

•General working knowledge of CUDA
•Want kernels to perform better

Programmer is in
charge of managing
cache and locality

•Before optimizing, make sure you are spending effort in
correct location
•Nvidia Visual Profiler is run with nvvp
•This is a fantastic tool for optimizing performance
•Demo

•Before looking at instructions/Math, get the global
memory accesses correct
•Comment out any logic in the program and make sure
the memory accesses are coalesced and the throughput
is where you expect
•This class focuses on optimizations after that point, but
they won’t be helpful if the memory access is your
bottleneck

•Occupancy refers to the utilization of the CUDA cores.
•Trying achieve 100% occupancy is a good first goal, but
is not always the best. See website in References.
•Look at occupancy spreadsheet from Nvidia site.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Shared memory is divided into banks to
allow each thread in a wrap access
simultaneously. Each bank can service
only one request at a time. The shared
memory is interleaved by 32 bits or one
float data type. The total number of
banks is fixed at 32 for Compute 2.0
devices and later.

Reading global memory into shared is a common task. The

following may seem like a good way when thinking about CPU

thread locality caching.

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid + 1] = global[2*tid + 1];

The following is the more correct way considering banking issues

and coalescing:

shared[tid] = global[tid];

shared[tid + blockDim.x] = global[tid + blockDim.x];

Processing a 2D matrix with every thread working on a row
__shared__ int shared[TILE_WIDHT][TILE_HEIGHT] ; __shared__ int shared[TILE_WIDHT][TILE_HEIGHT + 1]

● In compute devices prior to 2.0, registers were not much
faster than shared memory. The documentation
suggests just using shared memory

● In compute devices 2.0 +, the performance gap
between registers and shared memory has increased
significantly.

● To get the theoretical FLOPS of a device, values must
be in registers.

● All threads in a warp operate together. If you are only
concerned with synchronizing the threads within a warp

● The is useful in reduction cases; see below:
__device__ void warpReduce(volatile int* sdata, int tid) {

sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];

}

NOTE - the warp size may change in future devices

● Only available in Compute 3.0 + devices
● 3.0 devices have twice the shared memory bandwidth but 6x the

number of CUDA cores
● Allows threads in a warp to share data faster than shared memory

float __shfl(float var, // Variable you want to read from source
thread
 int srcLane, // laneID of the source thread
 int width=warpSize // Division of warp into segments of size
width
);

All threads will be shifting values even though they are
not needed in the reduction. Only needed shifts shown.

When optimizing CPU code, lookup tables are common.
For example, if you only need 8192 distinct values of sine &
cosine, a lookup table is generally faster. Lookup tables
exploit the CPU cache hierarchy. But on the GPU there is
little cache and lots of compute.

Example:
Recalculating the window for a triangle filter is faster than
reading from memory
for (INT32 j = 0; j < filterLen; j++) {
 INT32 scaleI = ((j < (filterLen / 2)) ? (j + 1) :
(filterLen - j));
 sum += smem[tid + j] * (FLOAT32)scaleI;
}

Branching is expensive. Templates can be used to make code
more general while removing unneeded branching

Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
}
warpReduce<blockSize>(sdata, tid);

Note all items in red are evaluated at compile time

● The scheduler can issue multiple instructions if they are
independent. This is another way to hide memory
latency.

● Compute devices 3.0 + require ILP to get theoretical
FLOPS. Older devices still benefit.

 for(int i = 0; i < N_ITERATIONS; i++)
 {
 a = a * b + c;
 d = d * b + c;
 }

● New in CUDA 6.5
● Callback routines can be specified for loading and

storing data during FFT operations.

● http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-
memory-in-cuda.html

● http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
● http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
● http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-

custom-data-processing/
● http://acceleware.com/blog/keplers-shuffle-instruction
● http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-use-cufft-callbacks-custom-data-processing/
http://acceleware.com/blog/keplers-shuffle-instruction
http://acceleware.com/blog/keplers-shuffle-instruction
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

● The scheduler can issue multiple instructions if they are
independent. This is another way to hide memory
latency.

● Compute devices 3.0 + require ILP to get theoretical
FLOPS. Older devices still benefit.

 for(int i = 0; i < N_ITERATIONS; i++)
 {
 a = a * b + c;
 d = d * b + c;
 }

