
Best Practice: How to Write Correct CUDA Programs

Philipp Gschwandtner



It’s not all About Computational Speed!

2

 GPUs provide high performance for suitable applications
 7 clusters out of top 10 of Top500 use accelerators (8 out of top 10 of Green500)

 But software and hardware stack are very different compared to CPUs

 Getting the wrong result very fast isn’t very useful!

C/C++ 
+ CUDA nvcc target 

compiler
PTX 

code

CPU 
code

target 
code

RTX 2070



3

 Functional bugs
(in ascending order of difficulty)
 Failure to launch
 Crash
 Hang
 Incorrect result

 Non-functional bugs
 Slow execution 

( performance debugging)

What can go Wrong?

 Imagine everything that can go wrong in a sequential program, and add to 
that two separately acting hardware devices, one with massive parallelism.



4

 Launch operation of a kernel does 
not block host code
 Proper synchronization requires 
cudaDeviceSynchronize()

 Synchronization is not for free
 Performance penalty
 Only synchronize when necessary

// ...
kernel<<<gridDim,blockDim>>>(...);
// kernel might not have
// run or finished yet
cudaDeviceSynchronize();
// kernel definitely has
// finished execution

Kernel Execution is Asynchronous



5

 Multiple Kernels submitted to the 
same stream execute in order
 Stream represents a queue
 Guaranteed without explicit 

synchronization

// ...
kernelA<<<gridDim,blockDim>>>(...);
kernelB<<<gridDim,blockDim>>>(...);
// kernel A/B might not have
// run or finished yet, but B will
// not start before A has finished
cudaDeviceSynchronize();
// both kernels definitely
// have finished execution

Kernel Execution is In-Order



cudaDeviceSynchronize()

6

 Blocks until GPU has finished all tasks launched so far, e.g.
 Kernels
 Asynchronous memcpy operations
 printf() output inside GPU code

 Will return an error if any of the preceding tasks has failed

 Must be issued individually per GPU in multi-GPU setups

 Also available: cudaStreamSynchronize() when using multiple streams



Thread Synchronization

7

 Mainly used in conjunction with shared memory
 Not discussed in detail, to be covered by Lukas later in the course

 Several levels of synchronization, among which block-level synchronization
 By calling __syncthreads() in GPU code
 Acts like a barrier for all threads in the same block
 Must be encountered by all threads of this block
 Has no effect on threads of other blocks of the same grid



8

 __syncthreads() inside 
conditional
 No problem
 But: conditional must evaluate to the 

same value (true/false) for all threads 
of the same block

 Otherwise: undefined behavior

__global__ void kernel(float* data) {
if(data[threadIdx.x] > 10) {
// all threads of this block
// must execute this call
__syncthreads();

}
}

Thread Synchronization: Undefined Behavior



Practical Exercise

9

 Goal: Evaluate correct use of __syncthreads()

 Read the source code of day_2/ho1/synccheck.cu

 Compile and run

 Interpret the result!
 What is the problem?
 How can we fix it?



Return Codes of CUDA API

10

 Always check return code of CUDA calls
 Will tell you if your function call succeeded or failed
 Ask cudaGetErrorString() for a readable message
 Failing function calls might affect subsequent function calls

 Consider what to do in case of failure
 At least tell the user the program failed
 Cleanup resources allocated so far
 …



Common CUDA Idiom

11

#define gpuErrorCheck(ans) { gpuAssert((ans), __FILE__, __LINE__); }

inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) {
if(code != cudaSuccess) {
fprintf(stderr,"assert: %s %s %d\n", cudaGetErrorString(code), file, line);
if(abort) {

exit(code);
}

}
}
// call like this
gpuErrorCheck(cudaMalloc(...)); // if fails, print message and continue
gpuErrorCheck(cudaMalloc(...), true); // if fails, print message and abort



Reasons for Incorrect Results

12

 Specification errors – computation correct but result does not match science
 Validation – go fix your math!

 Implementation errors – computation does not match specification
 Verification – go fix your code!

 Numerical accuracy issues
 Numerical precision (half vs. single vs. double)
 (Non-)Associativity of operations
 IEEE 754 & 80-bit compliance



Precision

13

 GPUs offer choice of floating-point bit width
 Trade-off between speed and precision
 Make sure to compare against same-precision results

 Math library implementations
 CUDA provides own implementation for math functions such as sinf(), cosf(), …
 These differ from e.g. glibc implementations for x86
 Results for same input might differ!
 Fast versions available __sinf(), __cosf(), ...



Practical Exercise

14

 Goal: Test difference in precision between trigonometric implementations

 Read the source code of day_2/ho1/cos.cu

 Compile and run with 5992555 as input (see cos.txt)

 Examine the output



Associativity

15

 Floating-point math is not associative
 almost every operation involves rounding errors of some sort
 (A+B)+C != A+(B+C)

 Not restricted to CUDA
 but inherent part of any parallel computation with floating point math



Sequential Equivalence

16

 strong sequential equivalence
 bitwise identical results to sequential implementation
 potentially big impact on performance (e.g. choice of parallelization strategy)
 requires preserving the order of computations compared to sequential implementation

 weak sequential equivalence
 mathematically equivalent but not bitwise identical
 does not require preserving the order of computations

 Always check your requirements!
 If your algorithm doesn’t require a specific order, why should its implementation?



17

 write clean code that prevents bugs 
or facilitates their detection, e.g.
 use meaningful identifiers
 minimize vertical distance of variable 

declaration, definition & use
 follow the Don’t Repeat Yourself (DRY) 

principle (single component per 
feature)

 Use the toolchain, Luke!
 read & heed compiler warnings
 write and regularly run unit and/or 

integration tests, especially aimed at 
(varying degrees of) parallelism

 use code coverage tests
 use continuous integration
 use source version control

Coding Guidelines



Unit Testing

18

 Structure kernel code in multiple __device__ functions instead of a single 
__global__
 Allows them to be tested individually
 Improves readability

 Declare functions both __device__ and __host__
 Causes nvcc to emit both CPU and GPU code for these functions
 Enables testing on CPU and GPU
 Also may reduce code duplication for CPU+GPU execution paths



Conclusion

19

 Always check return codes of CUDA API calls
 Make it a habit to use a macro definition as discussed

 Do not put more severe constraints on implementation than on algorithm
 If the algorithm doesn’t require double precision numerical accuracy, why use it?
 When porting code from CPU to GPU, consider precision
 Small differences in the result are not necessarily an implementation error

 Watch out for unspecified behavior
 e.g. __syncthreads() in an index-dependent conditional statement

 Adhere to coding guidelines
 Will save you a lot of time and effort down the road



Practical Exercise

20

 Goal: First porting of a CUDA program from scratch

 Examine day_2/ho1/heat_stencil_omp.c, compile and run (Makefile is 
provided)
 Naïve 2D heat stencil implementation (mathematically inaccurate)

 Port to CUDA using the knowledge you gained so far

 Output of both programs should be the same



Image Sources

21

 Yoda: https://www.deviantart.com/biggiepoppa/art/Master-Yoda-Star-Wars-395511111

https://www.deviantart.com/biggiepoppa/art/Master-Yoda-Star-Wars-395511111

	Best Practice: How to Write Correct CUDA Programs�
	It’s not all About Computational Speed!
	What can go Wrong?
	Kernel Execution is Asynchronous
	Kernel Execution is In-Order
	cudaDeviceSynchronize()
	Thread Synchronization
	Thread Synchronization: Undefined Behavior
	Practical Exercise
	Return Codes of CUDA API
	Common CUDA Idiom
	Reasons for Incorrect Results
	Precision
	Practical Exercise
	Associativity
	Sequential Equivalence
	Coding Guidelines
	Unit Testing
	Conclusion
	Practical Exercise
	Image Sources

