DA Asynchronous Memory Usage and Execution

Yukai Hung
a0934147 @gmail.com
Department of Mathematics
National Taiwan University

Page-Locked Memory

® Regular pageable and page-locked or pinned host memory
- use too much page-locked memory reduces system performance

physical memory

resto rep‘agmgwwmaimﬁ Eknemory

S

local disk for virtual memory

Page-Locked Memory

® Regular pageable and page-locked or pinned host memory
- copy between page-locked memory and device memory can be
performed concurrently with kernel execution for some devices

load blue block to shared memory

compute blue block on shared me
and load next block to shared me

Page-Locked Memory

® Regular pageable and page-locked or pinned host memory
- copy between page-locked memory and device memory can be
performed concurrently with kernel execution for some devices

host memory

host to device

copy data from\ \ copy data from

host to device

C__JC
/device memory\

execute kernel execute kernel

Page-Locked Memory

® Regular pageable and page-locked or pinned host memory
- use page-locked host memory can support executing more than
one device kernel concurrently for compute capability 2.0 hardware

el3 Kernel 4 Kernel 5

Kernel 5

Page-Locked Memory

® Portable memory
- the block of page-locked memory is only available for the thread
that allocates it by the default setting, use portable memory flag
to share the page-locked memory with other threads

host thread 0 host thread 1 host thread 2

e

host memory

Page-Locked Memory

® How to allocate portable memory?

float* pointer;

//allocate host page-locked write-combining memory
cudaHostAlloc ((void**) &pointer,bytes,cudaHostAllocPortable) ;

//free allocated memory space
cudaFreeHost (pointer) ;

Page-Locked Memory

® Write-Combining memory

- page-locked memory is allocated as cacheable by default
- page-locked memory can be allocated as write-combining memory
by using special flag, which frees up L1 and L2 cache resource usage

® Advantage and disadvantage

- write-combining memory is not snooped during transfers across
bus, which can improve transfer performance by up to 40%

- reading from write-combining memory from host is slow, which
should in general be used for memory that the host only write to

Page-Locked Memory

® How to allocate write-combining memory?

float* pointer;

//allocate host page-locked write-combining memory

cudaHostAlloc ((void**)
&pointer ,bytes,cudaHostAllocWriteCombined) ;

//free allocated memory space
cudaFreeHost (pointer) ;

1 GB data size normal write-combining
host to device 0.533522 0.338092
device to host 0.591750 0.320989

Page-Locked Memory

® Mapped memory
- the page-locked host memory can be mapped into the address
space of the device by passing special flag to allocate memory

host memory -7 host memory pointer

memory copy betw{een host and device

—

device memory ~~ device memory pointer

Page-Locked Memory

® Mapped memory
- the page-locked host memory can be mapped into the address
space of the device by passing special flag to allocate memory

map host memory
into device memory\ host memory /v host memory pointer

) e

\ read or write data will acts
/ as only one memory space

N

device memory ~~ device memory pointer

implicit asynchronous transfer H

Page-Locked Memory

® How to allocate mapped memory?

float* pointer;

//allocate host page-locked write-combining memory
cudaHostAlloc ((void**) &§pointer,bytes,cudaHostAllocMapped) ;

//free allocated memory space
cudaFreeHost (pointer) ;

Page-Locked Memory

® Check the hardware is support or not?
- check the hardware properties to ensure it is available for
mapping host page-locked memory with device memory

cudaDeviceProp deviceprop;

//query the device hardwared properties
//the structure records all device properties
cudaGetDeviceProperties (&deviceprop,0) ;

//check the map memory is available or not
if (!'deviceprop.canMapHostMemory)
printf (“cudaError:cannot map host to devicmemory\n”) ;

Page-Locked Memory

® What is the property structure contents?

Mapped Memory

#define size 1048576

int main(int argc,char** argv)

{

int loop;
float residual;

float *h a, *d_a;
float *h b, *d b;
float *h c, *d c;

cudaDeviceProp deviceprop;

//query the device hardwared properties
//the structure records all device properties
cudaGetDeviceProperties (&deviceprop,0) ;

//check the map memory is available or not
if (!'deviceprop.canMapHostMemory)
printf (“cudaError:cannot map host to device memory\n”) ;

Mapped Memory

//this flag must be set in order to allocate pinned
//host memory that is accessible to the device
cudaSetDeviceFlags (cudaDeviceMapHost) ;

//allocate host page-locked and accessible to the device memory
//maps the memory allocation on host into cuda device address
cudaHostAlloc ((void**) &h a,sizeof (float) *size,cudaHostAllocMapped) ;
cudaHostAlloc ((void**) &h b,sizeof (float) *size,cudaHostAllocMapped) ;
cudaHostAlloc ((void**) &h c,sizeof (float) *size,cudaHostAllocMapped) ;

//initialize host vectors
for (loop=0;loop<size;loop++)
{
h a[loop]=(float)rand()/ (RAND MAX-1);
h b[loop]=(float)rand()/ (RAND MAX-1);
}

//pass back the device pointer and map with host

cudaHostGetDevicePointer ((void**)&d a, (void*)h a,0);
cudaHostGetDevicePointer ((void**) &d b, (void*)h b,0);
cudaHostGetDevicePointer ((void**) &d c, (void*)h ¢,0);

Mapped Memory

//execute device kenel for vector addtion
vectorAdd<<<(int)ceil ((float)size/256) ,256s>>>(d a,d b,d c,size);
cudaThreadSynchronize () ;

//check the result residual value
for (loop=0,residual=0.0;loop<size;loop++)
residual=residual+(h_a[loop]+h b[loop]-h c[loop])

printf (“residual value is %f\n”,residual);

//free the memory space which must have been returnedd
//by a previous call to cudaMallocHost or cudaHostAlloc
cudaFreeHost (h_a);
cudaFreeHost (h_b);
cudaFreeHost (h_c);

//catch and check cuda error message
if ((error=cudaGetlLastError ()) '=cudaSuccess)

printf (“cudaError:%$s\n”,cudaGetErrorString (error)) ;

return 0;

Mapped Memory

__global void vectorAdd(float* da,float* db,float* dc,int size)
{

int index;

//calculate each thread global index
index=blockIdx.x*blockDim.x+threadIdx.x;

if (index<size)
//each thread computer one component

dc[index]=da[index]+db[index];

return;

Page-Locked Memory

® Several advantages

- there is no need to allocate a block in device memory and copy
data between this block and block in host memory, the data
transfers are implicitly performed as needed by the kernel

- there is no need to use streams to overlap data transfers with
kernel execution, the kernel-originated data transfers overlap
with kernel execution automatically

- mapped memory is able to exploit he full duplex of the PCI
express bus by reading and writing at the same time, since
memory copy only move data in one direction, half duplex

Page-Locked Memory

® Several disadvantages

- the page-locked memory is shared with host and device, any
application must avoid write on the both side simultaneously

- the atomic functions operating on mapped page-locked memory
are not atomic from the point of view of the host or other devices

Page-Locked Memory

® Portable and mapped memory
- the page-locked host memory can be allocated as both portable
and mapped memory, such that each host thread can map the
same page-locked memory into different device address

dewap @ hdevamss tdahiesdmespageyl odedcm2 mamory
(J (J)

host thread 0 host thread 1 host thread 2

host memory

Page-Locked Memory

® Integrated system

- the mapped page-locked memory is very suitable on integrated
system that utilize the a part of host memory as device memory
- check the integrated field on cuda device properties structure

- mapped memory is faster, if data only read from or write to global
memory once, the coalescing is even more important with mapped
memory in order to reduce the data transfer times

nchronous Execution

® Asynchronous execution

- some functions are supported asynchronous launching in order to
facilitate concurrent execution between host and device resource
- control is returned to the host thread before the work is finished

transfer data between host and device

perform some device kernels overlapping
perform some host functions

nchronous Execution

® Asynchronous execution

- some functions are supported asynchronous launching in order to
facilitate concurrent execution between host and device resource
- control is returned to the host thread before the work is finished

perform device kernel launch
kernel<<<blocknum,blocksize,0,stream>>>(...)

perform data transfer between host and device
perform data transfer between device and device
cudaMemcpyAsync(destination,source,bytes,direction,stream);

perform global memory set

chronous Execution

#define size 1048576

int main(int argc,char** argv)
{

int loop;

int bytes;

float *h a, *d _a;
float *h b, *d b;
float *h c, *d c;

//allocate host page-locked memory

cudaMallocHost ((void**) &h a,sizeof (float) *size) ;
cudaMallocHost ((void**) &h b,sizeof (float) *size) ;
cudaMallocHost ((void**) &h c,sizeof (float) *size);

//allocate device global memory

cudaMalloc ((void**) &d a,sizeof (float) *size);
cudaMalloc ((void**) &d b,sizeof (float) *size) ;
cudaMalloc ((void**) &d c,sizeof (float) *size);

chronous Execution

cudaEvent t stop;
cudaEvent_t start;

//create an event object which is used to
//record device execution elasped time
cudaCreateEvent (&stop) ;

cudaCreateEvent (&start) ;

//initialize host vectors

for (loop=0;loop<size;loop)

{
h a[loop]=(float)rand()/(RAND MAX-1);;
h b[loop]=(float)rand()/(RAND MAX-1) ;;

chronous Execution

bytes=sizeof (float) *size;

//set time event recorder
cudaEventRecord (start,0) ;

//copy data from host to device memory asynchronously
cudaMemcpyAsync(d_a,h a,bytes,cudaMemcpyHostToDevice,0) ;
cudaMemcpyAsync (d_b,h b,bytes,cudaMemcpyHostToDevice,0) ;

//execute device kernel asynchronously
vectorAdd<<<(int)ceil ((float)size/256,256,0,0)>>>(d a,d ,d c,size);

//copy data from device to host memory asynchronously
cudaMemcpyAsync (h_c,d c,bytes,cudaMemcpyDeviceToHost,0) ;

//set time event recorder
cudaEventRecord (stop,0) ;

chronous Execution

counter=0;

//increase the counter before the queried
//cuda event has actually been finished

while (cudaEventQuery (stop)==cudaErrorNotReady)
counter=counter+l;

//calculate device execution elapsed time
cudaEventElapsedTime (&elapsed,start,stop) ;

//check the result residual value
for (loop=0,residual=0.0;loop<size;loop++)
residual=residual+(h _c[loop]-h a[loop]-h b[loop])

printf (“counter:%d\n”,counter) ;
printf (“residual:%$f\n”,residual) ;

chronous Execution

//free the memory space which must have been returnedd
//by a previous call to cudaMallocHost or cudaHostAlloc
cudaFreeHost (h_a);
cudaFreeHost (h_b) ;
cudaFreeHost (h_c);

//free the device memory space
cudaFree(d_a) ;
cudaFree (d _b) ;
cudaFree(d c);

//free the cuda event object
cudaEventDestroy (stop) ;
cudaEventDestroy (start) ;

//catch and check cuda error message
if ((error=cudaGetLastError ()) !'=cudaSuccess)

printf (“cudaError:%$s\n”,cudaGetErrorString (error)) ;

return 0;

chronous Execution

__global void vectorAdd(float* da,float* db,float* dc,int size)
{

int index;

//calculate each thread global index
index=blockIdx.x*blockDim.x+threadIdx.x;

if (index<size)
//each thread computer one component

dc[index]=da[index]+db[index];

return;

- applications manage concurrency through stream
- a stream is a sequence of commands that execute in order
- all device requests made from the host code are put into a queues

host thread

device command

stream or queue
first in first out

\ 4

device driver

ream

® How to create a stream?

cudaStream_t ;

//create an asynchronous new stream
cudaStreamCreate (&) ;

//destroy stream
cudaStreamDestroy (),

- different streams may execute their commands or host requests
out of order with respect to one another or concurrently, but the
same stream is still a sequence of commands that execute in order

host thread host thread

device driver device driver

ream

#define snum 10
#define size 1048576

int main(int argc,char** argv)

{

int loop;
int bytes;

float *h _a, *d_a;
float *h b, *d b;
float *h ¢, *d c;

cudaStream t [snum] ;

//create new asynchronous stream
//which acts as device work queue
for (1loop=0;loop<snum;loop++)
cudaStreamCreate (+loop) ;

//allocate host page-locked memory

cudaMallocHost ((void**) &h a,sizeof (float) *size*snum) ;
cudaMallocHost ((void**) &h b,sizeof (float) *size*snum) ;
cudaMallocHost ((void**) &h c,sizeof (float) *size*snum) ;

//allocate device global memory

cudaMalloc ((void**) &d _a,sizeof (float) *size*snum) ;
cudaMalloc ((void**) &d b,sizeof (float) *size*snum) ;
cudaMalloc ((void**) &d c,sizeof (float) *size*snum) ;

//initialize host vectors
for (loop=0;loop<size*snum;loop++)

{

h a[loop]=(float)rand()/ (RAND MAX-1);;
h_b[loop]=(float)rand()/(RAND_MAX—l);;

ream

//put all the works into default stream
//executes all works by using noly one stream
for (loop=0;loop<snum;loop++)

{

}

bytes=sizeof (float) *size;

spl=h a+loop*size; dpl=d a+loop*size;
sp2=h_b+loop*size; dp2=d b+loop*size;
sp3=d_c+loop*size; dp3=h c+loop*size;

//copy data from host to device memory asynchronously
cudaMemcpyAsync (dpl, spl,bytes, cudaMemcpyHostToDevice,0) ;
cudaMemcpyAsync (dp2, sp2,bytes, cudaMemcpyHostToDevice, 0) ;

//execute device kernel asynchronously
kernel<<<blocknum,blocksize,0,0>>>(d a,d b,d c,size);

//copy data from device to host memory asynchronously
cudaMemcpyAsync (dp3, sp3,bytes, cudaMemcpyDeviceToHost,0) ;

//wait until the stream is finished
cudaThreadSynchronize() ;

ream

//put all the works into different asynchronous streams
//each stream only executes three copies and one kernel
for (loop=0;loop<snum;loop++)

{

bytes=sizeof (float) *size;

spl=h a+loop*size; dpl=d a+loop*size;
sp2=h_b+loop*size; dp2=d b+loop*size;
sp3=d_c+loop*size; dp3=h c+loop*size;

//copy data from host to device memory asynchronously
cudaMemcpyAsync (dpl, spl,bytes, cudaMemcpyHostToDevice,stream[loop]) ;
cudaMemcpyAsync (dp2, sp2,bytes, cudaMemcpyHostToDevice,stream[loop]) ;

//execute device kernel asynchronously
kernel<<<blocknum,blocksize,0,stream[loop]>>>(d _a,d b,d c,size);

//copy data from device to host memory asynchronously
cudaMemcpyAsync (dp3, sp3,bytes, cudaMemcpyDeviceToHost, stream[loop]) ;
}

//wait until all stream are finished
cudaThreadSynchronize() ;

ream

//free the memory space which must have been returnedd
//by a previous call to cudaMallocHost or cudaHostAlloc
cudaFreeHost (h_a);
cudaFreeHost (h_b) ;
cudaFreeHost (h_c) ;

//free the device memory space
cudaFree(d_a) ;
cudafFree (d _b) ;
cudaFree(d c);

//free the asynchronous streams
for (loop=0;loop<snum;loop++)
cudaStreamDestroy ([loop]) ;

return O;

ream

__global void vectorAdd(float* da,float* db,float* dc,int size)
{

int loop;
int index;

volatile float ;
volatile float ;

//calculate each thread global index
index=blockIdx.x*blockDim.x+threadIdx.x;

if (index<size)
for (loop=0;loop<iteration;loop++)
{
=da[index] ;
=db [index] ;
dc[index]=templ+temp2;
}

return;

ream

® How about the performance ?

Fermi C2050

Tesla C1060

single stream

64.096382

180.179825

multiple stream

31.996338

166.010757

ream

® Stream controlling

cudaThreadSynchronize ()

called in the end to make sure all streams are finished before
preceding further, it forces the runtime to wait until all device
tasks or commands in all asynchronous streams have completed

cudaStreamSynchronize ()
force the runtime to wait until all preceding device tasks
or host commands in one specific stream have completed

cudaStreamQuery ()
provide applications with a way to know if all preceding
device tasks or host commands in a stream have completed

ream

® Stream controlling

cudaStreamDestrovy ()

wait for all preceding tasks in the give stream to complete before
destroying the stream and returning control to the host thread,
which is blocked until the stream finished all commands or tasks

ream

® Overlap of data transfer and kernel execution
transfer data between host page-locked memory and device
memory and kernel execution can be performed concurrently

host thread host thread

kernel ex ion
ernel executio data transfers between

host and device memory

can be performed
concurrently

device driver device driver

ream

® Overlap of data transfer and kernel execution
transfer data between host page-locked memory and device
memory and kernel execution can be performed concurrently

any application may query the hardware capability by calling
the device manage function and checking the property flag

cudaDeviceProp deviceprop;

//query the device hardwared properties
//the structure records all device properties
cudaGetDeviceProperties (&deviceprop,0) ;

//check the overlapping is available or not
if ('deviceprop.deviceOverlap)
printf (“cudaError:cannot overlap kernel and transfer\n”);

ream

® Concurrent kernel execution
some hardware can execute multiple kernels concurrently

host thread

kernel execution

can be performed
concurrently

device driver

host thread

kernel execution

cannot be performed
concurrently

device driver

ream

® Concurrent kernel execution
some hardware can execute multiple kernels concurrently

any application may query the hardware capability by calling
the device manage function and checking the property flag

cudaDeviceProp deviceprop;

//query the device hardwared properties
//the structure records all device properties
cudaGetDeviceProperties (&deviceprop,0) ;

//check the concurent kernels is available or not
if (!'deviceprop.concurrentKernels)
printf (“cudaError:cannot use concurrent kernels\n”);

ream

® Concurrent kernel execution
some hardware can execute multiple kernels concurrently

any application may query the hardware capability by calling
the device manage function and checking the property flag

the kernels that may use many textures or registers or shared

memory are less likely to execute with other kernels concurrently

ream

® Concurrent data transfer
some devices can perform copy data from page-locked memory
to device memory with copy data from device memory to host
page-locked memory concurrently

. host thread host thread
copy data from device

to page-locked memory copy data from page-

locked to device memory

caandicbpgrésfaratked
cooroeurraatitlyaonNH\WY device

device driver device driver

‘eam

® Streams on the matrix-matrix multiplication

Pd
"I stream 0 stream 0

the runtime provides a ways to closely monitor the device progress
by letting the program record events at any point in the program

cudaEvent_t eventl;
cudaEvent_t event?2;

//create and initialize event
cudaEventCreate (&eventl) ;
cudaEventCreate (&event2) ;

//insert event recorder into stream
cudaEventRecord (eventl,) ;
cudaEventRecord (event2,) ;

//destroy created event recorder
cudaEventDestroy (eventl) ;
cudaEventDestroy (event2) ;

cudaEventSynchronize ()

this function blocks until the event has actually been recorded,
since the event recorder is an asynchronous method

cudaEventQuery ()
provide any applications with a way to know if one specific event

recorder in the stream have completed , which returns cudaSuccess

Multi-GPU
® GPU can not share global memory
- one GPU can not access another GPUs memory directly
- application code is responsible for moving data between GPUs

pr - ?
7 N Z
7
y Z
g7
(AN & |
S il
& A
>3 78
@ 78
j ; r

Multi-GPU

® A host thread can maintain one context at a time
- need as many host threads as GPUs to maintain all device
- multiple host threads can establish context with the same GPU
hardware diver handles time-sharing and resource partitioning

device 0 device 1 device 2

T J (. J T

host thread 0 host tl'lread 1 host thread 2

e

host memory

Multi-GPU

® Device management calls

cudaGetDeviceCount ()

returns the number of devices on the current system with compute
capability greater or equal to 1.0, that are available for execution

cudaSetDevice ()

set the specific device on which the active host thread executes the
device code. If the host thread has already initialized he cuda runtime
by calling non-device management runtime functions, returns error

must be called prior to context creation, fails if the context has already
been established, one can forces the context creation with cudaFree(0)

cudaGetDevice ()

returns the device on which the active host thread executes the code

Multi-GPU

® Device management calls

cudaThreadExit ()

explicitly clean up all runtime-related resource associated with the
calling host thread, any subsequent calls reinitializes the runtime,
this function is implicitly called on the host thread exit

cudaGetDeviceProperties ()
returns the properties of one specific device, this is useful when a
system contains different devices in order to choose best devices

® Reference
- Mark Harris
- Wei-Chao Chen
- Wen-Mei Hwu

