Cache Memory

* memory hierarchy

 CPU memory request presented to
first-level cache first

« if data NOT in cache, request sent to °“*
next level in hierarchy...

* andsoon

main memory

2nd

first

......................................

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

750 GB 10ms
access
16 GB 60ns access
memory
more

expensive

16 KB data 5ns

16 KB instruction 5ns

1

Cache Hierarchy

* for a system with a first level cache and memory ONLY

Logr = htcocne + (1-h)t 0 where t,. = effective access time

h = probability of a cache hit [hit rate]

t..ne =cCache access time

t ., =main memory access time
1.00 5.0

e assumingt_ .. =60nsand t_.. =5ns 832 2?

0.89 11.1
0.50 32.5
0.00 60.0

* small changes in hit ratio [as h—1] are amplified by t

main/ tcache

* i t,4n/tache 1S 10 then a decrease of 1% in h [as h—1] results in a 10% increase in t .

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

Temporal and Locality of Reference

* exploit the temporal locality and locality of reference inherent in typical programs

a snapshot of
memonry acCesses stack accesses
* high probability memory regions =
data %:i:
N |/ accesses E:i:i
= recently executed code probability code o o
of accesses e
= recent stack accesses N o
reference st
" recently accessed data 83
3%
<)
<)
3%
NN K&, average
o virtual address max
4GB

e if the memory references occur randomly, cache will have very little effect
* NB: see average on graph

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 3

700000
trace gecOFF0: compiling xv.c
600000 -+
500000 -
400000 -
\
300000 -
|
200000 -~
100000 i !
| |
0 -gnﬂ [y]!Lﬁjnﬁ, i | st i _sz’a. N } i’*r" o Ll Aa‘,.iu“_ggii_%;, JxA!l 4
(=) o] O <t o (=) 0 O o N (= (=3 O = | (= [O < o (e} 0 O < o
TR “ < < v O o o0 =) (o S — o N N s w O NS =] (o))

m instruction reads @ data reads m data writes

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

©0 515
—t—
O <t ol S o0
— o™ on <t <
ol (o] ol ol ol

K-way Set Associative Cache with N Sets

TAGS DATA
s T TR T IR
Seto ‘k
set 1: 0326 1234 || - - 9876 ey
Setz
Set3 N
 stte S . .
' ' ' .| <« Lbytes» ' '
seen-t [) [] I R [(TTT]
e e e e e e e f ..
directory0 directory 1 directory K-1 L=16
4 x 32bit words
N sets, K directories and L bytes per cache line per cache line

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

Searching a K-way Cache

- 32 >

logs L

. address mapped onto a particular set [set #]... o0 <og, N->4—>
* by extracting bits from incoming address tag oot

* NB: tag, set # and offset /

set# (0..N-1) offset in

cache line
e consider an address that maps to set 1 (0..L-1)

* the set 1 tags of all K directories are compared with the incoming address tag
simultaneously

e if ais match found [hit], corresponding data returned offset within cache line

* the K data lines in the set are accessed concurrently with the directory entries so that
on a hit the data can be routed quickly to the output buffers

e if a match is NOT found [miss], read data from memory, place in cache line within set
and update corresponding cache tag [choice of K positions]

e cache line replacement strategy [within a set] - Least Recently Used [LRU], pseudo LRU,
random...

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 6

Searching a K-way Cache...

each cache lines holds 16 bytes
organised as 4 x 32 bit words

set 0
set 1!
set 2
set 3.

directory 0 directory 1 directory K-1 directory O .' : directory K-1

Incoming address (32 bits or 8 nybbles)

| 1234 |001 [8]| L=16, N=4096, K = K NB: cache lines aligned on 16 byte boundaries
tag set off

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 7

Cache Organisation

the cache organisation is described using the following three parameters

L bytes per cache line [cache line or block size]
K cache lines per set [degree of associativity K-way]
N number of sets

cache size LxKxN bytes

N=1

= fully associative cache, incoming address tag compared with ALL cache tags
= address can map to any one of the K cache lines

K=1

= direct mapped cache, incoming address tag compared with ONLY ONE cache tag
= address can be mapped ONLY onto a single cache line

N>1landK>1

= set-associative [K-way cache]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

Caches |

Write-Through vs Write-Back [Write-Deferred]

* \WRITE-THROUGH

= write hit
update cache line and main memory
= write miss
update main memory ONLY [non write allocate cache]
OR

select a cache line [using replacement policy]
fill cache line by reading data from memory
write to cache line and main memory [write allocate cache]

NB: unit of writing [e.g. 4 bytes] likely to be much smaller than cache line size [e.g.
16 bytes]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

0\

Caches -

Write-Through vs Write-Back [Write-Deferred]...

e WRITE-BACK [WRITE-DEFERRED]
= write hit

update cache line ONLY
ONLY update main memory when cache line is flushed or replaced

= write miss
select a cache line [using replacement policy]
write-back previous cache line to memory if dirty/modified

fill cache line by reading data from memory
write to cache line ONLY

NB: unit of writing [e.g. 4 bytes] likely to be much smaller than cache line size [e.g.
16 bytes]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 10

Typical Cache Miss Rates

e data from Hennessy and Patterson
* shows miss rate rather than hit rate
* miss rate more interesting!

* note how data [address trace] was
collected

* trace fed through a software cache
model with

= L=32
= LRU replacement policy

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

Cache size Degree Total Miss-rate components (relative percent)
associative miss (Sum = 100% of total miss rate)
rate Compulsory Capacity Conflict

1 KB 1-way 0.191 0.009 5% 0.141 73% 0.042 22%

1 KB 2-way 0.161 0.009 6% 0.141 87% 0.012 7%

1 KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%

1 KB 8-way 0.149 0.009 6% 0.141 94% 0.000 0%

2KB 1-way 0.148 0.009 6% 0.103 70% 0.036 24%

2KB 2-way 0.122 0.009 7% 0.103 84% 0.010 8%

2KB 4-way 0.115 0.009 8% 0.103 90% 0.003 2%

2KB 8-way 0.113 0.009 8% 0.103 91% 0.001 1%

4KB 1-way 0.109 0.009 8% 0.073 67% 0.027 25%

4KB 2-way 0.095 0.009 9% 0.073 77% 0.013 14%

4KB 4-way 0.087 0.009 10% 0.073 84% 0.005 6%
4KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3% |

8 KB 1-way 0.087 0.009 10% 0.052 60% 0.026 30%

8 KB 2-way 0.069 0.009 13% 0.052 75% 0.008 12%

8 KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%

8 KB 8-way 0.063 0.009 14% 0.052 83% 0.002 3%

16 KB 1-way 0.066 0.009 14% 0.038 57% 0.019 29%

16 KB 2-way 0.054 0.009 17% 0.038 70% 0.007 13%

16 KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%

16 KB 8-way 0.048 ~0.009 19% 0.038 78% 0.001 3%

32 KB 1-way 0.050 0.009 18% 0.028 55% 0.013 27%

32 KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%

32 KB 4-way 0.038 0.009 23% 0.028 73% 0.001 4%

32 KB 8-way 0.038 0.009 24% 0.028 74% 0.001 2%

64 KB 1-way 0.039 0.009 23% 0.019 50% 0.011 27%

64 KB 2-way 0.030 0.009 30% 0.019 65% 0.002 5%

64 KB 4-way 0.028 0.009 32% 0.019 68% 0.000 0%

64 KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%

128 KB 1-way 0.026 0.009 34% 0.004 16% 0.013 50%

128 KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%

128 KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%

128 KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14%

FIGURE 8.12 Total miss rate for each size cache and percentage of each according to the “three Cs.” Compul-
sory misses are independent of cache size, while capacity misses decrease as capacity increases. Hill [1987] measured
“is trace using 32-byte blocks and LRU replacement. It was generated on a VAX-11 running Ultrix by mixing three
systems’ traces, using a multiprogramming workload and three user traces. The total length was just over a million
addresses; the largest piece of data referenced during the trace was 221 KB. Figure 8.13 (page 422) shows the same
nformation graphically. Note that the 2:1 cache rule of thumb (inside front cover) is supported by the statistics in this
“2ble: a direct-mapped cache of size N has about the same miss rate as a 2-way-set-associative cache of size N/2.

11

Typical Cache Miss Rates

* plot of miss rate vs cache size using Hennessy and Patterson data

0.25

normally
0.20
* miss rate decreases as
0.15 - . .
cache size increased [or
0.10 hit rate increases as cache
size increased]
0.05
0.00 * miss rate decreases as K

1 2 4 8 16 32 64 128 increased [or hit rate
increases as K increased]
* note that the 2:1 cache rule of thumb

"the miss rate of a direct mapped cache of size X is about the same as a 2-way set-
associative cache of size X/2"

* rule supported by data [although not perfectly]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 12

The 3 Cs

* Hennessy and Patterson classify cache misses into 3 distinct types

= compulsory
= capacity
= conflict

* total misses = compulsory + capacity + conflict
e assume an address trace is being processed through a cache model

* compulsory misses are due to addresses appearing in the trace for the first time, the
number of unique cache line addresses in trace [reduce by prefetching data into cache]

e capacity misses are the additional misses which occur when simulating a fully
associative cache [reduce by increasing cache size]

e conflict misses are the additional misses which occur when simulating a non fully
associative cache [reduce by increasing cache associativity K]

* see Hennessy and Patterson data

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 13

Direct Mapped vs Associative Caches

* will an associative cache always outperform a direct mapped cache of the same size?

e consider two caches

1, L=16 [64 byte fully associative]

K=4,
K=1, N=4, L=16 [64 byte direct mapped]

N
N

’

LxKxN equal...
and the following repeating sequence of 5 addresses

a, a+16, a+32, a+48, a+64, a, a+16, a+32...

* increase address by 16 each time, as this is the line size [L = 16]

e caches can contain 4 addresses, sequence comprises 5 addresses
* 5 addresses won't fit into 4

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

Direct Mapped vs Associative Caches....

Fully Associative TAGS

set 0 a, a+64,a+48 a+ls a a+32 a+l6 a+48, a+32

Direct Mapped TAGS

set0 |a,-a+64,3,...
setl |a+l6
set2 a+32
set3 | a+48

* fully associative: only 4 addresses can fit in the 4-way cache so, due to the LRU
replacement policy, every access will be a miss

* direct mapped: since ONLY addresses a and a+64 will conflict with each other as they
map to the same set [set 0 in diagram], there will be 2 misses and 3 hits per cycle of 5
addresses

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

‘\'y..

Direct Mapped vs Associative Caches...

* the 3 Cs means that the conflict misses can be negative!

e consider previous example with 10 addresses [5 address sequence repeated twice]

compulsory 5 5
capacity 5 5
conflict 0 -3
total 10 misses 7 misses

* calculate conflict misses from total, compulsory and capacity misses which are known
e conflict misses = total misses — compulsory misses - capacity misses

* for direct mapped cache, conflict misses=7—-5-5=-3

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 16

Victim Cache [Norman Jouppi]

» cost-effective cache organisation

* large direct mapped cache and a small fully-
associative victim cache

e on direct-mapped cache miss, search victim cache
before searching next level cache in hierarchy

* when data ejected from direct mapped cache save
in victim cache

* studies indicate performance of a 2-way cache with
implementation cost of a direct-mapped cache

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

main memaory

I cache

small fully associative
victim cache
(eg. 16 cache lines)

I

large direct mapped
cache
(eg. 256K)

CPU

17

Cache Coherency

e consider an |/O processor which transfers

data directly from disk to memory via an T
direct memory access [DMA] controller W
e if the DMA transfer overwrites location X in
memory, the change must somehow be memory /0
) . processor
reflected in any cached copy X
I 1 DMA transfer I
.o >
e the cache watches [snoops on] the bus and if invalidate I
. . L v BUS
it observes a write to an address which it has X physical
a copy of, it invalidates the appropriate cache cache
line [invalidate policy] I
 the next time the CPU accesses location X, it CPU

will fetch the up to date copy from main
memory

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 18

Virtual or Physical Caches? main

e can both be made to work?

physical
* possible advantages of virtual caches cache

&
physical add ressv A

= speed? (i) no address translation required before virtual

. .. . MMU d
cache is accessed and (ii) the cache and MMU can operate in e
parallel [will show later that this advantage is not necessarily virtual address|
the case] U

e possible disadvantages of virtual caches

L. main
e aliasing [same problem as TLB], need a process tag to memory
differentiate virtual address spaces [or invalidate complete data | physical address
h 4
cache on a context switch] ! !
. virtual MMU
e process tag makes it harder to share code and data cache
. . . :: virtual address + data ::
* on TLB miss, can't walk page tables and fill TLB from cache J

h J

* more difficult to maintain cache coherency? cPU

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 19

‘\'y..

A Fast Physical Cache

e organisation allows concurrent MMU and cache access [as per virtual cache]

virtual address
-+ g —

virtual page # offset
set# | b cache
SO)
Y e x
MMU set # :
= tag | data
physical page #
k. J b 7/

e cache look-up uses low part of address which is NOT altered by the MMU
* Kdirectories, K comparators and K buffers needed for a K-way design

e cache size = K x PAGESIZE [if L = 16, N = 256]

* negligible speed disadvantage compared with a virtual cache

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 20

Cache Coherency with a Virtual Cache
s
e address stored in cache
by virtual address, but
addresses on bus are memory /0
phyS|Ca| X pProcessor
I 1 DMA transfer 4 BUS
< >
* need to convert physical J'watl:h bus Idata Iphys.icaladdregs
address on bus to a traffic X
irtual MMU
virtual address in order inverse cache
.) . mapper | invalidate
ZZCLn(;/TiI:iate appropriate Lsing VA I I

F
virtual address
4

e could use an inverse CPU
mapper [as in diagram]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 21

Cache Coherency with a Virtual Cache...

alternatively store a physical and a virtual tag for each cache line

set0 | physical tag virtual tag data
set1l | physical tag virtual tag data
setn physical tag virtual tag data

CPU accesses match against virtual tags
bus watcher accesses match against physical tags

on a CPU cache miss, virtual and physical tags updated as part of the miss handling

cache positioned between CPU and bus, needs to look in two directions at once [think
rabbit or chameleon which has a full 360-degree arc of vision around its body]

even with a physical cache, normal to have two identical physical tags

= one for CPU accesses and one for bus watching

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 22

http://en.wikipedia.org/wiki/Chameleon

Intel 486 [1989]

e 8K physical unified code and data cache

e write-through, non write allocate
e 4-way set associative 16 bytes per line L=16, K= 4 hence N=128 [a fast physical cache]

* pseudo LRU

BO
0 B2 | B1 | BO | (K-1) bits per set
B2
to find pseudo LRU line go left if bit ==
on access set bits in tree to point away
from accessed cached line
setn | line0 line 1 line 2 line 3 LRU is line 1

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 23

Pseudo-LRU access sequence

e consider line accesses made in following order 1, 2,0, 1, 3

e assume pseudo LRU bits initially O

access line 1 access line 2 access line 0
0]

o] [o] 0]
| line 0 | linel l’/linezjj line 3 | l'/""E"?I linel | line 2 | line 3 | | line 0 | linel | lire 2 tjinead

LRU line 2 LRU line O LRU line 3

access line 1 access line 3

| line 0 | inel | line 2 tjineEd l//line[ﬂ linel | line 2 | line 3 |
LRU line 3 LRU line 0

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

24

Implementing Real LRU

* method due to Maruyama [IBM]

* keep a K? matrix of bits for each set

setn

line O

line 1

line 2

line 3

(i) set corresponding row to ALL ones
(ii) set corresponding column to ALL zeroes

LRU line(s) corresponds to ALL zero row

lineQ line 1 line 2 line 3
0 0 0 0 when line accessed
0 0 0 0
0 0 0 0
0 0 0 0
(] i (a0 o
] [}]]
£ c c c

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 25

Implementing Real LRU...

e consider line accesses made in following order 1, 2,0, 1, 3

access line 1 access line 2
og|lo0ojo0|0 glojo010
1 ({0111 110011
og|lo0ojo0|0 1 ({11011
og|lo0ojo0|0 glojo010
LRU lines LRU lines
0,2and 3 Oand3

access line 0

LRU line 3

* line 2 is LRU after access sequence

e K-1 bits per set for pseudo LRU

* K2 bits per set for real LRU

access line 1

LRU line 3

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

access line 3

LRU line 2

‘\'y..

26

Intel 486 [1989]...

* TLB
= 32 entry fully associative, pseudo LRU
* non-cacheable I/O devices [e.g. polling a serial interface]
= will not see changes if always reading cached copy [volatile]
= can set bit in PTE to indicate that page is non-cacheable
OR...

= assert hardware signal when accessed to indicate that memory access should be
treated as non-cacheable

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

‘\'y..

27

Intel Core i7-3820 CPU @ 3.60GHz [Q1 2012]

e 32nm, 4 core [8 threads], L1, L2 and L3 line size 64 bytes

e L1 instruction 32K 8-way write-through per core [fast physical cache]
e L1 data 32K 8-way write-back per core [fast physical cache]
* L1 cache latency 3 clock cycles

* L2 256KB 8-way write-back unified cache per core [fast physical cache]
e L2 cache latency 12 clock cycles

* L3 10MB 20-way write-back unified cache shared by ALL cores [fast physical cache]
* L3 cache latency 26-31 clock cycles

* Ll instruction TLB, 4K pages, 64 entries, 4-way
e L1 data TLB, 4K pages, 64 entries, 4-way

* L2 TLB, 4K pages, 512 entries, 4-way

ALL caches and TLBs use a pseudo LRU replacement policy

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 28

Cache Trace Analysis

* empirical observations of typical programs has produced the simple
30% rule of thumb:

"each doubling of the size of the cache reduces the misses by 30%"

e good for rough estimates, but a proper design requires a thorough
analysis of the interaction between a particular machine architecture,
expected workload and the cache design

* some methods of address trace collection:

= |ogic analyser [normally can't store enough addresses]

= s/w machine simulator [round robin combination of traces as
described in Hennessy and Patterson]

= jnstruction trace mechanism

= microcode modification [ATUM]

e ALL accesses [including OS] or application ONLY
e issue of quality and quantity

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

file of addresses
(trace file)

l

s/w
v.cache model

l

results

29

Trace File Size

* how many addresses are required to obtain statistically significant results?
* must overcome initialisation transient during which the empty cache is filled with data
e consider a 32K cache with 16 bytes per line => 2048 lines

= to reduce transient misses to less than 2% of total misses, must generate at least 50 x
transient misses [50 x 2048 ~ 100,000] when running simulation

= jf the target miss ratio is 1% this implies 100,000 x 100 = 10 million addresses

* evaluating N variations of cache a design on separate passes through a large trace file
could take reasonable amount of CPU time

* will examine some techniques for reducing this processing effort

* in practice, it may no longer be absolutely necessary to use these techniques, but
knowledge of them will lead to a better understanding of how caches operate [eg can
analyse 2 million addresses in 20ms on a modern 1A32 CPU]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 30

‘\'y..

Multiple Analyses per run

e if the cache replacement policy is LRU then it is possible to evaluate all k-way cache
organisations for k < K during a single pass through the trace file

MRU ordered —LR[L

tags (4-way) data

seti Lo || 1 [2 [3| [o |[1}J[2]3]

reference address 4 (tags re-ordered)

seti |4 | o0 [1 [2 | [4 [0 J[1][2]

reference address 2 (tags re-ordered)

seti [2 [4][0 J[1T] [2]1[4a][0o][1]

4-way cache directory (for one set) maintained with a LRU policy

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 31

Multiple Analyses per run...

* to keep track of the hits of a 1-way to a K-way cache must simply note the position of
each hit in the cache directory

* keep a vector of hit counts int hits[K]

e if a hit occurs at position i then increment hitsJi]

* Increment hits for directory[0] in hits[0], directory[1] in hits[1], ...

e to find the hits for a k-way cache simply sum hits[i] for i=0to k-1
* NB: as k increases so does the cache size

* NB: collecting hits for 1K 1-way, 2K 2-way, 3K 3-way, 4K 4-way, ...

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

32

Trace Stripping

generate a reduced trace by simulating a 1-way cache
with N sets and line size L, outputting only those
addresses that produce misses

reduced trace ~20% the size of full trace [see Hennessy
and Patterson table for miss rate of a 1K 1-way cache]

what can be done with the reduced trace?

since it's a direct mapped cache, a hit doesn't change
the state of the cache [no cache line tags to re-order]

all the state changes are recorded in the file of misses

simulating a k-way cache with N sets and line size L on
the full and reduced traces will generate the same
number of cache misses [simple logical argument]

NB: as k increases so does the cache size [again]

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

file of addresses
(trace file)

-

1K

/direct mapped
cache

file of 29?
misses

mode
starts
with
empty
cache
each
time

2?7 identical to file of misses
what goes in come out!

33

Trace Stripping...

* not only can k be varied on the reduced trace but also N in multiples of 2

e consider a reduced trace generated from a 1-way cache with 4 sets

set0
set 1
set 2
set 3

set0
setl
set 2
set 3
set 4
setS5
set 6
set 7

4 sets

8 sets

tag - |set] off |

tag [set | off |

addresses which map onto set 0 in the
4 set cache, will map onto set 0 or 4 in
the & set cache.

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17

34

Trace Stripping...

* reduced trace will contain addresses where the previous set number is identical, but
the previous least significant tag bit is different

* this means that all addresses that change set 0 and set 4 will be in the reduced trace
* hence any address causing a miss on the 8 set cache is present in the reduced trace
e can reduce trace further by observing that each set behaves like any other set

* Puzak's experience indicates that for reasonable data, retaining only 10% of sets [at
random] will give results to within 1% of the full trace 95% of the time

* see High Performance Computer Architecture Harold S. Stone for more details

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 35

Summary

* you are now able to
= explain why caches work
= explain the organisation and operation of caches
= calculate hits, misses and the 3 Cs given an address trace and cache organisation
= know the difference between virtual and physical caches
= explain how LRU and pseudo LRU replacement algorithms are implemented
= write a cache simulation

= use a number of techniques to speed up cache simulations

CS3021/3421 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Dec-17 36

