<3

NVIDIA

CUDA C++ BASICS

NVIDIA Corporation

(\)
<N

<\
‘\\\ \'y \

——

,f/

WHAT IS CUDA?

> CUDA Architecture
» Expose GPU parallelism for general-purpose computing
~ Expose/Enable performance

> CUDA C++
> Based on industry-standard C++
» Set of extensions to enable heterogeneous programming
» Straightforward APIs to manage devices, memory etc.

> This session introduces CUDA C++

» Other languages/bindings available: Fortran, Python, Matlab, etc.

2 <ANVIDIA.

INTRODUCTION TO CUDA C++

> What will you learn in this session?
> Start with vector addition
> Write and launch CUDA C++ kernels
> Manage GPU memory

> (Manage communication and synchronization)-> next session

> (Some knowledge of C or C++ programming is assumed.)

3 <ANVIDIA.

HETEROGENEOUS COMPUTING

The CPU and its memory (host memory)

The GPU and its memory (device memory)

® mm!.‘..“%

4 <ANVIDIA.

Compute-Intensive Functions

GPU Use GPU to Parallelize

Y o o e
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
00000000 oooooooo
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE

DEEEEEEE IEEEEEEE
DENENEEEE INEEEEEE
| o o o o T o o o s)
DENDEEEE INEEEEEE
DENEEEEE I NEREEEE
DEEEEEEE IEEEEEEE
DENENEEE INEEEEEE

<=

PORTING TO CUDA

Application Code

~
4

Il

=

Rest of Sequential
CPU Code

CPU

—

’

5 <ANVIDIA.

SIMPLE PROCESSING FLOW

<PCIe or NVLink Bus>

CPU Memory

1. Copy input data from CPU memory to GPU
memory

6 <ANVIDIA.

SIMPLE PROCESSING FLOW

<PCIe or NVLink Bus>

CPU Memory

. Copy input data from CPU memory to GPU
memory

. Load GPU program and execute,

caching data on chip for performance

7 <ANVIDIA.

SIMPLE PROCESSING FLOW

<PCIe or NVLink Bus>

. Copy input data from CPU memory to GPU
memory

. Load GPU program and execute,

caching data on chip for performance

. Copy results from GPU memory to CPU
memory

8 <ANVIDIA.

PARALLEL PROGRAMMING IN CUDA C++

> GPU computing is about massive parallelism!

> We need an interesting example...

» We’ll start with vector addition

9 <ANVIDIA.

GPU KERNELS: DEVICE CODE

void mykernel (void) {

> CUDA C++ keyword indicates a function that:

> Runs on the device
» Is called from host code (can also be called from other device code)

» nvcce separates source code into host and device components

> Device functions (e.g. mykernel ()) processed by NVIDIA compiler
> Host functions (e.g. main ()) processed by standard host compiler:

> gcec, cl.exe

10 <ANVIDIA.

GPU KERNELS: DEVICE CODE

mykernel 1,1 (),

» Triple angle brackets mark a call to device code
> Also called a “kernel launch”
» We’ll return to the parameters (1,1) in a moment

» The parameters inside the triple angle brackets are the CUDA kernel execution configuration

> That’s all that is required to execute a function on the GPU!

11 <ANVIDIA.

MEMORY MANAGEMENT

> Host and device memory are separate entities

> pointers point to GPU memory

Typically passed to device code

Typically not dereferenced in host code

> pointers point to CPU memory

Typically not passed to device code

Typically not dereferenced in device code

» (Special cases: Pinned pointers, ATS, managed memory)
> Simple CUDA API for handling device memory
» cudaMalloc(), cudaFree (), cudaMemcpy ()

» Similar to the C equivalents malloc (), free (), memcpy ()

12 <ANVIDIA.

RUNNING CODE IN PARALLEL

> GPU computing is about massive parallelism

> So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

I

add<<< N, 1 >>>();

> Instead of executing add () once, execute N times in parallel

13 <ANVIDIA.

VECTOR ADDITION ON THE DEVICE

~ With add () running in parallel we can do vector addition

~ Terminology: each parallel invocation of add () is referred to as a

» The set of all blocks is referred to as a

» Each invocation can refer to its block index using

__global wvoid add(int *a, int *b, int *c) {

cl] = al] + bl 17
}
> By using to index into the array, each block handles a different index
> Built-in variables like are zero-indexed (C/C++ style), 0..N-1, where N is from the kernel execution

configuration indicated at the kernel launch

14 <ANVIDIA.

VECTOR ADDITION ON THE DEVICE

#define N 512
int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
((void **)&d a, size);
((void **)&d b, size);
((void **)&d c, size);
// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size) ;

15 <ANVIDIA.

VECTOR ADDITION ON THE DEVICE

// Copy inputs to device
(d a, a, size,) ;
(d b, b, size,) ;
// Launch add() kernel on GPU with N blocks
add<<<,1>>>(d a, d b, d c);

// Copy result back to host

(c, d c, size,) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return 0;

16 <ANVIDIA.

REVIEW (1 OF 2)

» Difference between host and device

> CPU
> GPU
~ Using global to declare a function as device code

» Executes on the device

> Called from the host (or possibly from other device code)

> Passing parameters from host code to a device function

17 <ANVIDIA.

REVIEW (2 OF 2)

> Basic device memory management

» cudaMalloc()
» cudaMemcpy ()

» cudaFree ()

> Launching parallel kernels

~ Launch N copies of add () with add N,1 (..);

» Use to access block index

18 <ANVIDIA.

v

v

v

CUDA THREADS

Terminology: a block can be split into parallel

Let’s change add () to use parallel threads instead of parallel blocks

~ global wvoid add(int *a, int *b, int *c) {
c[] = al 1 + bl

We use instead of blockIdx.x

Need to make one change inmain () :

add<<< 1, >>>() ;

19

<ANVIDIA.

v

COMBINING BLOCKS AND THREADS

We’ve seen parallel vector addition using:
> Many blocks with one thread each

> One block with many threads

Let’s adapt vector addition to use both blocks and threads
Why? We’ll come to that...

First let’s discuss data indexing...

20 <ANVIDIA.

INDEXING ARRAYS WITH BLOCKS AND THREADS

> No longer as simple as usingblockIdx.x and threadIdx.x

» Consider indexing an array with one element per thread (8 threads/block):

threadIdx.x

threadIdx.x

1

2

3

4

5

6

> With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

~

blockIdx.x = 2

v
blockIdx.x = 3

21

<ANVIDIA.

INDEXING ARRAYS: EXAMPLE

> Which thread will operate on the red element?

|

threadIdx.x = 5

0

1

2

3

B

7 |

int index

\

J

y
blockIdx.x = 2

threadIdx.x + blockIdx.x * M;

5 + 2 * 8;

21;

22

<ANVIDIA.

VECTOR ADDITION WITH BLOCKS AND THREADS

> Use the built-in variable for threads per block

int index = threadIdx.x + blockIdx.x *

> Combined version of add () to use parallel threads and parallel blocks:

~ _global wvoid add(int *a, int *b, int *c) {
int index = threadlIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

> What changes need to be made in main () ?

23 <ANVIDIA.

ADDITION WITH BLOCKS AND THREADS

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);
// Alloc space for host copies of a, b, ¢ and setup input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);

c = (int *)malloc(size);

24 <ANVIDIA.

ADDITION WITH BLOCKS AND THREADS

// Copy inputs to device
cudaMemcpy (d a, a, size, cudaMemcpyHostToDevice) ;

cudaMemcpy (d b, b, size, cudaMemcpyHostToDevice) ;

// Launch add() kernel on GPU
add<<< , >>>(d a, d b, d c);

// Copy result back to host

cudaMemcpy (c, d c, size, cudaMemcpyDeviceToHost) ;

// Cleanup
free(a); free(b); free(c);
cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return O;

25 <ANVIDIA.

HANDLING ARBITRARY VECTOR SIZES

> Typical problems are not friendly multiples of blockDim. x

> Avoid accessing beyond the end of the arrays:

~_global wvoid add(int *a, int *b, int *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n)
c[index] = a[index] + b[index];

> Update the kernel launch:

add<<< ,M>>>(d a, d b, d c, N);

26 <ANVIDIA.

WHY BOTHER WITH THREADS?

> Threads seem unnecessary
> They add a level of complexity

> What do we gain?

> Unlike parallel blocks, threads have mechanisms to:
» Communicate

> Synchronize

> To look closer, we need a new example... (next session)

27 <ANVIDIA.

REVIEW

> Launching parallel kernels

> Launch N copies of add () with add N/M, M (..);
» Use to access block index

» Use to access thread index within block

> Assign elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;

28 <ANVIDIA.

FUTURE SESSIONS

CUDA Shared Memory

CUDA GPU architecture and basic optimizations

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)
Analysis Driven Optimization

Cooperative Groups

29 <ANVIDIA.

v

v

v

v

FURTHER STUDY

An introduction to CUDA:

» https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

» https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

» https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

» https://docs.nvidia.com/cuda/index.html

» https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

30

<ANVIDIA.

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

31 <A NVIDIA.

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

NVIDIA. W
BN 7
[KN

\A ,‘ "\ ‘i{‘ J

N \)
W

QUESTIONS?

