
CUDA C/C++ 
Streams and Concurrency

Steve Rennich
NVIDIA



Concurrency

The ability to perform multiple CUDA operations simultaneously
(beyond multi-threaded parallelism)

CUDA Kernel <<<>>>

cudaMemcpyAsync (HostToDevice)

cudaMemcpyAsync (DeviceToHost)

Operations on the CPU

Fermi architecture can simultaneously support
(compute capability 2.0+)

Up to 16 CUDA kernels on GPU

2 cudaMemcpyAsyncs (must be in different directions)

Computation on the CPU



Streams

Stream

A sequence of operations that execute in issue-order on the GPU

Programming model used to effect concurrency

CUDA operations in different streams may run concurrently

CUDA operations from different streams may be interleaved



K1

K2

K3

K4

Concurrency Example

Serial

Concurrent – overlap kernel and D2H copy

cudaMemcpyAsync(H2D) cudaMemcpyAsync(D2H)Kernel<<<>>>

time

cudaMemcpyAsync(H2D) DH1

DH2

DH3

DH4

time

1.33x 
performance 
improvement

streams



HD2

K2

HD3

DH2

Amount of Concurrency

Serial (1x)

2-way concurrency (up to 2x)

3-way concurrency (up to 3x)

4-way concurrency (3x+)

4+ way concurrency

Kernel <<< >>>cudaMemcpyAsync(H2D) cudaMemcpyAsync(D2H)

K1

K2

K3

K4

cudaMemcpyAsync(H2D) DH1

DH3

DH4

K1

K3

K4

HD1 DH1

DH2

DH3

DH4

HD2

HD4

K1

K2

K3

HD1 DH1

DH2

DH3

K4 on CPU

HD3

K1.1 K1.2 K1.3HD1

DH3

DH2

DH1

K7 on CPU

HD2

HD3

K2.1 K2.2 K2.3

K3.1 K3.2 K3.3

DH4HD4 K4.1 K4.2 K4.3

DH5HD5 K5.1 K5.2 K5.3

DH6HD6 K6.1 K6.2 K6.3

K4 on CPU



Example – Tiled DGEMM

CPU (4core Westmere x5670 @2.93 GHz, MKL)

43 Gflops

GPU (C2070) 
Serial : 125 Gflops (2.9x)

2-way : 177 Gflops (4.1x)

3-way : 262 Gfllops (6.1x)

GPU + CPU
4-way con.: 282 Gflops (6.6x)

Up to 330 Gflops for larger rank

Obtain maximum performance by leveraging concurrency

All communication hidden – effectively removes device memory size limitation 

default stream
 stream 1
 stream 2
 stream 3
 stream 4

CPU

Nvidia Visual Profiler (nvvp)

DGEMM: m=n=8192, k=288



Default Stream (aka Stream '0')

Stream used when no stream is specified

Completely synchronous w.r.t. host and device
As if cudaDeviceSynchronize() inserted before and after every CUDA operation

Exceptions – asynchronous w.r.t. host
Kernel launches in the default stream

cudaMemcpy*Async

cudaMemset*Async

cudaMemcpy within the same device 

H2D cudaMemcpy of 64kB or less



Requirements for Concurrency

CUDA operations must be in different, non-0, streams

cudaMemcpyAsync with host from 'pinned' memory
Page-locked memory

Allocated using cudaMallocHost() or cudaHostAlloc()

 Sufficient resources must be available
cudaMemcpyAsyncs in different directions

Device resources (SMEM, registers, blocks, etc.)



Simple Example: Synchronous

cudaMalloc ( &dev1, size ) ;
double* host1 = (double*) malloc ( &host1, size ) ;   
… 

cudaMemcpy ( dev1, host1, size, H2D ) ;
kernel2 <<< grid, block, 0 >>> ( …, dev2, …  ) ;
kernel3 <<< grid, block, 0 >>> ( …, dev3, …  ) ;
cudaMemcpy  ( host4, dev4, size, D2H ) ;
...

completely 
synchronous

All CUDA operations in the default stream are synchronous



Simple Example: Asynchronous, No Streams

cudaMalloc ( &dev1, size ) ;
double* host1 = (double*) malloc ( &host1, size ) ;   
… 

cudaMemcpy ( dev1, host1, size, H2D ) ;
kernel2 <<< grid, block >>> ( …, dev2, …  ) ;
some_CPU_method ();
kernel3 <<< grid, block >>> ( …, dev3, …  ) ;
cudaMemcpy ( host4, dev4, size, D2H ) ;
...

potentially
overlapped

GPU kernels are asynchronous with host by default



Simple Example: Asynchronous with Streams

cudaStream_t stream1, stream2, stream3, stream4 ;
cudaStreamCreate ( &stream1) ;
...
cudaMalloc ( &dev1, size ) ;
cudaMallocHost ( &host1, size ) ;                                                         // pinned memory required on host
… 
cudaMemcpyAsync ( dev1, host1, size, H2D, stream1 ) ;
kernel2 <<< grid, block, 0, stream2 >>> ( …, dev2, …  ) ;
kernel3 <<< grid, block, 0, stream3 >>> ( …, dev3, …  ) ;
cudaMemcpyAsync ( host4, dev4, size, D2H, stream4 ) ;
some_CPU_method ();
...

potentially
overlapped

Fully asynchronous / concurrent  

Data used by concurrent operations should be independent



Explicit Synchronization

Synchronize everything
cudaDeviceSynchronize ()

Blocks host until all issued CUDA calls are complete

Synchronize w.r.t. a specific stream
cudaStreamSynchronize ( streamid )

Blocks host until all CUDA calls in streamid are complete

Synchronize using Events
Create specific 'Events', within streams, to use for synchronization

cudaEventRecord ( event, streamid )

cudaEventSynchronize ( event )

cudaStreamWaitEvent ( stream, event )

cudaEventQuery ( event )



Resolve using an event

Explicit Synchronization Example

{
       cudaEvent_t event;
       cudaEventCreate (&event);        // create event

       cudaMemcpyAsync ( d_in, in, size, H2D, stream1 );        // 1) H2D copy of new input
       cudaEventRecord (event, stream1);        // record event

       cudaMemcpyAsync ( out, d_out, size, D2H, stream2 );        // 2) D2H copy of previous result

       cudaStreamWaitEvent ( stream2, event );        // wait for event in stream1 
       kernel <<< , , , stream2 >>> ( d_in, d_out );        // 3) must wait for 1 and 2

       asynchronousCPUmethod ( … )        // Async GPU method
}



Implicit Synchronization

These operations implicitly synchronize all other CUDA operations
Page-locked memory allocation

cudaMallocHost

cudaHostAlloc

Device memory allocation
cudaMalloc

Non-Async version of memory operations
cudaMemcpy*   (no Async suffix)

cudaMemset*    (no Async suffix)

Change to L1/shared memory configuration
cudaDeviceSetCacheConfig

 



Stream Scheduling

Fermi hardware has 3 queues
1 Compute Engine queue

2 Copy Engine queues – one for H2D and one for D2H

CUDA operations are dispatched to HW in the sequence they were issued
Placed in the relevant queue

Stream dependencies between engine queues are maintained, but lost within an engine queue

A CUDA operation is dispatched from the engine queue if:
Preceding calls in the same stream have completed,

Preceding calls in the same queue have been dispatched, and

Resources are available

CUDA kernels may be executed concurrently if they are in different streams
Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have been 
scheduled and there still are SM resources available

Note a blocked operation blocks all other operations in the queue, even in other streams



Example – Blocked Queue

Two streams, stream 1 is issued first
Stream 1 : HDa1, HDb1, K1, DH1 (issued first)

Stream 2 : DH2  (completely independent of stream 1)

K1

DH1

DH2

program H2D queue compute queue D2H queue

HDa1 K1 DH1

DH2

is
su

e
 o

rd
er

tim
e

HDa1

K1

DH1

DH2

execution

Signals between queues 
enforce synchronization

CUDA operations 
get added to queues 

in issue order

within queues, stream dependencies are lost

DH1 blocks 
completely  

independent DH2

runtime = 5

HDb1

HDa1

HDb1
HDb1



Example – Blocked Queue

Two streams, stream 2 is issued first
Stream 1 : HDa1, HDb1, K1, DH1

Stream 2 : DH2  (issued first)

K1

DH1

DH2

program H2D queue compute queue D2H queue

HDa1 K1

DH1

DH2

is
su

e
 o

rd
er

tim
e

HDa1

K1

DH1

DH2

execution

Signals between queues 
enforce synchronization

CUDA operations 
get added to queues 

in issue order

within queues, stream dependencies are lost

runtime = 4

HDb1

HDa1
HDb1

HDb1

issue order matters!

concurrent



Example -  Blocked Kernel

Two streams – just issuing CUDA kernels
Stream 1 : Ka1, Kb1

Stream 2 : Ka2, Kb2

Kernels are similar size, fill ½ of the SM resources

Issue depth first Issue breadth first

Kb2

Kb1

Ka2

Ka1

compute queue

is
su

e
 o

rd
er

tim
e

Ka1

Kb1

Kb2

Ka2

execution

Kb2

Ka2

Kb1

Ka1

compute queue

is
su

e
 o

rd
er

tim
e

Ka1

Kb1 Kb2

Ka2

execution

issue order matters!

runtime = 2runtime = 3



Kb1

Kd2

Example -  Optimal Concurrency can Depend on 
Kernel Execution Time

Two streams – just issuing CUDA kernels – but kernels are different 'sizes'
Stream 1 : Ka1 {2}, Kb1 {1}

Stream 2 : Kc2 {1}, Kd2 {2}

Kernels fill ½ of the SM resources

Depth first

issue order matters!
execution time matters!

Kd2

Kb1

Kc2

Ka1

compute 
queue

is
su

e
 o

rd
er

tim
e

Ka1

execution

Kd2

Kb1 Kc2

Kd2

Kc2

Kb1

Ka1

compute 
queue

is
su

e
 o

rd
er

tim
e

Ka1

execution

Kd2Kb1

Kc2

Kc2

Ka1

compute 
queue

is
su

e
 o

rd
er

tim
e

Ka1

execution

Kd2Kb1

Kc2

Breadth first Custom

runtime = 5 runtime = 4 runtime = 3



Concurrent Kernel Scheduling

Concurrent kernel scheduling is special

Normally, a signal is inserted into the queues, after the operation, to 
launch the next operation in the same stream

For the compute engine queue, to enable concurrent kernels, when 
compute kernels are issued sequentially, this signal is delayed until 
after the last sequential compute kernel

In some situations this delay of signals can block other queues



Example – Concurrent Kernels and Blocking

Three streams, each performing (HD, K, DH)

Breadth first
Sequentially issued kernels delay signals and block cudaMemcpy(D2H)

HD1

program H2D queue compute queue D2H queue

HD1 K1 DH1

DH2

is
su

e
 o

rd
er

tim
e

execution

Signals between sequentially 
issued kernels are delayed

HD2
HD3
K1
K2
K3

DH1
DH2
DH3

HD1HD2

HD3

K2

K3 DH3

HD1
K1

DH1

DH2

HD2
HD3 K2

K3

DH3

blocking

runtime = 7



Example – Concurrent Kernels and Blocking

Three streams, each performing (HD, K, DH)

Depth first 
'usually' best for Fermi

HD1

program H2D queue compute queue D2H queue

HD1 K1 DH1

DH2

is
su

e
 o

rd
er

tim
e

execution

HD2

HD3

K1

K2

K3

DH1

DH2

DH3

HD1HD2

HD3

K2

K3 DH3

HD1
K1

DH1

DH2

HD2
HD3 K2

K3
DH3

Kernels no longer 
issued sequentially

runtime = 5



Previous Architectures

Compute Capability 1.0+
Support for GPU / CPU concurrency

Compute Capability 1.1+ ( i.e. C1060 )
Adds support for asynchronous memcopies (single engine )

( some exceptions – check using asyncEngineCount device property )

Compute Capability 2.0+ ( i.e. C2050 )
Add support for concurrent GPU kernels

( some exceptions – check using concurrentKernels device property )

Adds second copy engine to support bidirectional memcopies
( some exceptions – check using asyncEngineCount device property )



Additional Details

It is difficult to get more than 4 kernels to run concurrently

Concurrency can be disabled with environment variable
CUDA_LAUNCH_BLOCKING

cudaStreamQuery can be used to separate sequential kernels and prevent delaying signals

Kernels using more than 8 textures cannot run concurrently

Switching L1/Shared configuration will break concurrency

To run concurrently, CUDA operations must have no more than 62 intervening CUDA operations 
That is, in 'issue order' they must not be separated by more than 62 other issues

Further operations are serialized

cudaEvent_t is useful for timing, but for performance use
cudaEventCreateWithFlags ( &event, cudaEventDisableTiming )



Concurrency Guidelines

Code to programming model – Streams
Future devices will continually improve HW representation of streams model

Pay attention to issue order
Can make a difference

Pay attention to resources and operations which can break concurrency
Anything in the default stream

Events & synchronization

Stream queries

L1/Shared configuration changes

8+ textures

Use tools (Visual Profiler, Parallel Ensight) to visualize concurrency
(but these don't currently show concurrent kernels)



Thank
You



Questions

1. Verify that cudaMemcpyAsync() followed by Kernel<<<>>> in Stream-
0, the memcpy will block the kernel, but neither will block the host.

2. Do the following operations (or similar) contribute to the 64 'out-of-
issue-order' limit?

CudaStreamQuery

cudaWaitEvent 

3. I understand that the 'query' operations cudaStraemQuery() can be 
placed in either the engine or the copy queues, that which queue any 
query actually goes in is difficult (?) to determine, and that this can 
result in some blocking.    


