CSCI-GA.3033-012
Graphics Processing Units (GPUs):
Architecture and Programming
Lecture 5: CUDA Threads

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Software <-> Hardware

* From a programmer’s perspective:
— Blocks
— Kernel
— Threads
— Grid
* Hardware Implementation:
— SMs
— SPs (per SM)
— Warps

Some Restrictions First

All threads in a grid execute the same kernel
function

A grid is organized as a 2D array of blocks
(gridDim.x and gridDim.y)

Each block is organized as 3D array of threads
(blockDim.x, blockDim.y, and blockDim.z)

Once a kernel is launched, its dimensions cannot
change.

All blocks in a grid have the same dimension
The total size of a block is limited to 512 threads

Once assighed to an SM, the block must execute in
its entirety by the SM

Courtesy: NDVIA

Thread block 0 Thread block 1 Thread block N - 1

ol 1] 2]ala]s] Im1 012345---|M—1I ol 1|2 3] als| - |u1

threadIdx.x

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

int threadID = blockIdx.x *
blockDim.x + threadIdx.x;

float x = input|[threadID]:;
float ¥ = funcix);
output [threadID] = ¥:

float x input [threadID];

float ¥ func(x);
output [threadID] = ¥;

float x = input[threadlD];
float ¥y = funcix);
output [threadID] = ¥;

* Thread ID is unique within a block
* Using block ID and thread ID we can make unique ID for

each thread per kernel

Revisiting Matrix Multiplication

J/Matrixmultiplication kernel - thread specification

__globhal__ void MatrixMulKernel (float* Md, float* Nd, float® Pd, int Width}
|

f7F70 Thread 1D
int tx = threadldx.x:
int ty =threadldx.y:

/f Pvalue stores the Pd element that is cemputed by the thread
float Pvalue =10

far (int k=0« k <Width: ++k)

| This is what we did
float Mdelement = Md[ty * Width + k1]; before...
float Ndelement = Nd[k * Width + tTu]: What is the main

Pyvalue += Mdelement * Ndelement;

shortcoming??

S/ Write the matrix to device memory each thread writes one element
Pd[ty * Width + tx] =Pvalue;

Revisiting Matrix Multiplication

J/Matrixmultiplication kernel - thread specification
__globhal__ void MatrixMulKernel (float* Md, float* Nd, float® Pd, int Width}
{

{20 Thread 1D

int tx=threadldx.x:

int ty =threadldx.y:

/f Pvalue stores the Pd element that is cemputed by the thread
float Pvalue =10

far (int k=0« k <Width: ++k)
! Can only handle 16
elements in each

float Mdelement = Md[ty * Width + k]
float Ndelement = Nd[k * Width + tTu]: . . |
Pyvalue += Mdelement * Ndelement; dimension!

S/ Write the matrix to device memory each thread writes one element

Pd[ty * Width + tx] =Pvalue:
| [ty ! x vetue Reason:

We used 1 block,
and a block is limited to 512 threads

Revisiting
Matrix Multiplication

* Break-up Pd into ftiles

 Each block calculates
one tile

— Each thread calculates
one element

— Block size equals tile size

Revisiting
Matrix Multiplication

Block(0,0) Block(1,0)

\ /

Poo | Pro| P2o | Pso| TILE WIDTH =2

Block(0,1) Block(1,1)

A

A

\ 4

Revisiting Matrix Multiplication

/{ Setup the execution configuration
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<£<dimGrid, dimBlock>>>(Md, Nd, Pd, Width):

__global__voidMatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row index of the Pd element and M

int Row=blockIdx.y*TILE_WIDTH + threadldx.y;

// Calculate the column idenx of Pd and N

int Col =blockIdx.x*TILE_WIDTH + threadldx.x;

float Pvalue=20;
// each thread computes one element of the block sub-matrix
for (int k=0; k < Width; ++k)

Pvalue +=Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue:

!
|

Synchronization

__syncthreads()

» called by a kernel function

 The thread that makes the call will be
held at the calling location until every
thread in the block reaches the location

« Beware of if-then-else

* Threads in different blocks cannot
synchronize -> CUDA runtime system
can execute blocks in any order

time

DeV|ce Kernel grid

Each block can execute in any order relative to other blocks.

v_

The ability to execute the same application code on hardware
with different number of execution resources is called
transparent scalability

Thread Assignment

Threads assigned to execution resources on a
block-by-block basis.

CUDA runtime automatically reduces number of
blocks assigned to each SM until resource usage is
under limit.

Runtime system:

— maintains a list of blocks that need to execute

— assigns new blocks to SM as they compute previously
assighed blocks

Example of SM resources
— computational units

— number of threads that can be simultaneously tracked
and scheduled.

] |
I SMO SM1 | H

t0t1t2 .. tm | v, 07 ot t2 L tm
NNNNNNNNNY ® ** NNNNNNNNNN
> | Blocks

|| [S5 . . S J—'
- EHE EE

. HE EA
T T

Blocks °

GT200 can accommodate 8 blocks/SM and up to 1024 threads can be
assigned to an SM.
What are our choices for number of blocks and number of threads/block?

Thread scheduling is an implementation concept.

L2 Cache

@oeyaju| 1SoH peayiebn

Dispateh Part
Operand Colleciar

CUDA Core

FERMI

Warps

* Once a block is assigned to an SM, it is
divided into units called warps.

— Thread IDs within a warp are consecutive
and increasing

— Warp O starts with Thread ID O
» Warp size is implementation specific.

» Warp is unit of thread scheduling in
SMs

Warps

* Partitioning is always the same

* DO NOT rely on any ordering between
warps

* Each warp is executed ina SIMD
fashion (i.e. all threads within a warp
must execute the same instruction at
any given time).

— Problem: branch divergence

Branch Divergence in Warps

e occurs when threads

inside warps branches
to different execution ERRRRR

mE) | |)

paths ma)]
Tj 1

SRRRRRY

50% performance loss

Example of underutilization

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Computational Resource Utilization

Good
w32
B 24 to31
Hm16to 23
m8to 15
mlto7
mO
« . Bad
& Q} T & S
2 & & be’é &8 &®<° & ‘+§° b\’é oo
A £ AN U &
N Q @fb AN

32 warps, 32 threads per warp, round-robin scheduling

Dealing With Branch Divergence

« A common case: avoid divergence when branch
condition is a function of thread ID

— Example with divergence:
* If (threadIdx.x > 2) { }
g‘lhiskcr'ea’res two different control paths for threads in a
oc
— Example without divergence:
* If (threadIdx.x / WARP SIZE > 2) { }
Also creates two different control paths for threads in a

block
Branch granularity is a whole multiple of warp size; all
threads in any given warp follow the same path

« There is a big body of research for dealing with
branch divergence

Dealing With Branch Divergence

1if

Predication

<pl> IDR rl1,r2,0

e If plis TRUE, instruction executes normally
e |f plis FALSE, instruction treated as NOP

(x == 10)

C

c + 1;

LDR r5,

—

<pl>
<pl>
<pl>

pl <- r5 eq 10
LDR rl <- C
ADD rl1l, rl, 1
STR rl -> C

Example of Predication

Latency Tolerance

When an instruction executed by the threads in
a warp must wait for the result of a previously
initiated long-latency operation, the warp is not
selected for execution -> latency hiding

Priority mechanism used to schedule ready
warps

Scheduling does not introduce idle time -> zero-
overhead thread scheduling

Scheduling is used for tolerating long-latency
operations, such as:

— pipelined floating-point arithmetic

— branch instructions

-Block 1 Warps —Block 2 Warps
l |
t0 t1 t2 ... t31 t0tlt2 .. 131

ANONNNNNNNNN ANNONNNNNNNN

Streamini Multiprocessor

Instruction Fetch/Dispatch

This ability of tolerating long-latency operation is the main reason why GPUs
do not dedicate as much chip area to cache memory and branch prediction mechanisms
as traditional CPUs.

time

v

Exercise: Suppose 4 clock cycles are needed to dispatch the same instruction
for all threads in a Warp in G80. If there is one global memory access every 4
instructions, how many warps are needed to fully tolerate 200-cycle memory latency?

Exercise

The 6T200 has the following specs
(maximum numbers):

« 512 threads/block
« 1024 threads/SM
« 8 blocks/SM

» 32 threads/warp

What is the best configuration for thread
blocks to implement matrix multiplications

8x8, 16x16, or 32x32?

Myths About CUDA

GPUs have very wide (1000s) SIMD machines
— No, a CUDA Warp is only 32 threads

Branching is not possible on GPUs
— Incorrect.

GPUs are power-inefficient
— Nope, performance per watt is quite good

CUDA is only for C or C++ programmers

— Not true, there are third party wrappers for Java,
Python, and more

&80, 6T200, and Fermi
ev GO G0 GFD

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops / clock 512 FMA ops /clock

Special Function Units / SM 2 p. |

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) Configurable 48 KB
or 16 KB
L1 Cache (per SM) Configurable 16 KB
or 48 KB
L2 Cache 768 KB

ECC Memory Support Yes

Concurrent Kernels Up to 16

Load/Store Address Width 64-bit

Conclusion

 We must be aware of the restrictions
imposed by hardware:
— threads/SM
— blocks/SM
— threads/blocks
— threads/warps

* The only safe way to synchronize threads
in different blocks is to terminate the
kernel and start a new kernel for the
activities after the synchronization point

