<3

NVIDIA

CUDA OPTIMIZATION,
PART 1

NVIDIA Corporation

OUTLINE

Most concepts in this
- Architecture: presentation apply to
Kepler/Maxwell/Pascal/Volta any language or API
> Kernel optimizations on NVIDIA GPUs

> Launch configuration (use lots of threads)
> Part 2 (next session):
> Global memory throughput (use memory efficiently)

> Shared memory access

2 <ANVIDIA.

KEPLER CC 3.5 SM (GK110

“SMX” (enhanced SM)

192 SP units (“cores”)

64 DP units

LD/ST units, 64K registers

4 warp schedulers

Each warp scheduler is dual-issue capable
K20: 13 SMX’s, 5GB

K20X: 14 SMX’s, 6GB

K40: 15 SMX’s, 12GB

SMX

Warp Scheduler

Dispatch
g

Dispatch Dispatch
3+ +

R e
Core

Core

Core

Core

Core

Core

N - .

Instruction Cache
Warp Scheduler

Warp Scheduler

Register File (65,536 x 32-bit)
L 3 3

core BN .o+

Core - LDIST
Core - LDIST

core [BRRN o~
core SRR o=
Core - LO/ST
Core - LD/ST
Core - LO/ST
Core - LO/ST
Core - LD/ST

Dispatch
3

ks
SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

Dispatch
g

L R R
Core Core

Core Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core Core
Core Core
Core Core
Core Core

Core Core

; Interconnect Network
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Dispatch
R

Warp Scheduler

Dispatch
3+

Dispatch
L

<ANVIDIA.

MAXWELL/PASCAL CC5.2, CC6.1 SM

“SMM” (enhanced SM)

128 SP units (“cores”)
4 DP units

LD/ST units

cC 6.1: INT8

4 warp schedulers

Each warp scheduler is dual-issue capable

Cors Core

M40: 24 SMM’s, 12/24GB
P40: 30 SM’s, 24GB
P4: 20 SM’s, 8GB

4 <ANVIDIA.

PASCAL/VOLTA CC6.0/7.0

64 SP units (“cores”) Ee— ere—

Dispatch Unit (32 threadiclk) Dispatch Unit (32 threadiclk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
3 2 D P u n] tS INT FP32 FP32 & INT INT FP32 FP32
INT FP32 FP32 FP32 FP32
LD / ST N] tS INT FP32 FP32 FP32 FP32
u INT FPS2EP32 rENSOR TENSOR . FPZFPS2 1ENSOR TENSOR
Fpipss CORE CORE tpi2Fpss CORE | CORE
& FP32 FP32 B FP32 FP32
FP16 @ 2x SP rate 1 =
FP32 FP32
oy o L L L gEy
L] 8T 8T 3 3 5 3 5 3 ST
cc/.0: TensorCore
L0 Instruction Cache
Warp Scheduler (32 threadlclk) Warp Scheduler (32 thread/clk)
P 1 O O / V 1 O O 2 / 4 h d l Dispatch Unit (32 threadiclk) Dispatch Unit (32 threaciclk)
a rp SC e u e rS Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
INT FP32 FP32 INT INT FP32 FP32
Volta adds separate int32 units o
FP32 FP32 INT FP32 FP32
’ FRI2FP2 tENSOR TENSOR FRIZFP32 TENSOR TENSOR
P100: 56 SM’s, 16GB i
FP32 FP32 FP&4 FP32 FP32
FP32 FP32 FPG4 FP32 FP32
V100: 80 SM’s, 16/32GB
S FP32 FP32 FP84 FP32 FP32
M)
1 LoV

LD Lof LV LDY (1T T T TR T TR)
8T 8T 8T 8T SFU 8T 8T 8T 14 8T

128KB L1 Data Cache | Shared Memory

<ANVIDIA.

Tex Tex

EXECUTION MODEL

Software Hardware
] Threads are executed by scalar processors
Scalar
Thread Processor

Thread blocks are executed on multiprocessors

1]

22222222 | Thread blocks do not migrate
o
—

Several concurrent thread blocks can reside on one
Tg[gff Multiprocessor multiprocessor - limited by multiprocessor

A kernel is launched as a grid of thread blocks

Grid Device

&<

Thread
Block

32 Threads

32 Threads

32 Threads

Warps

WARPS

o

Multiprocessor

A thread block consists of
32-thread warps

A warp is executed
physically in parallel
(SIMD) on a multiprocessor

NVIDIA

LAUNCH CONFIGURATION

> Key to understanding:
> Instructions are issued in order
> A thread stalls when one of the operands isn’t ready:
> Memory read by itself doesn’t stall execution

> Latency is hidden by switching threads
> GMEM latency: >100 cycles (varies by architecture/design)

~ Arithmetic latency: <100 cycles (varies by architecture/design)
> How many threads/threadblocks to launch?
> Conclusion:

> Need enough threads to hide latency

9 <ANVIDIA.

GPU LATENCY HIDING

In CUDA C source code:

int idx = threadldx.x+blockDim.x*blockldx.x;

c[idx] = a[idx] * b[idx];

In machine code:
|0: LD RO, a[idx];
11: LD R1, b[idx];
12: MPY R2,RO,R1

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps
WO:
W1:
W2:
W3:
W4
W5:
WG:
WT:
WS:
WO:

IIIIIII

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,R0,R1
CO C1 C2 C3 C4 C5 Co C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps
WO:
W1:
W2:
W3:
W4
W5:
WG:
WT:
WS:
WO:

nnnnnnn

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps
Wo:
W1:
W2:
W3:
W4
W5:
WG:
WT:
WS:
WO:

IIIIIII

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps
Wo:
W1:
W2:
W3:
W4
W5:
WG:
WT:
WS:
WO:

IIIIIII

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps
Wo:
W1:
W2:
W3:
W4
W5:
WG:
WT:
WS:
WO:

\\\\\\\\\\

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,R0,R1
CO C1 C2 C3 C4 C5 Co C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps

WO: RSk

W1: 0 |1
W2: 0 |1

W3:
W4
W5:
WG:
WT:
WS:
WO:

16 SANVIDIA.

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps

WO: RSk

W1: 0 |1
W2: 0 |1

W3: 10 I
W4: 10 I

W5: 0 11

W6: 10 |1
W7: 10 11

WS8:
WO:

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO0,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps

WO: [l
W1: 0 |1

W2: 0 |1

W3: 10 I

W4: 10 I

W5: 0 11

We: K

W7: K

e K

WO:

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];
11: LD R1, b[idx];

clock cycles: 12: MPY R2,R0,R1

CO C1 C2 C3 C4 C5 Co C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps

WO:
WA1:

W2:

W3:

W4:

W5:

W6:

W7:

W8:

WO:

GPU LATENCY HIDING - INSIDE THE SM

10: LD RO, a[idx];

11: LD R1, b[idx];

clock cycles: 12: MPY R2,RO,R1
CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ...

warps

WO:
W1:

W2:

Wa3:

W4

W5:

WG:

WY

W8:

WO:

LAUNCH CONFIGURATION

> Hiding arithmetic latency:
> Need ~10’s warps (~320 threads) per SM
> Or, latency can also be hidden with independent instructions from the same warp
> ->if instructions never depends on the output of preceding instruction, then only 5 warps are needed, etc.
> Maximizing global memory throughput:
> Depends on the access pattern, and word size
> Need enough memory transactions in flight to saturate the bus
> Independent loads and stores from the same thread

» Loads and stores from different threads

» Larger word sizes can also help (float2 is twice the transactions of float, for example)

21 <ANVIDIA.

MAXIMIZING MEMORY THROUGHPUT

Increment of an array of 64M elements

Two accesses per thread (load then store) - dependent, so really 1 access per thread at a time

theoretical bandwidth: ~120 GB/s

120
100

80

GB/s g0
40

20

/

‘_’d

/

yayrd
/

128-bitaccess

——32-bitaccess |

——64-bitaccess |

/a

256 384

T I I

Threads per Multiprocessor

T I 1

640 768 896 1024 1152 1280 1408 1536

Several independent smaller
accesses have the same effect
as one larger one.

For example:
Four 32-bit ~= one 128-bit

LAUNCH CONFIGURATION: SUMMARY

> Need enough total threads to keep GPU busy
> Typically, you’d like 512+ threads per SM (aim for 2048 - maximum “occupancy”)
~ More if processing one fp32 element per thread
> Of course, exceptions exist
> Threadblock configuration
> Threads per block should be a multiple of warp size (32)
> SM can concurrently execute at least 16 thread blocks (Maxwell/Pascal/Volta: 32)
~ Really small thread blocks prevent achieving good occupancy

~ Really large thread blocks are less flexible

> Could generally use 128-256 threads/block, but use whatever is best for the application

23 <ANVIDIA.

v

A\

v

v

ASIDE: WHAT IS OCCUPANCY?

A measure of the actual thread load in an SM, vs. peak theoretical/peak achievable
CUDA includes an occupancy calculator spreadsheet
Achievable occupancy is affected by limiters to occupancy
Primary limiters:
> Registers per thread (can be reported by the profiler, or can get at compile time)

> Threads per threadblock

> Shared memory usage

24

<ANVIDIA.

SUMMARY

> GPU is a massively thread-parallel, latency hiding machine
> Kernel Launch Configuration:

> Launch enough threads per SM to hide latency

> Launch enough threadblocks to load the GPU
> Use analysis/profiling when optimizing:

> “Analysis-driven Optimization” (future session)

> -> Nsight Compute can show you information about whether you’ve saturated the compute
subsystem or the memory subsystem.

25 <ANVIDIA.

FUTURE SESSIONS

Fundamental Optimization, Part 2

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)
Analysis Driven Optimization

Cooperative Groups

26 <ANVIDIA.

A\

A\

A\

\

FURTHER STUDY

Optimization in-depth:

» http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

» http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-

Analysis.pdf

CUDA Best Practices Guide:

» https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

» https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

27

<ANVIDIA.

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw3/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

28 <ANVIDIA.

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

NVIDIA. W
BN 7
[KN

\A ,‘ "\ ‘i{‘ J

N \)
W

QUESTIONS?

