -vob -replace -tag /vobs/flex
/vobst_aux/flex.vbs

9. Mount the restored VOB on one host—If the VOB host is also a client
host, activate it there. Otherwise, use some other ClearCase host:

cleartool mount /vobs/flex

10. Unlock the restored VOB—The VOB should have been locked before it
was backed up. (See “Ensuring a Consistent Backup” on page 84.)

cleartool unlock -vob /vobstore/flex.vbs
Unlocked versioned object base "/vobstore/flex.vbs".

11. Mount the restored VOB on all hosts—The restored copy of the VOB is
now ready to use. Have users remount the VOB on their workstations,
using cleartool mount.

90

Chapter 9: Data Backup: VOBs and Views

Reestablishing Consistency of a View’s “Derived Object
State”

Note: This section applies in any situation where a VOB’s database has been
“rolled back” to a previous state. ♦

After you restore a VOB from backup, its VOB database may be out-of-date
with respect to certain derived objects. The “old” database won’t know
about any DOs that were created in subsequent ClearCase builds. This will
cause errors during hierarchical builds in which those “late-arriving” DOs
are reused to construct higher-level targets:

======== Rebuilding "libbld.a"========
building libbld.a
 rm -f libbld.a
 rm -f /vobs/atria/sun5/pvtlib/libbld.a
 /opt/SUNWspro/bin/cc -c -o ...
 ar cq libbld.a bld.o bld_pp.o ...

Will store derived object "/vobs/proj/sun5/libbld_V.o"
Will store derived object "/vobs/proj/sun5/libbld.a"
clearmake: Error: INTERNAL ERROR detected and logged in
"/var/adm/atria/error_log".

The error_log file shows:

Sunday 12/19/93 15:55:02. host "scandium", pid 440, user
"chase"
Internal Error detected in "../bldr_vob.c"line 114
clearmake/cm/bldr_vob:
Error: VOB "scandium:/vobs/proj"
missing config record for derived object (OID)
"0b5759d0.fb1811cc.a0af.08:00:69:02:2e:aa"

To reestablish the view’s consistency with the VOB:

1. Determine which DOs are causing the inconsistency—The cleartool ls
command annotates them with [no config record]:

% cleartool ls
bldr_comm.ugh@@09-Dec.18:26.287028
bldr_cr.msg.o [no config record]
bldr_cr.o [no config record]
bldr_cr.ugh [no config record]

Backing Up a View

91

bldr_cr_cache.msg.c@@24-May.20:51.42929
.
.

2. Remove the offending DOs—Use the standard rm(1) command:

% rm bldr_cr.msg.o bldr_cr.o bldr_cr.ugh

Backing Up a View

Backing up views is similar to backing up VOBs, but is often simpler:

• Users may create views under their home directories. In this case,
whatever backup regimen you have in place to back up users’ home
directories will automatically pick up their view storage directories, as
well.

• Views do not have multiple storage pools, some of which may be local
and others remote. A view has a single private storage area, its .s
subdirectory, which can be either local or remote.

• It never makes sense to attempt a partial backup of a view storage
directory—all the data is important, because it’s the only copy of one or
more users’ current work.

Use the following procedure to back up a view.

1. Determine the location of the view storage directory—Use the lsview
command:

% cleartool lsview akp_vu
View on host: neptune
View server access path: /home/akp/views/akp.vws

(use this information if your backup program works locally)
.
.
 Tag: akp_vu
 Global path: /net/neptune/home/akp/views/akp.vws
.
.
 Region: dvt

(use this information if your backup program runs over the network)

92

Chapter 9: Data Backup: VOBs and Views

2. Ensure self-consistency of the backup—A view cannot be locked with
the lock command. To guarantee that a view is inactive when it is
backed up:

• Warn ClearCase users that the view is about to become inactive.

• Use kill(1) to terminate the associated view_server process on the
host where the view storage directory resides.

• A user’s subsequent setview or startview command will invoke a
new view_server process. If you are not confident that user’s will
refrain from such activity, rename the view storage directory. (In
the following steps, we assume that you have not renamed it.)

3. Determine whether the view has remote storage—You can use a
standard ls(1) command:
% cd /home/akp/views/akp.vws
% ls -ld .s

... .s -> /net/ccsvr04/viewstore/akp.stg
(symbolic link indicates remote private storage area)

4. Enter the backup command(s)—If the view’s private storage area is
local, then a single command can back up the entire view storage
directory tree. Use the local address or the network-wide address listed
by lsview in Step #1:

% cd /home/akp/views
% tar -cv akp.vws

If the view’s private storage area is remote, you need to perform a
second backup (typically, using a different backup tape):

% tar -cv /net/ccsvr04/viewstore/akp.stg

5. Reactivate the view—If you renamed the view storage directory in
Step #2, restore it to its original name. Inform users that they may
resume using the view, with setview and startview commands.

Restoring a View from Backup

Use the following procedure to restore a backup view storage directory. We
assume that the view is the same one discussed in “Backing Up a View” on
page 91.

Restoring a View from Backup

93

Note: You can restore a view to a new location, on the same host or on
another host. In this case, you must reregister the view at its new location
(Step #5). ♦

1. Go to the view host—Log in to the host where the view storage
directory resides:

% rlogin neptune

2. Check disk space availability—Make sure there is enough free space in
the view’s disk partition to load the backup copy. If necessary, delete
the view storage directory, or use other means to make enough space
available.

3. Move the original view aside—If it still exists, rename or delete the
view storage directory:

mv /home/akp/views/akp.vws /home/akp/views/akp.vws.OLD

4. Load the backup—Restore the view storage directory from the backup
medium. For example:

% cd /home/akp/views
% tar -xv

If the view’s private storage area is remote, restore its backup, too.

5. Reregister the view—This is necessary only if you restored the view to
a new location. For example, if you restored the view to new location
/usr2/akp.vws:
cleartool unregister -view /usr2/akp.vws
cleartool register -view /usr2/akp.vws

(Yes, unregister followed by register)
cleartool mktag -view -replace -tag akp_vu /usr2/akp.vws

6. Reactivate the view—The restored copy of the view is now ready to
use. Use a setview or startview command to start a view_server process.
Inform the user(s) of the view that it is available again.

95

Chapter 10

10. Periodic Maintenance of the Data Repository

This chapter discusses maintenance procedures, both automatic and
manual, for ClearCase VOBs and views. Invoking these procedures
periodically controls the growth of these data structures.

VOB Storage Maintenance

VOB administration involves a continual trade-off between these goals:

• Ensuring that all important data (and meta-data) is preserved.

• Discarding data (and meta-data) that is no longer important, in order to
minimize disk-space requirements.

Figure 10-1 shows how VOB storage pools and VOB databases grow in
regular usage; it also lists the maintenance commands (“scrubbers”) that
control growth of these storage areas.

When ClearCase is installed on a host, the root user’s crontab(1) file is
modified to include a daily maintenance procedure (ccase_cron.day) and a
weekly maintenance procedure (ccase_cron.wk). These scripts, in turn, invoke
other scripts that run the scrubber programs.

96

Chapter 10: Periodic Maintenance of the Data Repository

Figure 10-1 Controlling VOB Growth

Scrubbing VOB Storage Pools

A host’s daily VOB-maintenance procedure scrubs the storage pools of all
VOBs whose storage directories reside on that host:

• Source pools are never scrubbed automatically. Source versions are too
valuable to be routinely deleted. (But see “Removing Unneeded
Versions from a VOB” on page 108.)

• Derived object pools are scrubbed to delete DO data containers that are
no longer being used by any view (those whose reference counts are
zero). This also removes the corresponding derived objects from the
VOB database.

• Cleartext pools are scrubbed to control their size. These pools are
essentially caches; scrubbing all data containers in a cleartext pool
would only affect ClearCase performance, not its correctness.

• checkin
new versions
of elements

• clearmake,
clearaudit
builds;

• view_scrubber
maintenance

• standard
commands
that access
source
versions

user commands that expand VOB storage pools

VOB
database

VOB
storage
pools

source
derived
 object cleartext

scrubber
(derived object and cleartext pools only)

maintenance commands for storage pools

user commands that expand VOB database

vob_scrubber
(removes event records)

maintenance commands for VOB database

• creating new elements, versions, links
• creating type objects
• creating derived objects in builds
• creating and attaching triggers
• merge versions
• attach meta-data annotations

VOB Storage Maintenance

97

Scrubbing of storage pools is performed by the scrubber utility. Each derived
object and cleartext storage pool has its own scrubbing parameters, which
control how scrubber processes that pool. To change the way VOB storage
pools are scrubbed on a host, you can:

• Change the invocation of the scrubber utility in script
/usr/atria/config/cron/scrubber_day.sh.

• Change the scrubbing parameters for an individual pool, using a
mkpool –update command.

See “Adjusting Storage Pool Scrubbing” on page 117 for an example of
modifying a pool’s scrubbing parameters.

Scrubbing VOB Databases

Almost every change to a VOB is recorded in the VOB database as an event
record. Some event records have permanent value, such as those for the
creation of elements and versions. Others, however, may not be useful at all
to your organization, or may lose their value as time passes. (For example,
you probably don’t care about the removal of an unneeded or obsolete
version label.)

A host’s weekly VOB-maintenance script invokes the vob_scrubber utility,
removing unwanted event records from all VOBs whose storage directories
reside on that host. Each host has its own configuration file,
/usr/atria/config/vob/vob_scrubber_params, which controls vob_scrubber
operation; for even greater control, each VOB can have its own configuration
file, with the same name. See the vob_scrubber manual page for more
information.

Database Scrubbing: Logical vs. Physical

Deletion of event records and derived objects from a VOB database by the
vob_scrubber and scrubber utilities is logical, rather than physical. That is, the
scrubbers do not reduce the size of any file in the VOB database subdirectory
(db). Instead, they increase the amount of “free space” within these files, for
use by newly-created event records and derived objects.

98

Chapter 10: Periodic Maintenance of the Data Repository

If you need to actually shrink a VOB’s on-disk storage, use the reformatvob
command, which discards all such “free space”. In general, however, we
don’t recommend routinely shrinking VOBs—it’s usually sufficient to have
maintenance procedures keep them from growing too fast.

View Storage Maintenance

Like any other isolated workspace, a view’s private storage area tends to
accumulate some “junk”: core dump files, text-editor backup files, excerpts
from mail messages and source files, and so on. These view-private files can
take up a significant amount of disk space. As administrator, encourage
users to clean up their own private views periodically; for shared views, the
cleanup task may fall to you. See “Manual Cleanup of a View” on page 127.

Users can remove derived objects from their views using standard tools,
such as the UNIX rm(1) command and make clean targets in makefiles.

From an administrator’s standpoint, limiting the growth of a view storage
directory typically involves just one issue: removing redundant derived
object (DO) data containers. When a DO is first built by clearmake or
clearaudit, its data container is placed in the private storage area of the user’s
view. The first time the DO is winked-in to another view, the data container is
merely copied, not moved, to a VOB’s derived object storage pool. (Moving it
might wreak havoc with user processes that are currently accessing the DO.)
This leaves a redundant copy of the data container in view-private storage.

Typically, you need not do anything about these redundant copies:

• In a view that is frequently used for builds, old (and potentially
redundant) DO data containers are replaced by newer ones by the
execution of build scripts.

• There can be at most one redundant copy of each DO in a view.
(Contrast this with the situation for VOBs: if the scrubber utility is never
invoked, the VOB will accumulate an ever-growing number of DOs
that are no longer used.)

Unless disk storage is extremely scarce, these factors may make it not worth
the effort to clean up redundant data containers in view-private storage.

User-Supplied Maintenance Procedures

99

Accordingly, ClearCase does not include any automated procedures for
removing them.

Scrubbing View-Private Storage

If you decide that redundant DO data containers must be removed from
some view’s private storage area, use the view_scrubber utility. You can also
use this utility to migrate the data containers of unshared (not yet winked-in)
DOs to VOB storage—that is, to make the VOB(s) “pay the storage cost”
instead of the view.

The following example shows how some DOs can be built, and then
immediately transferred to VOB storage:

% clearmake hello
<build messages>

% /usr/atria/etc/view_scrubber -p hello *.o
Promoted derived object "hello"
Scrubbed view-resident data container for "hello"
Promoted derived object "hello.o"
Scrubbed view-resident data container for "hello.o"
Promoted derived object "util.o"
Scrubbed view-resident data container for "util.o"

See the view_scrubber manual page for more information.

User-Supplied Maintenance Procedures

The daily and weekly ClearCase VOB-maintenance scripts automatically
execute “local” supplementary scripts:

• /usr/atria/config/cron/ccase_local.day is executed each day, after all
standard maintenance procedures.

• /usr/atria/config/cron/ccase_local.wk is executed once each week, after all
standard maintenance procedures.

No error occurs if either of these user-supplied files does not exist.
“Adjusting Storage Pool Scrubbing” on page 117 includes examples of
supplementary maintenance scripts.

100

Chapter 10: Periodic Maintenance of the Data Repository

Caution: ‘Local’ Scripts May Not Really be Local

Depending on how ClearCase is installed, the directory /usr/atria/config/cron
may or may not actually be local to a particular host. If two or more hosts
share the same /usr/atria/config/cron directory, you may need to have the
“local” script perform conditional processing, based on the hostname.
Alternatively, you can use a completely separate mechanism to invoke
supplementary maintenance procedures.

101

Chapter 11

11. Occasional VOB Maintenance

This chapter presents step-by-step procedures for a variety of
VOB-maintenance tasks.

Moving a VOB (Same Architecture)

This section presents a procedure for moving a VOB storage directory to
another location, either on the same host or on another host with the same
architecture. (To move a VOB to a host of a different architecture, see
“Moving a VOB (Different Architecture)” on page 104.) For clarity, we use an
example:

• The current location of the VOB storage directory to be moved is
/vobstore/libpub.vbs, on a host named sol.

• The VOB is mounted by client hosts at /proj/libpub.

• The new location for the VOB storage directory is
/src_2/vobstore/libpub.vbs. We consider two cases: (1) the new location is
also on sol; (2) the new location is on another host, named ccsvr04.

To move the VOB, follow these steps:

1. Determine whether the VOB has any nonlocal storage pools.
% cleartool lspool -long -vob /proj/libpub | \

egrep '(^pool|link)'
pool "cdft"
pool "ddft"
pool "sdft"
pool "s_2"

(remote storage pool)
pool storage link target pathname "/net/ccsvr04/ccase_pools/s_2"

(this pathname must be valid on new VOB host and on all client hosts)

102

Chapter 11: Occasional VOB Maintenance

2. Verify the validity of pathnames to nonlocal pools—Moving a VOB
storage directory does not move any of its remote storage pools. You
must make sure that the VOB’s new host will access each remote
storage pool using the same “global pathname” as the VOB’s current
host:

• If you are moving the VOB to another location on the same host, the
validity of remote storage pool global pathnames is assured.

• If you are moving the VOB to a different host, log in to that host
and verify that all the remote storage pool global pathnames are
valid on that host.

3. Deactivate the VOB—On each host where it is currently active, this
command deactivates it:

% cleartool umount /proj/libpub

4. Back up the VOB storage directory—Use the procedure in “Backing
Up a VOB” on page 83 (or in “Backing Up a VOB with Remote Storage
Pools” on page 86).

5. Lock the VOB—Do this as the root user on the host where the VOB
storage directory resides:

% rlogin sol -l root
Password: <enter root password>
cleartool lock -vob /vobstore/libpub.vbs
Locked versioned object base "/vobstore/libpub.vbs".

6. Copy the VOB storage directory—Make sure that the desired parent
directory of the target location exists and is writable. Then, copy the
entire VOB storage directory tree (but not remote storage pools) to the
new location.

• Same host:

<verify that ‘/src_2/vobstore’ already exists>

cd /vobstore
tar -cf - libpub.vbs | (cd /src_2/vobstore ; tar -xBpf -)

(-B option is not necessary (and not supported) on HP-UX systems)

(To relocate a VOB storage directory within the same disk partition,
you can use a simple mv command.)

Moving a VOB (Same Architecture)

103

• Different host:

<verify that ‘/src_2/vobstore’ already exists on remote host ‘ccsvr04’>

cd /vobstore
tar -cf - libpub.vbs | rsh ccsvr04 'cd /src_2/vobstore ;
 tar -xBpf -'

 (-B option is not necessary (and not supported) on HP-UX systems)

Note: On some systems, the “remote shell” command has another
name (for example, remsh). ♦

7. Ensure that the “old” VOB cannot be reactivated—Remove it from the
ClearCase storage registries:

cleartool rmtag -vob -all /proj/libpub
cleartool unregister -vob /vobstore/libpub.vbs

This prevents reactivation by ClearCase Release 2 client hosts. If your
network also includes client hosts running ClearCase Release 1, prevent
them from reactivating the VOB by moving aside the VOB storage
directory:

mv /vobstore/libpub.vbs /vobstore/libpub.vbs.OLD

8. Terminate the “old” VOB’s server processes—Search the process table
for the vob_server and vobrpc_server processes that manage the “old”
VOB. Use ps -ax or ps -ef, and search for “libpub.vbs”. Use kill(1) to
terminate any such processes.

9. Register the VOB at its new location—This example assumes that you
are moving a public VOB, requiring entry of a password.

cleartool register -vob /net/ccsvr04/src_2/vobstore/libpub.vbs
cleartool mktag -vob -public -tag /proj/libpub \
 /net/ccsvr04/src_2/vobstore/libpub.vbs
Vob tag registry password: <enter password>

If your network has several network regions, see “Ensuring the VOB’s
Global Accessibility” on page 65 for a discussion of adjustments and
additional registry entries you may need to make.

10. Reactivate the VOB—On all client hosts:

% cleartool mount /proj/libpub

104

Chapter 11: Occasional VOB Maintenance

11. Unlock the VOB.

rlogin ccsvr04
Password: <enter root password>
cleartool unlock -vob /src_2/vobstore/libpub.vbs
Unlocked versioned object base
"/src_2/vobstore/libpub.vbs".

12. Delete the old VOB storage directory—Be sure to first verify that the
VOB can be accessed.

rlogin sol
Password: <enter password>
rm -fr /vobstore/libpub.vbs (or ‘libpub.vbs.OLD’)

Moving a VOB (Different Architecture)

This section presents a procedure for moving a VOB storage directory to a host
with a different architecture. This includes converting the binary-format files
that implement the VOB database. (To move a VOB to a host of the same
architecture, or to another location on the same host, see “Moving a VOB
(Same Architecture)” on page 101.) For clarity, we use an example:

• The current location of the VOB storage directory to be moved is
/vobstore/libpub.vbs, on a host named sol.

• The VOB is mounted by client hosts at /proj/libpub.

• The new location for the VOB storage directory is
/src_2/vobstore/libpub.vbs on host ccsvr04, whose architecture differs
from sol’s.

To move the VOB, follow these steps:

1. Determine whether the VOB has any nonlocal storage pools.

% cleartool lspool -long -vob /proj/libpub | egrep '(^pool|link)'
pool "cdft"
pool "ddft"
pool "sdft"
pool "s_2"

(remote storage pool)
 pool storage link target pathname
"/net/ccsvr04/ccase_pools/s_2"

(this pathname must be valid on new VOB host and on all client hosts)

Moving a VOB (Different Architecture)

105

2. Verify the validity of pathnames to nonlocal pools—Moving a VOB
storage directory does not move any of its remote storage pools. You
must make sure that the VOB’s new host will access each remote
storage pool using the same “global pathname” as the VOB’s current
host:

• If you are moving the VOB to another location on the same host,
this is assured.

• If you are moving the VOB to a different host, log in to that host
and verify that all the remote storage pool global pathnames are
valid on that host.

3. Deactivate the VOB—On each host where it is currently active, this
command deactivates it:

% cleartool umount /proj/libpub

4. Back up the VOB storage directory—Use the procedure in “Backing
Up a VOB” on page 83 (or in “Backing Up a VOB with Remote Storage
Pools” on page 86).

5. Dump the VOB’s database to ASCII dump files—Do this as the root
user on the host where the VOB storage directory resides. Don’t lock
the VOB beforehand—the reformatvob command does this
automatically).

% rlogin sol -l root
Password: <enter root password>
cleartool reformatvob -dump /vobstore/libpub.vbs

<warning message>
Reformat versioned object base "/vobstore/libpub.vbs"?
[no] yes
Dumping database ...
.
.
Dumped versioned object base "/vobstore/libpub.vbs".
Done.
Checking for VOB tag registry entry...
VOB tag registry entry found for versioned object base
"/vobstore/libpub.vbs".

This command marks the VOB database as invalid. The VOB cannot be
used for development work until it is processed by a reformatvob –load
command.

106

Chapter 11: Occasional VOB Maintenance

6. Copy the VOB storage directory—First, make sure that the desired
parent directory of the target location exists and is writable. Then, copy
the entire VOB storage directory tree (but not remote storage pools) to
the new location.

<verify that ‘/src_2/vobstore’ already exists on remote host ‘ccsvr04’>

cd /vobstore
tar -cf - libpub.vbs | rsh ccsvr04 'cd /src_2/vobstore \
; tar -xBpf -'

 (-B option is not necessary (and not supported) on HP-UX systems)

Note: On some systems, the “remote shell” command has another name
(for example, remsh). ♦

7. Ensure that the “old” VOB cannot be reactivated—Remove it from the
ClearCase storage registries:

cleartool rmtag -vob -all /proj/libpub
cleartool unregister -vob /vobstore/libpub.vbs

This prevents reactivation by ClearCase Release 2 client hosts. If your
network also includes client hosts running ClearCase Release 1, prevent
them from reactivating the VOB by moving aside the VOB storage
directory:

mv /vobstore/libpub.vbs /vobstore/libpub.vbs.OLD

8. Terminate the “old” VOB’s server processes—Search the process table
for the vob_server and vobrpc_server processes that manage the “old”
VOB. Use ps -ax or ps -ef, and search for “libpub.vbs”. Use kill(1) to
terminate any such processes.

9. On the new VOB host, recreate the VOB database from the ASCII
dump files—Do this as the root user:

rlogin ccsvr04
Password: <enter root password>
cleartool reformatvob -load /src_2/vobstore/libpub.vbs \

<warning message>
Reformat versioned object base "/src_2/vobstore/libpub.vbs"?
[no] yes
cleartool: Warning: Renamed old database directory to
 "/src_2/vobstore/libpub.vbs/db.01.27".
cleartool: Warning: Please remove this database backup
 when you are satisfied with the reformat.
Loading database...

Moving a VOB (Different Architecture)

107

Dumped schema version is nn
 ...
73 pass 2 actions performed.
Done.
Checking for VOB tag registry entry...
cleartool: Warning: VOB tag entry not found for versioned
object base "/src_2/vobstore/libpub.vbs".
cleartool: Warning: Use the mktag command to create a
registry entry.

10. Create a tag for the VOB at its new location—The reformatvob
command has already created an entry in the VOB object registry; you
must create an entry in the VOB-tag registry.

cleartool mktag -vob -public -tag \
/proj/libpub/net/ccsvr04/src_2/vobstore/libpub.vbs

Vob tag registry password: <enter password>

If your network has several network regions, see “Ensuring the VOB’s
Global Accessibility” on page 65 for a discussion of adjustments and
additional registry entries you may need to make.

11. Reactivate the VOB—On all client hosts:

cleartool mount /proj/libpub

12. Delete the backup VOB database—This backup was created by
reformatvob –load in Step #5. It is a datestamped subdirectory of the VOB
storage directory. For example, it might be named
/src_2/vobstore/libpub.vbs/db.01.27 (“01.27” means “January 27”).

rm -fr /src_2/vobstore/libpub.vbs/db.01.27

13. Delete the old VOB storage directory—Be sure to first verify that the
VOB can be accessed.

rlogin sol
Password: <enter root password>
rm -fr /vobstore/libpub.vbs (or ‘libpub.vbs.OLD’)

108

Chapter 11: Occasional VOB Maintenance

Removing Unneeded Versions from a VOB

In general, you should approach the removal of source data from VOB
storage with extreme caution. Removing entire elements, using rmelem, is
particularly dangerous:

• Even if an element is no longer needed for the next release, you may
still need it to reproduce and maintain previous releases.

• rmelem expunges the element’s name from all directory versions in
which it was ever cataloged. This “erasing of history” means that the
element will not appear in listings or comparisons of old directory
versions.

• Making a mistake can be costly—there is a procedure for recovering
from backup an element that was deleted mistakenly (or in haste), but
it’s cumbersome. (See “Restoring a Single Element From Backup” on
page 110.)

If you need to remove old data in order to conserve disk space, it is far better
to remove individual versions of elements, rather than entire elements. The
rmver command makes it easy to remove versions that you probably won’t
ever need again. (Another approach is to manipulate storage pools—see
“Creating Additional VOB Storage Pools” on page 113.)

By default, rmver removes only “uninteresting” versions:

• versions that are unrelated to branching: not located at a branch point,
and not the first or last version on a branch

• versions that have no meta-data annotations: version labels, attributes,
or hyperlinks

The ClearCase examples directory includes a script that safely removes all
“uninteresting” versions of a specified element. This script is located in
/usr/atria/examples/rmver_all. It is particularly useful for deleting
automatically-created derived object versions that are no longer needed.
(Many organizations check in derived objects regularly, as part of an
automated “nightly build” process.)

Removing Unneeded Versions from a VOB

109

Example

The following commands illustrate the “before” and “after” of version
removal with the rmver_all script.

% cleartool lsvtree -all ct+register.1
ct+register.1@@/main
ct+register.1@@/main/0
ct+register.1@@/main/1
ct+register.1@@/main/2 (V2.BL2.1, V1.1.4.BL3, V2.BL2)
ct+register.1@@/main/3 (RGYWORK_BASE)
ct+register.1@@/main/rgywork
ct+register.1@@/main/rgywork/0
ct+register.1@@/main/rgywork/1
ct+register.1@@/main/rgywork/2
ct+register.1@@/main/rgywork/3
ct+register.1@@/main/4
ct+register.1@@/main/5 (V2.BL3)
ct+register.1@@/main/6
ct+register.1@@/main/7
ct+register.1@@/main/8
ct+register.1@@/main/9 (V2.BL4_PRINT, V2.BL4)

% /usr/atria/examples/rmver_all/rmver_all ct+register.1
Removed these versions of "ct+register.1":
 /main/rgywork/1
 /main/rgywork/2
 /main/1
 /main/4
 /main/6
 /main/7
 /main/8

% cleartool lsvtree -all ct+register.1
ct+register.1@@/main
ct+register.1@@/main/0
ct+register.1@@/main/2 (V2.BL2.1, V1.1.4.BL3, V2.BL2)
ct+register.1@@/main/3 (RGYWORK_BASE)
ct+register.1@@/main/rgywork
ct+register.1@@/main/rgywork/0
ct+register.1@@/main/rgywork/3
ct+register.1@@/main/5 (V2.BL3)
ct+register.1@@/main/9 (V2.BL4_PRINT, V2.BL4)

110

Chapter 11: Occasional VOB Maintenance

Restoring a Single Element From Backup

If you mistakenly delete an element with rmelem, you can restore it from a
backup tape, using the procedure presented in this section.

Note: Mistakenly removing a directory element does not remove the file
elements cataloged within it—file elements exist independently of directory
elements. In many cases, deleting a directory element causes the files within
it to be transferred to the VOB’s lost+found directory. ♦

The overall procedure for restoring an element is:

• Unmount the VOB whose element has been deleted.

• Restore the “old” VOB storage directory from the backup medium to a
temporary location on disk.

• Mount the “old” VOB.

• Create a new temporary VOB and mount it.

• Use clearcvt_ccase to “copy” the element from the old VOB to the
temporary VOB.

• Unmount the old VOB.

• Remount the real VOB.

• Use clearcvt_ccase to “copy” the element from the temporary VOB to the
real VOB.

• Delete the “old” VOB and the temporary VOB.

As an example, suppose that file element util.c has inadvertently been
deleted from directory /vobs/proj/src. The VOB-tag is /vobs/proj, and the VOB
storage directory is /vobstore/proj.vbs on the local host. Here’s how a VOB’s
owner can restore the element from a backup tape.

1. Unmount the VOB whose element has been deleted—This is
essential, because two copies of the same VOB must never be active at
the same time.

% cleartool umount /vobs/proj

Restoring a Single Element From Backup

111

2. Remove the VOB’s storage registry entries—These entries would
prevent use of an old version of the same VOB.

% cleartool rmtag -vob /vobs/proj
% cleartool unregister -vob /vobstore/proj.vbs

3. Terminate the VOB’s server processes—Search the process table for
the ClearCase vob_server and vobrpc_server processes that manage that
VOB. Use ps -ax or ps -ef, and search for “/vobstore/proj.vbs”; use
kill(1) to terminate any such processes. (Only the root user can kill a
vobrpc_server process.)

4. Restore the “old” VOB storage directory—Suppose that the backup
tape was created with tar. Restore the “old” VOB to a temporary
location, not to its original location.

% cd /usr/tmp
% tar -xf /dev/tape

This restores the VOB storage directory tree as /usr/tmp/proj.vbs.

5. Register and mount the “old” VOB—As in the preceding step, use a
temporary mount point, not the original mount point.

% cleartool register -vob /usr/tmp/proj.vbs
% cleartool mktag -vob -tag /tmp/oldvob /usr/tmp/proj.vbs
% mkdir /tmp/oldvob
% cleartool mount /tmp/oldvob

6. Create a new temporary VOB and mount it—Be sure not to give this
VOB a public VOB-tag.

% cleartool mkvob -nc -tag /tmp/newtmpvob /usr/tmp/newtmpvob.vbs
Created versioned object base.
.
.

% mkdir /tmp/newtmpvob
% cleartool mount /tmp/newtmpvob

7. “Copy” the element: old VOB to temporary VOB—Use the
clearcvt_ccase program to make a complete copy of the element.

(Create conversion script in “old” VOB)
% cleartool setview dfl

(set a view configured with the default config spec)
% cd /tmp/oldvob/src
% clearcvt_ccase util.c
Converting element "util.c" ...

112

Chapter 11: Occasional VOB Maintenance

Extracting element history ...
.
.

Creating script file cvt_dir/cvt_script ...
(Create conversion script in temporary VOB)

% cd /tmp/newtmpvob
% /tmp/oldvob/src/cvt_dir/cvt_script
Converting files from /tmp/oldvob/src to .
.
.

Checked in "./util.c" version "/main/3".
Checked in "./." version "/main/2".

8. Unmount and unregister the old VOB—This corresponds to the work
done in Steps #1 and #2.

% cd /
% cleartool umount /tmp/oldvob
% cleartool rmtag -vob /tmp/oldvob
% cleartool unregister -vob /usr/tmp/proj.vbs

9. Terminate the old VOB’s server processes—This is similar to Step #3.
This time, search the process table for a vob_server and/or vobrpc_server
invoked with “/usr/tmp/proj.vbs”.

10. Reregister and remount the real VOB—This time, make a public
VOB-tag.

% cleartool register -vob /vobstore/proj.vbs
% cleartool mktag -vob -public -tag /vobs/proj /vobstore/proj.vbs
Vob tag registry password: <enter password>
% cleartool mount /vobs/proj

11. “Copy” the element: temporary VOB to original VOB—Use the
clearcvt_ccase program to make a complete copy of the element.

(Create conversion script in “old” VOB)
% cd /tmp/newtmpvob
% clearcvt_ccase util.c
Converting element "util.c" ...
Extracting element history ...
.
.

Creating script file cvt_dir/cvt_script ...
(Create conversion script in temporary VOB)

% cd /vobs/proj/src
% /tmp/newtmpvob/cvt_dir/cvt_script

Creating Additional VOB Storage Pools

113

Converting files from /tmp/newtmpvob to .
.
.

Checked in "./util.c" version "/main/3".
Checked in "./." version "/main/5".

12. Unmount the temporary VOB—This corresponds to the work done in
Step #6.

% cd /
% cleartool umount /tmp/newtmpvob

13. Delete the temporary VOB—Use rmvob, which automatically removes
the VOB’s registry entries and terminates all of its server processes.

% cleartool rmvob /usr/tmp/newtmpvob.vbs
Remove versioned object base "/usr/tmp/newtmpvob.vbs"
[no] yes
Removed versioned object base "/usr/tmp/newtmpvob.vbs".

Creating Additional VOB Storage Pools

If a VOB is threatening to fill up its disk partition, you may want to rework
the VOB’s storage pools. The VOB database (db subdirectory) must be
physically located within the VOB storage directory, but any or all of its
storage pools can be remote. In the extreme case, you might “abandon” the
VOB’s default storage pools, and transfer all of the VOB’s file system data to
other disk partitions and/or remote hosts.

The host on which you create a new storage pool need not have ClearCase
installed. It can have any hardware/software architecture, but the pool must
be NFS-accessible at the same pathname from all ClearCase hosts (for
example, /net/ccsvr02/ccase_pools/do_3). See “Default, Local, and Remote
Storage Pools” on page 15 for additional information.

Note: The ClearCase network region facility does not apply here. The
pathname of a remote storage pool must be truly “global”. ♦

When deciding which host(s) to use for new storage pools, consider that
usage patterns vary with the kind of storage pool:

• Source pools—These pools store the most precious data: the checked-in
versions of file elements. Traffic involving these pools is relatively light,

114

Chapter 11: Occasional VOB Maintenance

but data integrity is very important. (See “Caution on Remote Source
Pools” below.) The ideal location for such pools is a robust file server,
with a large capacity and frequent, reliable data backups.

• Cleartext pools—These pools will probably get the heaviest traffic
(assuming that many of your file elements are stored in delta and/or
compressed format). But the data in cleartext pools is completely
expendable, since ClearCase can reconstruct it at any time. The ideal
location for such pools is a machine with a fast file system.

• Derived object pools—These pools can grow to be quite large,
depending on the number of active configurations (three new
development projects, two old releases in maintenance, and so on).
Anticipate the storage requirements in the new pool for each active
configuration; make sure the disk partition can handle the total storage
requirement.

The principal tools for working with storage pools are:

lspool List a VOB’s existing storage pools.

describe List an element’s storage pool assignments. You must use
the extended naming symbol (@@) when specifying the
element:

% cleartool describe getcwd.c (wrong)
% cleartool describe getcwd.c@@ (right)

mkpool Create a new storage pool. Use the -ln option to create a
remote storage pool.

chpool Reassign a file or directory element to another storage pool.
(A directory element itself is stored entirely within the VOB
database; a directory’s pool assignments control which
pools will be used by new file elements and derived objects
created within the directory.)

Caution on Remote Source Pools

We recommend that you keep source storage pools local, within the VOB
storage directory. This strategy optimizes data integrity—a single disk
partition will contain all of the VOB’s essential data. It will also simplify
backup/restore procedures. This concern typically overrides performance
considerations, since losing a source pool means that developers must
recreate the lost versions.

Creating Additional VOB Storage Pools

115

Example: Assigning All Files in a Directory to a New Pool

The following example shows how to create a new, remote source storage
pool, and then reassign all the current and future elements in a particular
directory to the new pool.

1. Create the new storage pool—Be careful to specify a global pathname
for the remote pool.

% cd /vobs/bgr
% cleartool mkpool -source -ln \
/net/ccsvr02/ccase_pools/bgrsrc2 bgrsrc2

Comments for "bgrsrc2":
remote source storage pool
.
Created pool "bgrsrc2".

2. Reassign existing file elements to the new pool—In this example, we
reassign all the file elements in a particular development subdirectory.

% cd libbgr
% cleartool find . -type f -exec 'cleartool chpool -force\
bgrsrc2 $CLEARCASE_PN'

Changed pool for "./Makefile" to "bgrsrc2".
Changed pool for "./errmsg.c" to "bgrsrc2".
Changed pool for "./fork3.c" to "bgrsrc2".
Changed pool for "./get.c" to "bgrsrc2".
Changed pool for "./getcwd.c" to "bgrsrc2".
.
.

Changed pool for "./stint.h" to "bgrsrc2".
Changed pool for "./strut.c" to "bgrsrc2".

3. Reassign the directory element to the new pool, too—This will cause
all newly-created file (and directory) elements in this directory to use
the new pool, also.

% cleartool chpool bgrsrc2 .
Changed pool for "." to "bgrsrc2".

116

Chapter 11: Occasional VOB Maintenance

Example: Moving an Existing Storage Pool to Another
Disk

There is no built-in command for moving an existing storage pool.
ClearCase routines perform standard UNIX operations to access storage
pools and the data containers within them. Thus, you can move a storage
pool in this way:

1. Determine the location of the storage pool—Use the lspool command:

% cleartool lspool -long -vob /vobs/bgr d_aux \
pool "d_aux"

 .
 .
 pool storage global pathname
 "/net/ccsvr01/vobstore/bgr.vbs/d/d_aux"

2. Lock the VOB—This will prevent any new shared DOs from being
placed in the storage pool while you are working on it:

% cleartool lock -vob /vobs/bgr
Locked versioned object base
"/net/ccsvr01/vobstore/bgr.vbs".

3. Copy the contents of the storage pool—The storage pool is a standard
UNIX directory. You can copy its contents to a new location using cp,
rcp, tar, or other commands. For example:

% rlogin ccsvr01
% mkdir -p /vobstore_2/DO_pools
% cp -r /vobstore/bgr.vbs/d/d_aux /vobstore_2/DO_pools

4. Replace the old storage pool with a symbolic link—Move the old
storage pool aside, then create the link in its place.

% cd /vobstore/bgr.vbs/d
% mv d_aux d_aux.MOVED
% ln -s /net/ccsvr01/vobstore_2/DO_pools/d_aux d_aux

Be sure the text of the symbolic link is a globally-valid pathname to the
new storage pool location.

5. Unlock the VOB.

% cleartool unlock -vob /vobs/bgr
Unlocked versioned object base
"/net/ccsvr01/vobstore/bgr.vbs".

Adjusting Storage Pool Scrubbing

117

6. Remove the old storage pool—When you have verified that the storage
pool is working well in its new location, you can remove the old pool:

% rm -fr /vobstore/bgr.vbs/d/d_aux.MOVED

Adjusting Storage Pool Scrubbing

Chapter 10 discusses the standard maintenance procedures established for
each host when ClearCase is installed there. There are two typical
motivations for adjusting a VOB host’s default procedures for storage pool
scrubbing:

• Not enough space—The disk partitions in which VOB storage pools
reside may be chronically filling up. This would indicate adoption of a
more aggressive scrubbing strategy.

• Not enough time—The scrubber utility may be taking too much time to
complete, interfering with other overnight activities, such as nightly
software builds. This would indicate adoption of a less aggressive
scrubbing strategy.

You may find it necessary to do some experimentation. For example,
adjusting scrubbing to take place less frequently may cause disk-space
problems that you had not previously experienced. Before making any
scrubbing adjustments on a VOB host, be sure to analyze its
/usr/adm/atria/log/scrubber_log file. The scrubber manual page explains how to
read this file.

The following sections present some simple examples of adjusting the way
VOB storage pools are scrubbed.

Scrubbing Derived Objects More Often

By default, scrubber allows data containers of zero-referenced derived objects
to remain in their storage pools for 4 days (96 hours). If DOs are filling up a
VOB’s disk partition, you might shorten this “grace period”. Here’s a
command that causes a VOB’s default DO storage pool (ddft) to be emptied
of unneeded data containers every day (that is, every 24 hours):

% cleartool mkpool -update -vob VOB-tag -age 24 ddft
Updated pool "ddft".

118

Chapter 11: Occasional VOB Maintenance

Fine-Tuning Derived Object Scrubbing

Suppose that the adjustment in the preceding section is not enough to keep
the disk partition from filling up. You might decide to invoke the scrubber
utility more often: during the work day as well as overnight. To minimize the
impact on users during the work day, you might pinpoint the
scrubbing—perhaps to the DOs created in a particular directory,
/vobs/proj/reorg:

1. Determine the directory’s current DO storage pool assignment—You
will need to clean up this storage pool.

% cd /vobs/proj
% cleartool describe -long reorg@@
directory element "reorg@@":
 .
 .
 ... derived pool: ddft

 (this directory uses the VOB’s default DO storage pool)

2. Assign the directory to a separate storage pool—This will enable
pinpoint control of scrubbing, which can be invoked on a per-pool
basis:

% cd /vobs/proj
% cleartool mkpool -derived new_do_pool
Comments for "new_do_pool":
pool for DOs created in /vobs/proj/reorg
.
Created pool "new_do_pool".
% cleartool chpool new_do_pool reorg
Changed pool for "reorg" to "new_do_pool".

3. Determine the location of the VOB storage directory—You’ll need the
pathname of the VOB’s storage directory for scrubber. Use lsvob to
determine the pathname:

% cleartool lsvob /vobs/proj
* /vobs/proj /net/ccsvr03/vobstore/proj.vbs

4. Have the new storage pool scrubbed thoroughly and often—There are
many ways to accomplish this. You might take advantage of the fact the
default maintenance procedure invokes a script named
/usr/atria/config/cron/ccase_local.day once a day (as part of the 4:30 am
regimen). You can create or modify this script to set up several at(1)
jobs:

Adjusting Storage Pool Scrubbing

119

% su
Password: <enter root password>
vi /usr/atria/config/cron/ccase_local.day

<add these lines:>

CMD="/usr/atria/etc/scrubber -e -p new_do_pool \
 /net/ccsvr03/vobstore/proj.vbs"
echo $CMD | at 10:00
echo $CMD | at 13:00
echo $CMD | at 15:00
echo $CMD | at 18:00

<save the file and end the edit session>

exit
%

The scrubber utility will be invoked four times during the work day on
the derived object storage pool new_do_pool. The -e option to scrubber
empties the pool of all zero-referenced DOs.

5. Clean up the old DO storage pool—The chpool command in Step #2
does not move existing DO data containers; it only affects where a new
DO’s data container will be stored. Accordingly, you should clean up
the old storage pool:

% /usr/atria/etc/scrubber -e -p ddft \
 /net/ccsvr03/vobstore/proj.vbs

Caution: Depending on how ClearCase is installed, the directory
/usr/atria/config/cron may or may not actually be local to a particular host. If
two or more hosts share the same /usr/atria/config/cron directory, you may
need to have the “local” script perform conditional processing, based on the
hostname. Alternatively, you can use a completely separate mechanism to
invoke supplementary maintenance procedures.

120

Chapter 11: Occasional VOB Maintenance

Scrubbing Less Aggressively

If the 4:30 am scrubbing regimen takes too long (perhaps spilling over into
the work day). you might make the starting time earlier. Alternatively, you
might change the way that scrubber is invoked, so that it takes less time to
run. Both these alternatives involve a change to /usr/atria/config/cron; hence,
the “Caution” paragraph above applies in this situation, too. Here’s how you
might revise scrubbing to process DO pools only, leaving cleartext pools
alone:

% su
Password: <enter root password>
vi /usr/atria/config/cron/

revise this line ...

$ATRIA_DIR/etc/scrubber -f -a

... to read:

$ATRIA_DIR/etc/scrubber -f -a -k do

121

Chapter 12

12. Occasional View Maintenance

This chapter presents step-by-step procedures for a variety of
view-maintenance tasks.

Moving a View (Same Architecture)

This section presents a procedure for moving a view storage directory to
another location, either on the same host or on another host with the same
architecture. (To move a view to a host of a different architecture, see
“Moving a View (Different Architecture)” on page 123.) For clarity, we use
an example:

• The current location of the view storage directory to be moved is
/users/gomez/viewstore/gomez.vws, on a host named earth.

• The new location for the view storage directory is /public/gomez.vws. We
consider two cases: (1) the new location is also on earth; (2) the new
location is on another host, named ccsvr04.

To move the view, follow these steps:

1. Go to the view’s host—Log in as the view’s owner:

% rlogin earth -l gomez

2. Determine whether the view has a nonlocal private storage area.

% ls -ld /users/gomez/viewstore/gomez.vws/.s /
... .s -> /public/view_aux/gomez
(a symbolic link indicates that the private storage area is remote)

3. Deactivate the view—Use the ps(1) command to determine the
process-ID of the view’s view_server process. Then, use the kill(1)
command to terminate that process.

122

Chapter 12: Occasional View Maintenance

4. (if necessary) Validate the private storage area’s global
pathname—This step is required only if the view’s private storage area
is remote, and you are moving the view to another host. You must verify
that the view’s new host can access the private storage area using the
same “global pathname” as the view’s current host:

% rlogin ccsvr04
% ls /public/view_aux/gomez
.
. (this command should succeed)
.

% exit

If the intended destination host cannot access the view’s private storage
area in this way, select and validate another host.

5. Back up the view storage directory—Use the procedure in “Backing
Up a View” on page 91.

6. Copy the view storage directory—First, make sure that the desired
parent directory of the target location exists and is writable. Then, copy
the entire view storage directory tree (but not a remote private storage
area) to the new location.

• Same host:

<verify that ‘/public’ already exists>

% cd /users/gomez/viewstore
% tar -cf - gomez.vws | (cd /public ; tar -xBpf -)

(-B option is not necessary (and not supported on HP-UX systems)

• Different host:

<verify that ‘/public’ already exists on remote host ‘ccsvr04’>

% cd /users/gomez/viewstore
% tar -cf - gomez.vws | rsh ccsvr04 'cd /public; \

tar -xBpf -'
(-B option is not necessary (and not supported on HP-UX systems)

Note: On some systems, the “remote shell” command has another
name (for example, remsh). ♦

Moving a View (Different Architecture)

123

7. Ensure that the “old” view cannot be reactivated—Remove it from the
ClearCase storage registries:

cleartool rmtag -view -all gomez
cleartool unregister -view /users/gomez/viewstore/gomez.vws

This prevents reactivation by ClearCase Release 2 client hosts. If your
network also includes client hosts running ClearCase Release 1, prevent
them from reactivating the view by moving aside the view storage
directory:

% cd /users/gomez/viewstore
% mv gomez.vws gomez.vws.OLD

8. Register the view at its new location.

% cleartool register -view /public/gomez.vws
% cleartool mktag -view -tag gomez /public/gomez.vws

If your network has several network regions, you need to make
additional registry entries. This procedure is essentially similar to the
one in “Ensuring the VOB’s Global Accessibility” on page 65.

9. Reactivate the view.

% cleartool startview gomez

10. Delete the old view storage directory—Be sure to first verify that the
view can be accessed at its new location.

% rm -fr /users/gomez/viewstore/gomez.vws

Note: Moving a view does not modify the .view file in the view storage
directory. The information in this file always describes the view “first
incarnation”. ♦

Moving a View (Different Architecture)

This section presents a procedure for moving a view storage directory to a host
with a different architecture. This includes converting the binary-format files
that implement the view database. (To move a view to a host of the same
architecture, or to another location on the same host, see “Moving a View
(Same Architecture)” on page 121.) For clarity, we use an example:

• The current location of the view storage directory to be moved is
/users/gomez/viewstore/gomez.vws, on a host named earth.

124

Chapter 12: Occasional View Maintenance

• The new location for the view storage directory is /public/gomez.vws on
host ccsvr04, whose architecture differs from earth’s.

To move the view, follow these steps:

1. Go to the view’s host—Log in as the view’s owner:

% rlogin earth -l gomez

2. Determine whether the view has a nonlocal private storage area.

% ls -ld /users/gomez/viewstore/gomez.vws/.s
... .s -> /public/view_aux/gomez

(a symbolic link indicates that the private storage area is remote)

3. Deactivate the view—Use the ps(1) command to determine the
process-ID of the view’s view_server process. Then, use the kill(1)
command to terminate that process.

4. (if necessary) Validate the private storage area’s global
pathname—This step is required only if the view’s private storage area
is remote, and you are moving the view to another host. You must verify
that the view’s new host can access the private storage area using the
same “global pathname” as the view’s current host:

% rlogin ccsvr04
% ls /public/view_aux/gomez
.
. (this command should succeed)
.

% exit

If the intended destination host cannot access the view’s private storage
area in this way, select and validate another host.

5. Back up the view storage directory—Use the procedure in “Backing
Up a View” on page 91.

6. Dump the view’s database to ASCII dump files.

% cleartool reformatview -dump /users/gomez/viewstore/gomez.vws

This creates files view_db.dump_file and view_db.state in the view storage
directory. It also renames the view database subdirectory to db.dumped.

Moving a View (Different Architecture)

125

7. Copy the view storage directory—First, make sure that the desired
parent directory of the target location exists and is writable. Then, copy
the entire view storage directory tree (but not a remote private storage
area) to the new location.

Note: On some systems, the “remote shell” command has another name
(for example, remsh). ♦

<verify that ‘/public’ already exists on remote host ‘ccsvr04’>

% cd /users/gomez/viewstore
% tar -cf - gomez.vws | rsh ccsvr04 'cd /public; tar -xBpf -'

(-B option is not necessary (and not supported on HP-UX systems)

8. Ensure that the “old” view cannot be reactivated—Remove it from the
ClearCase storage registries:

cleartool rmtag -view -all gomez
cleartool unregister -view /users/gomez/viewstore/gomez.vws

This prevents reactivation by ClearCase Release 2 client hosts. If your
network also includes client hosts running ClearCase Release 1, prevent
them from reactivating the view by moving aside the view storage
directory:

% cd /users/gomez/viewstore
% mv gomez.vws gomez.vws.OLD

9. On the new host, recreate the view database from the ASCII dump
files.

% rlogin ccsvr04
% cleartool reformatview -load /public/gomez.vws

10. Register the view at its new location.

% cleartool register -view /public/gomez.vws
% cleartool mktag -view -tag gomez /public/gomez.vws

If your network has several network regions, you need to make
additional registry entries. This procedure is essentially similar to the
one in “Ensuring the VOB’s Global Accessibility” on page 65.

11. Reactivate the view.

% cleartool startview gomez

126

Chapter 12: Occasional View Maintenance

12. Delete the backup view database—This backup, named db.dumped,
was created by reformatview –load in Step #6.

% rm -fr /public/gomez.vws/db.dumped

13. Delete the old view storage directory—Be sure to first verify that the
view can be accessed at its new location.

% rm -fr /net/sol/users/gomez/viewstore/gomez.vws

Note: Moving a view does not modify the .view file in the view storage
directory. The information in this file always describes the view “first
incarnation”. ♦

Moving a View’s Private Storage Area

Use the following procedure to move a view’s private storage area to
another location. For clarity, we use an example involving view storage
directory /users/gomez/viewstore/gomez.vws, on host earth. The procedure
works both when the private storage area is local (.s is an actual subdirectory
of the view storage directory) and when it is remote (.s is a UNIX-level
symbolic link to a remote location).

1. Go to the view’s host—Log in as the view’s owner:

% rlogin earth -l gomez

2. Deactivate the view—Use the ps(1) command to determine the
process-ID of the view’s view_server process. Then, use the kill(1)
command to terminate that process.

3. Go to the private storage area—The private storage area is standard
UNIX directory tree, with .s as its root.

% cd /users/gomez/viewstore/gomez.vws/.s

4. Copy the entire directory tree—You can copy the directory tree to a
new location using cp, rcp, tar, or other commands. For example:

% mkdir -p /public/view_aux/gomez.priv
% cp -r * /public/view_aux/gomez.priv

Be sure to select a new location that is globally accessible.

Manual Cleanup of a View

127

5. Replace the old .s directory with a symbolic link—It doesn’t matter
whether the existing .s is an actual subdirectory or a symbolic link. Just
move it aside and create a (new) symbolic link in its place:

% cd ..
% mv .s .s.MOVED
% ln -s /public/view_aux/gomez.priv .s

6. Reactivate the view—Use startview or setview.

7. Remove the private storage area—When you have verified that the
private storage pool is working well in its new location, you can
remove the old one:

• If old private storage area .s.MOVED is an actual directory:

% rm -fr /users/gomez/viewstore/gomez.vws/.s.MOVED

• If old private storage area .s.MOVED is a UNIX symbolic link:

% cd /users/gomez/viewstore/gomez.vws/.s.MOVED
% rm -fr *
% cd ..
% rmdir .s.MOVED

Manual Cleanup of a View

Use the following procedure to remove unwanted files from a view’s private
storage area. (You may wish to adapt this procedure to your own
organization’s needs, and then publicize it to all ClearCase users.)

Suppose the view’s view-tag is R2integ.

1. Set the view.

% cleartool setview R2integ

2. Take inventory of the view’s private files with lsprivate—The lsprivate
command lists view-private files using the pathnames at which they
appear in VOBs:

% cleartool lsprivate | tee /tmp/R2integ.lsp
/vobs/proj/sun4/pick.o
/vobs/proj/sun4/spar.o
/vobs/proj/lib/get.c [checkedout]
/vobs/proj/lib/get.c~

128

Chapter 12: Occasional View Maintenance

/vobs/proj/lib/querytty.c [checkedout]
/vobs/proj/lib/querytty.c~
/vobs/proj/lib/strut.c [checkedout]
.
.

Be sure to place the output in a scratch “inventory” file, as in this
example. Don’t worry if some not available - deleted perhaps?
error messages appear. Such messages are sent to stderr; corresponding
information is also written to stdout, and thus will be captured in the
scratch file.

3. Extract the names of unneeded files—Use a text editor, the grep utility,
or any other tool to extract from the scratch file the names of files that
can safely be deleted. Write this list to another file—for example,
/tmp/R2integ.deleteme. Likely candidates include:

• text-editor temporary files and backup files (foo.c~, #foo.c#,
foo.c.backup, and so on)

• output files produced by text formatters (foo.ps, foo.dvi, and so on)

• core dump files

Be sure to exclude from the to-be-deleted list any checked-out files. Such
files are annotated with [checkedout] in the lsprivate output, as shown
above.

4. Double-check the list—Make sure it contains only files to be deleted.

5. Delete the view-private files—Use the shell’s “command substitution”
feature to delete the files in the extracted list:

% rm ‘cat /tmp/R2integ.deleteme‘

Note: The following steps are appropriate only if not available -
deleted perhaps? error messages appeared in Step #2 above. ♦

6. Decide which stranded files should be deleted—The error messages,
and corresponding lines with VOB– and/or DIR– in the inventory file,
describe stranded view-private files. Such files belong to VOBs and/or
directories that are not currently accessible—and, in some cases, may
never become accessible again. Consult the lsprivate manual page to
learn more about stranded files, and to decide which files should be
deleted. In general, you don’t select individual files, but entire
directories or entire VOBs, all of whose view-privates files are to be
deleted.

Manual Cleanup of a View

129

7. Collect the appropriate UUIDs—Determine the UUID of each VOB
directory and each VOB whose files are to be deleted. For example, the
following lines from lsprivate output describes a stranded file named
hello.c.ann:

<VOB-beeb313c.0e8e11cd.ad8e.08:00:69:06:af:65>/
<DIR-375b5ca0.0e9511cd.ae20.08:00:69:06:af:65>/hello.c.ann

(Here, we’ve split the line for readability—it is not split in lsprivate’s
output.) The VOB from which the file is stranded has UUID
beeb313c.0e8e11cd.ad8e.08:00:69:06:af:65; the VOB directory in
which the stranded file was created has UUID
375b5ca0.0e9511cd.ae20.08:00:69:06:af:65.

8. Move stranded files to the view’s lost+found directory—To remove a
set of stranded files, first transfer them to the view’s special lost+found
directory, using the recoverview command. For example, this command
transfers all stranded view-private files created in the same directory as
hello.c.ann:

% cleartool recoverview -dir
375b5ca0.0e9511cd.ae20.08:00:69:06:af:65 -tag R2integ
Moved file
/net/ccsvr03/vus/integ/.s/lost+found/57FBB6DF.0418.util.c.ann
Moved file
/net/ccsvr03/vus/integ/.s/lost+found/2203B56D.00C2.hello.c.ann

In this example, recoverview transfers just two files, util.c.ann and
hello.c.ann, to the lost+found directory.

9. Delete the files from the lost+found directory—You can now use a
standard rm(1) command to delete the stranded files:

% cd /net/ccsvr03/vus/integ/.s/lost+found
% rm 57FBB6DF.0418.util.c.ann
% rm 2203B56D.00C2.hello.c.ann

131

Chapter 13

13. ClearCase Performance Tuning

This chapter presents techniques for improving ClearCase performance.
There are techniques for addressing performance issues at the host level, at
the VOB level, and at the view level.

Improving VOB Host Performance

Your organization’s VOBs constitute a central data repository. Good VOB
host performance ensures that the centralized resource does not become a
bottleneck.

Although a VOB appears to be a version-smart file server, its
implementation involves significant database access and computation. VOB
usage patterns can greatly influence how many concurrent users will
experience good ClearCase performance. For example, many more users can
read header files from a VOB directory at a level of good performance than
can produce derived objects in a similar directory.

Eliminate Extraneous Processes

The most effective measures for ensuring good performance from VOB hosts
are also the easiest to implement (technically, if not organizationally):

• Keep non-ClearCase processes off the VOB host—Don’t have the
VOB host also serve as a server host for another application (for
example, a DBMS), or at the system-level (for example, as an NIS
server).

• Keep ClearCase client processes off the VOB host—Make sure that no
one is performing clearmake builds on any VOB host. Similarly, make
sure no one is using other client tools: cleartool, xclearcase, xcleardiff, and
so on.

132

Chapter 13: ClearCase Performance Tuning

• Keep view_server processes off the VOB host—This recommendation
may be harder to implement; many organizations create shared views
on the same hosts as VOBs. If possible, minimize this double-usage of
VOB hosts.

Exception: For reliable non-ClearCase access (avoiding “multihop”
network access paths), place the VOB and the view through which it is
exported on the same host. For more information, see “Setting Up an
Export View for Non-ClearCase Access” on page 74 and the
exports_ccase manual page.

Manipulate Block Buffer Caches

All the UNIX-based operating systems supported by ClearCase have a
dynamic block buffer cache feature. As much main memory as possible is used
to cache blocks of data files that have been updated by user processes.
Periodically, the contents of the block buffer cache is flushed to disk.

This feature speeds up disk I/O significantly; making full use of it is a very
important factor in good VOB host performance. An inadequate block buffer
cache causes thrashing of VOB database files—the files in the db
subdirectories of VOB storage directories). The result is a significant
performance degradation, evidenced by:

• extended periods required for scrubber and vob_scrubber execution

• very slow clearmake builds

• ClearCase clients getting RPC timeouts

We recommend that the size of a VOB host’s block buffer cache average
about 200% of the size of the host’s largest VOB database file; the minimum
acceptable size is about 50%. You cannot directly control the size of the block
buffer cache; its size increases automatically when you add more main
memory to the host.

If there is a substantial amount on non-ClearCase activity and/or ClearCase
client activity on the host, you will need even more main memory to assure
good VOB database performance.

Improving Client Host Performance

133

Block Buffer Cache Statistics

The standard UNIX System V sar(1M) utility reports block buffer cache
activity. For example, this command reports activity over a 5-minute period,
with a cumulative sample taken every 60 seconds:

% sar -b 60 5
12:14:22 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
12:15:22 0 1 100 1 1 0 0 0
12:16:23 1 1 -60 2 2 0 0 0
12:17:24 0 4 100 4 17 77 0 0
12:18:25 0 6 100 3 145 98 0 0
12:19:25 17 91 81 28 335 92 0 0

12:19:25 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
Average 4 21 83 8 100 92 0 0

(cache-reads should be in the 90%–95% range)
(cache-writes should be 75% or above)

Some UNIX variants provide special tools for monitoring buffer cache
performance. For example, IRIX has osview; HP-UX has glance.

Flushing of the Block Buffer Cache

Interactive performance suffers considerably when the block buffer cache is
flushed to disk. Most UNIX variants provide no user-level control over the
frequency of flushing; HP-UX does, through the syncer(1M) utility. The
larger the block buffer cache, the less frequently it should be flushed.

Improving Client Host Performance

Performance of a ClearCase client host can be adjusted at the client program
level, at the view_server, and/or at the MVFS level.

Increasing System Resources

Client workstations supporting a single user should have a minimum of
10–15 MIPS processing power, 16Mb of main memory, and 300Mb of disk
storage. An additional 8–16Mb of main memory will further improve
performance. Extra memory is especially recommended for users who run
memory-intensive applications in the ClearCase environment, make

134

Chapter 13: ClearCase Performance Tuning

extensive use of graphical user interfaces, or want their client workstations
to serve double-duty as hosts for parallel distributed building.

Creating Remote Storage Pools

The ClearCase default is to store all of a VOB’s file system data in the default
storage pools created by mkvob. These pools are located within the VOB
storage directory. If a VOB host become I/O-bound, it is probably due to
high storage pool traffic, caused by either “too many users” or “too many
files”.

You can supplement (or replace) the default pools with remote storage pools,
which effectively enable a VOB to outgrow its storage directory’s disk
partition. Remote pools need not be located on ClearCase hosts; they need
only be accessible through NFS.

In some situations, remote storage pools can improve performance, as well:

• If a particular view is being used heavily (perhaps by a group
performing integration work), build performance may improve if the
cleartext and derived object storage pools involved in the builds are
located on the same host as the view storage directory.

• Faster access to any storage pool may be achieved if it is located on a
server host with a very fast file system.

Caution on Remote Source Pools

We recommend that you keep source pools local, within the VOB storage
directory. This strategy optimizes data integrity—a single disk partition will
contain all of the VOB’s essential data. It will also simplify backup/restore
procedures. This concern typically overrides performance considerations,
since losing a source pool means that developers must recreate the lost
versions.

If source pool access produces a significant processor or I/O bottleneck, you
might temporarily move some elements into source pools on different hosts.

See “Creating Additional VOB Storage Pools” on page 113 for a step-by-step
procedure.

Improving Client Host Performance

135

Changing the MVFS Configuration (SunOS Only)

This section describes procedures for reconfiguring the ClearCase
multiversion file system (MVFS) on hosts running SunOS 4 or SunOS 5
(Solaris). By default, the MVFS is dynamically loaded at system startup with
the following configuration:

• MVFS-internal identifiers (mnodes) cached for up to 4096 MVFS objects

• up to 900 unused mnode numbers cached

• UNIX-internal identifiers (vnodes) cached for up to 100-400 cleartext
files, depending on the system-wide maximum number of users
(MAXUSERS kernel configuration parameter)

• up to 1400 names of MVFS objects cached

You may wish to change the MVFS cache sizes to improve performance if
your host performs builds that involve a large number of files, as indicated
in Table 13-1.

Note: Enlarging the MVFS caches reduces the amount of memory available
to UNIX applications. If you use the “largeinit” MVFS configuration, you
should also reconfigure each view that is used to access ClearCase data on
that host, increasing its view_server cache size to 1Mb. See “Reconfiguring a
View” on page 140. ♦

To change the MVFS cache sizes, perform one of the changes described
below.

Table 13-1 Selecting the Default or Alternative MVFS Cache Configuration

Main
Memory

Files Used in
Typical Build

Recommended
MAXUSERS Value

Recommended MVFS
Cache Configuration

16Mb any 16 default

24Mb any 32 default

32Mb < 400 32 default

> 400 48 “largeinit” alternative

136

Chapter 13: ClearCase Performance Tuning

Selecting Alternative Cache Size Defaults—SunOS 4 Only

This technique is mutually exclusive with the technique for modifying the
virtual file system table, which is described in the ClearCase Notebook. Exactly
one of the modload commands in the ClearCase startup script must be
enabled; all others must be commented out.

You can revise the ClearCase startup script, /etc/rc.atria, to configure larger
default sizes for the MVFS caches:

• MVFS-internal identifiers (mnodes) cached for up to 4096 MVFS objects

• Up to 1800 unused mnode numbers cached

• UNIX-internal identifiers (vnodes) cached for up to 200-1000 cleartext
files, depending on the system-wide maximum number of users
(MAXUSERS kernel configuration parameter)

• Up to 2800 names of MVFS objects cached

The larger caches add about 500Kb to the size of kernel (unpageable)
memory, but provides better performance when the “working set” of objects
in a build or command exceeds the default cache allocations.

Use the following procedure to configure the larger default caches:

1. Shut down ClearCase.

/etc/rc.atria stop

2. Revise the cache configuration—In the “customer-editable section”,
uncomment the CONFIG 2 entry, and make sure that all other entries
are commented out.

CONFIG 2: Configure larger caches for MVFS file system
#
 ENTRY="-entry _xxxlargeinit"
#
CONFIG 3 (DEFAULT): Use 'TFS' slot if no available VFS switch
entry
#
TFS must not be used by any application on your host
#
 ENTRY=""

Improving Client Host Performance

137

3. Restart ClearCase.

/etc/rc.atria start

Compiling New Cache Sizes into the MVFS

You can customize cache sizes on SunOS 4 hosts or SunOS 5 hosts by
recompiling the MVFS module that modload incorporates into the UNIX
kernel.

Table 13-2 lists the cache parameters, with default values and suggested
“larger-than-default” values. But before proceeding, be sure you will avoid
the following pitfalls:

• An mvfs_cvpfreemax value that exceeds the recommended maximum
may cause inode table overflow errors (reported on the system console)
and/or system hangs.

• The mvfs_mnmax value must exceed the mvfs_vobfreemax value. We
recommend that the value be about twice as large.

• Larger MAXUSERS values cause increased operating system memory
utilization.

Table 13-2 Cache Parameters for MVFS module: ‘mvfs.o’

MVFS Cache
Parameter

Description Default Value Suggested
Increased Value

mvfs_mnmax
system wide
maximum number of
mnodes

4096 4096

mvfs_vobfreemax
maximum number of
objects to cache
(400 bytes/object)

900 1800

138

Chapter 13: ClearCase Performance Tuning

SunOS 4 Cache Override Procedure

Use this procedure to customize cache sizes on hosts running SunOS 4.

1. Gather your tools—Make sure that the standard UNIX programs
make(1), cc(1), and ld(1) are available on your host.

2. Become the root user.

% su
Password: <enter root password>

3. Shut down ClearCase.

/etc/rc.atria stop

4. Edit the MVFS configuration file—Edit file
/usr/atria/sun4–4.n/kvm/mvfs_param.c.

mvfs_cvpfreemax

maximum number of
cleartext files to cache

MAXUSERS Max # MAX-
USERS

Max #

16 100 16 250

32 200 32 500

48 300 48 750

64 400 64 1000

larger values:
linear scaleup

larger values:
linear scaleup

mvfs_dncdirmax
directory names to
cache (100
bytes/entry)

200 400

mvfs_dncregmax
regular file names to
cache (100
bytes/entry)

800 1600

mvfs_dncnoentmax
names that produce
ENOENT returns
(100 bytes/entry)

400 800

Table 13-2 (continued) Cache Parameters for MVFS module: ‘mvfs.o’

MVFS Cache
Parameter

Description Default Value Suggested
Increased Value

Improving Client Host Performance

139

5. Revise cache configuration parameters—Change one or more of the
MVFS cache parameters listed in Table 13-2. (Other parameters in
mvfs_param.c generally have no effect on ClearCase performance.)

For example, this code implements the “larger-than-default” values in
the table:

int mvfs_mnmax = 4096;
int mvfs_vobfreemax = 1800;
int mvfs_cvpfreemax = 300;
int mvfs_dncdirmax = 400;
int mvfs_dncregmax = 1600;
int mvfs_dncnoentmax = 800;

6. Save the MVFS configuration file. Save the file and exit the text editor.

7. Rebuild the mvfs.o file.

cd /usr/atria/sun4-4.n/kvm
make -f config.mk
/etc/rc.atria start

8. Restart ClearCase.

/etc/rc.atria start

SunOS 5 Cache Override Procedure

Use this procedure to customize cache sizes on hosts running SunOS 5:

1. Become the root user.

% su
Password: <enter root password>

2. Shut down ClearCase.

/etc/init.d/atria stop

3. Edit file /etc/system—You can make the change in either, but not both,
of the following ways:

• Add this line:

set mvfs:mvfs_largeinit = 1

• For one or more of the MVFS cache parameters listed in Table 13-2
in “Cache Parameters for MVFS module: ‘mvfs.o’” on page 137,
create an entry of the form:

set mvfs:parameter = value

140

Chapter 13: ClearCase Performance Tuning

For example, you might establish the following parameter settings
to increase cache sizes:

set mvfs:mvfs_mnmax=4096
set mvfs:mvfs_vobfreemax=1800
set mvfs:mvfs_cvpfreemax=300
set mvfs:mvfs_dncdirmax=400
set mvfs:mvfs_dncregmax=1600
set mvfs:mvfs_dncnoentmax=800

4. Save the /etc/system file.

5. Restart the operating system—Use reboot(1M) or any other standard
means to restart the operating system.

Reconfiguring a View

To speed its performance, the view_server process associated with a view
maintains a cache. The default size is 204800 bytes (200Kb). You can
configure a larger cache size, in order to boost performance. This is
particularly useful for views in which very large software systems are built
by clearmake.

Follow these steps to reconfigure a view_server’s cache:

1. Add or revise a ‘-cache’ line in the view’s configuration file—This is
file .view in the view storage directory. For example:

-cache 1048576

2. Kill the view_server process—On the host where the view storage
directory resides, search the process table for a view_server that was
invoked with the pathname of the view storage directory. For example:

% cleartool lsview akp
* akp /net/neon//home/hui/views/akp.vws
% ps -ax | grep 'view_server.*akp.vws'
5011 ... view_server /net/neon/home/akp/views/akp.vws
% kill 5011

3. Restart the view_server process—Use a startview or setview command:

% cleartool startview akp

141

Chapter 14

14. Making a VOB or View Inaccessible

This chapter presents procedures for rendering a VOB or view temporarily
inaccessible to all client processes. ClearCase’s central storage registry makes
this easy.

Alternative to VOB Deactivation

In some situations, you may not need to make the data totally inaccessible.
For example, if you merely wish to prevent a VOB from being modified, you
can lock it with having to take it “off-line”:

% cleartool lock -vob pathname

To lock an entire VOB, you must be either root or the VOB owner. The
pathname you specify can be either the VOB storage directory or the VOB-tag
(mount point), or any pathname under the VOB-tag. In the latter case, you
must enter the command in a view context.

Taking a VOB Out of Service

Suppose that the VOB to be taken out of service has storage directory
/net/sol/vobstore/libpub.vbs, and has VOB-tag /proj/libpub. Follow these steps to
make the VOB inaccessible:

1. Have all clients deactivate the VOB—On each client, this command
unmounts the VOB:

% cleartool umount /proj/libpub

(ClearCase Release 1 client hosts must use the system-level umount(1M)
command.)

142

Chapter 14: Making a VOB or View Inaccessible

2. Remove the VOB from the object registry—This will prevent anyone
from reactivating the VOB:

% cleartool unregister -vob /net/sol/vobstore/libpub.vbs

3. (optional) Remove the VOB from the tag registry—If you leave the
VOB-tag for this VOB in the tags registry, attempts to mount the VOB
will produce an unattractive message:

% cleartool mount /proj/libpub
cleartool: Error: An error occurred mounting.
Refer to the log file
"/usr/adm/atria/log/mntrpc_server_log"
for more information on the warning or failure.

This message may be tolerable—even desirable. But if you would
prefer a less verbose message, remove the VOB-tag:

% cleartool rmtag -all -vob /proj/libpub
% cleartool mount /proj/libpub
cleartool: Error: /proj/libpub is not a registered vob tag.

(The -all option ensures correctness in a network with multiple
regions—the VOB-tag is removed from all the logically-distinct tags
registries.)

4. If the VOB has ClearCase Release 1 clients, rename the VOB storage
directory—Release 1 clients do not use the object registry to determine
the location of the VOB storage directory. Step #2 does not “hide” the
VOB from such clients, so you must move its storage directory aside.
For example:

% rlogin sol -l root
Password: <enter password>
% mv /vobstore/libpub.vbs /vobstore/libpub.vbs.NOACCESS
% exit

5. Terminate the VOB’s server processes—Search the process table of the
VOB host for the ClearCase vob_server and vobrpc_server processes that
manage that VOB. Use ps -ax or ps -ef, and search for
“/vobstore/libpub.vbs”; use kill(1) to terminate any such processes.
(Only the root user can kill a vobrpc_server process.)

Taking a VOB Out of Service

143

Restoring the VOB to Service

When the VOB is to be restored to service, follow these steps:

1. (if necessary) Rename the VOB storage directory—If you moved the
VOB storage directory aside in Step #4 above, move it back:

% rlogin sol -l root
Password: <enter password>
% mv /vobstore/libpub.vbs.NOACCESS /vobstore/libpub.vbs
% exit

2. Restore the VOB to the object registry.

% cleartool register -vob /net/sol/vobstore/libpub.vbs

3. (if necessary) Restore the VOB to the tag registry—This is necessary
only if you removed the VOB-tag in Step #3 above:

% cleartool mktag -vob -tag /proj/libpub \
 /net/sol/vobstore/libpub.vbs

(Repeat, as necessary, for other network regions.)

4. Have clients reactivate the VOB—On each client host, this command
mounts the VOB:

% cleartool mount /proj/libpub

(ClearCase Release 1 client hosts must use the system-level mount(1M)
command.)

144

Chapter 14: Making a VOB or View Inaccessible

Taking a View Out of Service

The procedure for taking a view out of service temporarily is essentially
equivalent to the VOB procedure described in “Taking a VOB Out of
Service” on page 141. The salient differences are:

• There is no specific “unmount” command for views. In particular, there
is no command that removes a view-tag from a client hosts’ viewroot
directory.

• The only view-related server process to be terminated is the view_server,
which runs on the host where the view storage directory resides.

Restoring the View to Service

The procedure for restoring a view to service is essentially similar to that
described in “Restoring the VOB to Service” on page 143.

Permanent Removal of a VOB or View

Use the rmvob command to remove a VOB permanently; use rmview to
remove a view permanently. These command automatically remove all
relevant entries from the ClearCase storage registry.

145

Chapter 15

15. Determining a Data Container’s Location

This chapter demonstrates how to determine the actual storage locations of
MVFS files—those accessed through VOB directories. Both standard UNIX
tools and the ClearCase mvfsstorage utility are used.

Scenario

Let’s focus on three files within VOB directory /proj/monet/src, as seen
through view allison_vu:

• Element cmd.c has element type text_file, and is currently checked-out.

• Element monet.icon has element type file, and is not currently
checked-out.

• File ralph_msg is a view-private file, created by saving an electronic mail
message to disk.

Determining the ClearCase Status of Files

The describe command verifies that the three files are as described above:

% cleartool describe cmd.c monet.icon ralph_msg
version "cmd.c@@/main/CHECKEDOUT" from /main/6 (reserved)
 checked out 03-Feb-93.20:40:30 by (allison.mon@phobos)
 by view: "phobos:/usr/people/arb/view_store/arb.vws"
 element type: text_file

version "monet.icon@@/main/1"
 created 03-Feb-93.20:17:04 by (allison.mon@phobos)
 element type: file

View private file "ralph_msg"
 Modified: Wednesday 02/03/93 21:39:49

146

Chapter 15: Determining a Data Container’s Location

Determining the Full UNIX Pathnames of Files

The standard ls(1) and pwd(1) commands show the full pathnames of the
files, from UNIX’s point of view:

% ls -l ‘pwd‘/cmd.cex
-rw-rw-r-- 1 allison mon 211 Feb 2 12:03
/proj/monet/src/cmd.c

% ls -l ‘pwd‘/monet.icon
-r--r--r-- 1 allison mon 266 Feb 3 20:17
/proj/monet/src/monet.icon

% ls -l ‘pwd‘/ralph_msg
-rw-rw-r-- 1 allison mon 852 Feb 3 20:40
/proj/monet/src/ralph_msg

Where is the VOB?

The UNIX ls command provides no clue as to where the VOB is mounted. It
might be mounted at /proj, or at /proj/monet, or at /proj/monet/src. The describe
command provides the answer:

% cleartool describe -vob /proj/monet/src
versioned object base "/proj/monet"
 created 01-Feb-93.17:35:03 by (vobadm.vobadm@sol)
 VOB storage remote host:path
 "sol:/usr/vobstore/monet.vbs"
 VOB storage local pathname "/net/sol/vobstore/monet.vbs"
 VOB ownership:
 owner vobadm
 group vobadm

This command shows that the VOB is mounted at /proj/monet. In addition, it
shows the local pathname to the VOB storage area. This looks like an
automount(1M) pathname:

/net/sol/ vobstore/monet.vbs
(storage area (pathname of VOB storage
is located on area on host sol)
host sol)

Where is the View?

147

To make sure, another mount command verifies the location of the VOB
storage area:

% /etc/mount | grep vobstore
 .
 .
sol:/usr/vobstore on /tmp_mnt/net/sol/vobstore type nfs ...

This command shows explicitly that the VOB storage area is located with
directory /usr/vobstore on host sol.

Where is the View?

The pwv (“print working view”) and lstag (“list view-tag”) commands show
the location of the view storage area:

% cleartool pwv
Working directory view: allison_vu
Set view: allison_vu

% cleartool lstag allison_vu
* allison_vu /net/phobos/usr/people/arb/view_store/arb.vws

As in the preceding section, you might need to use another mount command
to identify the host on which the view storage area resides (“which host
contains directory /net/phobos”?).

Where are the Individual Files?

The data containers for all MVFS files are logically stored within a VOB or view
storage area, as shown in Table 15-1.

Table 15-1 Storage Locations of MVFS Files

Kind of File Storage Location

version (checked-in)
VOB source storage pool
(and perhaps VOB cleartext storage pool, also)

checked-out version view-private data storage

148

Chapter 15: Determining a Data Container’s Location

The following sections show how the mvfsstorage utility indicates the exact
storage location of an MVFS file. This utility is located in directory
/usr/atria/etc, a directory that is not typically on your search path. Thus, you
may need to invoke mvfsstorage using a full pathname, as in the examples
below.

Locating a Checked-Out Version

mvfsstorage shows the location in view-private data storage of the
checked-out version of text_file element cmd.c:

% /usr/atria/etc/mvfsstorage cmd.c
/net/phobos/usr/people/arb/view_store/arb.vws/.s/
80000002.VOB/8000000B.00B0.cmd.c

Locating a Checked-In Version’s Cleartext Container

For a checked-in version of a text_file element, mvfsstorage shows the location
of the cleartext data container into which the type manager extracts the
version:

% /usr/atria/etc/mvfsstorage cmd.c@@/main/1
/net/sol/vobstore/monet.vbs/c/cdft/28/32/
8a1a9a50010e11cca2ca080069021822

% /usr/atria/etc/mvfsstorage cmd.c@@/main/2
/net/sol/vobstore/monet.vbs/c/cdft/3a/33/
8e4a9a54010e11cca2ca080069021822

unshared derived object view-private data storage

shared derived object VOB derived object storage pool

view-private file view-private data storage

Table 15-1 (continued) Storage Locations of MVFS Files

Kind of File Storage Location

Where are the Individual Files?

149

Locating a Checked-In Version’s Source Container

For a checked-in version of a file element, mvfsstorage shows the location of
the data container in the source pool:

% /usr/atria/etc/mvfsstorage monet.icon
/net/sol/vobstore/monet.vbs/s/sdft/26/4/
474fa2f4021e11cca42f0800690605d8

ClearCase does not maintain cleartext versions of file elements, or any other
element type for which the cleartext of a version is stored in its source pool
data container. Instead, programs access the data container in the source
pool directly.

Locating a View-Private File

Like a checked-out version, a view-private file is located in a view’s private
data storage:

% /usr/atria/etc/mvfsstorage ralph_msg
/usr/people/arb/view_store/arb.vws/.s/
80000002.VOB/8000000C.00BD.ralph_msg

Non-Local Storage

The mvfsstorage utility shows the logical location of data containers within
VOB and view storage directories. But VOB storage pools can be located
outside the VOB storage directory itself; likewise, a view’s private storage
area can be located outside the view storage directory.

If mvfsstorage indicates that a data container is in a non-default VOB storage
pool, use the lspool command to determine the location of the pool. The
default pools are sdft (default source pool), cdft (default cleartext pool), and
ddft (default derived object pool). For example:

150

Chapter 15: Determining a Data Container’s Location

% /usr/atria/etc/mvfsstorage hello.h
/vobstore/monet.vbs/c/clrtxt.1/36/f/6b6ed22b08da11cca0ef0800690605d8

(clrtxt.1 is a non-default cleartext pool)
% cleartool lspool -l clrtxt.1
pool "clrtxt.1"
 08-Feb-93.10:25:46 by (vobadm.vobadm@starfield)
 "nonlocal cleartext storage for monet VOB"
 kind: cleartext pool
 pool storage remote host:path "sol:/netwide/public/ccase_pools/clrtxt.1"
pool storage local pathname "/vobstore/monet.vbs/c/clrtxt.1"

 maximum size: 0 reclaim size: 0 age: 96

Use UNIX ls to determine whether a view’s private storage area
(subdirectory .s) is nonlocal:

% ls -ld ~jones/view_store/temp.vws/.s
lrwxrwxr-x 1 jones dvt 34 Feb 17 17:06
/usr/people/jones/view_store/temp.vws/.s -> /public/jones_temp

Links and Directories

The discussion above omitted links and directories. Briefly:

• For a link, mvfsstorage indicates the storage location of the object to
which the link points. This applies to all links: view-private hard links
and symbolic links, VOB hard links, and VOB symbolic links.

• A view-private directory does not have a data container; nor does a
directory element. In both cases, mvfsstorage simply echoes the directory
name.

151

Chapter 16

16. Adjusting the ClearCase Startup/Shutdown
Script

This chapter describes changes you can make to the ClearCase
startup/shutdown script on any host where ClearCase is installed.

Name of Startup/Shutdown Script

The name of the ClearCase startup/shutdown script is
architecture-dependent:

Changing VOB Mounts to “Release 1 Style”

One of the principal jobs of the ClearCase startup script is to mount VOBs as
multiversion file systems (file system type MVFS). The way in which this is
accomplished changed between ClearCase Release 1 and Release 2:

• In Release 1, VOBs to be mounted by the startup script were listed in a
ClearCase-specific file system table, implemented as file /etc/fstab.mfs.
(This file could, in turn, incorporate the contents of an NIS map.)

• In Release 2, all information necessary for mounting a VOB is stored in
the network-wide storage registry. The fstab.mfs file is no longer required.

For compatibility, the Release 1 mechanism for mounting VOBs is still
supported in Release 2 (though the file system type has been changed from
“mfs” to “mvfs”). If a host was upgraded from Release 1 to Release 2, and

/etc/rc.atria SunOS-4, HPUX-9

/etc/init.d/atria SunOS-5, IRIX-5

/sbin/init.d/atria OSF/1-V2

152

Chapter 16: Adjusting the ClearCase Startup/Shutdown Script

you wish to have it continue to mount VOBs using the old mechanism,
follow these steps:

1. Edit the ClearCase startup script—This script’s location and contents
varies from architecture to architecture .

#
Mount /view and all public VOBs in the registry.
#
 mount -t mvfs -o rw,viewroot $VIEWPATH $VIEWPATH
 ${ATRIA}/bin/cleartool mount -a

The first command—the one you should not touch—mounts the
viewroot directory, /view, directly. In ClearCase Release 1, a file system
table entry specified the mounting of this directory.

2. Verify that there is no viewroot mount entry—ClearCase installation
should have commented out any /view entry in your host’s standard file
system table (for example, /etc/fstab or /etc/vfstab). Such entries reflect
ClearCase Release 1.1.x functionality that is not supported by Release 2.
If necessary, remove such an entry manually.

3. Revise the ClearCase file system table—Edit file /etc/fstab.mfs as
follows:

• Make sure it does not include any Release-1-style entries for
mounting the viewroot directory.

• Change all occurrences of the file system type mfs to mvfs.

do not touch
this line!

comment out this line, and insert:

 if [-f /etc/fstab.mfs] ; then
 NAWK="/bin/nawk"
 export NAWK
 ${ATRIA}/etc/clearcase_domounts file /etc/fstab.mfs
 fi

Changing Dynamic Loading of the MVFS

153

Changing Dynamic Loading of the MVFS

Note: This section applies to SunOS 4 hosts only. ♦

The ClearCase startup script has a “customer-editable section”, which is
largely self-documenting. This section allows you to select among several
invocations of the modload(8) utility, which dynamically loads the ClearCase
MVFS code into the UNIX kernel.

The default modload invocation causes the MVFS to take the “TFS” slot in the
virtual file system table (if no empty slot is available), and to use standard
cache sizes. You can select either of these alternative invocations:

• Use the “RFS” slot instead of the “TFS” slot—For an additional
discussion, see the CASEVision/ClearCase Release Notes.

• Configure larger MVFS caches—This is a performance-tuning
measure. For an additional discussion, see “Improving Client Host
Performance” on page 133.

The sections cited above also discuss other techniques for manipulating the
virtual file system table, and for configuring MVFS caches.

155

Chapter 17

17. Adjusting ClearCase License Information

This manual contains a place-holder chapter on adjusting license
information to maintain consistency with ClearCase documentation for
other platforms. This subject is not relevant for the Silicon Graphics
implementation of ClearCase.

On Silicon Graphics platforms, ClearCase licensing is handled through
NetLS. Refer to Chapter 7 of the CASEVision/ClearCase Release Notes to learn
more about ClearCase licensing. Read the NetWork License System
Administration Guide to learn more about NetLS.

157

Chapter 18

18. Adjusting ClearCase Registry Information

After a brief review of ClearCase storage registry concepts and terminology,
this chapter describes the procedure for adding a new network region. It
concludes with a set of general guidelines for registry-related
administration.

Registry Review

At this point, you should be familiar with the ClearCase storage registry and,
possibly, with network regions as well. Chapter 3, “Network-Wide Access to
ClearCase Data”, introduces the ClearCase storage registry, including the
VOB and view tag and object registry files. Chapter 3 also describes network
regions, including a sample network with two regions, uno and dos.

Chapter 6, “Setting Up ClearCase VOBs”, describes the process of creating
and registering a VOB. It introduces the subject, which this chapter expands
on, of using multiple network regions to provide global network access to
VOB storage directories.

Later, Chapter 19, “Changing the Location of Network-Wide Resources”,
describes the procedures for moving the ClearCase storage registry and for
renaming the registry server host.

ClearCase Storage Registry

All VOBs and views are registered in the ClearCase storage registry. The
storage registry resides on the registry server host, in /usr/adm/atria/rgy, and it
includes two distinct pieces, a VOB registry and a view registry. The VOB
registry and view registry each include two files: one registers tags, the other
registers storage directories. The files are vob_tag, vob_object, view_tag, and
view_object.

158

Chapter 18: Adjusting ClearCase Registry Information

Figure 18-1 ClearCase Storage Registry

Object Registry Files

The vob_object and view_object registry files record the location of each VOB
and view using a host-local pathname. That is, the pathname to the data
structure is one that is valid on the host where the storage directory resides.
These pathnames are used by the ClearCase server processes (view_server,
vob_server, and so on), which always run on the applicable VOB or view
storage host.

Tag Registry Files

For most purposes, client processes access VOBs and views via VOB-tags
and view-tags, not physical storage locations. These logical locations are
resolved to physical storage locations through lookups in the vob_tag and
view_tag registry files. Each tag registry entry includes a global pathname to

Vob Registry

ClearCase Clients

ClearCase Storage Registry

vob_tag vob_object

ClearCase Servers

view_tag view_object
View Registry

VOB

View

VOB

View

VOB VOB

View

Registry Review

159

the corresponding VOB or view storage directory—a pathname that is valid
on all ClearCase client hosts in the network region to which the tag applies.

Three points deserve special emphasis:

• A tag entry’s global access pathname must be valid on all hosts in the
tag’s network region, including the corresponding storage directory’s
host.

• For all practical purposes, developers cannot access a VOB or view
unless it has both an object registry entry and a tag registry entry. (An
administrator can perform some specialized operations on a VOB or
view storage directory that has no corresponding tag.)

• If your network has more than one network region, a VOB or view
needs a separate tag entry (but not a separate tag name) for each region
with hosts that will access the VOB or view.

cleartool Commands and Registry Files

The bullet items from the previous subsection have several practical
implications for the system administrator. In particular:

• Be “on the lookout” for faulty global access pathnames stored in the
two tag registry files.

• If a VOB or view access operation fails, first make sure a VOB-tag or
view-tag exists for the network region from which the access is
attempted. (A common mistake is attempting to access a VOB or view
that has no tag.)

lsvob and lsview (-long)

Use lsvob or lsview with the -long option to report the key registry
information. If you cannot “see” a VOB with lsvob, or a view with lsview, then
it does not have a tag registered for the current network region (or for the
region specified in the command). For a VOB or view with a registered tag,
the output from lsvob -long and lsview -long includes:

• the VOB-tag or view-tag

• the host name for the host on which the storage directory resides

160

Chapter 18: Adjusting ClearCase Registry Information

• the “host-local” access pathname (from the vob_object or view_object
file), which the relevant VOB or view server uses to access the storage
directory

• the global pathname (from the vob_tag or view_tag file), which is used to
resolve references to the newly created tag

For example:

% cleartool lsvob -long
.
.

Tag: /vobs/src
 Global path: /net/venus/vobstore/src.vbs
 Server host: venus
.
.

 Vob server access path: /vobstore/src.vbs
.
.

% cleartool lsview -long
.
.

Tag: main
 Global path: /net/venus/viewstore/main.vws
 Server host: venus
.
.

 View server access path: /viewstore/main.vws
.
.

If the global and server access paths are identical, or if they don’t look right
to you, then you might anticipate problem reports regarding access to the
VOB or view.

mkvob and mkview

The mkvob and mkview commands create both the object and tag registry
entries necessary for ClearCase client access. (There is one exception: if you
create a VOB with a public tag, but the tag password fails, the VOB is created
without the tag. You must create the tag in a separate operation with mktag.)
Like lsvob and lsview, mkvob and mkview output includes:

Registry Review

161

• the “host-local” access pathname (from the vob_object or view_object file)

• the global pathname (from the vob_tag or view_tag file)

Sample mkvob output:

.

.
Host-local path: venus:/vobstore/src.vbs
Global path: /net/venus/vobstore/src.vbs
.
.

Sample mkview output:

.

.
Host-local path: venus:/viewstore/main.vws
Global path: /net/venus/viewstore/main.vws
.
.

mktag and rmtag

Use mktag to add or replace tag entries for existing VOBs and views. Two
common uses are:

• creating additional VOB-tags and view-tags to support multiple
network regions

• converting a private VOB to a public VOB

To change a tag’s name, or to change its assigned network region, use rmtag
and mktag in succession, not mktag -replace. See the mktag and rmtag
manual pages for more detail on tag creation and removal.

Figure 18-2 shows all of the cleartool commands that affect registry files. See
also the registry_ccase manual page.

162

Chapter 18: Adjusting ClearCase Registry Information

Figure 18-2 cleartool Commands and the ClearCase Storage Registry

Adding a Network Region

The section “Ensuring the VOB’s Global Accessibility” on page 65 outlines
the circumstances which may require you to adjust the automatically
generated registry entry for a VOB or view. That section goes on to present
some sample mktag commands that “fix” the storage registry by explicitly
specifying, for a VOB or view, the host-local and global access paths. This
section applies in the case where a single, global pathname to a VOB or view
storage directory does not exist for all network hosts that must access it—so
you must partition your network into at least two network regions. If you have
not read the section “Network Regions” on page 28, please do so before
proceeding.

Vob Registry
vob_tag vob_object

view_tag view_objectView Registry

mktag -view

mktag -vob

mkview

mkvob

lsvob

lsview

rmvob

rmview

reformatvob
register -vob

register -view

unregister -vob

unregister -view

rmtag -vob

rmtag -view

= remove
= add or replace

Key

Adding a Network Region

163

When to Partition the Network

Of the network configurations that demand multiple network regions, two
are most common:

• Multiple network interfaces to a VOB or view host—For example, a
host might be known to some hosts (and their automounter programs)
as neptune, and to other hosts as neptune-gw. In this case, the same VOB
might have two “global” storage pathnames:

/net/neptune/vobstore/src.vbs
/net/neptune-gw/vobstore/src.vbs

• Multiple host architectures in the same network—For example, a
view that is accessed as /net/neptune/viewstore/main.vws on a UNIX host
may be accessed as V:\viewstore\main.vws on a Windows/NT host.
(Note that when pathnames differ syntactically between hosts, it is not
just storage access paths that are guaranteed to differ, but VOB-tags as
well.)

A Sample Network Partition

Figure 18-3 illustrates a simple two-region network. Two network regions
are required because a (shared) VOB host has two network interfaces and is
known to some hosts as neptune, and as neptune-gw to others. Although hosts
in both regions use the same VOB-tags (and view-tags), they access
VOB/view storage—at least on neptune/neptune-gw—using different
pathnames. Therefore, separate tag registry entries are required.

164

Chapter 18: Adjusting ClearCase Registry Information

Figure 18-3 Sample Network with Two Regions

hostname:
neptune

hostname:
neptune-gw

network region
west

network region
east

pathname to VOB storage:
/net/neptune/vobstore/src.vbs

VOB-tag:
/vobs/src

VOB-tag:
/vobs/src

VOB-tag Registry

Entries for west region Entries for east region

pathname to VOB storage:
/net/neptune-gw/vobstore/src.vbs

capecod

sierra

View-tag Registry

Entries for west region Entries for east region

niagra
dvalley

Adding a Network Region

165

Procedure for Adding a Network Region

Sample commands in this procedure use host and pathnames from the
network in Figure 18-3.

Note: If you are a new ClearCase installation, and you are partitioning the
network into regions from the start, then use this procedure to add regions 2
through n after (1) ClearCase has been installed on each host, and (2) shared
VOBs and views have been created on the network’s VOB and view storage
hosts. ♦

1. Pick a region name—In this example, we use west as the region name.

2. Determine the “global” access paths for the new region—For each
shared VOB and view, determine a network address to the storage
directory that is valid on every host that will be in the new region. (You
may need to take into account a nonstandard automount program or
other local mounting policies.) For example, on sierra:

% ls -d /net/neptune-gw/vobstore/src.vbs
/net/neptune-gw/vobstore/src.vbs
% ls -d /net/saturn/viewstore/view1.vws
/net/saturn/viewstore/view1.vws
% ls -d /net/neptune/vobstore/incl.vbs
... No such file or directory

(no good; can’t see neptune...)
% ls -d /net/neptune-gw/vobstore/incl.vbs

(...try again with neptune-gw)
/net/neptune-gw/vobstore/incl.vbs
% ls -d /net/dvalley/viewstore/view3.vws

(storage on host in west region)
/net/dvalley/viewstore/view3.vws
.
.

For each VOB or view storage directory, make sure the same pathname
“works” from all hosts in the new region.

3. Move some hosts to the new region—Use the procedure in “Moving a
Host to a New Network Region” on page 168.

4. Log in to any host in the new network region—You need not be root,
but you should know the network’s VOB-tag password, in order to
create public VOB-tags in the new region.

% rlogin sierra

166

Chapter 18: Adjusting ClearCase Registry Information

5. Create VOB-tags for the new region—Each VOB can have at most one
tag in a region. In a typical network with n regions, each VOB or view
storage directory has n tag entries.

Note: A VOB or view need not have a tag in every region. However, a
VOB or view is inaccessible for development work on hosts in any
region for which it is “tagless”. This suggests that you might use
network regions as “access domains” instead of “naming domains”. ♦

For a VOB or view to be visible in multiple network regions, it must
have a separate tag entry for each region. However, the actual tag name
(/vobs/src or proj2_main_view, for example) should be the same for all
regions. The ideal is consistent, transparent access from any network
region; this is possible only if the tag itself is constant across regions.

For example:

% cleartool mktag -vob -tag /vobs/src \
/net/neptune-gw/vobstore/src.vbs

% cleartool mktag -vob -tag /vobs/incl \
/net/earth/vobstore/incl.vbs

.

.

This command creates an entry for VOB /net/neptune-gw/vobstore/src.vbs,
for region west, in the vob_tag registry file. (Because we are in the target
region, the -region argument to mktag is not required.)

Note: The mktag command may fail if the VOB does not currently have
a tag entry for its storage host’s network region. ♦

6. Verify the new VOB-tags—On a host in the west region:

% cleartool lsvob -long

On a host in a different region:

% cleartool lsvob -long -region west

To verify the correctness of your work in Step #5, mount each shared
VOB from a host in the west region. For example:

% cleartool mount /vobs/src

Adding a Network Region

167

If access fails, and your network connection to the VOB storage host is
good: use the guidelines in this chapter and in Chapter 6, “Ensuring the
VOB’s Global Accessibility” on page 65, to determine whether to
supply new access path information for the VOB, using the -host,
-hpath, and -gpath arguments to mktag.

7. Create view-tags for the new region—On a host in the west region, for
each shared view:

% cleartool mktag -view -tag view1 /net/saturn/viewstore/view1.vws
% cleartool mktag -view -tag view3 /net/dvalley/viewstore/view3.vws
.
.

8. Verify the new view-tags—On a host in the west region:

% cleartool lsview -long

On a host in a different region:

% cleartool lsview -long -region west

To verify the correctness of your work in Step #7, activate each view
from a host in the new region.

% cleartool startview view1

If access fails, and your network connection to the view storage host is
good: use the guidelines in this chapter (and in chapters this one
references) to determine whether to supply new access path
information for the view, using the -host, -hpath, and -gpath

arguments to mktag.

This completes the procedure for adding a new network region. From this
point on, each new shared VOB or view created on the network requires a
tag entry for each region. That is, if a new VOB or view is created anywhere
on the network, and it must be visible to hosts in both the east and west
regions, you must execute an additional mktag command. For example:

• After creating VOB /vobs/lib on neptune in the east region:

% cleartool mktag -vob -tag /vobs/lib -region west \
 /net/neptune-gw/vobstore/src2.vbs

168

Chapter 18: Adjusting ClearCase Registry Information

• After creating view view4 on host dvalley in the west region:

% cleartool mktag -view -tag view4 -region east \
/net/dvalley/viewstore/view4.vws

Note: Following the guidelines set out in this chapter, you would log in to a
host in the target region before executing the mktag command. This makes
the -region option unnecessary. ♦

Moving a Host to a New Network Region

Once network regions are established, moving a host from one region to
another (to balance the network load between two interface cards, for
example) is straightforward. The following steps move host niagra to the
west region:

1. Verify VOB and view access paths—Make sure that the tag registry
entries for the west region are valid on niagra as well. List all VOBs and
views registered in the west region.

% cleartool lsvob -long -region west
.
.

Tag: /vobs/src
 Global path: /net/neptune-gw/vobstore/src.vbs
.
.

% cleartool lsview -long -region west
.
.

Tag: main
 Global path: /net/saturn/viewstore/view1.vws
.
.

On niagra, verify the global access paths.

% ls -d /net/neptune-gw/vobstore/src.vbs
/net/neptune-gw/vobstore/src.vbs
% ls -d /net/saturn/viewstore/view1.vws
/net/saturn/viewstore/view1.vws
.
.

Removing a Network Region

169

2. Log in as root on the host to be moved.

3. Stop ClearCase processing.

% /etc/rc.atria stop
(startup/shutdown command is architecture-dependent)

4. Change the region assignment—Put the new region name into file
/usr/adm/atria/rgy/rgy_region.conf.

% echo west > /usr/adm/atria/rgy/rgy_region.conf

5. Restart ClearCase processing.

% /etc/rc.atria start

Removing a Network Region

At some point, you may want to dissolve a network region and
re-incorporate its hosts back into one or more existing regions. Move each
host to its “new” region as described in the preceding paragraph. Then,
delete the region’s VOB-tags and view-tags with rmtag.

Registry-Related Guidelines

Following are some general tips, warnings, and guidelines regarding
ClearCase storage registry administration:

• You cannot access a VOB or view (even to remove it) unless it has both
a tag registry entry and an object registry entry. Use lsvob or lsview to
see if either the tag is missing (no listing at all) or the object entry is
missing (no storage paths appear in the -long output).

If you cannot access a VOB or view, first make sure it has a tag. If it does
not appear in the output of an lsvob/lsview command, it has no tag.
Create one with mktag.

If it has a tag, list the tag with lsvob -long or lsview -long. If the
output includes incorrect pathnames (identical local and global
pathnames usually mean trouble), you can try to re-register the object
(with mktag and/or register) to supply correct pathnames. If everything
looks OK, contact Atria Customer Support.

170

Chapter 18: Adjusting ClearCase Registry Information

• Don’t use full pathnames in links on VOB or view hosts. The global
pathname may be unresolvable for non-local hosts. For example:

/usr/vobs -> /usr/vobstore

Wrong. When this link is resolved on a client host, the
full pathname “/usr/vobstore” references the /usr
directory on the client host.

/usr/vobs -> ../vobstore

Right. When this link is resolved on a client host, the
relative pathname “../vobstore” references a location
on the VOB host.

Similarly, beware of full pathnames in VOB symbolic links that point to
locations in other VOBs.

• On VOB and view hosts, watch out for links to unexported disk
partitions. If you cannot access a VOB and suspect a faulty registry
pathname, follow the registered global pathname to the storage host
and pwd to see where you are. Make sure a link does not point to a
location in an unexported partition. For example:

/usr/vobs -> ../vobstore

This link causes failures if the location “/usr/vobstore”
is in another partition which is not exported.

• Don’t rename a tag; remove it and create a new one.

• Don’t rm a storage directory; this doesn’t clean up the registry entries.

• Don’t delete tags as a precursor to deleting the storage directory; let
rmvob or rmview delete tags for you.

• When creating a VOB or view, creating a VOB-tag or view-tag,
registering or unregistering a storage directory, or reformatting a
VOB—especially when using the -host/-hpath/-gpath
triplet—execute the command on the host where the VOB or view
storage directory resides. This enables ClearCase to perform some
pathname validations, which it cannot perform when the command is
executed from a remote host.

• Don’t administer VOBs and views from a host running ClearCase
Release 1.1.x. This will leave the storage registry in an inconsistent
state. For example, deleting a VOB using ClearCase Release 1.1.x fails to
remove vob_tag and vob_object registry entries. The deleted VOB
appears in lsvob output, even though its storage directory no longer

Registry-Related Guidelines

171

exists. In addition, the VOB scrubbing utilities scrubber and vob_scrubber
use the vob_object entry to locate the VOB. They will report errors when
they fail to find the deleted storage directory.

Multiple Network Regions

• Use the same VOB-tags for all network regions. Each VOB or view that
must be visible in multiple network regions must have a separate tag
entry for each region. However, the tag name (/vobs/src or
proj2_main_view, for example) should be the same for all regions. The
goal is consistent, transparent access from any network region; this is
possible only if the tag is constant across regions.

• Use consistent naming conventions for directories that hold VOB
mount points, and for directories that store VOB/view storage
directories.

• Create VOBs and views, VOB-tags and view-tags, from a host in the
network region to which the tag applies.

• Don’t remote VOB storage pools for a VOB that must be accessed by
hosts in more than one network region. The remote storage pool
pathname must apply to all hosts that will access the VOB, but the
existence of multiple network regions implies that different sets of
pathnames are required to access VOBs from different hosts in the
network. To repeat, if you use a remote storage pool for a shared VOB, the
pool must be accessible from all hosts, in all regions, using the same global
pathname.

• You can isolate an arbitrary group of hosts with a separate network
region, or by setting up a separate registry host with its own registry
files and assigning the desired hosts to the new registry. It is more
common to use a network region for this purpose, as reassigning hosts
to a new registry renders all VOBs and views in the pre-existing registry
invisible to the reassigned hosts.

• A VOB’s first tag (the one created by mkvob) must be in the “home
region”—the region in which the VOB host resides. The same
restriction applies to a view’s first tag. You can then create additional
tags for other regions, but make sure that a “home region” tag always
exists.

173

Chapter 19

19. Changing the Location of Network-Wide
Resources

This chapter describes procedures for changing which hosts provide
ClearCase network-wide resources and services. This includes the
ClearCase release area, the license server, and the registry server. It also
includes the renaming of server hosts.

The special cases of moving VOBs and views are not discussed in this
chapter; these cases are covered in Chapter 11 and Chapter 12.

Changing the Location of the Release Area

To change the location of the ClearCase network-wide release area, follow
these steps:

1. Reload the distribution medium—Create a new release area, using the
procedure in the ClearCase Notebook.

2. Reinstall hosts, as appropriate—Reinstall any host whose previous
installation involved one or more symbolic links to the network-wide
release area. (The default installation mode copies some files and links
others.) Use the procedure in the ClearCase Notebook.

3. Remove the old release area—When all hosts have been reinstalled,
you can remove the old release area.

Renaming the Release Host

If you rename the network-wide release host, reinstall any host whose
previous installation involved one or more symbolic links to the
network-wide release area.

174

Chapter 19: Changing the Location of Network-Wide Resources

Moving Licenses to Another Host and Renaming a License Server Host

On Silicon Graphics platforms, ClearCase licensing is handled through
NetLS. Refer to Chapter 7 of the CASEVision/ClearCase Release Notes to learn
more about ClearCase licensing. Read the NetWork License System
Administration Guide to learn more about NetLS.

Moving the ClearCase Registry

Use this procedure to move the ClearCase storage registry directory tree to
another host.

1. Copy the entire ‘rgy’ directory tree to the destination host—Perform
the copy as root, and make sure that root has remote-access rights on the
destination host. For example:
cd /usr/adm/atria
tar -cf - rgy | rsh ccsvr04 'cd /usr/adm/atria ; tar -xBpf -'

(-B option is not necessar,and not supported if remote host is an HP-UX system)

exit
%

2. Reconfigure the “old” host not to be a registry server host—Remove
the file that identifies the host as a registry server host:

rm /usr/adm/atria/rgy/rgy_svr.conf

3. Switch registry server host assignments—On all ClearCase hosts,
replace the rgy_hosts.conf file, so that it contains the name of the new
registry server host:

echo "ccsvr04" > /usr/adm/atria/rgy/rgy_hosts.conf

4. Stop and restart ClearCase processing on all hosts—Execute the
startup/shutdown script (for example, /etc/rc.atria) with a stop

argument; then execute it again, with a start argument.

Renaming the Registry Server Host

175

Renaming the Registry Server Host

ClearCase client hosts cache the name of the registry server host. To rename
the network’s registry server host:

1. Shut down ClearCase processing on all client hosts—Use the
architecture-specific command (see the init_ccase manual page):

/etc/rc.atria stop (shutdown command varies with architecture)

2. Switch registry server host assignments—Do this on all ClearCase
hosts, as described in Step #3 in the preceding section.

3. Rename the registry server host—Make the change using the
vendor-supplied procedure or tool.

4. Restart ClearCase processing on all hosts—Use the
architecture-specific command.

Renaming a ClearCase Host

You must make registry-level adjustments when you rename a host that
holds the physical storage for one or more VOBs or views. From the
registry’s perspective, the rename-host procedure is quite similar to the
move-storage-directory procedures described in Chapters 11 and 12:

1. Make sure that the storage directories are not being used—If the host
is home to one or more VOBs, make sure that all clients unmount those
VOBs (cleartool umount). If the host is home to one or more views,
terminate all processes using the views. (Watch out for shells that are
not set to the view, but have it as the working directory view)

2. Shut down ClearCase processing on the host—Use the
architecture-specific command (see the init_ccase manual page):

/etc/rc.atria stop (shutdown command varies with architecture)

3. Rename the host—Make the change using the vendor-supplied
procedure or tool. In most cases, this involves a restart of the operating
system, which will also restart ClearCase processing. In any event,
make sure that ClearCase processing is restarted on the host.

4. Adjust the registry entries for each storage director—Use register
–replace to update object registry entries; use mktag –replace to
update tag entries.

177

Index

Symbols

-hosts map
remote storage access use, 35
See Also hosts

A

access
access-layering

non-ClearCase access use, 76
ClearCase data

across the network (chapter), 23
importance of user base consistency, 5
procedures used by processes for, 48

domains
network region use as (footnote), 30, 168

locating
directories and links, 150

non-ClearCase
setting up export views for, 74

paths
information, registry server host as

repository for, 2
storage directories and, 23
user-level, registered in tag registry, 6

See Also licenses
See Also users
source pools

commands and operations for, 13
views

deactivating (chapter), 141

network-wide facilities, 27
tag-related problems, resolving, 169

VOB
deactivating (chapter), 141
network-wide facilities, 27
VOB-tag use for, 12

VOBs
concurrent, managed by lockmgr(1MA)

process, 10
tag-related problems, resolving, 169

access control
as VOB administration task

characteristics, 4
ClearCase data

controlled through user and group IDs, 5
ClearCase level, 52
locks

on type objects, 54
on VOB objects, 53, 141
preventing accidental deletion of lock manager

socket, 82
See Also administrator
settings

ClearCase data structures, 45
initialization for VOB objects, 47

umask(1) setting effect on VOB and
view creation, 42

views
owner and group roles, 39

VOBs
adjusting permissions, procedure description, 45
non-group members, 63
owner and group roles, 39

178

Index

administrator
network-wide

importance for smooth ClearCase
administration, 39

See Also access control
See Also maintenance
See Also storage
view of the ClearCase network (chapter), 1
VOB administration tasks (list), 3

albd_server (Atria Location Broker Daemon) process
as ClearCase server process, 3, 8
as license server process on license server host, 2
as registry server process on registry server host, 2
See Also servers
started by ClearCase startup script, 10

aliases
multiple

as impediment to global naming, 29
See Also access
See Also pathnames

architectures
multiple

as impediment to global naming, 29
Atria Location Broker Daemon process

See albd_server (Atria Location Broker Daemon)
process

attributes
See Also VOBs
stored in VOB database, 11

automount(1M) utility
automatic file-system mounting performed by, 28
ClearCase use, 35
See Also VOBs

B

backup
as VOB administration task

characteristics, 4

distributed VOB issues, 16
See Also administrator
See Also maintenance
tools

recommendations, 83
views

(chapter), 83
VOBs

(chapter), 83
ensuring a consistent, 84
partial, 85

block buffer caches
See caches

branch structures
See Also VOBs
stored in VOB database, 11

build avoidance
See configuration lookup

build(s)
non-ClearCase host, 34

C

c (cleartext) subdirectory
as VOB storage pool container, 11
See Also storage

caches
block buffer

flushing, 133
manipulating to improve VOB performance, 132
statistics, 133

cleartext storage pools as, 14
MVFS

changing to improve performance (SunOS
only), 135

compiling new sizes into (SunOS only), 137
customizing, procedure (SunOS 4), 138
customizing, procedure (SunOS 5), 139
selecting alternative size defaults

(SunOS 4 only), 136

Index

179

view_server process
changing to improve performance, 140

cautions
against moving database directories to another

host
view, 19
VOB, 12

links
absolute pathnames in, 170
unexported disk partitions, 170
VOB symbolic, 59

pathnames
absolute, 170
global, 159

remote
source pools, 114, 134, 171
storage pool management, 16

See Also administrator
storage registry administration, 169
tags

renaming and removing, 170
VOB

and view access problems, 159
database synchronization issues, 85
removing elements from storage, 108

central data repository
See Also registries
set of all VOBs use as, 1

checkin
checkin command

source pools accessed by, 13
versions

locating source container, 149
checkout

checkout command
source pools accessed by, 13

ClearCase server processing steps, 8
versions

locating, 148
chpool (cleartool subcommand)

as tool for working with storage pools, 114
changing storage pool element assignments, 17

chpool command
See Also storage pools

cleaning up
See backup
See maintenance
See scrubbing

clearaudit program
DO storage pools used by, 14

ClearCase
client-server architecture

characteristics, 2
data

network-wide access (chapter), 23
structures, 3
user-level access (chapter), 37

hosts
changing (chapter), 173

network
administrator's view (chapter), 1

servers
characteristics, 8

user base, 5
clearcvt_unix command, 69
clearmake program

DO storage pools used by, 14
cleartext

data containers
contained in cleartext storage pools, 14
locating, 148

See Also files
storage pools

backup considerations, 86
maintenance procedures, 96
usage patterns that impact location, 114

cleartext storage pool, 114
cleartool subcommands

chpool, 17, 114
lspool, 17, 114
lsview -long, 159
lsvob -long, 159
mkpool, 15, 17, 114

180

Index

mktag, 161
mkview, 160
mkvob, 15, 17, 160
protect -chmod, 46
protectvob, 41
rmpool, 17
rmtag, 161
rnpool, 17
storage pool handling (list), 17

client
hosts

characteristics, 2
improving performance, 133
MVFS required on all, 2

process
characteristics, 8
removing from VOB host to improve

performance, 131
programs

database requests handled by db_server
process, 12

database requests, server process that handles, 8
See Also views
See Also VOBs

client-server architecture
ClearCase

characteristics, 2
processing characteristics, 8
See Also client
See Also servers

co-locating
VOBs and their export views, 75

compressed files
cleartext data containers used to hold, 14
See Also files

configuration lookup
not available on a non-ClearCase host, 35
performance

enhanced by view-private caching of
config recs, 20

configuration records (CRs)
DO

cached in view-private storage, 20
managing the storage of, 98
stored in VOB database, 11

consistency
user base

tools for achieving, 5
user-ID

requirement for, 38
conversion

RCS data
to ClearCase, (scenario), 69

creating
See storage pools
See VOBs (versioned object bases)

crontab(1) scripts
modifications for periodic VOB maintenance

procedures, 95
modifying entries in, 80
periodic scrubbing tasks performed by, 4
preventing accidental deletion of data

by (chapter), 79
See Also maintenance

cvt_dir directory
master conversion script created in, 70

D

d (DO) subdirectory
as VOB storage pool container, 11
See Also files

data containers
access-control settings, 47
determining the location of (chapter), 145
DO

cached in view-private storage, 20
locating

with mvfsstorage, 147
See Also files

Index

181

stored in VOB storage pools
types of, 13

stored in VOB storage pools, 11
data repositories

central
set of all VOBs use as, 1

See Also registries
See Also views
See Also VOBs
server hosts as, 3

data structures
network-wide access (chapter), 23
See Also files
See Also views
See Also VOBs
server process management of, 8
user-level access (chapter), 37

data-conversion utilities
clearcvt_unix, 69

db (database) subdirectory
location requirements, 12
See Also directories
See Also files
view storage directory

components and characteristics, 19
view database contained in, 19

VOB storage directory
components and characteristics, 12
VOB database contained in, 11

db_server process
as server that accesses the VOB database, 12
characteristics, 8
See Also processes

deactivating
views and VOBs (chapter), 141

debugging
See cautions

derived object storage pool, 114
describe command

-vob option
listing VOB identity information, 41

as tool for working with storage pools, 114
determining the status of files, 145

directories
locating, 150
lost+found

files within a deleted directory moved to, 110
removing

file elements not affected by, 110
See Also files
See Also views
See Also VOBs
storage

registry tree, moving to another host, 174
server hosts as data repositories for view

and VOB, 3
view, access paths and, 23
view, components, 19
view, creating, 74
view, determining a location for, 73
view, server process that handles, 8
view, views implemented as, 4
VOB, access paths and, 23
VOB, cautions against moving, 19
VOB, components, 11
VOB, creating, 62
VOB, .identity subdirectory characteristics as

VOB component, 12
super-root

viewroot directory as (figure), 80
/tmp_mnt

automount use, 35
tree

designing multiple VOBs as a virtual, 59
UNIX directory trees

overcoming disk partition restrictions with
remote storage pools, 16

/usr/adm/atria/log
error log location, 9

/usr/atria/bin
client program directory, 2

/usr/atria/etc
mvfsstorage utility located in, 148
server program directory, 3

182

Index

/view
view-tag relationship to, 25

viewroot
as super-root (figure), 80
view-tag relationship to, 25

VOB root directory
creating by mkvob, 17

disk space
conserving

by moving VOB storage pools, 113
by removing uninteresting versions, 108

mounting a partition, 43
See Also storage

distributed client-server application
ClearCase as, 8
See Also client
See Also network
See Also servers

DOs (derived objects)
configuration records (CRs), 98
data containers

removing, 98
stored in DO storage pools, 14

pools
maintenance procedures, 96
usage patterns that impact location, 114

reestablishing consistency of VOB database with
respect to, 90

scrubbing
adjusting the procedures for, 117

See Also storage
See Also views
sharing

not available on a non-ClearCase host, 35
storage pools

backup considerations, 85
transferring to VOB storage (example), 99

E

elements
cautions about removing from VOB storage, 108
directory

removing, file elements not affected by, 110
file

not affected by directory element removal, 110
restoring

from backup, procedure, 110
that have been mistakenly removed, 108

See Also files
stored in VOB database, 11
type

as determiner for type of data container file
storage, 11

error logs (server)
characteristics and location, 9
See Also backups
See Also errorlogs_ccase(4A) manual page

/etc/exports.mvfs file
non-ClearCase host use, 34
See Also files

/etc/fstab.mfs file
See Also files

/etc/init.d/atria file
as startup script name, 10
See Also files

/etc/logingroup file
HP-UX host group assignment file, 38
See Also files

/etc/rc.atria
as startup script name, 10

/etc/rc.atria script
revising to configure larger default MVFS

cache sizes, 136
event records

scrubbing, 97
See Also VOBs
stored in VOB database, 11

Index

183

export
mechanisms

accessing ClearCase data from non-ClearCase
hosts using UNIX, 3

See Also exports_ccase manual page
See Also hosts
See Also network
views

setting up for non-ClearCase access, 74

F

file system
See files

file system data
See files, data

files
compressed

cleartext data containers used to hold, 14
data

accessing, 45
as MVFS objects, 11
determining the status of, with describe, 145
MVFS, determining the location of (chapter), 145
MVFS, locating, with mvfsstorage, 147
not stored in VOB database, 11
stored in VOB storage pools, 11
view-private, locating, 149

elements
cleartext storage pools as location of cleartext

data containers for, 14
DO storage pools as location of shared DOs, 14
source pool assignments, 17
source storage pools as location of source data

container for, 13
/etc/exports.mvfs

non-ClearCase host use, 34
/etc/fstab.mfs

no longer required for mounting VOBs, 151

/etc/init.d/atria
as startup script name, 10

/etc/logingroup
HP-UX host group assignment file, 38

extended system
views as, 18

file descriptor table
overall, modifying for a VOB host, 61

MVFS
determining the location of (chapter), 145

See Also directories
See Also storage
See Also views
See Also VOBs
text

cleartext data containers used to hold, 14
/usr/adm/atria/config/alternate_hostnames

multiple network interfaces recorded in, 33
/usr/adm/atria/config/automount_prefix

specifying a non-standard mount directory in,
35

/usr/adm/atria/log/scrubber_log
analyzing before adjusting scrubbing

parameters, 117
/usr/adm/atria/rgy/rgy_region.conf

network region assignments recorded in, 33
/usr/adm/atria/rgy/vob_tag.sec

as VOB-tag password file, 62
passwords maintained in, 27

/usr/atria/config/vob/vob_scrubber_params
as per-host VOB configuration file, 97

view_tags
view tag registries implemented in, 31

flushing
block buffer caches, 133
See Also maintenance
See Also scrubbing

184

Index

G

global
naming

impediments to, 28
pathname

tag registry use, 25
resources

views and VOBs seen as
See Also netowork

groups
access-control issues, 50
adjusting VOB identity information to reflect the

structure of
(scenarios), 63

IDs
consistency among ClearCase hosts, importance

for successful use of ClearCase, 5
user access control maintained through, 5

list
access control managed through, 4

multiple
support for VOBs and views, 40

principal
access control managed through, 4

See Also access control
See Also group(4) manual page
setting up views for

procedures, 73
user

assigning, 37
usernames and

characteristics, 37
growth

managing
as VOB administration task, characteristics, 4

See Also maintenance

H

hosts
-hosts map

remote storage access use, 35
as ClearCase component, 1
cautions against moving

view database directories to another, 19
VOB database directories to another, 12

ClearCase
changing (chapter), 173
user-ID consistency importance for successful

use of ClearCase, 5
client

characteristics, 2
improving performance, 133
MVFS required on all, 2

host-local pathname
local VOB and view location recorded by, 24

HP-UX
group assignment file, 38
revising crontab entries, 81

IRIX
revising crontab entries, 81

license server
characteristics, 2

non-ClearCase
ClearCase data structures access from, 34
creating VOB storage pools on, 113

OSF/1
revising crontab entries, 81

registry server
characteristics, 2
registering a new VOB or view, 157
renaming, 175

release
network-wide, characteristics, 2
renaming, 173

restricting exports to particular, 78
See Also network

Index

185

server
characteristics, 3
types of registries maintained on, 6

SunOS
revising crontab entries, 81

types of
characteristics, 2

VOB
improving performance, 131
modifying for ClearCase access, 61
selecting, 57

HP-UX hosts
group assignment file, 38
revising crontab entries, 81
See Also hosts

I

.identity subdirectory
group list for VOBs and views implemented by, 40
See Also directories
view storage directory, 19

incremental adoption
implications for accessing ClearCase data from

non-ClearCase hosts, 34
See Also hosts

infinite looping
preventing, 79

init(1M) program
ClearCase startup script executed by, 10

install_release script
crontab modification by, 80

interfaces
multiple network

as impediment to global naming, 28
See Also network, regions

IRIX host
revising crontab entries, 81
See Also hosts

L

LAN (local area network)
See network

license(s)
active user licensing scheme, 55
ClearCase access control use of (footnote), 5
concurrent users limited by, 1
database file

See Also license.db manual page
floating architecture, 55
See Also access control
See Also hosts
See Also users
server hosts

characteristics, 2
setting up, See Also ClearCase Notebook

server process
See albd_server

links
cautions

against links to unexported disk partitions, 170
against using absolute pathnames in, 170

locating, 150
See Also access
See Also pathnames
symbolic

accessing view-private storage through, 20
remote view and VOB storage accessed

through, 23
UNIX, accessing remote VOB storage

pools with, 15
VOB directory design use, 59

local
host location

VOBs and views, object registries used to
maintain, 24

scripts
caution about maintenance use, 99

186

Index

location
logical

view, 23
VOB, 23

physical
view, 23
VOB, 23

See Also access
See Also hosts

lockmgr(1MA) process
concurrent VOB access managed by, 10
preventing accidental deletion of socket

created by, 82
See Also processes

locks
See access control

lost+found directory
files within a deleted directory moved to, 110
See Also directories

lspool (cleartool subcommand)
as tool for working with storage pools, 114
listing storage pool information, 17

lstag command
locating views, 147

lsview (cleartool subcommand)
-long option, as registry tool, 160

lsvob (cleartool subcommand)
-long option, as registry tool, 160

M

maintenance
as VOB administration task

characteristics, 4
backup

VOBs and views (chapter), 83
cleaning up view-private storage

manually, procedures, 127
manually, 98

periodic
as VOB administration task, characteristics, 4

See Also administrator
See Also performance
user-supplied procedures, 99
views

occasional procedures (chapter), 121
periodic procedures (chapter), 95

VOBs
occasional procedures (chapter), 101
periodic procedures (chapter), 95

memory
impact on client host performance, 133
See Also maintenance
See Also performance
VOB needs, 57

meta-data
See Also VOBs
stored in VOB database, 11

mkpool (cleartool subcommand)
as tool for working with storage pools, 114
creating storage pools, 17
functions performed by, 15

mktag (cleartool subcommand)
tag registry entries created by, 161

mkview (cleartool subcommand)
tag and object registry entries created by, 160

mkvob (cleartool subcommand)
subdirectories created by, 15
tag and object registry entries created by, 160
VOB root directory created by, 17

mntrpc_server process
public VOBs mounted by, 27
See Also processes

modload(8) utility
changing dynamic loading of (SunOS 4 only), 153

mount command
locating VOBs, 147

Index

187

moving
views

different architecture, procedure, 123
same architecture, procedure, 121
view-private storage, procedure, 126

VOBs
database directory, cautions against, 12
different architecture, procedure, 104
same architecture, procedure, 101

multihop export configurations
limitations and methods for avoiding, 76
See Also hosts
See Also network

MVFS
default configuration, 135
parameters and their values (table), 137

MVFS (multiversion file system)
cache

changing to improve performance
(SunOS only), 135

compiling new sizes into (SunOS only), 137
customizing, procedure (SunOS 4), 138
customizing, procedure (SunOS 5), 139
parameters and their values (table), 137
selecting alternative size defaults

(SunOS 4 only), 136
changing dynamic loading of (SunOS 4 only), 153
files

determining the location of (chapter), 145
objects, 11
reconfiguring

to improve client host performance
(SunOS only), 135

required on all client hosts, 2
See Also directories
See Also files
See Also views
See Also VOBs

mvfsstorage utility
locating MVFS files, 148

N

network
accessing data across (chapter), 23
ClearCase

administrator's view (chapter), 1
overview of components, 1

interfaces
recording, 33
VOB global pathname creation for, 66

multiple-region
registries in, 30

network-wide release host
characteristics, 2

partitioning
reasons for, 163

regions
adding (chapter), 157
adding, procedure, 165
adding, 162
as solution to global naming problems, 28
characteristics and ClearCase data access use, 6
creating, to ensure valid global pathnames, 66
establishing, 33
global pathnames relationship to, 159
inapplicable to network-wide pathnames for

remote storage pools, 17
moving hosts to, 168
multiple, handling recommendations, 171
remote storage pools not able to use, 113
removing, 169
tag registry relationship to, 159

See Also registries
NIS

group map
as tools for maintaining user base consistency, 5

passwd map
as tools for maintaining user base consistency, 5

188

Index

non-ClearCase
access

importance of placing VOB and its export view
on the same host, 132

setting up export views for, 74
hosts

characteristics, 3
ClearCase data structures, access from, 34
ClearCase data structures, restrictions on use, 34
creating VOB storage pools on, 113

processes
removing from VOB host to improve

performance, 131
See Also access
See Also hosts
See Also network, regions

O

object registries
as component of ClearCase storage registry, 158
characteristics and relation to tag registries, 6
local VOBs and views location maintained in, 24
See Also registries
tag registry relationship to

(figure), 26
tag registry relationship to, 159

OSF/1 host
revising crontab entries, 81
See Also hosts

P

password facility
public VOB access controlled by, 27
See Also access control

pathnames
absolute

cautions against using in links, 170

consistent
network regions as tool for, 29

full
determining, with ls and pwd, 146

global
obtaining information about with lsvob -long

and lsview -long, 160
relationship to network regions, 159
tag registries used to record, 160

host-local
object registries used to record VOB

and view, 158
recursive traversal, 79
remote location issues, 17
remote storage pools

global requirements, 113
See Also access
See Also files
See Also users
symbolic link

requirements, 59
See Also pathnames_ccase manual page

performance
client

improving, 133
See Also maintenance
SunOS

changing the MVFS configuration, 135
tuning (chapter), 131
views

reconfiguring to improve, 140
VOB

improving, 131
permissions

ClearCase level control of, 52
controlled by user and group IDs, 5
See Also access control
See Also ct_permissions(5A) manual page

processes
albd_server (Atria Location Broker Daemon)

process, 2, 3, 8, 10

Index

189

client
characteristics, 8
removing from VOB host to improve

performance, 131
db_server process, 8, 12
lockmgr(1MA) process, 10, 82
mntrpc_server process, 27
non-ClearCase

removing from VOB host to improve
performance, 131

overall process table
modifying for a VOB host, 61

read access, 51
removing extraneous

to improve VOB performance, 131
servers

characteristics, 8
storage registries used by, 24

serverss
management ofdata structures, 8

view_server process
as ClearCase server program, 3
characteristics, 8
database requests, handled by vobrpc_server

process, 12
view_server process, 140
vob_server process

characteristics, 15
vobrpc_server process, 12
write access, 51

product releases
See Also release
VOB use as, 60

protect -chmod (cleartool subcommand)
differences between chmod(1) command and, 46

protectvob (cleartool subcommand)
modifying VOB identity information, 41

public
See Also access
VOBs

activation of, 27
pwv command

locating views, 147

R

regions
See network, regions

registries
ClearCase

managing (chapter), 157
types and characteristics, 6

cleartool commands for working with, 159
in multiple-region networks, 30
managing

as VOB administration task, 3
network-wide

administrative benefits, 6
object

characteristics and relation to tag registries, 6
local VOBs and views location maintained in, 24
tag registry relationship to (figure), 26
tag registry relationship to, 159

See Also hosts
See Also network, regions
server host

characteristics, 2
ClearCase storage registry located on, 157
registering a new VOB or view, 158
renaming, 175
types of registries maintained on, 6
VOB-tag password file located on, 62

storage
administration cautions, 169
administrative benefits, 6
characteristics and use, 24
moving to another host, 174
network-wide, VOBs listed in, 3
See Also registry_ccase manual page
VOB mounting information stored in, 151

tag
characteristics and relation to object

registries, 6, 158
characteristics and use, 25
network regions and (figure), 32
object registry relationship to (figure), 26
object registry relationship to, 159

190

Index

release
area

changing location of, 173
characteristics, 2

host
renaming, 173

See Also hosts
VOB

planning for, 60
Release 1 style

mounting VOBs in, 151
release host

network-wide
characteristics, 2

remote storage pools
choosing a host for, 113

removing
elements

cautions, 108
network regions, 169
processes

to improve VOB performance, 131
See Also maintenance
See Also scrubbing
source data

cautions, 108
views

permanently, with rmview, 144
VOBs

permanently, with rmvob, 144
restoring elements

from backup
procedure, 110

See Also maintenance
that have been mistakenly removed, 108

rlogin(1) program
modifying non-ClearCase host access

restrictions with, 34
rmelem program

cautions about using, 108
rmpool (cleartool subcommand)

deleting storage pools, 17
rmtag (cleartool subcommand)

tag registry entries removed by, 161
rmver program

removing uninteresting versions with, 108
rnpool (cleartool subcommand)

renaming storage pools, 17
root

directory
VOB, creating by mkvob, 17

See Also directories
user

crontab(1) scripts set up for, 4
RPC call

ClearCase server process actions triggered by, 8

S

s (source) subdirectory
as VOB storage pool container, 11
See Also directories
view storage directory

moving, 21
view data storage area contained in, 5

view storage directory, 19
schema

embedded VOB database
updating by reformatting the VOB, 4

scripts
automating type object copying with, 68
master conversion script, 70
RCS data conversion

(scenario), 69
scrubbing

as VOB administration task
characteristics, 4

Index

191

impact on cache hits, 14
parameters

storage pool scrubbing controlled by, 97
scrubber(1MA) utility

deleting data containers from cleartext and DO
storage pools, 18

storage pools scrubbed by, 97
See Also maintenance
See Also removing
storage pools

adjusting the default procedures, 117
term definition, 95
view-private storage, 99
VOB

databases, logical vs. physical implications, 97
databases, 97
storage pools, 96

servers
ClearCase

characteristics, 8
error logs, 9
hosts

characteristics, 3
types of registries maintained on, 6

processes
characteristics, 8
host-local pathnames used by, 158
storage registries used by, 24

programs
location, 3

registry server host
characteristics, 2

See Also client
See Also hosts
that access the VOB database

names and functions, 12
setview command

view activation by, 19
shared

DO
stored in DO storage pools, 14

See Also access control
See Also views
views

access-control issues, 49
central administration required by, 1

shutdown script
actions performed by, 10
adjusting (chapter), 151
names

architecture-specific (list), 151
names, architecture-specific (list), 151
See Also init_ccase manual page

site_prep program
establishing network regions, 33
See Also network, regions

size
view_server process cache

default, 140
source

data
cautions about removing from VOB storage, 108
containers, stored in VOB source storage pools,

13
pools

file element assignments, 17
maintenance procedures, 96
recommendation against remote location of, 134
usage patterns that impact location, 114

See Also storage
See Also views
See Also VOBs

speed (CPU)
See Also performance
VOB needs, 58

startup script
actions performed by, 10
adjusting (chapter), 151
names

architecture-specific (list), 151
See Also init_ccase manual page

192

Index

startview command
view activation by, 19

stat(2) records
ClearCase data access information

maintained in, 45
statistics

block buffer caches, 133
storage

data
as ClearCase component, 1
ClearCase, characteristics, 3
data structures that implement VOBs and views

(chapter), 11
views, characteristics, 5

directories
See storage directories

disk
VOB needs, 58

physical locations
registered in object registry, 6

pools
See storage pools

registries
See storage registries

remote data
implementation of, 23

See Also administrator
See Also files
See Also views
See Also VOBs
short-term

provided by views, 4
storage directories

See Also storage
view

access paths and, 23
components, 19
creating, 74
determining a location for, 73
physical location, 23
server hosts as data repositories for, 3

server process that handles, 8
views implemented as, 4

VOB
access paths and, 23
cautions against moving, 19
creating, 62
.identity subdirectory characteristics as VOB

component, 12
physical location, 23
server hosts as data repositories for, 3

storage pools
access-control settings, 47
backup, 114
changing element assignments, 15
cleartext, 114

as caches for text and compressed files, 14
commands for working with (list), 17
creating, 15
default

characteristics, 15
names for, 149

derived object, 114
DO

characteristics and components, 14
subdirectory name, 15

local
characteristics, 15
creating, 15

moving
to another disk, example, 116

remote
cautions, 16
characteristics, 15
creating, during VOB creation, 67
creating, example, 115
creating, to conserve VOB disk space, 113
creating, to improve client host

performance, 134
creating, 15
locating files in, 149
VOB, when not to use, 171

Index

193

scrubbing
adjusting the default procedures, 117

See Also storage
server process that handles, 8
source

characteristics and components, 13
commands and operations that access, 13
subdirectory name, 15

subdirectories (list), 15
tools for working with, 114
views

See views, view-private storage
storage registries

administration cautions, 169
administrative benefits, 6
characteristics and use, 24
components and structure, 157
moving to another host, 174
network-wide

VOBs listed in, 3
See Also administrator
See Also registries
See Also registry_ccase manual page
See Also storage
See Also views
See Also VOBs
VOB mounting information stored in, 151

subdirectories
See Also directories
See Also files
storage pools (list), 15

SunOS
host

revising crontab entries, 81
performance

changing the MVFS configuration, 135
See Also hosts

super-root directory
See Also directories
viewroot directory as (figure), 80

symbolic links
accessing view-private storage through, 20
remote view and VOB storage

accessed through, 23
See Also access
See Also links
See Also pathnames
UNIX

accessing remote VOB storage pools with, 15
VOB directory design use, 59

system resources
increasing

to improve client host performance, 133
See Also administrator

T

tag registries
characteristics

and relation to object registries, 6
and use, 25

implementation
in a multiple-region network, 31

network regions and (figure), 32
object registry relationship to

(figure), 26
object registry relationship to, 159
See Also registries
See Also view_tags
See Also vob_tags

tags
removing

cautions against explicit, 170
renaming

cautions against, 170
text files

cleartext data containers used to hold, 14
See Also files

/tmp_mnt directory

194

Index

automount use, 35
See Also directories

/tmp/.A/almd socket
preventing accidental deletion of, 82
See Also access control

type manager program
text_file type

characteristics, 13
type objects

coordinating
for multiple VOBs, 68

copying, 68
locking, 54
See Also ClearCase, data
stored in VOB database, 11

U

umask(1) setting
effect on VOB and view creation, 42
See Also access control
setting for a shared view, 73

umask(1) value
affect on view access, 73

UNIX directory trees
overcoming disk partition restrictions

with remote storage pools, 16
VOBs implemented as, 11

unshared DOs
as major storage drain on view-private storage, 20
See Also DOs

users
access control

maintained through, 5
concurrent

limited by license, 1
data structure access by (chapter), 37
individual

setting up views for, 71

multiple
setting up views for, procedures, 73

See Also access control
See Also pathnames
user base

architecture and access structure (chapter), 37
as ClearCase component, 1

user-IDs
consistency, importance for successful use of

ClearCase, 5
consistency, requirement for, 38

usernames
groups and, characteristics, 37

/usr/adm/atria/config/alternate_hostnames file
multiple network interfaces recorded in, 33
See Also files
See Also hosts

/usr/adm/atria/config/automount_prefix file
See Also files
specifying a non-standard mount directory in, 35

/usr/adm/atria/config/license.db file
See Also files

/usr/adm/atria/license_host file
See Also files
See Also hosts

/usr/adm/atria/license.db file
See Also files

/usr/adm/atria/log directory
error log location, 9

/usr/adm/atria/log/scrubber_log file
analyzing before adjusting scrubbing parameters,

117
See Also files

/usr/adm/atria/rgy directory
ClearCase storage registry contained in, 157
See Also directories

/usr/adm/atria/rgy/rgy_region.conf file
network region assignments recorded in, 33
See Also files

/usr/adm/atria/rgy/vob_tag.sec file
as VOB-tag password file, 62

Index

195

passwords maintained in, 27
See Also files

/usr/atria/bin directory
as client program directory, 2
See Also directories

/usr/atria/config/cron/ccase_local.day script
as daily VOB maintenance script, 99
See Also maintenance

/usr/atria/config/cron/ccase_local.wk script
as weekly VOB maintenance script, 99
See Also maintenance

/usr/atria/config/vob/vob_scrubber_params file
as per-host VOB configuration file, 97
See Also files

/usr/atria/etc directory
as server program directory, 3
mvfsstorage utility located in, 148
See Also directories

/usr/atria/examples/rmver_all script
removing uninteresting versions with, 108

utility commands
that work with storage pools (list), 18

V

versions
labels

stored in VOB database, 11
removing

unneeded, 108
See Also ClearCase, data
stored in VOB database, 11
uninteresting

term definition, 108
version-control information

stored in VOB database, 11
view access

affect of umask(1) value, 73

view storage area
nonlocal data storage, 72

view_scrubber command
moving data containers from view-private storage

to VOB DO storage pool, 18
view_scrubber utility

manually removing redundant DO data
containers, 99

views
accessing

access path information contained on registry
server host, 2

access-control settings, initializing, 47
access-control settings, 45
ClearCase data access requirement of, 48
making inaccessible (chapter), 141
network-wide facilities, 27
owners and groups, 39
tag-related problems, resolving, 169
with pwv and lstag, 147

activating, 27
as ClearCase component, 1
backing up, 91
characteristics and components, 18
data structures that implement (chapter), 11
database

characteristics and components, 19
characteristics and use, 19
characteristics, 5
storage requirements, 72

directories
/view, view-tag relationship to, 25
viewroot, as super-root (figure), 80
viewroot, view-tag relationship to, 25

distributed
implementation, 23

export
setting up, for non-ClearCase access, 74

identity
directory, characteristics and components, 19
information, modifying, 41

impact of largeinit MVFS configuration on, 135

196

Index

location
accessing with pwv and lstag, 147
architectural constraints that impact the, 71

maintenance
occasional procedures (chapter), 121
periodic procedures (chapter), 95

moving
different architecture, procedure, 123
same architecture, procedure, 121

multiple
export issues, 75
group support for, 40

network-wide access (chapter), 23
private storage area

characteristics and components, 19
characteristics and use, 20
locating files, 149
moving, procedure, 126
remote location access, 20
scrubbing, 99
storage requirements, 72

reconfiguring
to improve performance of, 140

reestablishing consistency of derived
object state, 90

registering
on the registry server host, 157

registries
object, local view location maintained in, 24

registries, 6
removing

from VOB host to improve performance, 132
permanently, with rmview, 144

restoring
from backup, 92
to service, 144

See Also ClearCase, data
See Also storage
See Also view(4A) manual page
See Also VOBs

setting up (chapter), 71
shared

central administration required by, 1
storage

maintenance considerations and procedures, 98
registries, characteristics and use, 24
remote storage pool facility compared with VOB

remote storage pools, 20
requirements, 72
short-term, for data created during the

development process, 4
storage registry

components and structure, 157
taking out of service, 144
view access by, 19
.view file

unaffected by moving a view, 123
view_server process

as ClearCase server program, 3
cache, changing to improve performance, 140
characteristics, 8
database requests, handled by vobrpc_server

process, 12
database requests, server process that handles, 8
location of, 71

view_tags
characteristics and use, 25
choosing for a shared view, 73
ClearCase data accessed through, 3
file, view tag registries implemented in, 31
logical view location specified by, 23
registry, multiple-region network

implementation, 30
VOB

administrator point-of-view contrasted with
developer point-of-view, 4

coordination importance, 68
interactions, access control, 46

virtual workspace
See views

VOBs (versioned object bases)

Index

197

access
access control, 53
access path information contained on registry

server host, 2
concurrent, managed by lockmgr(1MA)

process, 10
ensuring, strategies for, 65
initializing access-control settings, 47
making inaccessible (chapter), 141
network-wide facilities, 27
tag-related problems, resolving, 169
umask(1) setting effect on VOB and view

creation, 42
accessing

See VOB-tags
activating, 27
administration tasks (list), 3
as central data repository, 1
as ClearCase component, 1
backing up

components for partial backups (table), 85
remote storage pools, procedures, 86

backing up, 83
contents

See Also vob(4A) manual page
coordinating, 68
creating

data structures that implement (chapter), 11
procedure description, 43

creating, 62
databases

characteristics, 12
kinds of data stored in, 11
scrubbing, 97

disk
space, conserving by moving storage pools to

remote locations, 113
storage needs, VOB, 58

distributed
backup issues, 16
implementation, 23

hosts
capacity of, 58
data allocation tradeoffs, 58
improving performance, 131
kernel resources, modifying, 61
modifying for ClearCase access, 61
resources required for, 61
selecting, criteria for, 57
selecting, 57

identity information
adjusting, (scenarios), 63
adjusting, 63
listing with describe -vob, 41
modifying, with protectvob, 41

locating, 84
locking, 141
maintenance

growth management (figure), 96
occasional procedures (chapter), 101
periodic procedures (chapter), 95
storage tradeoffs, 95

memory needs, 57
mounting

in Release 1 style, 151
moving

different architecture, procedure, 104
same architecture, procedure, 101

multiple
exporting, 75
group support for, 40
linking into a single directory tree, 59

network-wide access (chapter), 23
object registries

as component of ClearCase storage registry, 158
local VOB location maintained in, 24

owners and groups
information located in .identity subdirectory of

VOB storage directory, 11
owners and groups, 39
performance

improving, 131

198

Index

permanent data repository distributed among, 3
planning for, 58
populating with data

strategies for, 68
private

activation requirements, 27
public

implications of, 63
reformatting

as VOB administration task, characteristics, 4
registries, 6
release

planning for, 60
remote storage pool facility

compared with view remote storage pool, 20
removing

permanently, with rmvob, 144
unneeded versions from, 108

restoring
from backup, procedures, 87
to service, procedure, 143

root directory
created by mkvob command, 17

See Also views
See Also vob_scrubber manual page
setting up (chapter), 57
speed (CPU) needs, 58
storage directories

access paths and, 23
cautions against moving, 19
components, 11
creating, 62
placing in root partition, 43
See Also VOB database
See Also VOB identity directory
See Also VOB storage pools
server hosts as data repositories for, 3
VOB implemented as, 3

storage pools
characteristics, 13
components, 12
database relationships, 13

moving data containers from view-private
storage to, 18

scrubbing, 96
source, characteristics, 13
subdirectories (list), 15
vob_server process characteristics, 15

storage registries
characteristics and use, 24
components and structure, 157

storage registry
components and structure, 157

taking out of service, procedure, 141
view interactions

access control, 46
VOB-tags

characteristics and use, 25
ClearCase data accessed through, 3
creating during VOB creation, 62
logical VOB location specified by, 23
multiple-region network, implementation, 30
multiple-region network, recommendations, 171
password file location, 62

vob_scrubber(1MA) utility
event records scrubbed by, 97

vob_server process
characteristics, 8, 15

vob_server program
as ClearCase server program, 3

vobrpc_server process
as server that accesses the VOB database, 12
characteristics, 8

W

warnings
symbolic link pathnames, 59

wink-in
DO storage pools populated through, 14
not available on a non-ClearCase host, 35
See Also DO’s
system actions relative to the view-private

storage area, 20

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1774-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

