Advanced
Research
Computing

CUDA Optimizations

Advanced Research Computing
April 1, 2016

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

General Assumptions

*General working knowledge of CUDA
*\Want kernels to perform better

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

it Refresher - CPU vs GPU

Computing

Control ALU ALU m [T T T T TTTI1T]

CPU GPU

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Programmer is in
charge of managing
cache and locality

www.arc.vt.edu

(per block) (per block)
Registers Registers Registers Registers
(per thread) (per thread) {per thread) {per thread)
Thread (0, 0) || Thread (0, 1)|| || Thread (0, 0) || Thread (0, 1)
¢ FYYY ¢ AA ¢ A A ¢ A A
Local Local Local Local
memory memory memory memory
(per thread) (per thread) (per thread) (per thread)
Constant
cache
Host Texture
oA
(PC) cache
Y v Y Y
Global
memory

Grid

Refresher - Mlemory

Multiprocessor
_--’A"‘“-

—

Block (0, 0)

Block (0, 1)

Shared memory

Shared memory

Advanced
Research
Computing

Profiling

*Before optimizing, make sure you are spending effort in
correct location

*Nvidia Visual Profiler is run with nvvp

*This is a fantastic tool for optimizing performance
‘Demo

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing &8

Global Memory First

-Before looking at instructions/Math, get the global
memory accesses correct

Comment out any logic in the program and make sure
the memory accesses are coalesced and the throughput
IS where you expect

*This class focuses on optimizations after that point, but
they won’t be helpful if the memory access is your
bottleneck

www.arc.vt.edu @ VirginiaTech

Invent the Future®

e ¥

Advanced
Research
Computing

Occupancy

*Occupancy refers to the utilization of the CUDA cores.
*Trying achieve 100% occupancy is a good first goal, but
IS not always the best. See website in References.
*Look at occupancy spreadsheet from Nvidia site.

www.arc.vt.edu @ VirginiaTech

Invent the Future®

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Thread 2

Thread 2

Thrazd %

Thrazd F

Thread 5

Thresd @

Thraad 10

Thraad 11

Thread 12

Thread 13

Thread & .

Thread 14

Thread 15

Bank 11

Bank 13

Bank 13

™= Bank 14

Bank 15

Shared Memory Bank Conflicts

Shared memory is divided into banks to
allow each thread in a wrap access
simultaneously. Each bank can service
only one request at a time. The shared
memory is interleaved by 32 bits or one
float data type. The total number of
banks is fixed at 32 for Compute 2.0
devices and later.

T VirginiaTech

www.arc.vt.edu

Invent the Future®

Advanced
Research
Computing &8

Shared.Memory Bank Conflicts

Reading global memory into shared is a common task. The
following may seem like a good way when thinking about CPU

thread locality caching.
int tid = threadIdx.x;

shared[2*tid] = global[2*tid];
shared[2*tid + 1] = global[2*tid + 1];

The following is the more correct way considering banking issues

and coalescing:

shared[tid] = global[tid];
shared[tid + blockDim.x] = global[tid + blockDim.x];

T VirginiaTech

www.a rC'Vt' ed u Invent the Future®

Advanced
Research
Computing &8

Shared.Memory Bank Conflicts

Processing a 2D matrix with every thread working on a row

__shared __ int shared[TILE WIDHT][TILE HEIGHT]; _ shared__int shared[TILE WIDHT][TILE_HEIGHT + 1]

eoe liks 1 | | o 0
eoe |ife 2 — 1
see 3 e, e
see 19 4 eee 3
cee = oo 4
s 6 | ese 5
eee 7 [b 6
see 8] P B
][I S 15

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing &8

Registers vs Shared Memory

e |n compute devices prior to 2.0, registers were not much
faster than shared memory. The documentation
suggests just using shared memory

e |In compute devices 2.0 +, the performance gap
between registers and shared memory has increased
significantly.

e To get the theoretical FLOPS of a device, values must
be in registers.

T VirginiaTech

www.a rC'Vt' ed u Invent the Future®

e ¥

Advanced
Research
Computing &8

Skip—syncthreads()

e All threads in a warp operate together. If you are only
concerned with synchronizing the threads within a warp
e The is useful in reduction cases; see below:
__device _ void warpReduce(volatile int* sdata, int tid) {
sdata[tid] += sdata[tid + 32];
sdataltid] += sdata[tid + 16];
sdataltid] += sdataltid + 8];
sdataltid] += sdataltid + 4],
sdata[tid] += sdata[tid + 2];
sdataltid] += sdataltid + 1];

}

NOTE - the warp size may change in future devices
www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

£0Ed Shuffle.

e Only available in Compute 3.0 + devices

e 3.0 devices have twice the shared memory bandwidth but 6x the
number of CUDA cores

e Allows threads in a warp to share data faster than shared memory

float __ shfl(float var, // Variable you want to read from source

thread
int srcLane, /I lanelD of the source thread
int width=warpSize // Division of warp into seaments of size
__shfl({var,1)

§ VirginiaTech

Invent the Future®

www.arc.vt.edu

Advanced
Research
Computing &8

Reduce with Shuffle

1
M -"'rl‘z___'l'-"ﬁ]h‘f_-]-_d'::"l.-'l.’]”i{‘-,."‘.r_j’.}

222

/H//- v+=_shfl down(v,2)
4 | 4

/ v+= shfl down(v,1)
8

All threads will be shifting values even though they are
not needed in the reduction. Only needed shifts shown.

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing &8

Recalculate vs Lookup Table
When optimizing CPU code, lookup tables are common.
For example, if you only need 8192 distinct values of sine &
cosine, a lookup table is generally faster. Lookup tables
exploit the CPU cache hierarchy. But on the GPU there is
little cache and lots of compute.

Example:
Recalculating the window for a triangle filter is faster than
reading from memory
for (INT32 j = 0; j < filterLen; j++) {

INT32 scalel = ((j < (filterLen /2))? (j+ 1) :
(filterLen -)));

sum += smemjtid + j] * (FLOAT32)scalel;

}

www.arc.vt.edu @ VirginiaTech

Invent the Future®

e ¥

Advanced
Research
Computing

Templates

[]

Branching is expensive. Templates can be used to make code
more general while removing unneeded branching

Template <unsigned int blockSize>
__device _ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdataltid] += sdata[tid + 32];
if (blockSize >= 32) sdataltid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdataltid + 8];
If (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}

warpReduce<blockSize>(sdata, tid);

Note all items in red are evaluated at compile time

www.arc.vt.edu @ VirginiaTech

Invent the Future®

e ¥

Advanced
Research

il Instruction Level Parallelism

e The scheduler can issue multiple instructions if they are
iIndependent. This is another way to hide memory
latency.

e Compute devices 3.0 + require ILP to get theoretical
FLOPS. Older devices still benefit.

for(inti=0;i <N _ITERATIONS; i++)
{

a=a*b+c;

d=d*b+c;
]

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

Research DeVice Ca”baCkS

Computing

e Newin CUDAG.5
e Callback routines can be specified for loading and
storing data during FFT operations.

Before CUDA 6.5: 3 kernels, 3 memory roundtrips

Bhit fixed to
1Zhit flpat
COIVErSion
With CUDA 6.5: 1 kernel, 1 memory roundtrip

Shat foipd (o
12b6il Noal
CEIETSI0N

1

Load Callback Stare Callback

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

References

e http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-
memory-in-cuda.html

e http://developer.download.nvidia.com/assets/cudalfiles/reduction.pdf

e http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

e http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-
custom-data-processing/

e http://acceleware.com/blog/keplers-shuffle-instruction

e http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

www.arc.vt.edu @ VirginiaTech

Invent the Future®

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://acceleware.com/blog/keplers-shuffle-instruction
http://acceleware.com/blog/keplers-shuffle-instruction
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

e ¥

Advanced
Research

il Instruction Level Parallelism

e The scheduler can issue multiple instructions if they are
iIndependent. This is another way to hide memory
latency.

e Compute devices 3.0 + require ILP to get theoretical
FLOPS. Older devices still benefit.

for(inti=0;i <N _ITERATIONS; i++)
{

a=a*b+c;

d=d*b+c;
]

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Questions:

TAKE THE NLI SURVEY

www.arc.vt.edu @ VirginiaTech

Invent the Future®

