<3

NVIDIA.

CUDA STREAMS

BEST PRACTICES AND COMMON PITFALLS

Justin Luitjens - NVIDIA

W

Simple Processing Flow

Copy input data from CPU memory to GPU
memory

Launch a GPU Kernel

Copy results from GPU memory to CPU
memory

Repeat Many Times

CONCURRENCY THROUGH PIPELINING

= Serial

cudaMemcpyAsync(H2D) cudaMemcpyAsync(D2H)

— time

performance

= Concurrent- overlap kernel and D2H copy"” """

cudaMemcpyAsync(H2D)
.

CONCURRENCY THROUGH PIPELINING

= Serial (1x)

. 4-Way concurrency (3x+)

= 2-way concurrency (up to 2x)
[o5 | s

cudaMemcpyAsync(H2D)

- = 4+ way concurrency
= 3-way concurrency (up to 3x) -:

K7 on CPU

K8 on CPU

EXAMPLE - TILED DGEMM

= CPU (dual 6 core SandyBridge E5-2667 @2.9 Ghz, MKL)
— 222 Gflop/s

= GPU (K20X) DGEMM: m=n=16384, k=1408
— Serial: 519 Gflop/s (2.3x) Nvidia Visual Profiler (nvvp)
— 2-way: 663 Gflop/s (3x) default stream
stream 1
— 3-way: 990 Gflop/s (4x) Stream 2
stream 3

GPU + CPU stream 4
— 4-way con.: 1180 Gflop/s (5.3x) PV

Obtain maximum performance by leveraging concurrency

All PCI-E traffic is hidden
— Effectively removes device memory size limitations!

Enabling Concurrency with MPS

MULTI-PROCESS SERVICE (MPS)

» Background:
— Each process has a unique context.
— Only a single context can be active on a device at a time.

— Multiple processes (e.g. MPI) on a single GPU could not
operate concurrently

= MPS: Software layer that sits between the driver and your
application.

— Routes all CUDA calls through a single context
— Multiple processes can execute concurrently

MULTI-PROCESS SERVICE (CONT)

= Advantages:
— Qversubscribe MPI processes and concurrency occurs automatically
= E.g. 1 MPI process per core sharing a single GPU

— Simple and natural path to acceleration (especially if your application
is MPI ready)

= Disadvantage:
— MPS adds extra launch latency
— Not supported on older hardware (Kepler and newer)
— Linux Only

ENABLING CONCURRENCY WITH STREAMS

SYNCHRONICITY IN CUDA

= All CUDA calls are either synchronous or asynchronous w.r.t
the host

— Synchronous: enqueue work and wait for completion

— Asynchronous: enqueue work and return immediately

» Kernel Launches are asynchronous Automatic overlap with
host

Host ----
- I N N

ﬁ > time

CUDA STREAMS

= A stream is a queue of device work
— The host places work in the queue and continues on immediately
— Device schedules work from streams when resources are free

= CUDA operations are placed within a stream
— e.g. Kernel launches, memory copies

» Operations within the same stream are ordered (FIFO) and
cannot overlap

» Operations in different streams are unordered and can
overlap

MANAGING STREAMS

" cudaStream t stream;
— Declares a stream handle
" cudaStreamCreate (&stream) ;
— Allocates a stream
= cudaStreamDestroy (stream) ;
— Deallocates a stream
— Synchronizes host until work in stream has completed

PLACING WORK INTO A STREAM

= Stream is the 4t launch parameter
— kernel<<< blocks , threads, smem, stream>>>();

= Stream is passed into some API calls
— cudaMemcpyAsync(dst, src, size, dir, stream);

DEFAULT STREAM

= Unless otherwise specified all calls are placed into a default
stream

— Often referred to as “Stream 0”
= Stream 0 has special synchronization rules
— Synchronous with all streams
= QOperations in stream 0 cannot overlap other streams
» Exception: Streams with non-blocking flag set
— cudaStreamCreateWithFlags (&stream, cudaStreamNonBlocking)
— Use to get concurrency with libraries out of your control (e.g. MPI)

KERNEL CONCURRENCY

= Assume foo only utilizes 50% of the GPU
» Default stream

foo<<<kblocks, threads>>> () ; CPU

foo<<<blocks, threads>>>() ; Stream 0
» Default & user streams

cudaStream t streaml;

cudaStreamCreate (&streaml) ; CPU

foo<<<blocks, threads>>>() ; Stream O

foo<<<blocks, threads,0,streaml>>>(); Stream 11

cudaStreamDestroy (streaml) ;

KERNEL CONCURRENCY

= Assume foo only utilizes 50% of the GPU
» Default & user streams

cudaStream t streaml;
cudaStreamCreateWithFlags (&streaml, cudaStreamNonBlocking) ;
foo<<<blocks, threads>>>() ;

foo<<<blocks, threads,0,streaml>>> () ;

cudaStreamDestroy (streaml) ;

CPU ||

Stream 0]
Stream 1 L]

KERNEL CONCURRENCY

= Assume foo only utilizes 50% of the GPU
User streams
cudaStream t streaml, stream2;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream?2) ;
foo<<<blocks, threads,0,streaml>>> () ;
foo<<<blocks, threads,0,stream2>>>() ;

CPU ||

Stream1 [
Stream 2 -

cudaStreamDestroy (streaml) ;

cudaStreamDestroy (stream?) ;

REVIEW

= The host is automatically asynchronous with kernel launches

= Use streams to control asynchronous behavior
— Ordered within a stream (FIFO)
— Unordered with other streams
— Default stream is synchronous with all streams.

Concurrent Memory Copies

CONCURRENT MEMORY COPIES

» First we must review CUDA memory

THREE TYPES OF MEMORY

* Device Memory
— Allocated using cudaMalloc
— Cannot be paged
= Pageable Host Memory
— Default allocation (e.g. malloc, calloc, new, etc)
— Can be paged in and out by the OS
* Pinned (Page-Locked) Host Memory

— Allocated using special allocators
— Cannot be paged out by the OS

ALLOCATING PINNED MEMORY

* cudaMallocHost(...) / cudaHostAlloc(...)

— Allocate/Free pinned memory on the host
— Replaces malloc/free/new
" cudaFreeHost(...)

— Frees memory allocated by cudaMallocHost or cudaHostAlloc
* cudaHostRegister(...) / cudaHostUnregister(...)
— Pins/Unpins pagable memory (making it pinned memory)
— Slow so don’t do often
* Why pin memory?
— Pagable memory is transferred using the host CPU
— Pinned memory is transferred using the DMA engines

* Frees the CPU for asynchronous execution

= Achieves a higher percent of peak bandwidth

CONCURRENT MEMORY COPIES

= cudaMemcpy (. ..)

— Places transfer into default stream
— Synchronous: Must complete prior to returning

— cudaMemcpyAsync (..., &stream)
» Places transfer into stream and returns immediately
— To achieve concurrency

= Transfers must be in a non-default stream

» Must use async copies
= 1 transfer per direction at a time
<« = Memory on the host must be pinned

PAGED MEMORY EXAMPLE

int *h ptr, *d ptr;

h ptr=malloc (bytes) ;
cudaMalloc (&d ptr,bytes);

cudaMemcpy (d_ptr,h ptr,bytes,cudaMemcpyHostToDevice) ;

free (h_ptr);

cudaFree (d ptr);

PINNED MEMORY: EXAMPLE 1

int *h ptr, *d ptr;

cudaMallocHost (&h ptr, bytes);
cudaMalloc(&d ptr,bytes) ;

cudaMemcpy (d_ptr,h ptr,bytes,cudaMemcpyHostToDevice) ;

cudaFreeHost (h _ptr) ;

cudaFree (d ptr);

PINNED MEMORY: EXAMPLE 2

int *h ptr, *d ptr;
h ptr=malloc (bytes) ;
cudaHostRegister (h_ptr,bytes,0);

cudaMalloc (&d ptr,bytes);

cudaMemcpy (d _ptr,h ptr,bytes,cudaMemcpyHostToDevice) ;

cudaHostUnregister (h ptr);
free (h _ptr);
cudaFree (d ptr);

CONCURRENCY EXAMPLES

Synchronous
cudaMemcpy (...)

foo<<<...>>>(); CPU
Stream O
Asynchronous Same Stream
cudaMemcpyAsync(...,streaml) ; CPU
foo<<<...,streaml>>>() ; Stream 1
Asynchronous Different Streams CPU
cudaMemcpyAsync (. . ., streaml) ; Sreaml
Stream 2

fookkL...,stream2>>>() ;

REVIEW

= Memory copies can execute concurrently if (and only if)
— The memory copy is in a different non-default stream
— The copy uses pinned memory on the host
— The asynchronous APl is called

— There isn’t another memory copy occurring in the same direction at
the same time.

Synchronization

SYNCHRONIZATION APIS

® Synchronize everything . hM°r? .
_ . ynchronization
— cudaDeviceSynchronize()

® Blocks host until all issued CUDA calls are
complete

" Synchronize host w.r.t. a specific stream
— cudaStreamSynchronize (stream)

® Blocks host until all issued CUDA calls in
stream are complete

" Synchronize host or devices using events

Less
Synchronization

CUDA EVENTS

= Provide a mechanism to signal when operations have occurred
in a stream

— Useful for profiling and synchronization

= Events have a boolean state:
— Occurred
— Not Occurred
— Important: Default state = occurred

MANAGING EVENTS

" cudaEventCreate (&event)
— Creates an event
= cudaEventDestroy (&event)
— Destroys an event
= cudaEventCreateWithFlags (&ev, cudaEventDisableTiming)
— Disables timing to increase performance and avoid synchronization issues
= cudaEventRecord (&event, stream)
— Set the event state to not occurred
— Enqueue the event into a stream

— Event state is set to occurred when it reaches the front of the stream

SYNCHRONIZATION USING EVENTS

" Synchronize using events
— cudaEventQuery (event)
® Returns CUDA_SUCCESS if an event has occurred
— cudaEventSynchronize (event)
" Blocks host until stream completes all outstanding calls
— cudaStreamWaitEvent (stream, event)
® Blocks stream until event occurs
" Only blocks launches after this call

® Does not block the host!

" Common multi-threading mistake:
< — Calling cudaEventSynchronize before cudaEventRecord

CUDA_LAUNCH_BLOCKING

= Environment variable which forces sychronization
— export CUDA_LAUNCH_BLOCKING=1
— All CUDA operations are synchronous w.r.t the host

= Useful for debugging race conditions

— If it runs successfully with CUDA_LAUNCH_BLOCKING set but doesn’t
without you have a race condition.

REVIEW

= Synchronization with the host can be accomplished via
— cudaDeviceSynchronize()
— cudaStreamSynchronize(stream)
— cudaEventSynchronize(event)
= Synchronization between streams can be accomplished with
— cudaStreamWaitEvent(stream,event)

= Use CUDA_LAUNCH_BLOCKING to identify race conditions

Streaming Performance

PROFILING TOOLS

= Windows
— Nsight Visual Studio Edition
— NVIDIA Visual Profiler
» [inux, Mac
— Nsight Eclipse Edition
— NVIDIA Visual Profiler
— nvprof

= Host API Calls
= Multi-threaded
Multi-GPU

= Multi-process
= Kernels

= Memory copies
= Streams

=| Process 12875
—| Thread 958433152
Runtime API
Driver API
=| Thread 685340416
Runtime API

=| [0] Tesla k20X
=| Context 1 (CUDA)
MemCpy (HtoD)
MemCpy (DtoD)

MemCpy (PtoP)

+ Compute

=| Streams
Stream 2
Stream 6
Stream 8
Stream 9
Stream 10

MemCpy (DtoD)

MemCpy (PtoP)

| I findProcesso...

generateKeysAnain...

| VOIU... g | VOIC D AUL..TAOIA SUIL..UD... |

VoId

viem...

generatekeysAndind...

\ 4

time

OPTIMAL TIMELINE

Less than 10 us idle time between
successive operations

Concurrent
Operations NS, HINET8, ML T8

[_ ekaeve Anaing

OPTIMAL TIMELINE

Host is running ahead of
the device >30 us

COMMON STREAMING PROBLEMS

COMMON STREAMING PROBLEMS

» The following is an attempt to demonstrate the most common
streaming issues I’ve seen in customers applications

= They are loosely ordered according to how common they are

CASE STUDY 1-A e

. . ;] File View Run Help
for (int i=0;i<repeat;i++)

{

' treaml>>> () ; % *New Session 2
kernel<<<1l,1>>>(

} =| Process 9598

—| Thread 2058397472
Runtime API
Driver API

Profiling Overhead

=| Context 1 (CUDA)
= Compuke

50.0% void kern...

50.0% void kern... Ziz 09
= Streams

Stream 2
Stream 8

Problem:

One kernel is in the default stream Stream 2 is the
default stream

CASE STUDY 1-A sesrmmmvsms

File View Run Help
for (int i=0;i<repeat;i++) {

kernel<<<1l,1,0,streaml>>>() ;
kernel<<<1l,1,0,stream2>>>() ;

% *New Session &2

—| Process 9598
- - Thread 2058397472
Runtime API
Driver API
Profiling Overhead
—| [0] Tesla K20c
=| Conkext 1 (CUDA)

=| Compute

50.0% void kern...
50.0% void kern...
=| Streams
Stream 2

Stream 8
Stream 9
Stream 10

Solution:
Place each kernel in its own stream

CASE STUDY 1-B

for(int i=0;i<repeat;i++) { -
kernel<<<1l,1,0,streaml>>>() ; .
cudaEventRecord (eventl) ; © “New Session &
kernel<<<1l,1,0,stream2>>>() ;
cudaEventRecord (event2) ;

M/ NVIDIA Visual Profiler
File View Run Help

—=| Process 10318
—| Thread 3145352992
Runtime API
Driver API
Profiling Overhead

cudaEventSynchronize (eventl) ;

cudaEventSynchronize (event2) ; =] [0] Tesla K20c
} =| Context 1 (CUDA)

= Compuke

50.0% void kern...
50.0% void kern...
=| Streams

Stream 8
Stream 9
Stream 10

Are events causing the problem?

CASE STUDY 1-B

for (int i=0;i<repeat;i++) { File View Run Help

kernel<<<1 .1 0 _streaml>>> () ;
<:::§pdaEventRecord(eventl);

kernelIXXXTI; I,0,Streams>>> () ;
cudaEventRecord (event2) ;

% *New Session 2

=| Process 9835
—| Thread 3687225120

eudabkEventSynchronize{eventl); Runtime API
eudaEventSynchronize(event2); Tl o
} —=| [0] Tesla K20c

—=| Context 1 (CUDA)
= Compute
50.0% void kern...

50.0% void kern... |
= Streams
Sktream 8 . |
Sktream 9

Problem:
cudaEventRecord by without a stream goes into the default stream

CASE 5TUDY1-B

for (int i=0;i<repeat;i++) ({ File View Run Help
kernel<<<1l,1,0,streaml>>>() ; :
cudaEventRecord (eventl, streaml) ; RSEEECELLPS
kernel<<<1l,1,0,stream2>>>() ;

cudaEventRecord (event2,stream?) ; |Eaiuai
Runtime API
cudaEventSynchronize (eventl) ; e OE
. Profiling Overhead
cudaEventSynchronize (event2) ; =) [0] Tesla K20c

} —| Context 1 (CUDA)

= Compuke

50.0% void kern...
50.0% void kern...

Stream 8
Stream 9
Stream 10
Stream 11

Solution:
Record events into non-default streams

PROBLEM 1: USING THE DEFAULT STREAM

= Symptoms
— One stream will not overlap other streams
* |n Cuda 5.0 stream 2 = default stream
— Search for cudaEventRecord(event) , cudaMemcpyAsync(), etc.
= |f stream is not specified it is placed into the default stream

— Search for kernel launches in the default stream

" <<<q,b>>>

= Solutions
— Move work into a non-default stream

— cudaEventRecord(event,stream), cudaMemcpyAsync(...,stream)
— Alternative: Allocate other streams as non-blocking streams

CASE STUDY 2-A

for (int i=0;i<repeat;i++) {

cudaMemcpy (d_ptr,h ptr,bytes, cudaMemcpyHostToDevice) ;
kernel<<<1l,1,0,stream2>>>() ;

cudaDeviceSynchronize() ;

@S NVIDIA Visual Profiler
File View Run Help

Fal = il

% *New Session &3

- Process16698
—| Thread 2154104608
Runtime API
Driver APl
Profiling Overhead

PrOblem: —| [0] Tesla ch.
Memory Copy -is —| Context 1 (CUDA)

MemCpy (HtoD)
=| Compute
SynChronous 100.0% void ker..
=| Streams

Stream 2
Sktream 9

CASE STUDY 2-A

for (int i=0;i<repeat;i++) {
cudaMemcpyAsync (d_ptr,h ptr,bytes, cudaMemcpyHostToDevice, streaml) ;
kernel<<<1l,1,0,stream2>>>() ;
cudaDeviceSynchronize () ;

M ® A NVIDIA Visual Profiler
File View Run Help

i = il

% *New Session 2

= Process 12180
—| Thread 2741753632
Runtime API
Driver API
Profiling Overhead
. = [0] Tesla K20c
SO I U tl O n . —| Context 1 (CUDA)
MemCpy (HtoD)
Use asynchronous API = Compute
100.0% void ker...
=| Streams
Stream 8
Stream 9
Stream 10

Stream 11

CASE STUDY 2-B

for (int i=0;i<repeat;i++) {
cudaMemcpyAsync (d_ptr,h ptr,bytes, cudaMemcpyHostToDevice, streaml) ;
kernel<<<1l,1,0,stream2>>>() ;
cudaDeviceSynchronize () ;

@S NVIDIA Visual Profiler
File View Run Help

a K1 il

% *New Session &

=| Process 12180
—| Thread 2741753632
Runtime API
Driver APl
Profiling Overhead
Problem: ?7? = [0] Tesla k20c
—=| Context 1 (CUDA)
MemCpy (HtoD)
=| Compuke
100.0% void ker...
= Streams
Stream 8
Stream 9

CASE STUDY 2-B

for (int i=0;i<repeat;i++) {
cudaMemcpyAsync (d_ptr,h ptr,bytes, cudaMemcpyHostToDevice, streaml);
kernel<<<1l,1,0,stream2>>>() ;
cudaDeviceSynchronize() ;

}

= O| = Properties
Memcpy HtoD [asynd]
Start |
End
Duration

Size

Throughput

Pageable

Device

Host doesn’t get ahead
Cuda 5.5 reports “Pageable” type

CASE STUDY 2-B

cudaHostRegister (h_ptr,bytes,0);
for (int i=0;i<repeat;i++) {

cudaMemcpyAsync (d_ptr,h ptr,bytes, cudaMemcpyHostToDevice, streaml) ;
kernel<<<1l,1,0,stream2>>>() ;

. . M NVIDIA Visual Profiler
cudaDeviceSynchronize () ; ©
} File WView Run Help

cudaHostUnregister (h_ptr);

% *New Session 2

= Process 12180
—=| Thread 2741753632
Runtime AP
Driver API
Profiling Overhead
=| [0] Tesla K20c
—=| Context 1 (CUDA)
MemCpy (HeoD)
= Compuke
100.0% void ker...
=| Streams

Stream 8
Stream 9

. Stream 10 D asy...| Yy MLOLY jd3y... |
Solution: ernel<i _

Stream 11

Pin host memory using cudaHostRegister or cudaMallocHost

PROBLEM 2: MEMORY TRANSFERS ISSUES

= Symptoms
— Memory copies do not overlap
— Host spends excessive time in memory copy API
— Cuda reports “Pageable” memory (Cuda 5.5+)

= Solutions
— Use asynchronous memory copies
— Use pinned memory for host memory

= cudaMallocHost or cudaHostRegister

CASE STUDY 3

void launchwork (cudaStream t stream) ({
int *mem;
cudaMalloc (&mem, bytes) ;
kernel<<<1l,1,0,stream>>> (mem) ;

cudaFree (mem) ;
} % *New Session &2

@ e NVIDIA Visual Profiler
File View Run Help

=| Process 12719
—| Thread 1359931168

for (int i=0;i<repeat;i++) { Runtime API
launchwork (streaml) ; Driver API
launchwork (stream?2) ; _ [0] Tesla K20c
} =| Context 1 (CUDA)

= Compuke

50.0% void kern...
50.0% void kern...
—| Streams

Stream 8
Stream 9

Host blocked in allocation/free
Problem:

Allocation & deallocation synchronize the device

CASE STUDY 3

void launchwork (cudaStream t stream, int *mem) {

kernel<<k<1l,1,0,stream>>> (mem) ;
} @™ A NVIDIA Visual Profiler

File View Run Help

& *New Session &

for (int i=0;i<repeat;i++) {
launchwork<1l> (streaml,meml) ; e

launchwork<2> (stream2,mem2) ; = Thread 1359931168
} Runtime API
Driver API
—| [0] Tesla K20c
—=| Context 1 (CUDA)

—| Compute

Stream 8
Stream 9
Stream 10
Stream 11

Solution:
Reuse cuda memory and objects including streams and events

PROBLEM 3: IMPLICIT SYNCHRONIZATION

= Symptoms
— Host does not get ahead
— Host shows excessive time in certain API calls

= cudaMalloc, cudaFree, cudaEventCreate, cudaEventDestroy, cudaStreamCreate,
cudaStreamCreate, cudaHostRegister, cudaHostUnregister,
cudaFuncSetCacheConfig

= Solution:
— Reuse memory and data structures

CASE STUDY 4

for (int i=0;i<repeat;i++) @S NVIDIA Visual Profiler

{ ' ' File View Run Help
hostwork () ; 9 = & | L
kernel<<<1l,1,0,streaml>>>() ; & *New Session 3
hostwork () ;
kernel<<<1l,1,0,stream2>>>() ; —| Process 13495

} —| Thread 985450272

Runtime API
Driver API
Profiling Overhead
=| [0] Tesla K20c
—| Context 1 (CUDA)

= Compute

50.0% void kern...
50.0% void kern... [oJ{s/8
=| Streams

Stream 8 oid... |

Skream 9

Problem:

o . Host is outside of API calls
Host is limiting performance

PROBLEM 4: LIMITED BY HOST

= Symptoms

— Host is outside of cuda APIs

— Large gaps in timeline where the host and device are empty
= Solution

— Move more work to the GPU
— Multi-thread host code

CASE STUDY 5

for (int i=0;i<repeat;i++) ©®© NVIDIA Visual Profiler

{ File Wiew Run Help
kernel<<<1l,1,0,streaml>>>() ;

kernel<<<1l,1,0,stream2>>>() ;

o A

% *MNew Session 2

- Process14393
—| Thread 1299244832
Runtime API
Driver API
Profiling Overhead
=| [0] Tesla K20c
=| Context 1 (CUDA)

=| Compute

50.5% void kern...
49.5% void kern...
=| Skreams
Stream 8
Stream 9

Host is in cudaLaunch or other APIs

CASE STUDY 5

for (int i=0;i<repeat;i++)

{
kernel<<<1l,1,0,streaml>>>() ;
kernel<<<1l,1,0,stream2>>>() ; = Properties 338
} 72.86 ms 72.87 ms 72| void kernel<int=1:-(int,.int:|
::r:-:l h
Duration
Shared Memor
Problem: Host is not far ahead
Not enough work to cover Kernel runtime is short (<30us)

launch overhead

PROBLEM 5: LIMITED BY LAUNCH
OVERHEAD

= Symptoms
— Host does not get ahead
— Kernels are short <30 us
— Time between successive kernels is >10 us

= Solutions
— Make longer running kernels

= Fuse nearby kernels together

= Batch work within a single kernel

= Solve larger problems

PROBLEM 6: EXCESSIVE SYNCHRONIZATION

= Symptoms
— Host does not get ahead
— Large gaps of idle time in timeline
— Host shows synchronization API calls
= Solutions
— Use events to limit the amount of synchronization
— Use cudaStreamWaitEvent to prevent host synchronization
— Use cudaEventSynchronize

PROBLEM 7: PROFILER OVERHEAD

| 8 *QMCPACK-1-256-1-6908-api.nvp &3

—| Process "gmecapp_cuda —asyn...
—| Thread 932404128
Runtime API
Profiling Overhead
= [0] Tesla K40c
=| Context 1 (CUDA)

MemCpy (HtoD) LI 1 EVTHCET 1T G111 1 1I|I|I|I|I|I|HI|I|I

MemCpy (DtoH) | LTI T |

MemCpy (DtoD)
[ALLLLLURL (ML ALCLLLLELLD ALLLLLLLL

= Compute

» Symptoms: Large gaps in timeline, Timeline shows profiler overhead
= Real code likely does not have the same problem
= Solution: Avoid cudaDeviceSynchronize() & cudaStreamSynchronize()

cudaEventRecord (event,stream) ;

cudaEventSynchronize (event) ;

FERMI CONCURRENCY

CZHK RQ-E OB-A

\

J

Fermi allows 16-way concurrency
— But CUDA streams multiplex into a single queue

— Issue order matters for concurrency
— For more info see the streams webinar

= https://developer.nvidia.com/gpu-computing-webinars

https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars

|

-
P
\\

KEPLER IMPROVED CONCURRENCY

A--B--C g C--B--A |
P--Q--R > s R--Q--P o
X oY .7 . e/ --Y--X |

Kepler allows 32-way concurrency

* One work queue per stream
® Concurrency at full-stream level

* No inter-stream dependencies

REVIEW

= Common Streaming Problems

1.

® N o U AW

Using the default stream
Memory transfer issues
Implicit synchronization
Limited by host throughput
Limited by launch overhead
Excessive synchronization
Profiler overhead

False serialization on Fermi

ADVANCED STREAMING TOPICS

STREAM CALLBACKS

» Cuda 5.0 now allows you to add stream callbacks (K20 or newer)
— Useful for launching work on the host when something has completed

void CUDART CB MyCallback (void *data) {

MyKernel<<<100, 512, 0, stream>>>();

cudaStreamAddCallback (stream, MyCallback, (void*)i, O0);

= Callbacks are processed by a driver thread
— The same thread processes all callbacks

— You can use this thread to signal other threads

PRIORITY STREAMS

* You can give streams priority
— High priority streams will preempt lower priority streams.

= Currently executing blocks will complete but new blocks will only be scheduled
after higher priority work has been scheduled.

= Query available priorities:
— cudaDeviceGetStreamPriorityRange(&low, &high)
— Kepler: low: -1, high: 0
— Lower number is higher priority
» Create using special API:
— cudaStreamCreateWithPriority(&stream, flags, priority)

= Cuda 5.5+

REVIEW

= Enabling concurrency is vital to achieving peak performance
= Use MPS+MPI to get concurrency automatically

» Or use streams to add concurrency
— Watch out for common mistakes

= Using stream 0
= Synchronous memory copies
= Not using pinned memory

= Qveruse of synchronization primitives

