
INTRODUCTION TO CUDA’s
MULTI-PROCESS SERVICE (MPS)

2

MOTIVATING USE CASE

Given a fixed amount of work to do, divided evenly among N MPI ranks:

- What is the optimal value of N?

- How many GPUs should we distribute these N ranks across?

__global__ void kernel (double* x, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N) {

x[i] = 2 * x[i];

}

}

3

BASE CASE: 1 RANK
Run with N = 10243

4

GPU COMPUTE MODES

NVIDIA GPUs have several compute modes

Default: multiple processes can run at one time

Exclusive Process: only one process can run at one time

Prohibited: no processes can run

Controllable with nvidia-smi --compute-mode; generally needs elevated privileges
(so e.g. bsub -alloc_flags gpudefault on Summit)

5

SIMPLE OVERSUBSCRIPTION

The most common oversubscription case uses default mode

We simply target the same GPU with N ranks

$ jsrun -n 1 -a <NUM_RANKS> -g 1 –c <NUM_RANKS> ./test 1073741824

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 5 10 15 20 25

R
e
la

ti
v
e
 R

u
n
ti

m
e

Number of Ranks

6

OVERSUBSCRIPTION: 4 RANKS
Run with N = 10243

7

SIMPLE OVERSUBSCRIPTION

Each rank operates fully independently of all
other ranks

Individual processes operate in time slices

A performance penalty is paid for switching
between time slices

8

ASIDE: CUDA CONTEXTS

Every process creates its own CUDA context

The context is a stateful object required to run CUDA

Automatically created for you when using the CUDA runtime API

On V100, the size is ~300 MB + your GPU code size

This limits the number of ranks we can fit on the GPU regardless of application data

Context size is partially controlled by cudaLimitStackSize (more on that later)

9

MULTI-PROCESS TIMESLICING

A B C

GPU

A

CPU Processes

GPU Interrupt

Timeslice 1

10

MULTI-PROCESS TIMESLICING

A B C

GPU

A

A B C

GPU

B

CPU Processes

GPU Interrupt

Timeslice 2

11

MULTI-PROCESS TIMESLICING

A B C

GPU

A

A B C

GPU

B

A B C

GPU

C

CPU Processes

GPU InterruptTimeslice 3

12

MULTI-PROCESS TIMESLICING

A B C

GPU

A

Timeslice 1

A B C

GPU

B

Timeslice 2

A B C

GPU

C

Timeslice 3

Full process isolation, peak throughput optimized for each process

13

WHEN DOES OVERSUBSCRIPTION HELP?
Perhaps a smaller case where launch latency is relevant? (N = 106)

14

WHEN DOES OVERSUBSCRIPTION HELP?
Unfortunately, this isn’t better.

15

OVERSUBSCRIPTION CONCLUSIONS

No free lunch theorem applies: if GPU is fully utilized, cannot get faster answers

For cases that don’t fully utilize the GPU, we’d like to fill in gaps in the timeline

But with GPU-only workloads, this rarely works out just right to be beneficial

Typically performs better when there is CPU-only work to interleave

(when running with the default compute mode)

16

Pre-emptive scheduling

Processes share GPU through time-slicing
Scheduling managed by system

Concurrent scheduling

Processes run on GPU simultaneously

User creates & manages scheduling streams

C

B

A

time

SCHEDULING: HOW COULD WE DO BETTER?

A B C A B

time

time-slice

17

MULTI-PROCESS SERVICE

NVIDIA MPS (Multi-Process Service)

improves the situation by allowing

multiple process to (instantaneously)

share GPU compute resources (SMs)

Designed to concurrently map

multiple MPI ranks onto a single GPU

Used when each rank is too small to

fill the GPU on its own

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

18

MULTI-PROCESS SERVICE
Improving on what we had before!

Hardware Accelerated
Work Submission

Hardware Isolation

VOLTA MULTI-PROCESS SERVICE

Volta+

A B C

CUDA MULTI-PROCESS SERVICE CONTROL
CPU Processes

GPU Execution

A B C

19

OVERSUBSCRIPTION WITH MPS

Same case as earlier with N = 109

MPS mostly recovers performance losses due to context switching

But again, no free lunch theorem applies (no significant speedup either)

0.9

0.95

1

1.05

1.1

0 5 10 15 20 25

R
e
la

ti
v
e
 R

u
n
ti

m
e

Number of Ranks

20

OVERSUBSCRIPTION WITH MPS

A smaller case: N = 2 * 107

Whether or not there’s a speedup depends substantially on precise timing

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 5 10 15 20 25

R
e
la

ti
v
e
 R

u
n
ti

m
e

Number of Ranks

21

OVERSUBSCRIPTION WITH MPS

A much smaller case: N = 105

Splitting up work is a clear loser here (quickly get hit by launch latency)

1

2

3

4

5

6

7

0 5 10 15 20 25

R
e
la

ti
v
e
 R

u
n
ti

m
e

Number of Ranks

22

OVERSUBSCRIPTION CONCLUSIONS REDUX

No free lunch theorem still applies: if GPU is fully utilized, cannot get faster answers

Strive to write your application so that you don’t need MPS

If you are unable to write kernels that fully saturate the GPU, then consider
oversubscription, and MPS is usually always worth turning on for that case

Profile your code to understand why MPS did or did not help

23

Software work submission

Limited isolation

16 clients per GPU

No provisioning

A B C

CUDA MULTI-PROCESS SERVICE

Pascal GP100

A
B

C

CPU Processes

GPU Execution

CPU Processes

GPU Execution

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

A B C

COMPARISON OF PRE- AND POST-VOLTA MPS

Faster, hardware-accelerated work submission

Hardware memory isolation

48 clients per GPU

Execution resource provisioning

24

CPU Processes

GPU Execution

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

A B C

KEY DIFFERENCES BETWEEN PRE- AND POST-VOLTA MPS

More MPS clients per GPU: 48 instead of 16

Less overhead: Volta MPS clients submit work directly
to the GPU without passing through the MPS server.

More security: Each Volta MPS client owns its own GPU
address space instead of sharing GPU address space with
all other MPS clients.

More control: Volta MPS supports limited execution
resource provisioning for Quality of Service (QoS). ->
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE

Independent work submission: Each process has
private work queues, allowing concurrent submission
without contending over locks.

25

USING MPS

No application modifications necessary

Not limited to MPI applications

MPS control daemon spawns MPS server
upon CUDA application startup

Profiling tools are MPS-aware; cuda-gdb
doesn’t support attaching but you can
dump core files

8/15/2021

Manually

nvidia-smi -c EXCLUSIVE_PROCESS

nvidia-cuda-mps-control –d

On Summit

bsub –alloc_flags gpumps

Compute modes

• PROHIBITED (cannot set device)

• EXCLUSIVE_PROCESS (single shared device)

• DEFAULT (per-process device)

On shared systems, recommended to use EXCLUSIVE_PROCESS
mode to ensure that only a single MPS server is using the GPU

26

MPS CONTROL: ENVIRONMENT VARIABLES

CUDA_VISIBLE_DEVICES

Sets devices which an application can see.
When set on MPS daemon, limits visible GPUs
for all clients.

CUDA_MPS_PIPE_DIRECTORY

Directory where MPS control daemon pipes are
created. Clients & daemon must set to same
value. Default is /var/log/nvidia-mps.

CUDA_MPS_LOG_DIRECTORY

Directory where MPS control daemon log is
created. Default is /tmp/nvidia-mps.

These are set per-process; can also manage MPS system-wide via control daemon

CUDA_DEVICE_MAX_CONNECTIONS

Sets number of hardware work queues that
CUDA streams map to. MPS clients all share
the same pool, so if set in an MPS-attached
process sets this it may limit the max number
of MPS processes.

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE

Controls what fraction of GPU may be used by
a process – see next slides.

27

EXECUTION RESOURCE PROVISIONING WITH MPS

$ export CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available to an MPS-attached process

• Guarantees a process will use at most percentage execution resources (SMs)

• Over-provisioning is permitted: sum across all MPS processes may exceed 100%

• Provisions only execution resources (SMs) – does not provision memory bandwidth or capacity

• Before CUDA 11.2, all processes be set to the same percentage

• Since CUDA 11.2, percentage may be different for each process

Using MPS, applications can assign fractions of a GPU to each process

Full details at: https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5

https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5

28

GPU PROVISIONING WITH MPS
Using MPS, applications can assign fractions of a GPU to each process

A=33%, B=33%, C=33% A=33%, B=33%, C=100%

Fractional Provisioning

Process C could use more, but is limited
to just 33% of execution resources

Process B is guaranteed space if needed

Using Oversubscription

Process B is not using all of its allocation

Process C may grow to fill available space

Additional B work may have to wait for
resources

A B C  3 concurrent MPS processes

29

THINGS TO WATCH OUT FOR

Memory Footprint

To provide a per-thread stack, CUDA reserves 1kB of GPU memory per thread

This is (2048 threads per SM x 1kB per thread) = 2 MB per SM used, or 164 MB per client for V100 (221 MB for A100)

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE reduces max SM usage, and so reduces memory footprint

Each MPS process also uploads a new copy of the executable code, which adds to the memory footprint

Work Queue Sharing

CUDA maps streams onto CUDA_DEVICE_MAX_CONNECTIONS hardware work queues

Queues are normally per-process, but MPS allows 96 hardware queues to be shared among up to 48 clients

MPS automatically reduces connections-per-client unless environment variable is set

If CUDA_DEVICE_MAX_CONNECTIONS is set (e.g. to enable more concurrency within a process), this can reduce the
maximum number of concurrent clients

See https://docs.nvidia.com/deploy/mps/index.html for more details

https://docs.nvidia.com/deploy/mps/index.html

30

MPS LOGICAL VS. MIG PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Process Service

Dynamic contention for GPU resources

Single tenant

Multi-Instance GPU

Hierarchy of instances with guaranteed resource allocation

Multiple tenants

31

MULTI-INSTANCE GPU (MIG)
Divide a Single A100 GPU Into Multiple Instances, Each With

Isolated Paths Through the Entire Memory System

Up To 7 GPU Instances In a Single A100
Full software stack enabled on each instance, with
dedicated SM, memory, L2 cache & bandwidth

Simultaneous Workload Execution With
Guaranteed Quality Of Service
All MIG instances run in parallel with predictable
throughput & latency, fault & error isolation

Diverse Deployment Environments
Supported with Bare metal, Docker, Kubernetes
Pod, Virtualized Environments

USER0

USER1

USER2

USER3

USER4

USER5

USER6

GPU Instance 0

GPU Instance 6

GPU Instance 1

GPU Instance 2

GPU Instance 3

GPU Instance 4

GPU Instance 5

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

D
R
A
M

L
2

S
y
s

P
ip

e

C
o
n
tr

o
l

X
b
a
r

D
a
ta

X
b
a
r

GPU

SMs

32

CUDA CONCURRENCY MECHANISMS

Streams MPS MIG

Partition Type Single process Logical Physical

Max Partitions Unlimited 48 7

Performance Isolation No By percentage Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process launch When idle

MPS: Multi-Process Service
MIG: Multi-Instance GPU

