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WHAT IS CUDA?

CUDA Architecture

Expose GPU parallelism for general-purpose computing

Expose/Enable performance

CUDA C++

Based on industry-standard C++

Set of extensions to enable heterogeneous programming

Straightforward APIs to manage devices, memory etc.

This session introduces CUDA C++

Other languages/bindings available: Fortran, Python, Matlab, etc.
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INTRODUCTION TO CUDA C++

What will you learn in this session?

Start with vector addition

Write and launch CUDA C++ kernels

Manage GPU memory

(Manage communication and synchronization)-> next session

(Some knowledge of C or C++ programming is assumed.)
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HETEROGENEOUS COMPUTING

Host The CPU and its memory (host memory)

Device The GPU and its memory (device memory)
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PORTING TO CUDA

Application Code

+

GPU CPUUse GPU to Parallelize
Compute-Intensive Functions

Rest of Sequential
CPU Code
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SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

PCIe or NVLink Bus
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SIMPLE PROCESSING FLOW

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

PCIe or NVLink Bus
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SIMPLE PROCESSING FLOW

PCIe or NVLink Bus

1. Copy input data from CPU memory to GPU 
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU 
memory
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PARALLEL PROGRAMMING IN CUDA C++

GPU computing is about massive parallelism!

We need an interesting example…

We’ll start with vector addition

a b c
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GPU KERNELS: DEVICE CODE

__global__ void mykernel(void) {

}

CUDA C++ keyword __global__ indicates a function that:

Runs on the device

Is called from host code (can also be called from other device code)

nvcc separates source code into host and device components

Device functions (e.g. mykernel()) processed by NVIDIA compiler

Host functions (e.g. main()) processed by standard host compiler:

gcc, cl.exe
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GPU KERNELS: DEVICE CODE

mykernel<<<1,1>>>();

Triple angle brackets mark a call to device code

Also called a “kernel launch”

We’ll return to the parameters (1,1) in a moment

The parameters inside the triple angle brackets are the CUDA kernel execution configuration

That’s all that is required to execute a function on the GPU!
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MEMORY MANAGEMENT
Host and device memory are separate entities

Device pointers point to GPU memory

Typically passed to device code

Typically not dereferenced in host code

Host pointers point to CPU memory

Typically not passed to device code

Typically not dereferenced in device code

(Special cases: Pinned pointers, ATS, managed memory)

Simple CUDA API for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(), memcpy()
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RUNNING CODE IN PARALLEL

GPU computing is about massive parallelism

So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

Instead of executing add() once, execute N times in parallel



14

VECTOR ADDITION ON THE DEVICE

With add() running in parallel we can do vector addition

Terminology: each parallel invocation of add() is referred to as a block

The set of all blocks is referred to as a grid

Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

By using blockIdx.x to index into the array, each block handles a different index

Built-in variables like blockIdx.x are zero-indexed (C/C++ style), 0..N-1, where N is from  the kernel execution 
configuration indicated at the kernel launch
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VECTOR ADDITION ON THE DEVICE

#define N 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);
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VECTOR ADDITION ON THE DEVICE

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}
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REVIEW (1 OF 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host (or possibly from other device code)

Passing parameters from host code to a device function
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REVIEW (2 OF 2)

Basic device memory management

cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index
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CUDA THREADS

Terminology: a block can be split into parallel threads

Let’s change add() to use parallel threads instead of parallel blocks

We use threadIdx.x instead of blockIdx.x

Need to make one change in main():

add<<< 1, N >>>();

__global__ void add(int *a, int *b, int *c) {
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}
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COMBINING BLOCKS AND THREADS

We’ve seen parallel vector addition using:

Many blocks with one thread each

One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…

First let’s discuss data indexing…
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INDEXING ARRAYS WITH BLOCKS AND THREADS

No longer as simple as using blockIdx.x and threadIdx.x

Consider indexing an array with one element per thread (8 threads/block):

With M threads/block a unique index for each thread is given by:

int index = threadIdx.x + blockIdx.x * M;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
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INDEXING ARRAYS: EXAMPLE

Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
=      5      +     2      * 8;
= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8
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VECTOR ADDITION WITH BLOCKS AND THREADS

Use the built-in variable blockDim.x for threads per block

Combined version of add() to use parallel threads and parallel blocks:

What changes need to be made in main()?

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

int index = threadIdx.x + blockIdx.x * blockDim.x;
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ADDITION WITH BLOCKS AND THREADS

#define N (2048*2048)
#define THREADS_PER_BLOCK 512
int main(void) {

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d_a, size);
cudaMalloc((void **)&d_b, size);
cudaMalloc((void **)&d_c, size);
// Alloc space for host copies of a, b, c and setup input values
a = (int *)malloc(size); random_ints(a, N);
b = (int *)malloc(size); random_ints(b, N);
c = (int *)malloc(size);



25

ADDITION WITH BLOCKS AND THREADS
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}
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HANDLING ARBITRARY VECTOR SIZES

Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < n)

c[index] = a[index] + b[index];
}

add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

Update the kernel launch:
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WHY BOTHER WITH THREADS?

Threads seem unnecessary

They add a level of complexity

What do we gain?

Unlike parallel blocks, threads have mechanisms to:

Communicate

Synchronize

To look closer, we need a new example… (next session)
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REVIEW

Launching parallel kernels

Launch N copies of add() with add<<<N/M,M>>>(…);

Use blockIdx.x to access block index

Use threadIdx.x to access thread index within block

Assign elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;
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FUTURE SESSIONS

CUDA Shared Memory

CUDA GPU architecture and basic optimizations

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY

An introduction to CUDA:

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Another introduction to CUDA:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/even-easier-introduction-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md


QUESTIONS?



CUDA SHARED MEMORY
NVIDIA Corporation



2

REVIEW (1 OF 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host (or possibly from other device code)

Passing parameters from host code to a device function
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REVIEW (2 OF 2)

Basic device memory management

cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index
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1D STENCIL

Consider applying a 1D stencil to a 1D array of elements

Each output element is the sum of input elements within a radius

If radius is 3, then each output element is the sum of 7 input elements:

radius radius
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IMPLEMENTING WITHIN A BLOCK

Each thread processes one output element

blockDim.x elements per block

Input elements are read several times

With radius 3, each input element is read seven times
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SHARING DATA BETWEEN THREADS

Terminology: within a block, threads share data via shared memory

Extremely fast on-chip memory, user-managed

Declare using __shared__, allocated per block

Data is not visible to threads in other blocks
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IMPLEMENTING WITH SHARED MEMORY

Cache data in shared memory

Read (blockDim.x + 2 * radius) input elements from global memory to shared memory

Compute blockDim.x output elements

Write blockDim.x output elements to global memory

Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right
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STENCIL KERNEL

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = 

in[gindex + BLOCK_SIZE];
}



9

STENCIL KERNEL

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}
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DATA RACE!

The stencil example will not work…

Suppose thread 15 reads the halo before thread 0 has fetched

temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
int result = 0;

result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS
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__SYNCTHREADS()

void __syncthreads();

Synchronizes all threads within a block

Used to prevent RAW / WAR / WAW hazards

All threads must reach the barrier

In conditional code, the condition must be uniform across the block
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STENCIL KERNEL

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}
// Synchronize (ensure all the data is available)
__syncthreads();
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STENCIL KERNEL

Stencil Kernel

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}
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REVIEW

Use __shared__ to declare a variable/array in shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Use __syncthreads() as a barrier

Use to prevent data hazards
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DEVELOPERS
Scalable Cooperation among groups of threads

Flexible parallel decompositions

Composition across software boundaries

Deploy Everywhere

Examples include:
Persistent RNNs
Physics
Search Algorithms
Sorting

Cooperative Groups: a flexible model for synchronization and 
communication within groups of threads.

At a glance Benefits all applications

LOOKING FORWARD
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FOR EXAMPLE: THREAD BLOCK

Implicit group of all the threads in the launched thread block

Implements the same interface as thread_group:

void sync(); // Synchronize the threads in the group

unsigned size();  // Total number of threads in the group

unsigned thread_rank(); // Rank of the calling thread within [0, size)

bool is_valid(); // Whether the group violated any API constraints

And additional thread_block specific functions:

dim3 group_index(); // 3-dimensional block index within the grid

dim3 thread_index(); // 3-dimensional thread index within the block
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NARROWING THE SHARED MEMORY GAP
with the GV100 L1 cache

Pascal Volta

Cache: vs shared

• Easier to use

• 90%+ as good

Shared: vs cache

• Faster atomics

• More banks

• More predictable

Average 
Shared 
Memory 
Benefit

70%

93%

Directed testing: shared in global
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FUTURE SESSIONS

CUDA GPU architecture and basic optimizations

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY

Shared memory:

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw2/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw2/readme.md


QUESTIONS?



CUDA OPTIMIZATION, 
PART 1
NVIDIA Corporation
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OUTLINE

Architecture:

Kepler/Maxwell/Pascal/Volta 

Kernel optimizations

Launch configuration (use lots of threads)

Part 2 (next session):

Global memory throughput (use memory efficiently)

Shared memory access

Most concepts in this 
presentation apply to 
any language or API 

on NVIDIA GPUs
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KEPLER CC 3.5 SM (GK110)

“SMX” (enhanced SM)

192 SP units (“cores”)

64 DP units

LD/ST units, 64K registers

4 warp schedulers

Each warp scheduler is dual-issue capable

K20: 13 SMX’s, 5GB

K20X: 14 SMX’s, 6GB

K40: 15 SMX’s, 12GB
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MAXWELL/PASCAL CC5.2, CC6.1 SM 
“SMM” (enhanced SM)

128 SP units (“cores”)

4 DP units

LD/ST units

cc 6.1: INT8

4 warp schedulers

Each warp scheduler is dual-issue capable

M40: 24 SMM’s, 12/24GB

P40: 30 SM’s, 24GB

P4: 20 SM’s, 8GB
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PASCAL/VOLTA CC6.0/7.0

64 SP units (“cores”)

32 DP units

LD/ST units

FP16 @ 2x SP rate

cc7.0: TensorCore

P100/V100 2/4 warp schedulers

Volta adds separate int32 units

P100: 56 SM’s, 16GB

V100: 80 SM’s, 16/32GB
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Software Hardware

Threads are executed by scalar processors

Thread

Scalar 
Processor

Thread 
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one 
multiprocessor - limited by multiprocessor 
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

EXECUTION MODEL
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Thread 
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

A thread block consists of 
32-thread warps

A warp is executed 
physically in parallel 
(SIMD) on a multiprocessor

=

WARPS



LAUNCH CONFIGURATION
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LAUNCH CONFIGURATION

Key to understanding:

Instructions are issued in order

A thread stalls when one of the operands isn’t ready:

Memory read by itself doesn’t stall execution

Latency is hidden by switching threads

GMEM latency: >100 cycles  (varies by architecture/design)

Arithmetic latency: <100 cycles  (varies by architecture/design)

How many threads/threadblocks to launch?

Conclusion:

Need enough threads to hide latency
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GPU LATENCY HIDING

In CUDA C source code:

int idx = threadIdx.x+blockDim.x*blockIdx.x;

c[idx] = a[idx] * b[idx];

In machine code:

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1
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GPU LATENCY HIDING – INSIDE THE SM
I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I1I0 I2
I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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GPU LATENCY HIDING – INSIDE THE SM

I1I0
I1I0

I1I0
I1I0

I1I0
I1I0

I1I0

I1I0 I2
I2I1I0

I0: LD R0, a[idx];

I1: LD R1, b[idx];

I2: MPY R2,R0,R1

warps
W0:
W1:
W2:
W3:
W4:
W5:
W6:
W7:
W8:
W9:

…

clock cycles:
C0  C1  C2  C3  C4  C5  C6  C7  C8  C9  C10  C11  C12  C13  C14  C15  C16  C17  C18  …
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LAUNCH CONFIGURATION

Hiding arithmetic latency:

Need ~10’s warps (~320 threads) per SM

Or, latency can also be hidden with independent instructions from the same warp

->if instructions never depends on the output of preceding instruction, then only 5 warps are needed, etc.

Maximizing global memory throughput:

Depends on the access pattern, and word size

Need enough memory transactions in flight to saturate the bus

Independent loads and stores from the same thread

Loads and stores from different threads

Larger word sizes can also help (float2 is twice the transactions of float, for example)
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MAXIMIZING MEMORY THROUGHPUT
Increment of an array of 64M elements

Two accesses per thread (load then store) - dependent, so really 1 access per thread at a time

theoretical bandwidth: ~120 GB/s

Several independent smaller 
accesses have the same effect 
as one larger one.
For example:

Four 32-bit  ~=  one 128-bit



23

LAUNCH CONFIGURATION: SUMMARY

Need enough total threads to keep GPU busy

Typically, you’d like 512+ threads per SM (aim for 2048 - maximum “occupancy”)

More if processing one fp32 element per thread

Of course, exceptions exist

Threadblock configuration

Threads per block should be a multiple of warp size (32)

SM can concurrently execute at least 16 thread blocks (Maxwell/Pascal/Volta: 32)

Really small thread blocks prevent achieving good occupancy

Really large thread blocks are less flexible

Could generally use 128-256 threads/block, but use whatever is best for the application
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ASIDE: WHAT IS OCCUPANCY?

A measure of the actual thread load in an SM, vs. peak theoretical/peak achievable

CUDA includes an occupancy calculator spreadsheet

Achievable occupancy is affected by limiters to occupancy

Primary limiters:

Registers per thread (can be reported by the profiler, or can get at compile time)

Threads per threadblock

Shared memory usage
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SUMMARY

GPU is a massively thread-parallel, latency hiding machine

Kernel Launch Configuration:

Launch enough threads per SM to hide latency

Launch enough threadblocks to load the GPU

Use analysis/profiling when optimizing:

“Analysis-driven Optimization” (future session)

-> Nsight Compute can show you information about whether you’ve saturated the compute 
subsystem or the memory subsystem. 
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FUTURE SESSIONS

Fundamental Optimization, Part 2

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY
Optimization in-depth:

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

CUDA Best Practices Guide:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw3/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md


QUESTIONS?



CUDA OPTIMIZATION, 
PART 2
NVIDIA Corporation
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OUTLINE

Architecture:

Kepler/Maxwell/Pascal/Volta 

Kernel optimizations

Launch configuration

Part 2 (this session):

Global memory throughput

Shared memory access

Most concepts in this 
presentation apply to 
any language or API 

on NVIDIA GPUs



GLOBAL MEMORY 
THROUGHPUT
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MEMORY HIERARCHY REVIEW

Local storage

Each thread has own local storage

Typically registers (managed by the compiler)

Shared memory / L1

Program configurable: typically up to 48KB shared (or 64KB, or 96KB…)

Shared memory is accessible by threads in the same threadblock

Very low latency

Very high throughput: >1 TB/s aggregate



5

MEMORY HIERARCHY REVIEW

L2

All accesses to global memory go through L2, including copies to/from CPU host

Global memory

Accessible by all threads as well as host (CPU)

High latency (hundreds of cycles)

Throughput: up to ~900 GB/s  (Volta V100)
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MEMORY ARCHITECTURE

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU
Multiprocessor

Registers

Shared Memory

Multiprocessor
Registers

Shared Memory

Multiprocessor
Registers

Shared Memory

Constant and Texture 
Caches

L1 / L2 Cache
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MEMORY HIERARCHY REVIEW

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM
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GMEM OPERATIONS

Loads:

Caching

Default mode

Attempts to hit in L1, then L2, then GMEM

Load granularity is 128-byte line

Stores:

Invalidate L1, write-back for L2
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GMEM OPERATIONS

Loads:

Non-caching

Compile with –Xptxas –dlcm=cg option to nvcc

Attempts to hit in L2, then GMEM

Do not hit in L1, invalidate the line if it’s in L1 already
Load granularity is 32-bytes

We won’t spend much time with non-caching loads in this training session
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LOAD OPERATION

Memory operations are issued per warp (32 threads)

Just like all other instructions

Operation:

Threads in a warp provide memory addresses

Determine which lines/segments are needed

Request the needed lines/segments
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CACHING LOAD
Warp requests 32 aligned, consecutive 4-byte words

Addresses fall within 1 cache-line

Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

int c = a[idx];

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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CACHING LOAD
Warp requests 32 aligned, permuted 4-byte words

Addresses fall within 1 cache-line

Warp needs 128 bytes

128 bytes move across the bus on a miss

Bus utilization: 100%

int c = a[rand()%warpSize];

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0
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CACHING LOAD
Warp requests 32 misaligned, consecutive 4-byte words

Addresses fall within 2 cache-lines

Warp needs 128 bytes

256 bytes move across the bus on misses

Bus utilization: 50%

int c = a[idx-2];

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses
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CACHING LOAD
All threads in a warp request the same 4-byte word

Addresses fall within a single cache-line

Warp needs 4 bytes

128 bytes move across the bus on a miss

Bus utilization: 3.125%

int c = a[40]; 

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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CACHING LOAD
Warp requests 32 scattered 4-byte words

Addresses fall within N cache-lines

Warp needs 128 bytes

N*128 bytes move across the bus on a miss

Bus utilization:  128 / (N*128)  (3.125% worst case N=32)

int c = a[rand()]; 

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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NON-CACHING LOAD
Warp requests 32 scattered 4-byte words

Addresses fall within N segments

Warp needs 128 bytes

N*32 bytes move across the bus on a miss

Bus utilization:  128 / (N*32) (12.5% worst case N = 32)

int c = a[rand()]; –Xptxas –dlcm=cg

...addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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GMEM OPTIMIZATION GUIDELINES
Strive for perfect coalescing

(Align starting address - may require padding)

A warp should access within a contiguous region

Have enough concurrent accesses to saturate the bus

Process several elements per thread

Multiple loads get pipelined

Indexing calculations can often be reused

Launch enough threads to maximize throughput

Latency is hidden by switching threads (warps)

Use all the caches!



SHARED MEMORY
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SHARED MEMORY

Uses:

Inter-thread communication within a block

Cache data to reduce redundant global memory accesses

Use it to improve global memory access patterns

Organization:

32 banks, 4-byte wide banks

Successive 4-byte words belong to different banks
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SHARED MEMORY

Performance:

Typically: 4 bytes per bank per 1 or 2 clocks per multiprocessor

shared accesses are issued per 32 threads (warp)

serialization: if N threads of 32 access different 4-byte words in the same bank, N accesses are 
executed serially

multicast: N threads access the same word in one fetch

Could be different bytes within the same word
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BANK ADDRESSING EXAMPLES

No Bank Conflicts No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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BANK ADDRESSING EXAMPLES

2-way Bank Conflicts 16-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0x16

x16
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SHARED MEMORY: AVOIDING BANK CONFLICTS
32x32 SMEM array

Warp accesses a column:

32-way bank conflicts (threads in a warp access the same bank)

31

210

31210

31210

warps:
0         1         2              31

Bank 0
Bank 1
…

Bank 31
20 1

31
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SHARED MEMORY: AVOIDING BANK CONFLICTS
Add a column for padding:

32x33 SMEM array

Warp accesses a column:

32 different banks, no bank conflicts

31210

31210

31210

warps:
0         1         2             31       padding

Bank 0
Bank 1
…

Bank 31
3120 1
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SUMMARY

Kernel Launch Configuration:

Launch enough threads per SM to hide latency

Launch enough threadblocks to load the GPU

Global memory:

Maximize throughput (GPU has lots of bandwidth, use it effectively)

Use shared memory when applicable (over 1 TB/s bandwidth)

Use analysis/profiling when optimizing:

“Analysis-driven Optimization” (future session)
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FUTURE SESSIONS

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY
Optimization in-depth:

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-
GPU-Architecture.pdf

Analysis-Driven Optimization:

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

CUDA Best Practices Guide:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA Tuning Guides:

https://docs.nvidia.com/cuda/index.html#programming-guides

(Kepler/Maxwell/Pascal/Volta)

http://on-demand.gputechconf.com/gtc/2013/presentations/S3466-Programming-Guidelines-GPU-Architecture.pdf
http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/index.html
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw4/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw1/readme.md


QUESTIONS?





Bob Crovella, 5/13/2020

ATOMICS, REDUCTIONS,        
WARP SHUFFLE
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AGENDA

• Transformations vs. Reductions, Thread Strategy
• Atomics, Atomic Reductions
• Atomic Tips and Tricks
• Classical Parallel Reduction
• Parallel Reduction + Atomics
• Warp Shuffle, Reduction with Warp Shuffle
• Other Warp Shuffle Uses
• Further Study
• Homework
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ATOMICS
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MOTIVATING EXAMPLE
Sum - reduction

const int size = 100000;

float a[size] = {…};

float sum = 0;

for (int i = 0; i < size; i++) sum += a[i];

-> sum variable contains the sum of all the elements of array a
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TRANSFORMATION VS. REDUCTION
May guide the thread strategy: what will each thread do?

+

Reduction:

e.g. *c = S a[i]

Thread strategy:  ??

Transformation:

e.g. c[i] = a[i] + 10;

Thread strategy: one thread per output 
point
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REDUCTION: NAÏVE THREAD STRATEGY
One thread per input point

*c += a[i];

(Doesn’t work.) Actual code the GPU executes:

LD R2, a[i]             (thread independent)

LD R1, c                          (READ)

ADD R3, R1, R2                (MODIFY)

ST c, R3                          (WRITE)

But every thread is trying to do this, potentially at the same time

The CUDA programming model does not enforce any order of thread execution
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ATOMICS TO THE RESCUE
indivisible READ-MODIFY-WRITE

atomicAdd(&c, a[i]);      https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

LD R2, a[i]             (thread independent)

LD R1, c                          (READ)                     Becomes one indivisible operation/instruction:

ADD R3, R1, R2                (MODIFY)                  RED.E.ADD.F32.FTZ.RN [c], R2;

ST R3, c                           (WRITE) 

Facilitated by special hardware in the L2 cache

May have performance implications
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OTHER ATOMICS

atomicMax/Min – choose the max (or min)

atomicAdd/Sub – add to (or subtract from)

atomicInc/Dec – increment (or decrement) and account for rollover/underflow

atomicExch/CAS – swap values, or conditionally swap values

atomicAnd/Or/Xor – bitwise ops

atomics have different datatypes they can work on (e.g. int, unsigned, float, etc.)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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ATOMIC TIPS AND TRICKS

Could be used to determine next work item, queue slot, etc.

int my_position = atomicAdd(order, 1);

Most atomics return a value that is the “old” value that was in the location receiving the 
atomic update.

Determine my place in an order
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ATOMIC TIPS AND TRICKS

Each thread in my kernel may produce a variable amount of data.  How to collect all of this 
in one buffer, in parallel?

buffer_ptr: 

buffer_idx

int my_dsize = var;

float local_buffer[my_dsize] = {…};

int my_offset = atomicAdd(buffer_idx, my_dsize);

// buffer_ptr+my_offset now points to the first reserved location, of length my_dsize

memcpy(buffer_ptr+my_offset, local_buffer, my_dsize*sizeof(float)); 

Reserve space in a buffer
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CLASSICAL 
PARALLEL REDUCTION
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THE CLASSICAL PARALLEL REDUCTION

We would like a reduction method that is not limited by atomic throughput

We would like to effectively use all threads, as much as possible

Parallel reduction is a common and important data parallel primitive

Naïve implementations will often run into bottlenecks

Basic methodology is a tree-based approach:

Atomics don’t run at full memory bandwidth…

4 7 5 9

11 14

25

3 1 7 0 4 1 6 3
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PROBLEM: GLOBAL SYNCHRONIZATION
If we could synchronize across all thread blocks, could easily reduce very large arrays, right?

Global sync after each block produces its result

Once all blocks reach sync, continue recursively

One possible solution: decompose into multiple kernels

Kernel launch serves as a global synchronization point

Kernel launch has low SW overhead (but not zero)

Other possible solutions:

Use atomics at the end of threadblock-level reduction

Use a threadblock-draining approach (see threadFenceReduction sample code)

Use cooperative groups – cooperative kernel launch
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SOLUTION: KERNEL DECOMPOSITION
Create global sync by decomposing computation into multiple kernel invocations

In the case of reductions, code for all levels is the same

15

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2Values (shared memory)

0 1 2 3 4 5 6 7

8 -2 10 6 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1 2 3

8 7 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0 1

21 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

0

41 20 13 13 0 9 3 7 -2 -3 2 7 0 11 0 2Values

Thread 
IDs

Step 1 
Stride 8

Step 2 
Stride 4

Step 3 
Stride 2

Step 4 
Stride 1

Thread 
IDs

Thread 
IDs

Thread 
IDs

Sequential 
addressing is 
bank-conflict 
free

SEQUENTIAL ADDRESSING
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {

if (tid < s) {
sdata[tid] += sdata[tid + s]; }

__syncthreads();  // outside the if-statement
}
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|  grid-width stride |  grid-width stride     | grid-width stride …

int idx = threadIdx.x+blockDim.x*blockIdx.x;
while (idx < N) {

sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x;  // grid width
}

DETOUR: GRID-STRIDE LOOPS

We’d like to be able to design kernels that load and operate on arbitrary data sizes 
efficiently

Want to maintain coalesced loads/stores, efficient use of shared memory

Can also be used for ninja-level tuning – choose number of blocks sized to the GPU

gdata[0..N-1]: 
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__global__ void reduce(float *gdata, float *out){
__shared__ float sdata[BLOCK_SIZE];
int tid = threadIdx.x;
sdata[tid] = 0.0f;
size_t idx = threadIdx.x+blockDim.x*blockIdx.x;

while (idx < N) {  // grid stride loop to load data
sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x;  
}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
__syncthreads();
if (tid < s)  // parallel sweep reduction

sdata[tid] += sdata[tid + s];
}

if (tid == 0) out[blockIdx.x] = sdata[0];
}

PUTTING IT ALL TOGETHER
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GETTING RID OF THE 2ND KERNEL CALL
__global__ void reduce_a(float *gdata, float *out){

__shared__ float sdata[BLOCK_SIZE];
int tid = threadIdx.x;
sdata[tid] = 0.0f;
size_t idx = threadIdx.x+blockDim.x*blockIdx.x;

while (idx < N) {  // grid stride loop to load data
sdata[tid] += gdata[idx];
idx += gridDim.x*blockDim.x;  
}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
__syncthreads();
if (tid < s)  // parallel sweep reduction

sdata[tid] += sdata[tid + s];
}

if (tid == 0) atomicAdd(out, sdata[0]);
}
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WARP SHUFFLE
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INTER-THREAD COMMUNICATION: SO FAR

Using shared memory:

2        1

Threads: 

Wouldn’t this be convenient:

1

Threads:
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INTRODUCING WARP SHUFFLE

Allows for intra-warp communication

Various supported movement patterns:

__shfl_sync(): copy from lane ID (arbitrary pattern)

__shfl_xor_sync(): copy from calculated lane ID (calculated pattern)

__shfl_up_sync(): copy from delta/offset lower lane

__shfl_down_sync(): copy from delta/offset higher lane:

Both source and destination threads in the warp must “participate”

Sync “mask” used to identify and reconverge needed threads
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__global__ void reduce_ws(float *gdata, float *out){
__shared__ float sdata[32];
int tid = threadIdx.x;
int idx = threadIdx.x+blockDim.x*blockIdx.x;
float val = 0.0f;
unsigned mask = 0xFFFFFFFFU;
int lane = threadIdx.x % warpSize;
int warpID = threadIdx.x / warpSize;
while (idx < N) {  // grid stride loop to load 

val += gdata[idx];
idx += gridDim.x*blockDim.x;  
}

// 1st warp-shuffle reduction
for (int offset = warpSize/2; offset > 0; offset >>= 1) 

val += __shfl_down_sync(mask, val, offset);
if (lane == 0) sdata[warpID] = val;

__syncthreads(); // put warp results in shared mem

WARP SHUFFLE REDUCTION

// hereafter, just warp 0
if (warpID == 0){

// reload val from shared mem if warp existed
val = (tid < blockDim.x/warpSize)?sdata[lane]:0;

// final warp-shuffle reduction
for (int offset = warpSize/2; offset > 0; offset >>= 1) 

val += __shfl_down_sync(mask, val, offset);

if (tid == 0) atomicAdd(out, val);
}

}
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WARP SHUFFLE BENEFITS

Reduce or eliminate shared memory usage

Single instruction vs. 2 or more instructions

Reduce level of explicit synchronization
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WARP SHUFFLE TIPS AND TRICKS

Broadcast a value to all threads in the warp in a single instruction

Perform a warp-level prefix sum

Atomic aggregation

What else can we do with it?
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FUTURE SESSIONS

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY
Parallel reduction:

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Warp-shuffle and reduction:

https://devblogs.nvidia.com/faster-parallel-reductions-kepler/

CUDA Cooperative Groups:

https://devblogs.nvidia.com/cooperative-groups/

Grid-stride loops:

https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/

Floating point:

https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-
Point.pdf

CUDA Sample Codes:

Reduction, threadFenceReduction, reductionMultiBlockCG

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/cooperative-groups/
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md




Bob Crovella, 6/18/2020

CUDA UNIFIED MEMORY
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AGENDA

• Managed Memory - basic idea, objectives, 
benefits

• Demand-Paging, Oversubscription, Concurrency, 
Atomics

• Use Cases: Deep Copies, Linked Lists, C++ 
Objects, Graph Traversal

• Performance: Prefetching, Hints
• Multi-GPU Considerations
• Further Study
• Homework
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THE CUDA 3-STEP PROCESSING SEQUENCE
Recall from Module 1…

->Wouldn’t it be nice if we didn’t have to do (i.e. write the code for) steps 1 and 3?
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INTRODUCING UNIFIED MEMORY 
WITH DEMAND PAGING
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UNIFIED MEMORY
Reduce Developer Effort

Maintain
Performance
through
Data Locality

Migrate data to accessing processor

Guarantee global coherence

Still allows explicit hand tuning

Simpler
Programming &
Memory Model

Single allocation, single pointer, 
accessible anywhere

Eliminate need for explicit copy

Simplifies code porting

Allocate Up To 
GPU Memory Size

Kepler+ 
GPU

CPU

Unified Memory

CUDA 6+
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CUDA 8+: UNIFIED MEMORY
Demand Paging For Pascal and Beyond

Allocate Beyond 
GPU Memory Size

Unified Memory

Pascal+
GPU

CPU

CUDA 8+

Enable Large 
Data Models

Oversubscribe GPU memory

Allocate up to system memory size

Tune 
Unified Memory
Performance 

Usage hints via cudaMemAdvise API

Explicit prefetching API

Simpler 
Data Accesss

CPU/GPU Data coherence

Unified memory atomic operations
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SIMPLIFIED MEMORY MANAGEMENT CODE

void sortfile(FILE *fp, int N) {
char *data;
data = (char *)malloc(N);

fread(data, 1, N, fp);

qsort(data, N, 1, compare);

use_data(data);

free(data);
}

void sortfile(FILE *fp, int N) {
char *data, *d_data;
data = (char *)malloc(N);
cudaMalloc(&d_data, N);
fread(data, 1, N, fp);
cudaMemcpy(d_data, data, N, …); // 1
qsort<<<...>>>(data,N,1,compare); // 2
cudaMemcpy(data, d_data, N, …); // 3

use_data(data);
cudaFree(d_data);
free(data);

}

CPU Code Ordinary CUDA Code
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SIMPLIFIED MEMORY MANAGEMENT CODE

void sortfile(FILE *fp, int N) {
char *data;
data = (char *)malloc(N);

fread(data, 1, N, fp);

qsort(data, N, 1, compare);

use_data(data);

free(data);
}

void sortfile(FILE *fp, int N) {
char *data;
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

qsort<<<...>>>(data,N,1,compare);
cudaDeviceSynchronize();

use_data(data);

cudaFree(data);
}

CPU Code CUDA Code with Unified Memory
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UNIFIED MEMORY EXAMPLE
With On-Demand Paging

__global__
void setValue(int *ptr, int index, int val) 
{
ptr[index] = val;

}

void foo(int size) {
char *data;
cudaMallocManaged(&data, size);

memset(data, 0, size);

setValue<<<...>>>(data, size/2, 5);
cudaDeviceSynchronize();

useData(data);

cudaFree(data);
}

Unified Memory allocation

Access all values on CPU

Access one value on GPU
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HOW UNIFIED MEMORY WORKS ON PASCAL+
Servicing CPU and GPU Page Faults

GPU Memory Mapping CPU Memory Mapping

Interconnect

Page 
Fault

Page 
Fault

cudaMallocManaged(&array, size);

memset(array, size);

array array

__global__
Void setValue(char *ptr, int index, char val) 
{

ptr[index] = val;
}

setValue<<<...>>>(array, size/2, 5);

GPU Code CPU Code
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ASIDE: PRE-PASCAL UM REGIME

In effect if your device is prior to Pascal (Jetson is a special case)

In effect if you are on windows OS (CUDA 9.x +).

Managed data is moved en-masse at point of kernel launch (even data that your kernel may 
not appear to explicitly touch)

After a kernel launch, cudaDeviceSynchronize() triggers the runtime to make data 
available to CPU code again

No concurrent access, no on-demand migration to GPU, no oversubscription

Just use cudaMallocManaged() where you would use malloc(), or new

Use cudaFree() instead of free(), or delete

Summary
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UNIFIED MEMORY ON PASCAL+
GPU Memory Oversubscription

void foo() {
// Assume GPU has 16 GB memory
// Allocate 64 GB
char *data;
// be careful with size type:
size_t size = 64ULL*1024*1024*1024;
cudaMallocManaged(&data, size);

}

64 GB allocation

Pascal supports allocations where only 
a subset of pages reside on GPU. 

Pages can be migrated to the GPU on 
demand.

Fails on Kepler/Maxwell
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UNIFIED MEMORY ON PASCAL+
Concurrent CPU/GPU Access to Managed Memory

__global__ void mykernel(char *data) {
data[1] = ‘g’;

}

void foo() {
char *data;
cudaMallocManaged(&data, 2);

mykernel<<<...>>>(data);
// no synchronize here
data[0] = ‘c’;

cudaFree(data);
}

OK on Pascal+: just a page fault

Concurrent CPU access to ‘data’ on previous 
GPUs caused a fatal segmentation fault

Note that there may still be ordering issues or 
data visibility issues; UM concurrency does 

not provide any ordering or visibility 
guarantees, but see system-wide atomics
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UNIFIED MEMORY ON PASCAL+
System-Wide Atomics

__global__ void mykernel(int *addr) {
atomicAdd_system(addr, 10);

}

void foo() {
int *addr;
cudaMallocManaged(addr, 4);
*addr = 0;

mykernel<<<...>>>(addr);
// cpu atomic:
__sync_fetch_and_add(addr, 10); 

}

System-wide atomics not available on  
Kepler / Maxwell

Pascal enables system-wide atomics
• Direct support of atomics over NVLink 
• Software-assisted over PCIe
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USE CASE: DEEP COPY

Both entities (object and buffer) need to be transferred to the device

Pointer in object needs to be “fixed” to point to new address on device for device copy of 
buffer

struct dataElem {
int key;
int len;
char *name;

}

char buffer[len]; 

void launch(dataElem *elem, int N) { // an array of dataElem
dataElem *d_elem;
// Allocate storage for array of struct and copy array to device
cudaMalloc(&d_elem, N*sizeof(dataElem));
cudaMemcpy(d_elem, elem, N*sizeof(dataElem), cudaMemcpyHostToDevice);
for (int i = 0; i < N; i++){ // allocate/fixup each buffer separately
char *d_name;
cudaMalloc(&d_name, elem[i].len);
cudaMemcpy(d_name, elem[i].name, elem[i].len, cudaMemcpyHostToDevice);
cudaMemcpy(&(d_elem[i].name), &d_name, sizeof(char *), cudaMemcpyHostToDevice);}

// Finally we can launch our kernel
Kernel<<< ... >>>(d_elem);}
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USE CASE: LINKED LIST

Similar to deep copy case

Complex to code up the copy operation

Unified Memory makes it trivial

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer

data

pointer
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USE CASE: C++ OBJECTS
Overloading new and delete

class Managed {
public:
void *operator new(size_t len) {
void *ptr;
cudaMallocManaged(&ptr, len);
cudaDeviceSynchronize();
return ptr;

}

void operator delete(void *ptr) {
cudaDeviceSynchronize();
cudaFree(ptr);

}
};

// Deriving allows pass-by-reference
class umString : public Managed {
int length;
char *data;

public:
// UM copy constructor allows 

pass-by-value
umString (const umString &s) {
length = s.length;
cudaMallocManaged(&data, 

length);
memcpy(data, s.data, length);

}
};

Overload new and delete in base class              inherit to build string class
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USE CASE: C++ OBJECTS
Overloading new and delete

// Note “managed” here also

class dataElem : public Managed {
public:
int key;
umString name;

};

dataElem *data = new dataElem[N];
…
// C++ now handles our deep copies
Kernel<<< ... >>>(data);}

Inherit to build my class; embedded string          Profit!
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USE CASE: ON-DEMAND PAGING
Graph Algorithms
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PERFORMANCE TUNING ON PASCAL+
Demand Paging Impact

This kernel call runs much slower than 
the Pre-pascal UM 6 case, or the non-
UM case.

*Each* page fault triggers service 
overhead.

Relying on page faults to move large 
amounts of data, page-by-page, with 
overhead on each page, is inefficient.

For bulk movement, a single  
“memcpy-like” operation is much 
more efficient

__global__ void kernel(float *data){
int idx = …;
data[idx] = val;}

…
int n = 256*256;
float *data;
cudaMallocManaged(&data, n*sizeof(float);
Kernel<<<256,256>>>(data);
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PERFORMANCE TUNING ON PASCAL+
Prefetching

Explicit prefetching:

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

UM alternative to cudaMemcpy(Async)

Can target any GPU and also the CPU

“Restores” performance

__global__ void kernel(float *data){
int idx = …;
data[idx] = val;}

…
int n = 256*256;
int ds = n*sizeof(float);
float *data;
cudaMallocManaged(&data, ds);
cudaMemPrefetchAsync(data, ds, 0); 
Kernel<<<256,256>>>(data);
cudaMemPrefetchAsync(data, ds, 
cudaCpuDeviceId); // copy back to host
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PERFORMANCE TUNING ON PASCAL+
Explicit Memory Hints

Advise runtime on expected memory access behaviors with:

cudaMemAdvise(ptr, count, hint, device);

Hints:

cudaMemAdviseSetReadMostly: Specify read duplication
cudaMemAdviseSetPreferredLocation: suggest best location
cudaMemAdviseSetAccessedBy: suggest mapping

Hints don’t trigger data movement by themselves
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PERFORMANCE TUNING ON PASCAL+
Hints: cudaMemAdviseSetReadMostly

Data will usually be read-only

UM system will make a “local” copy of the data for each processor that touches it

If a processor writes to it, this invalidates all copies except the one written.

Device argument is ignored
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PERFORMANCE TUNING ON PASCAL+
Hints: cudaMemAdviseSetPreferredLocation

Suggests which processor is the best location for data

Does not automatically cause migration

Data will be migrated to the preferred processor on-demand (or if prefetched)

If possible, data (P2P) mappings will be provided when other processors touch it

If mapping is not possible, data is migrated

Volta+ adds access counters to help GPU make good decisions for you
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PERFORMANCE TUNING ON PASCAL+
Hints: cudaMemAdviseSetAccessedBy

Does not cause movement or affect location of data

Indicated processor receives a (P2P) mapping to the data

If the data is migrated, mapping is updated

Objective: provide access without incurring page faults
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PERFORMANCE

UM is first and foremost about ease of programming and programmer productivity

UM is not primarily a technique to make well-written CUDA codes run faster

UM cannot do better than expertly written manual data movement, in most cases

It can be harder to achieve expected concurrency behavior with UM.

Misuse of UM can slow a code down dramatically

There are scenarios where UM may enable a design pattern (e.g. graph traversal).

Oversubscription does not easily/magically give you GPU-type performance on arbitrary datasets/algorithms

For codes that tend to use many different libraries, each of which makes some demand on GPU memory with no 
regard for what other libraries are doing, UM can sometimes be a primary way to tackle this challenge (via use of 
oversubscription), rather than an entire rewrite of the codebase

Final Words
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MULTI-GPU

Pre-Pascal Regime:

Allocations occur on currently selected device (just like cudaMalloc)

All other devices in P2P clique will receive peer mappings

Non-P2P: managed allocations happen in zero-copy (host) memory (performance implications!)

Pascal+ Demand-Paging:

Visible to any processor on demand, with or without P2P capability/clique

Use prefetching/hints to guide system behavior
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POWER9 NOTES

CPU/GPU dynamic memory allocations (malloc, new) can be coherently accessed among all 
processors

In particular, CPU malloc/new allocations can be read inside of a kernel instead of needing 
pinned memory

Virtual to physical address translations occur in hardware (CPU and GPU MMUs can talk to each 
other) 

Data is not migrated on-demand, but can be manually migrated with 
cudaMemPrefetchAsync (at lower performance than with UM)

NVIDIA and others are working on making this functionality available more broadly through 
the software implementation HMM in the Linux kernel

UM vs. ATS vs. HMM

https://www.kernel.org/doc/html/latest/vm/hmm.html
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FUTURE SESSIONS

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups
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FURTHER STUDY
UM basics:

https://devblogs.nvidia.com/unified-memory-cuda-beginners/

https://devblogs.nvidia.com/unified-memory-in-cuda-6/

optimization:

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

UM architecture:

http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-
about-unified-memory.pdf

Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-unified-memory-
programming-hd

CUDA Sample Code:  conjugateGradientUM

DLI: Introduction to Accelerated Computing with CUDA C++ (3 labs)

https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw6/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md
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BACKUP
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HOW UNIFIED MEMORY WORKS IN CUDA 6
En-masse Movement of Data to GPU

GPU Memory Mapping CPU Memory Mapping

Interconnect

Page 
Fault

cudaMallocManaged(&array, size);

memset(array, size);

array array

__global__

void setValue(char *ptr, int index, char val) 
{

ptr[index] = val;
}

setValue<<<...>>>(array, size/2, 5);

GPU Code CPU Code



Bob Crovella, 7/21/2020

CUDA CONCURRENCY
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AGENDA

• Concurrency - Motivation
• Pinned Memory
• CUDA Streams
• Overlap of Copy and Compute
• Use Case: Vector Math/Video Processing Pipeline
• Additional Stream Considerations
• Copy-Compute Overlap with Managed Memory
• Multi-GPU Concurrency
• Other Concurrency Scenarios: Kernel 

Concurrency, Host/Device Concurrency
• Further Study
• Homework
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MOTIVATION
Recall 3 steps from session 1:

Naïve implementation leads to a processing flow like this:

->Wouldn’t it be nice if we could do this:

1. Copy data to the GPU

2. Run kernel(s) on GPU

3. Copy results to host

1. Copy data to the GPU

2. Run kernel(s) on GPU

3. Copy results to host

duration

duration
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PINNED MEMORY
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PINNED (NON-PAGEABLE) MEMORY

Pinned memory enables:

faster Host<->Device copies

memcopies asynchronous with CPU

memcopies asynchronous with GPU

Usage

cudaHostAlloc / cudaFreeHost

instead of malloc / free or new / delete

cudaHostRegister / cudaHostUnregister

pin regular memory (e.g. allocated with malloc) after allocation

Implication:

pinned memory is essentially removed from host virtual (pageable) memory
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CUDA STREAMS
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STREAMS AND ASYNC API OVERVIEW

Default API:

Kernel launches are asynchronous with CPU

cudaMemcpy (D2H, H2D) block CPU thread

CUDA calls are serialized by the driver (legacy default stream)

Streams and async functions provide:

cudaMemcpyAsync (D2H, H2D) asynchronous with CPU

Ability to concurrently execute a kernel and a memcopy

Concurrent copies in both directions (D2H, H2D) possible on most GPUs

Stream = sequence of operations that execute in issue-order on GPU

Operations from different streams may be interleaved

A kernel and memcopy from different streams can be overlapped
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STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order.  Operation B issued after Operation A will not begin to 
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering 
prescribed by CUDA.  Operation A issued into stream 1 may execute 
before, during, or after Operation B issued into stream 2.

Operation:  Usually, cudaMemcpyAsync or a kernel call.  More 
generally, most CUDA API calls that take a stream parameter, as well 
as stream callbacks.
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STREAM CREATION AND COPY/COMPUTE OVERLAP
Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:
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STREAM EXAMPLES

K1,M1,K2,M2: K1
M1
K2

M2

K1,K2,M1,M2: K1
M1
K2

M2

K1,M1,M2: K1
M1 M2

K1,M2,M1: K1
M1M2

K1,M2,M2: K1
M2M2

Time 

K: Kernel
M: Memcopy
Integer: Stream ID
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EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH
(assumes algorithm decomposability)

Stream ID:       0   1    0   1    0   1   0

H->D copy

kernel

D->H copy

cudaMemcpy(d_x, h_x, size_x, 
cudaMemcpyHostToDevice);
Kernel<<<b, t>>>(d_x, d_y, N);
cudaMemcpy(h_y, d_y, size_y, 
cudaMemcpyDeviceToHost);

non-streamed

for (int i = 0, i<c; i++){
size_t offx = (size_x/c)*i;
size_t offy = (size_y/c)*i;
cudaMemcpyAsync(d_x+offx, h_x+offx, 

size_x/c, cudaMemcpyHostToDevice, 
stream[i%ns]);
Kernel<<<b/c, t, 0, 

stream[i%ns]>>>(d_x+offx, d_y+offy, 
N/c);
cudaMemcpyAsync(h_y+offy, d_y+offy, 

size_y/c, cudaMemcpyDeviceToHost, 
stream[i%ns]);}

streamed

Similar: video processing pipeline
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DEFAULT STREAM

Kernels or cudaMemcpy… that do not specify stream (or use 0 for stream) are using the default stream

Legacy default stream behavior: synchronizing (on the device):

All device activity issued prior to the item in the default stream must complete before default stream item begins

All device activity issued after the item in the default stream will wait for the default stream item to finish

All host threads share the same default stream for legacy behavior

Consider avoiding use of default stream during complex concurrency scenarios

Behavior can be modified to convert it to an “ordinary” stream

nvcc --default-stream per-thread …

Each host thread will get its own “ordinary” default stream

Stream 1
Stream 2

Default stream
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CUDALAUNCHHOSTFUNC() (STREAM “CALLBACKS”)

Allows definition of a host-code function that will be issued into a CUDA stream

Follows stream semantics: function will not be called until stream execution reaches that point

Uses a thread spawned by the GPU driver to perform the work

Has limitations: do not use any CUDA runtime API calls (or kernel launches) in the function

Useful for deferring CPU work until GPU results are ready

cudaLaunchHostFunc() replaces legacy cudaStreamAddCallback()
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COPY-COMPUTE OVERLAP WITH MANAGED MEMORY

Follow same pattern, except use cudaMemPrefetchAsync() instead of cudaMemcpyAsync()

Stream semantics will guarantee that any needed migrations are performed in proper order

However, cudaMemPrefetchAsync() has more work to do than cudaMemcpyAsync() (updating of page 
tables in CPU and GPU)

This means the call can take substantially more time to return than an “ordinary” async call – can 
introduce unexpected gaps in timeline

Behavior varies for “busy” streams vs. idle streams. Counterintuitively, “busy” streams may result in 
better throughput

Read about it:

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

In particular, with demand-paging

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
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ASIDE: CUDAEVENT
cudaEvent is an entity that can be placed as a “marker” in a stream

A cudaEvent is said to be “recorded” when it is issued

A cudaEvent is said to be “completed” when stream execution reaches the point where it was recorded

Most common use: timing

Also useful for arranging complex concurrency scenarios

Event-based timing may give unexpected results for host activity or complex concurrency scenarios

cudaEvent_t start, stop;        // cudaEvent has its own type
cudaEventCreate(&start);        // cudaEvent must be created
cudaEventCreate(&stop);         // before use
cudaEventRecord(start);         // “recorded” (issued) into default stream
Kernel<<<b, t>>>(…);            // could be any set of CUDA device activity
cudaEventRecord(stop);
cudaEventSynchronize(stop);     // wait for stream execution to reach “stop” event
cudaEventElapsedTime(&float_var, start, stop);   // measure Kernel duration
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MULTI-GPU



17

MULTI-GPU – DEVICE MANAGEMENT
Not a replacement for OpenMP, MPI, etc.

Application can query and select GPUs

cudaGetDeviceCount(int *count)

cudaSetDevice(int device)

cudaGetDevice(int *device)

cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

Multiple host threads can share a device

A single host thread can manage multiple devices

cudaSetDevice(i) to select current device

cudaMemcpyPeerAsync(…) for peer-to-peer copies
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MULTI-GPU – STREAMS

Streams (and cudaEvent) have implicit/automatic device association

Each device also has its own unique default stream

Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can test if an event 
is “complete”

Simple device concurrency:

cudaSetDevice(0);
cudaStreamCreate(&stream0);        //associated with device 0
cudaSetDevice(1);
cudaStreamCreate(&stream1);        //associated with device 1
Kernel<<<b, t, 0, stream1>>>(…);   // these kernels have the possibility
cudaSetDevice(0);
Kernel<<<b, t, 0, stream0>>>(…);   // to execute concurrently
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MULTI-GPU – DEVICE-TO-DEVICE DATA COPYING

If system topology supports it, data can be copied directly from one device to another over a fabric (PCIE, or NVLink)

Device must first be explicitly placed into a peer relationship (“clique”)

Must enable “peering” for both directions of transfer (if needed)

Thereafter, memory copies between those two devices will not “stage” through a system memory buffer (GPUDirect
P2P transfer)

Limit to the number of peers in your “clique”

cudaSetDevice(0);
cudaDeviceCanAccessPeer(&canPeer, 0, 1); // test for 0, 1 peerable
cudaDeviceEnablePeerAccess(1, 0);        // device 0 sees device 1 as a “peer”
cudaSetDevice(1);
cudaDeviceEnablePeerAccess(0, 0);        // device 1 sees device 0 as a “peer”
cudaMemcpyPeerAsync(dst_ptr, 0, src_ptr, 1, size, stream0); //dev 1 to dev 0 copy
cudaDeviceDisablePeerAccess(0);          // dev 0 is no longer a peer of dev 1
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OTHER CONCURRENCY SCENARIOS

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…);   // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…);   // to execute concurrently

Kernel<<<b, t>>>(…);   // this kernel execution can overlap with
cpuFunction(…);        // this host code
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STREAM PRIORITY

CUDA streams allow an optional definition of a priority

This affects execution of concurrent kernels (only).

The GPU block scheduler will attempt to schedule blocks from high priority (stream) kernels before blocks from low 
priority (stream) kernels

Current implementation only has 2 priorities

Current implementation does not cause preemption of blocks

// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);
// create streams with highest and lowest available priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);
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CUDA GRAPHS (OVERVIEW)

New feature in CUDA 10

Allows for the definition of a sequence of stream(s) work (kernels, memory copy operations, callbacks, host functions, 
graphs)

Each work item is a node in the graph

Allows for the definition of dependencies (e.g. these 3 nodes must finish before this one can begin)

Dependencies are effectively graph edges

Once defined, a graph may be executed by launching it into a stream

Once defined, a graph may be re-used

Has both a manual definition method and a “capture” method
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FUTURE SESSIONS

Analysis Driven Optimization

Cooperative Groups



24

FURTHER STUDY

Concurrency with Unified Memory:

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-
execution

CUDA Sample Codes:  concurrentKernels, simpleStreams, asyncAPI, simpleCallbacks, 
simpleP2P

Video processing pipeline with callbacks: 

https://stackoverflow.com/questions/31186926/multithreading-for-image-processing-at-gpu-
using-cuda/31188999#31188999

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://stackoverflow.com/questions/31186926/multithreading-for-image-processing-at-gpu-using-cuda/31188999
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw7/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md




Bob Crovella, 8/18/2020

GPU PERFORMANCE 
ANALYSIS
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AGENDA

• Analysis Driven Optimization
• Understanding Performance Limiters
• Metrics Review
• Memory Bound Analysis
• Compute Bound Analysis
• Future Sessions
• Further Study
• Homework
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REVIEW: TOP-LEVEL PERFORMANCE CODING OBJECTIVES

Make efficient use of the memory subsystem

Efficient use of global memory (coalesced access)

Intelligent use of the memory hierarchy

shared, constant, texture, caches, etc.

Expose enough parallelism (work) to saturate the machine and hide latency

Threads/blocks

Occupancy

Work per thread

Execution efficiency
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ANALYSIS DRIVEN OPTIMIZATION

Profile

Determine
Limiter

Study, 
Reflect, 
Learn, 
Inspect

Optimize
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ANALYSIS DRIVEN OPTIMIZATION

Memory 
Bound?

Compute 
Bound?

Optimize

Perform 
Memory 
Limiter 
Analysis

Perform 
Compute 
Limiter 
Analysis

Perform 
Latency 
Analysis

Yes

Yes

No

No
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TOP-LEVEL PERFORMANCE BEHAVIOR - LIMITERS

Memory Bound – A code is memory bound, when the measured memory system performance 
is at or close to the expected maximum. (saturate memory bus)

Compute Bound – A code is compute bound when the compute instruction throughput is at 
or close to the expected maximum.

Latency Bound – One of the indicators for a latency bound code is when neither of the above 
are true.

(Analysis-driven) Optimization uses the above determination to direct code refactoring 
efforts in the first stage.

Limiting behavior of a code may change over the duration of its execution cycle.

It’s desirable to analyze small sections of code e.g. one kernel at a time
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METRICS FOR DETERMINING COMPUTE VS. MEMORY BOUND
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-metric-comparison

Latency metrics:
“sm efficiency”: smsp__cycles_active.avg.pct_of_peak_sustained_elapsed

Memory metrics:
“dram utilization”: dram__throughput.avg.pct_of_peak_sustained_elapsed
“L2 utilization”: lts__t_sectors.avg.pct_of_peak_sustained_elapsed
“shared utilization”: 
l1tex__data_pipe_lsu_wavefronts_mem_shared.avg.pct_of_peak_sustained_elapsed

Compute metrics:
“DP Utilization”: smsp__inst_executed_pipe_fp64.avg.pct_of_peak_sustained_active
“SP Utilization”: smsp__pipe_fma_cycles_active.avg.pct_of_peak_sustained_active
“HP Utilization”: smsp__inst_executed_pipe_fp16.avg.pct_of_peak_sustained_active
“TC Utilization”: sm__pipe_tensor_op_hmma_cycles_active.avg.pct_of_peak_sustained_active
“Integer Utilization”: 
smsp__sass_thread_inst_executed_op_integer_pred_on.avg.pct_of_peak_sustained_active

https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
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MEMORY BOUND

A code can be memory bound when either it is limited by memory bandwidth or latency.  
We will lump memory latency bound codes in with the general latency case.

For a memory bandwidth bound code, we will seek to optimize usage of the various memory 
subsystems, taking advantage of the memory hierarchy where possible.

Optimize use of global memory

Under data reuse scenarios, make (efficient) use of higher levels of the memory hierarchy, and 
optimize these usages (L2 cache, shared memory).

Take advantage of cache “diversification” using special GPU caches – constant cache, read-only 
cache, texture cache/memory, surface memory.

For a code that is memory bandwidth bound, we can compute the actual throughput vs. 
peak theoretical
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COMPUTE BOUND

A code is compute bound when the performance of a particular type of compute
instruction/operation is at or near the limit of the functional unit servicing that 
type

Optimization strategy involves optimizing the use of that functional unit type, as 
well as (possibly) seeking to shift the compute load to other types

For a code that is dominated by a particular type (e.g. single precision floating 
point multiply/add) we can compare the actual throughput vs. peak theoretical.
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LATENCY BOUND

A code is latency bound when the GPU cannot keep busy with the 
available/exposed parallel work.

The general strategy for a latency bound code will be to expose more parallel work

Make sure that you are launching a large number of threads

Increase the work per thread (e.g. via a loop over input elements)

Use “vector load” to allow a single thread to process multiple input elements

Strive for maximum occupancy
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WHAT IS OCCUPANCY?

A measure of the actual thread load in an SM, vs. peak theoretical/peak achievable

CUDA includes an occupancy calculator spreadsheet

Higher occupancy is sometimes a path to higher performance

Achievable occupancy is affected by limiters to occupancy

Primary limiters:

Registers per thread (can be reported by the profiler, or can get at compile time)

Threads per threadblock

Shared memory usage
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WALK-THRU

What the code does: 
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FUTURE SESSIONS

Cooperative Groups
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FURTHER STUDY

Analysis Driven optimization:

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-
Analysis.pdf

http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010.pdf

Google “gtc cuda optimization”

New tools blogs:

https://developer.nvidia.com/blog/migrating-nvidia-nsight-tools-nvvp-nvprof/

https://developer.nvidia.com/blog/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/

https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

http://on-demand.gputechconf.com/gtc/2012/presentations/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2012_GTC2010.pdf
https://developer.nvidia.com/blog/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://developer.nvidia.com/blog/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/


15

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw7/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md




Bob Crovella, 3/28/2019

COOPERATIVE GROUPS
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Cooperative Groups

Threadblock Level

Grid Level

Multi-Device

Coalesced Group

Further Study

Homework

AGENDA
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COOPERATIVE GROUPS
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Scalable Cooperation among groups of threads

Flexible parallel decompositions

Composition across software boundaries

Obvious benefit: grid-wide sync

Examples include:
Persistent RNNs
Reductions
Search Algorithms
Sorting

Cooperative Groups: a flexible model for synchronization and 
communication within groups of threads.

At a glance



5

LEVELS OF COOPERATION: PRE CUDA 9.0

__syncthreads(): block level 
synchronization barrier in CUDA

SM

GPU

Multi-GPU

Warp
Warp
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LEVELS OF COOPERATION: CUDA 9.0

SM

GPU

Multi-GPU

Warp
Warp

For device-spanning grid:
auto g = this_grid();

For multiple grids spanning GPUs:
auto g = this_multi_grid();

For CUDA thread blocks:
auto g = this_thread_block();

For current coalesced set of threads:
auto g = coalesced_threads();

For warp-sized group of threads:
auto block = this_thread_block();
auto g = tiled_partition<32>(block)

All Cooperative Groups functionality is 
within a cooperative_groups:: namespace
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THREAD GROUP

Base type, the implementation depends on its construction.

Unifies the various group types into one general, collective, thread group.

We need to extend the CUDA programming model with handles that can 
represent the groups of threads that can communicate/synchronize

Thread 
Group

Thread 
Block 
Tile

Thread 
Block

Coalesced 
Group

Grid 
Group

Multi-Grid 
Group
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THREAD BLOCK

Implements the same interface as thread_group:

void sync(); // Synchronize the threads in the group

unsigned size();  // Total number of threads in the group

unsigned thread_rank(); // Rank of the calling thread within [0, size)

bool is_valid(); // Whether the group violated any API constraints

And additional thread_block specific functions:

dim3 group_index(); // 3-dimensional block index within the grid

dim3 thread_index(); // 3-dimensional thread index within the block

Implicit group of all the threads in the launched thread block
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PROGRAM DEFINED DECOMPOSITION

CUDA KERNEL All threads launched

foobar(thread_block g)

thread_group tile4 = tiled_partition(tile32, 4);

thread_block g = this_thread_block();

thread_group tile32 = tiled_partition(g, 32);

All threads in thread block

Restricted to powers of two, 
and <= 32 in initial release
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GENERIC PARALLEL ALGORITHMS

__device__ int reduce(thread_group g, int *x, int val) { 
int lane = g.thread_rank();
for (int i = g.size()/2; i > 0; i /= 2) {
x[lane] = val;       g.sync();
if (lane < i) val += x[lane + i];  g.sync();

}
return val;

}

g = tiled_partition(this_thread_block(), 32);
reduce(g, ptr, myVal);

g = this_thread_block();
reduce(g, ptr, myVal);

Per-Block Per-Warp



11

THREAD BLOCK TILE
A subset of threads of a thread block, divided into tiles in row-major order

thread_block_tile<32> tile32 = tiled_partition<32>(this_thread_block());

thread_block_tile<4> tile4 = tiled_partition<4>(this_thread_block());

Exposes additional functionality: .shfl()
.shfl_down()
.shfl_up()
.shfl_xor()

.any()

.all()

.ballot()

.match_any()

.match_all()
Size known at compile time = fast!
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STATIC TILE REDUCE

template <unsigned size>
__device__ int tile_reduce(thread_block_tile<size> g, int val) { 
for (int i = g.size()/2; i > 0; i /= 2) {
val += g.shfl_down(val, i);

}
return val;

}

g = tiled_partition<16>(this_thread_block());
tile_reduce(g, myVal);

Per-Tile of 16 threads
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GRID GROUP
A set of threads within the same grid, guaranteed to be resident on the device

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernel(…)

__global__ kernel() {
grid_group grid = this_grid();
// load data
// loop - compute, share data

grid.sync();
// device wide execution barrier

}

Device needs to support the cooperativeLaunch property.

cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, kernel, numThreads, 0);
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GRID GROUP
The goal: keep as much state as possible resident

Shortest Path / Search Genetic Algorithms / 
Master driven algorithms

Particle Simulations

Weight array perfect for 
persistence

Iteration over vertices? 
Fuse!

Synchronization 
between a master block 

and slaves

Synchronization 
between update and 
collision simulation 
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MULTI GRID GROUP
A set of threads guaranteed to be resident on the same system, on multiple devices

GPU A GPU B
Block 0 Block 1 Block 0 Block 1

Synchronize

__global__ void kernel() {
multi_grid_group multi_grid = this_multi_grid();
// load data
// loop - compute, share data

multi_grid.sync();
// devices are now synced, keep on computing

}
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MULTI GRID GROUP
Launch on multiple devices at once

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernelMultiDevice(…)

struct cudaLaunchParams params[numDevices];
for (int i = 0; i < numDevices; i++) {

params[i].func = (void *)kernel;
params[i].gridDim = dim3(…); // Use occupancy calculator
params[i].blockDim = dim3(…);
params[i].sharedMem = …;
params[i].stream = …; // Cannot use the NULL stream
params[i].args = …;

}
cudaLaunchCooperativeKernelMultiDevice(params, numDevices);

Devices need to support the cooperativeMultiDeviceLaunch property.
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group active = coalesced_threads(); Size: 8
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.thread_rank();210

Automatic translation to rank-in-group!
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

Automatic translation from rank-in-group to 
SIMD lane!

g1.thread_rank();210
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1

Internal Lane Mask
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COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

active.sync()

} // end block

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1
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ATOMIC AGGREGATION
Opportunistic Cooperation Within a Warp

inline __device__ int atomicAggInc(int *p)
{

coalesced_group g = coalesced_threads();
int prev;
if (g.thread_rank() == 0) {

prev = atomicAdd(p, g.size());
}
prev = g.thread_rank() + g.shfl(prev, 0);
return prev;

}
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FURTHER STUDY
GTC 2017 On-Demand Recording:

http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-
scalable-cuda.pdf (slides)

http://on-demand.gputechconf.com/gtc/2017/video/s7622-perelygin-robust-scalable-cuda-
parallel-programming-model.mp4 (recording)

Sample Codes:

conjugateGradientMultiBlockCG, conjugateGradientMultiDeviceCG, reductionMultiBlockCG, 
warpAggregatedAtomicsCG

Blog:

https://devblogs.nvidia.com/cooperative-groups/

Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

Persistent kernels, grid sync, RNN state:

https://svail.github.io/persistent_rnns/

http://on-demand.gputechconf.com/gtc/2017/presentation/s7622-Kyrylo-perelygin-robust-and-scalable-cuda.pdf
http://on-demand.gputechconf.com/gtc/2017/video/s7622-perelygin-robust-scalable-cuda-parallel-programming-model.mp4
https://devblogs.nvidia.com/cooperative-groups/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://svail.github.io/persistent_rnns/
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw9/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw5/readme.md




Robert Searles, 7/16/2021

CONCURRENCY WITH 
MULTITHREADING
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Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

C

B

A

time

EXECUTION SCHEDULING & MANAGEMENT

A B C A B

time
time-
slice
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CUDA STREAMS
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STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order.  Operation B issued after Operation A will not begin to 
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering 
prescribed by CUDA.  Operation A issued into stream 1 may execute 
before, during, or after Operation B issued into stream 2.

Operation:  Usually, cudaMemcpyAsync or a kernel call.  More 
generally, most CUDA API calls that take a stream parameter, as well 
as stream callbacks.
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STREAM CREATION AND COPY/COMPUTE 
OVERLAP

Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:
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EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH
(assumes algorithm decomposability)

Stream ID:       0   1    0   1    0   1   0

H->D copy

kernel

D->H copy

cudaMemcpy(d_x, h_x, size_x, 
cudaMemcpyHostToDevice);
Kernel<<<b, t>>>(d_x, d_y, N);
cudaMemcpy(h_y, d_y, size_y, 
cudaMemcpyDeviceToHost);

non-streamed

for (int i = 0, i<c; i++){
size_t offx = (size_x/c)*i;
size_t offy = (size_y/c)*i;
cudaMemcpyAsync(d_x+offx, h_x+offx, 

size_x/c, cudaMemcpyHostToDevice, 
stream[i%ns]);
Kernel<<<b/c, t, 0, 

stream[i%ns]>>>(d_x+offx, d_y+offy, 
N/c);
cudaMemcpyAsync(h_y+offy, d_y+offy, 

size_y/c, cudaMemcpyDeviceToHost, 
stream[i%ns]);}

streamed

Similar: video processing pipeline
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DEFAULT STREAM

Kernels or cudaMemcpy… that do not specify stream (or use 0 for stream) are using the default stream

Legacy default stream behavior: synchronizing (on the device):

All device activity issued prior to the item in the default stream must complete before default stream item 
begins

All device activity issued after the item in the default stream will wait for the default stream item to finish

All host threads share the same default stream for legacy behavior

Consider avoiding use of default stream during complex concurrency scenarios

Behavior can be modified to convert it to an “ordinary” stream

nvcc --default-stream per-thread …

Each host thread will get its own “ordinary” default stream

Stream 1
Stream 2

Default stream
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OTHER CONCURRENCY SCENARIOS

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…);   // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…);   // to execute concurrently

Kernel<<<b, t>>>(…);   // this kernel execution can overlap with
cpuFunction(…);        // this host code
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MPI DECOMPOSITION

Very common in HPC

Many legacy codes use MPI + OpenMP

MPI handles inter-node communcation

OpenMP provides better shared memory 
multithreading within each node

How can we add GPUs into the mix?
Application

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

Threads Threads Threads Threads Threads Threads Threads Threads

CPU CPU CPU CPU CPU CPU CPU CPU
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MULTITHREADING + CUDA STREAMS

Easier than rewriting entire legacy code

Individual OpenMP threads may still have 
a significant amount of work

Streams allow multiple threads to submit 
kernels for concurrent execution on a 
single GPU

Not possible pre-R465

Supported starting with CUDA 11.4/R470
Application

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

Threads Threads Threads Threads Threads Threads Threads Threads

CPU

GPU

CPU CPU CPU CPU CPU CPU CPU

GPU GPU GPU GPU GPU GPU GPU
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SINGLE GPU EXAMPLE

Multithreading + Concurrent kernels:

Worth it if each thread has enough work to offset kernel launch overhead

Requires less programmer overhead than rewriting entire codebase to submit single, large 
kernels to each GPU (remove OpenMP and replace with CUDA)

Less efficient than saturating the device with streams from a single thread

Less efficient than saturating the device with a single kernel

cudaStream_t streams[num_streams];
for (int j=0; j<num_streams; j++)

cudaStreamCreate(&streams[j]);

#pragma omp parallel for
for (int i=0; i<N; i++) // execute concurrently across

Kernel<<<b/N, t, 0, streams[i % num_streams]>>>(…);  // threads + streams
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MULTI-GPU – STREAMS

Streams (and cudaEvent) have implicit/automatic device association

Each device also has its own unique default stream

Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can 
test if an event is “complete”

Simple device concurrency:
cudaSetDevice(0);
cudaStreamCreate(&stream0);        //associated with device 0
cudaSetDevice(1);
cudaStreamCreate(&stream1);        //associated with device 1
Kernel<<<b, t, 0, stream1>>>(…);   // these kernels have the possibility
cudaSetDevice(0);
Kernel<<<b, t, 0, stream0>>>(…);   // to execute concurrently
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MULTI-GPU EXAMPLE

Multithreading + Concurrent kernels:

Multiple threads submitting kernels across a number of streams distributed across available GPUs

Example: 16 threads, 64 streams, 8 GPUs and N=1024

8 streams per GPU, 16 kernels per stream

Should have at least 1 stream per GPU

More will be optimal; Need as many streams on a GPU as it takes concurrent kernels to saturate that GPU

cudaStream_t streams[num_streams];
#pragma omp parallel for
for (int i=0; i<N; i++){

int j = i % num_streams; // Stream number
cudaSetDevice(j % num_gpus); // Round-robin across on-node GPUs
cudaStreamCreate(&streams[j]);     // Associated with device j % num_gpus
Kernel<<<b/N, t, 0, streams[j]>>>(…);} // execute across threads/streams/GPUs
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SINGLE THREAD + CUDA STREAMS
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MULTITHREADING + CUDA STREAMS
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MULTITHREADING + CUDA STREAMS

Runtimes

Single Thread + Default Stream = 0.01879s

Single Thread + 8 CUDA Streams = 0.00781s

8 OpenMP Threads + 8 CUDA Streams (without profiling) = 0.00835s

8 OpenMP Threads + 8 CUDA Streams (with profiling) = 0.01798s

Issue with serialization when using the profiler

We’re working on that
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MULTI-PROCESS SERVICE (MPS) OVERVIEW

Better solution in terms of performance

Designed to concurrently map multiple 
MPI ranks onto a single GPU

Used when each rank is too small to fill 
the GPU on its own

On Summit, use –alloc_flags=gpumps
when submitting a job with bsub

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Ra
nk
7
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FUTURE SESSIONS

MPI/MPS

CUDA Debugging
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md




INTRODUCTION TO CUDA’s
MULTI-PROCESS SERVICE (MPS)
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MOTIVATING USE CASE

Given a fixed amount of work to do, divided evenly among N MPI ranks:

- What is the optimal value of N?

- How many GPUs should we distribute these N ranks across?

__global__ void kernel (double* x, int N) {

int i = threadIdx.x + blockIdx.x * blockDim.x;

if (i < N) {

x[i] = 2 * x[i];

}

}
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BASE CASE: 1 RANK
Run with N = 10243
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GPU COMPUTE MODES

NVIDIA GPUs have several compute modes

Default: multiple processes can run at one time

Exclusive Process: only one process can run at one time

Prohibited: no processes can run

Controllable with nvidia-smi --compute-mode; generally needs elevated privileges 
(so e.g. bsub -alloc_flags gpudefault on Summit)
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SIMPLE OVERSUBSCRIPTION

The most common oversubscription case uses default mode

We simply target the same GPU with N ranks

$ jsrun -n 1 -a <NUM_RANKS> -g 1 –c <NUM_RANKS> ./test 1073741824

1
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OVERSUBSCRIPTION: 4 RANKS
Run with N = 10243
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SIMPLE OVERSUBSCRIPTION

Each rank operates fully independently of all 
other ranks

Individual processes operate in time slices

A performance penalty is paid for switching 
between time slices
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ASIDE: CUDA CONTEXTS

Every process creates its own CUDA context 

The context is a stateful object required to run CUDA

Automatically created for you when using the CUDA runtime API

On V100, the size is ~300 MB + your GPU code size

This limits the number of ranks we can fit on the GPU regardless of application data

Context size is partially controlled by cudaLimitStackSize (more on that later)
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MULTI-PROCESS TIMESLICING

A B C

GPU

A

CPU Processes

GPU Interrupt

Timeslice 1



10

MULTI-PROCESS TIMESLICING

A B C

GPU

A

A B C

GPU

B

CPU Processes

GPU Interrupt

Timeslice 2
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MULTI-PROCESS TIMESLICING

A B C

GPU

A

A B C

GPU
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A B C

GPU
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CPU Processes

GPU InterruptTimeslice 3
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MULTI-PROCESS TIMESLICING

A B C

GPU

A

Timeslice 1

A B C

GPU

B

Timeslice 2

A B C

GPU

C

Timeslice 3

Full process isolation, peak throughput optimized for each process
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WHEN DOES OVERSUBSCRIPTION HELP?
Perhaps a smaller case where launch latency is relevant? (N = 106)
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WHEN DOES OVERSUBSCRIPTION HELP?
Unfortunately, this isn’t better.
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OVERSUBSCRIPTION CONCLUSIONS

No free lunch theorem applies: if GPU is fully utilized, cannot get faster answers

For cases that don’t fully utilize the GPU, we’d like to fill in gaps in the timeline

But with GPU-only workloads, this rarely works out just right to be beneficial

Typically performs better when there is CPU-only work to interleave

(when running with the default compute mode)
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Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

C

B

A

time

SCHEDULING: HOW COULD WE DO BETTER?

A B C A B

time

time-slice
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MULTI-PROCESS SERVICE

NVIDIA MPS (Multi-Process Service) 
improves the situation by allowing 
multiple process to (instantaneously) 
share GPU compute resources (SMs)

Designed to concurrently map 
multiple MPI ranks onto a single GPU

Used when each rank is too small to 
fill the GPU on its own

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
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MULTI-PROCESS SERVICE
Improving on what we had before!

Hardware Accelerated
Work Submission

Hardware Isolation

VOLTA MULTI-PROCESS SERVICE

Volta+

A B C

CUDA MULTI-PROCESS SERVICE CONTROL
CPU Processes

GPU Execution

A B C
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OVERSUBSCRIPTION WITH MPS

Same case as earlier with N = 109

MPS mostly recovers performance losses due to context switching

But again, no free lunch theorem applies (no significant speedup either)
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OVERSUBSCRIPTION WITH MPS

A smaller case: N = 2 * 107

Whether or not there’s a speedup depends substantially on precise timing
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OVERSUBSCRIPTION WITH MPS

A much smaller case: N = 105

Splitting up work is a clear loser here (quickly get hit by launch latency)
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OVERSUBSCRIPTION CONCLUSIONS REDUX

No free lunch theorem still applies: if GPU is fully utilized, cannot get faster answers

Strive to write your application so that you don’t need MPS

If you are unable to write kernels that fully saturate the GPU, then consider 
oversubscription, and MPS is usually always worth turning on for that case

Profile your code to understand why MPS did or did not help
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Software work submission

Limited isolation

16 clients per GPU

No provisioning

A B C

CUDA MULTI-PROCESS SERVICE

Pascal GP100

A
B

C

CPU Processes

GPU Execution

CPU Processes

GPU Execution

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

A B C

COMPARISON OF PRE- AND POST-VOLTA MPS

Faster, hardware-accelerated work submission

Hardware memory isolation

48 clients per GPU

Execution resource provisioning
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CPU Processes

GPU Execution

VOLTA MULTI-PROCESS SERVICE

Volta GV100

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

A B C

KEY DIFFERENCES BETWEEN PRE- AND POST-VOLTA MPS

More MPS clients per GPU: 48 instead of 16

Less overhead: Volta MPS clients submit work directly 
to the GPU without passing through the MPS server.

More security: Each Volta MPS client owns its own GPU 
address space instead of sharing GPU address space with 
all other MPS clients.

More control: Volta MPS supports limited execution 
resource provisioning for Quality of Service (QoS). -> 
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE

Independent work submission: Each process has 
private work queues, allowing concurrent submission 
without contending over locks.
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USING MPS

No application modifications necessary

Not limited to MPI applications

MPS control daemon spawns MPS server 
upon CUDA application startup

Profiling tools are MPS-aware; cuda-gdb
doesn’t support attaching but you can
dump core files

8/15/2021

# Manually

nvidia-smi -c EXCLUSIVE_PROCESS 

nvidia-cuda-mps-control –d

# On Summit

bsub –alloc_flags gpumps

Compute modes

• PROHIBITED (cannot set device)

• EXCLUSIVE_PROCESS (single shared device)

• DEFAULT (per-process device)

On shared systems, recommended to use EXCLUSIVE_PROCESS 
mode to ensure that only a single MPS server is using the GPU
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MPS CONTROL: ENVIRONMENT VARIABLES

CUDA_VISIBLE_DEVICES
Sets devices which an application can see. 
When set on MPS daemon, limits visible GPUs 
for all clients.

CUDA_MPS_PIPE_DIRECTORY
Directory where MPS control daemon pipes are 
created. Clients & daemon must set to same 
value. Default is /var/log/nvidia-mps.

CUDA_MPS_LOG_DIRECTORY
Directory where MPS control daemon log is 
created. Default is /tmp/nvidia-mps.

These are set per-process; can also manage MPS system-wide via control daemon

CUDA_DEVICE_MAX_CONNECTIONS
Sets number of hardware work queues that 
CUDA streams map to. MPS clients all share 
the same pool, so if set in an MPS-attached 
process sets this it may limit the max number 
of MPS processes.

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
Controls what fraction of GPU may be used by 
a process – see next slides.
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EXECUTION RESOURCE PROVISIONING WITH MPS

$ export CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available to an MPS-attached process

• Guarantees a process will use at most percentage execution resources (SMs)

• Over-provisioning is permitted: sum across all MPS processes may exceed 100%

• Provisions only execution resources (SMs) – does not provision memory bandwidth or capacity

• Before CUDA 11.2, all processes be set to the same percentage

• Since CUDA 11.2, percentage may be different for each process

Using MPS, applications can assign fractions of a GPU to each process 

Full details at: https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5 

https://docs.nvidia.com/deploy/mps/index.html#topic_5_2_5
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GPU PROVISIONING WITH MPS
Using MPS, applications can assign fractions of a GPU to each process 

A=33%, B=33%, C=33% A=33%, B=33%, C=100%

Fractional Provisioning

Process C could use more, but is limited 
to just 33% of execution resources

Process B is guaranteed space if needed

Using Oversubscription

Process B is not using all of its allocation

Process C may grow to fill available space

Additional B work may have to wait for 
resources

A B C  3 concurrent MPS processes
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THINGS TO WATCH OUT FOR

Memory Footprint
To provide a per-thread stack, CUDA reserves 1kB of GPU memory per thread

This is (2048 threads per SM x 1kB per thread) = 2 MB per SM used, or 164 MB per client for V100 (221 MB for A100)

CUDA_MPS_ACTIVE_THREAD_PERCENTAGE reduces max SM usage, and so reduces memory footprint

Each MPS process also uploads a new copy of the executable code, which adds to the memory footprint

Work Queue Sharing
CUDA maps streams onto CUDA_DEVICE_MAX_CONNECTIONS hardware work queues

Queues are normally per-process, but MPS allows 96 hardware queues to be shared among up to 48 clients

MPS automatically reduces connections-per-client unless environment variable is set

If CUDA_DEVICE_MAX_CONNECTIONS is set (e.g. to enable more concurrency within a process), this can reduce the 
maximum number of concurrent clients

See https://docs.nvidia.com/deploy/mps/index.html for more details

https://docs.nvidia.com/deploy/mps/index.html
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MPS LOGICAL VS. MIG PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Process Service
Dynamic contention for GPU resources

Single tenant

Multi-Instance GPU
Hierarchy of instances with guaranteed resource allocation

Multiple tenants
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MULTI-INSTANCE GPU (MIG)
Divide a Single A100 GPU Into Multiple Instances, Each With

Isolated Paths Through the Entire Memory System

Up To 7 GPU Instances In a Single A100
Full software stack enabled on each instance, with
dedicated SM, memory, L2 cache & bandwidth

Simultaneous Workload Execution With 
Guaranteed Quality Of Service
All MIG instances run in parallel with predictable 
throughput & latency, fault & error isolation

Diverse Deployment Environments
Supported with Bare metal, Docker, Kubernetes 
Pod, Virtualized Environments
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CUDA CONCURRENCY MECHANISMS

Streams MPS MIG
Partition Type Single process Logical Physical

Max Partitions Unlimited 48 7

Performance Isolation No By percentage Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process launch When idle

MPS: Multi-Process Service
MIG: Multi-Instance GPU
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CUDA DEBUGGING
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CUDA Error Management

compute-sanitizer

cuda-gdb

Further Study

Homework

AGENDA
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ERROR MANAGEMENT
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BASIC CUDA ERROR CHECKING

All CUDA runtime API calls return an error code.

CUDA runtime API: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Example: cudaError_t cudaSetDevice ( int device )

cudaError_t is an enum type, with all possible error codes, examples:

cudaSuccess (no error)

cudaErrorMemoryAllocation (out of memory error)

cudaGetErrorString(cudaError_t err) converts an error code to human-readable string

Best practice is to always check these codes and handle appropriately.  Just do it!

The usual kernel launch syntax (kernel_name<<<…>>>(…)) is not a CUDA runtime API call and does not 
return an error code per-se

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
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ASYNCHRONOUS ERRORS

CUDA kernel launches are asynchronous

The kernel may not begin executing right away

The host thread that launches the kernel 
continues, without waiting for the kernel to 
complete

It is possible for a CUDA error to be detected 
during kernel execution

That error will be signalled at the next CUDA 
runtime API call, after the error is detected

Host: Device:

int i = 0;
ret=cudaMalloc(…);
dev<<<…>>>(…);
int j = 4;
for (i=0, i<j; i++)

ret=cudaSetDevice(i);
…

__global__ void dev(…){
int *d=NULL;
int j=d[0];
<error>

launch

error
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KERNEL ERROR CHECKING

CUDA kernel launches can produce two types of 
errors:

Synchronous: detectable right at launch

Asynchronous: occurs during device code execution

Detect Synchronous errors right away with 
cudaGetLastError() or cudaPeekAtLastError()

Asynchronous error checking involves tradeoffs

Can force immediate checking with a synchronizing 
call like cudaDeviceSynchronize() but this breaks 
asynchrony/concurrency structure

Optionally use a debug macro

Optionally set CUDA_LAUNCH_BLOCKING
environment variable to 1

dev<<<…>>>(…);
ret = cudaGetLastError();
if (debug) ret = cudaDeviceSynchronize();

Kernel error checking 
example:
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STICKY VS. NON-STICKY ERRORS

A non-sticky error is recoverable

Example: ret = cudaMalloc(100000000000000000000000000000);  (out of memory error)

Such errors do not “corrupt the CUDA context”

Subsequent CUDA runtime API calls behave normally

A sticky error is not recoverable

A sticky error is usually (only) resulting from a kernel code execution error

Examples: kernel time-out, illegal instruction, misaligned address, invalid address

CUDA runtime API is no longer usable in that process

All subsequent CUDA runtime API calls will return the same error

Only “recovery” process is to terminate the owning host process (i.e. end the application).

A multi-process application can be designed to allow recovery: https://stackoverflow.com/questions/56329377

https://stackoverflow.com/questions/56329377
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EXAMPLES

shared_mem_size=32768;

k<<<1024, 1024, shared_mem_size*sizeof(double), stream>>>(…);

cudaGetLastError() gets the last error *and clears it if it is not sticky* 

cudaPeekAtLastError() gets last error but does not clear it

cudaMemcpy(dptr, hptr, size, cudaMemcpyDeviceToHost);

ret = cudaMemcpy(dptr2, hptr2, size2, cudaMemcpyHostToDevice);
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EXAMPLES

Macro example - macro instead of function

#include <stdio.h>

#define cudaCheckErrors(msg) \
do { \

cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \

fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \

fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \

} \
} while (0)
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COMPUTE-SANITIZER TOOL
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COMPUTE-SANITIZER

A functional correctness checking tool, installed with CUDA toolkit

Provides “automatic” runtime API error checking – even if your code doesn’t handle errors

Can work with various language bindings: CUDA Fortran, CUDA C++, CUDA Python, etc.

Sub-tools:

memcheck (default): detects illegal code activity: illegal instructions, illegal memory access, misaligned 
access, etc.

racecheck: detects shared memory race conditions/hazards: RAW, WAW, WAR

initcheck: detects accesses to global memory which has not been initialized

synccheck: detects illegal use of synchronization primitives (e.g. __syncthreads())

Many command line options to modify behavior: 

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options
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MEMCHECK SUB-TOOL
The “default” tool – its recommended to run this tool first, before using other tools

Basic usage: compute-sanitizer ./my_executable

Kernel execution errors:

Invalid/out-of-bounds memory access

Invalid PC/Invalid instruction

Misaligned address for data load/store

Provides error localization when your code is compiled with –lineinfo

This is useful for other tools also, e.g. source-level work in the profilers (nsight compute)

Has a performance impact on speed of kernel execution

Can also do leak checking for device-side memory allocation/free

Error checking is “tighter” than ordinary runtime error checking
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MEMCHECK EXAMPLE
Out-of-bounds detection

$ cat t1866.cu
__global__ void k(char *d){
d[43] = 0;

}
int main(){
char *d;
cudaMalloc(&d, 42);
k<<<1,1>>>(d);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ ./t1866
$

$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 1 bytes
=========     at 0x40 in 
/home/user2/misc/t1866.cu:2:k(char*)
=========     by thread (0,0,0) in block (0,0,0)
=========     Address 0x7fe035a0002b is out of bounds
=========     Saved host backtrace …
=========     Host Frame:cuLaunchKernel
[0x7fe0685de728]
…
=========     Host Frame: [0x4034b1]
=========                in /home/user2/misc/./t1866
=========
========= Program hit unspecified launch failure 
(error 719) on CUDA API call to cudaDeviceSynchronize.
…
========= ERROR SUMMARY: 2 errors
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RACECHECK SUB-TOOL

CUDA specifies no order of execution among threads

Shared memory is commonly used for inter-thread communication

In this scenario, ordering of reads and writes often matters for correctness

Basic usage: compute-sanitizer --tool racecheck ./my_executable

Finds shared memory (only) race conditions:

WAW – two writes to the same location that don’t have intervening synchronization

RAW – a write, followed by a read to a particular location, without intervening synchronization

WAR – a read, followed by a write, without intervening synchronization

Detailed reporting is available:

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes
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RACECHECK EXAMPLE
RAW hazard

$ cat t1866.cu
const int bs = 256;
__global__ void reverse(char *d){
__shared__ char s[bs];
s[threadIdx.x] = d[threadIdx.x];
d[threadIdx.x] = s[bs-threadIdx.x-1];

}
int main(){
char *d;
cudaMalloc(&d, bs);
reverse<<<1,bs>>>(d);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: 0 errors
$

$ compute-sanitizer --tool racecheck ./t1866
========= COMPUTE-SANITIZER
========= ERROR: Race reported between Write 
access at 0x70 in 
/home/user2/misc/t1866.cu:4:reverse(char*)
=========     and Read access at 0x80 in 
/home/user2/misc/t1866.cu:5:reverse(char*) [256 
hazards]
=========
========= RACECHECK SUMMARY: 1 hazard displayed (1 
error, 0 warnings)
$
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INITCHECK SUB-TOOL
Detects use of uninitialized device global memory

$ cat t1866.cu
const int bs = 1;
__global__ void k(char *in, char *out){
out[threadIdx.x] = in[threadIdx.x];

}
int main(){
char *d1, *d2;
cudaMalloc(&d1, bs);
cudaMalloc(&d2, bs);
k<<<1,bs>>>(d1, d2);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: 0 errors
$

$ compute-sanitizer --tool initcheck ./t1866
========= COMPUTE-SANITIZER
========= Uninitialized __global__ memory read of 
size 1 bytes
=========     at 0x50 in 
/home/user2/misc/t1866.cu:3:k(char*,char*)
=========     by thread (0,0,0) in block (0,0,0)
=========     Address 0x7fc543a00000
=========     Saved host backtrace up to driver 
entry point at kernel launch time
=========     Host Frame:cuLaunchKernel
[0x7fc57546a728]
=========                in /lib64/libcuda.so.1
…
========= ERROR SUMMARY: 1 error
$
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SYNCCHECK SUB-TOOL

Applies to usage of __syncthreads(), __syncwarp(), and CG equivalents (e.g. this_group.sync())

Typical usage is for detection of illegal use of synchronization, where not all necessary threads can 
reach the sync point:

Threadblock level

Warp level

In addition, the __syncwarp() intrinsic can take a mask parameter, which specifies expected threads

Detects invalid usage of the mask

Basic usage: compute-sanitizer --tool synccheck ./my_executable

Applicability is limited on cc 7.0 and beyond due to volta execution model relaxed requirements

Example:

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#synccheck-demo-illegal-syncwarp

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#synccheck-demo-illegal-syncwarp
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DEBUGGING WITH CUDA-GDB
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CUDA-GDB

Based on widely-used gdb debugging tool (part of gnu toolchain). (This is not a tutorial on gdb)

“command-line” debugger, allows for typical operations like:

setting breakpoints (e.g. b )

single-stepping (e.g. s )

inspection of data (e.g. p )

And others

cuda-gdb uses the same command syntax where possible, and provides certain command extensions

Generally, you want to build a debug code to use with the debugger

The focus here will be on debugging device code.  Assumption is you already know how to debug host code

Supports debug of both CUDA C++ and CUDA Fortran applications
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BUILDING DEBUG CODE

Fundamentally, the compile command line for nvcc should include:

-g – standard gnu switch for building a debug (host) code

-G – builds debug device code

This makes the necessary symbol information available to the debugger so that you can do “source-
level” debugging.

The –G switch has a substantial impact on device code generation.  Use it for debug purposes only.

Don’t do performance analysis on device code built with the –G switch

The –G switch will often make your code run slower

In rare cases, the –G switch may change the behaviour of your code

Make sure your code is compiled for the correct target: e.g. –arch=sm_70
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ADDITIONAL PREP SUGGESTIONS

If possible, make sure your code completes the various sanitizer tool tests

If possible, make sure your host code is “sane” e.g. does not seg fault

If possible, make sure your kernels are actually being launched, e.g:

nsys profile --stats=true ./my_executable (and check e.g. “CUDA Kernel Statistics”
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CUDA SPECIFIC COMMANDS

set cuda …    <used to set general options and advanced settings>

launch_blocking (on/off)   <make launches pause the host thread>

break_on_launch (option)  <break on every new kernel launch>

info cuda …   <get general information on system configuration>

devices, sms, warps, lanes, kernels, blocks, threads, …

cuda …  <used to inspect or set current focus>

(cuda-gdb) cuda device sm warp lane block thread   <display current focus coordinates>

block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0, lane 0 

(cuda-gdb) cuda thread (15) <change coordinate(s)>
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DEMO
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ADDITIONAL NOTES, TIPS, TRICKS

synccheck tool may have limited usefulness due to Volta execution model – relaxed sync requirements

CUDA Fortran debugging “print” commands not working correctly – expected to be fixed in a future tool 
chain

Cannot inspect device memory (e.g. with “print”) unless stopped at a breakpoint in device code

compute-sanitizer host backtrace will be improved in the future

How to “look up” an error code (e.g. 719), two ways:

Search in …/cuda/include/driver_types.h

Docs: runtime API section 6.36, Data types
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FURTHER STUDY
CUDA error checking:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking

https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-
using-the-cuda-runtime-api

CUDA context: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context

compute-sanitizer:

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html

cuda-gdb:

https://docs.nvidia.com/cuda/cuda-gdb/index.html

Simple gdb tutorial:

https://www.cs.cmu.edu/~gilpin/tutorial/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://www.cs.cmu.edu/~gilpin/tutorial/
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HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md
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BACKUP: BASIC GDB SYNTAX
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BASIC GDB

Compile your code with –g (host debug) and –G (device debug)

gdb ./my_executable

Set a breakpoint:  b command

if only one file: (gdb)  b  <line_number>

If multiple source files: (gdb) b  <file_name:line_number>

Run-from-start: r command

Single step: s command  (“step into”)

Step next: n command (“step over”)

Continue : c command

Getting started, setting a breakpoint, running, single-step, continuing
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BASIC GDB

Print data:  p command

symbolically:   p s[0]

multiple values: p s[0]@8

Removing breakpoints:

clear <file-name:line-number>  (removes breakpoint based on location)

delete <breakpoint-number> (removes breakpoint based on id)

Conditional breakpoints:

Set a breakpoint first

condition <breakpoint-id> <Boolean-test>

condition 1 i<32

Inspecting data, clearing breakpoints, conditional breakpoints
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ALL CUDA WORK FORMS A GRAPH

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams
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ALL CUDA WORK FORMS A GRAPH

Graph of Dependencies

End

A

B X

C D

E Y

Any CUDA stream can be 
mapped to a graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams
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Sequence of operations, connected by dependencies.

Operations are one of:

Kernel Launch  CUDA kernel running on GPU

CPU Function Call  Callback function on CPU

Memcopy/Memset  GPU data management

Memory Alloc/Free  Inline memory allocation

Sub-Graph  Graphs are hierarchical

DEFINITION OF A CUDA GRAPH
A graph node is any asynchronous CUDA operation

F

A

B X

C D

E Y
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NEW EXECUTION MECHANISM
Graphs Can Be Generated Once Then Launched Repeatedly

for(int i=0; i<1000; i++) {
    launch_graph( G );
}

F

A

B X

C D

E Y



6 

FREE UP CPU RESOURCES
Release CPU Time For Lower Power, or Running Other Work

time

Launch 
A

Launch 
B

Launch 
C

Launch 
D

Launch 
E

A B C D E

CPU Idle

Build 
Graph

Launch 
Graph CPU Idle

A B C D E

Stream
Launch

Graph
Launch
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LAUNCH OVERHEAD REDUCTION
Graph launch submits all work at once, reducing CPU cost

Launch A Launch B Launch C Launch D Launch E

A B C D E

time

Build 
Graph Launch Graph

A B C D E

time saved

CPU 
Time

GPU 
Time

Launch
Latency

When kernel runtime is short, execution time is dominated by CPU launch cost
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THREE-STAGE EXECUTION MODEL

Define

A

B X

C D

E Y

End

Single Graph “Template”

Instantiate

Multiple “Executable Graphs”

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

Execute

Executable Graphs 
Running in CUDA Streams

s1 s2 s3

Created in host code,
or loaded from disk,

or built up from libraries

Snapshot of template
Sets up & initializes GPU 

execution structures
(create once, run many times)

Concurrency in graph
is not limited by stream

(see later)
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MODIFYING GRAPHS IN-PLACE

Stream Launch Graph Update Graph Re-Launch

A

B

C

A

B

C
repeat 10 times

? iterate 10 times ?

launch
graph

iterate 10 times

A

B

C

Update
Graph

launch
graph

Define
Graph
Once

A

B

C

Parameters: may change
Topology: may change

Parameters: may change
Topology: may not change

Parameters: may not change
Topology: may not change
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PROGRAMMING MODEL
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ASYNCHRONOUS OPERATIONS ONLY

Stream Capture

▪ Very convenient way of creating a graph from existing library calls (see later slide)

▪ Records operations without actually launching a kernel

▪ Library must call an API to tell if kernels are being captured instead of launched

Problem if library calls cudaStreamSynchronize() or any other synchronous operation.

Capture is not launching anything so synchronize cannot wait for anything.

Capture operation fails.

Typically Shows Up During Stream Capture
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CAPTURE CUDA STREAM WORK INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initiating stream capture

cudaStreamBeginCapture(&stream1);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

A

B

Wait

D

C

Wait

stream1 stream2 graph

D

B C

A
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CAPTURE CUDA STREAM WORK INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initiating stream capture

cudaStreamBeginCapture(&stream1);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

graph

D

B C

A
Capture follows

inter-stream 
dependencies

to create forks & 
joinscudaStreamWaitEvent(str

eam2, e1);

cudaStreamWaitEvent(str
eam1, e2);

A

B

Wait

D

C

Wait

stream1 stream2
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CAPTURE EXTERNAL WORK
Stream Capture

// Start by initiating stream capture

cudaStreamBeginCapture(&stream);

// Captures my kernel launches and inside library calls

X<<< ..., stream >>>();

libraryCall(stream);  // Launches A, B, C, D

Z<<< ..., stream >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream, &graph);

X

Z

A

D

B C

X

Z

D

B C

A

Resultant
graph

Inserting
graph

Library call
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CREATE GRAPHS DIRECTLY
Map Graph-Based Workflows Directly Into CUDA

D

B C

A

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

Graph from
framework

(Full list of API calls in the CUDA Docs)
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COMBINING GRAPH & STREAM WORK
Capturing Streams Into An Existing Graph

// Create root node of graph via explicit API

cudaGraphAddNode(main_graph, X, {}, ...);

// Capture the library call into a subgraph

cudaStreamBeginCapture(&stream);

libraryCall(stream);  // Launches A, B, C, D

cudaStreamEndCapture(stream, &library_graph);

// Insert the subgraph into main_graph as node “Y”

cudaGraphAddChildGraphNode(Y, main_graph, { X } ... libraryGrpah);

// Continue building main graph via explicit API

cudaGraphAddNode(main_graph, Z, { Y }, ...);

X

Z

Y

A

D

B C

X

Z

D

B C

A

Resultant
graph

Inserting
graph

Library call
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GRAPH EXECUTION SEMANTICS
Order Graph Work With Other Non-Graph CUDA Work

stream

launchWork(cudaGraphExec_t i1, cudaGraphExec_t i2,
           CPU_Func cpu, cudaStream_t stream) {

    A <<< 256, 256, 0, stream >>>(); // Kernel launch

    cudaGraphLaunch(i1, stream); // Graph launch

    cudaStreamAddCallback(stream, cpu); // CPU callback

    cudaGraphLaunch(i2, stream); // Graph launch

    cudaStreamSynchronize(stream);

}

A

CPU

If you can put it in a CUDA stream, you can run it together with a graph
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GRAPHS IGNORE STREAM SERIALIZATION RULES
Launch Stream Is Used Only For Ordering With Other Work

stream

A

CPU

E
n
d

A

B X

C D

E Y

Branches in graph still 
execute concurrently 
even though graph is 

launched into a stream
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WHAT CAN YOU NOT DO WITH IT?
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NO AUTOMATIC PLACEMENT
User Must Define Execution Location For Each Node

B C

A

GPU 0 GPU 1

B C

A

GPU 0 GPU 1

C B

A

If fork in graph can run on 2 GPUs,
how do we pick what runs where?

Both choices are equally valid

Best choice may depend on data locality – unknown at execution layer 
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EXECUTION DEPENDENCIES
                                   CUDA Dependencies are Execution Dependencies

D

B C

A
cudaGraphAddNode(graph, A, {}, ...);

cudaGraphAddNode(graph, B, { A }, ...);

cudaGraphAddNode(graph, C, { A }, ...);

cudaGraphAddNode(graph, D, { B, C }, ...);

Task Inputs Outputs
A none X

B X Y

C X Z

D Y, Z none

Data dependency graph definition Execution dependency graph definition

All data dependencies can trivially be mapped to execution dependencies, but
Not all execution dependencies can be mapped to data dependencies

X X

Y Z
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WHAT CAN YOU DO WITH IT?
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RAPID RE-ISSUE OF WORK 

Cost of graph instantiation

≈ 

Cost of normal launch

Graphs Can Be Generated Once And Executed Repeatedly

for(int i=0; i<5; i++) {
    launch_graph( G );
}

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End
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HETEROGENEOUS NODE TYPES

Data management may be optimized transparently

▪ Prefetching

▪ Read duplication

▪ Subdivision to finer granularity

Optimize for bandwidth and latency of memory access

Optimize for bandwidth of interconnect (PCI, QPI, NVLink)

Graph Nodes Include GPU Work, CPU Work and Data Movement

GPU

CPU

Copy

Heterogeneous
Execution
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CROSS-DEVICE DEPENDENCIES

CUDA is closest to the O/S and the hardware

▪ Can optimize multi-device dependencies

▪ Can optimize heterogeneous dependencies

▪ Especially if executing Graphs

CUDA Can Sync Multiple GPUs

GPU 0 GPU 1

CB

A

D

Multi-Device
Execution
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EXECUTION DETAILS
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LAUNCH OVERHEAD REDUCTION
Reducing System Overheads Around Short-Running Kernels

Launch A Launch B Launch C Launch D Launch E

A B C D E

time

Build 
Graph Launch Graph

A B C D E

time saved

CPU 
Time

GPU 
Time

Launch
Latency

When kernel runtime is short, execution time is dominated by CPU launch cost



28 

TAKEAWAYS

• Cuda Graphs

• Efficient way to express dependency 

• Performance Optimization

• Launch latency

 

F

A

B X

C D

E Y
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FURTHER STUDY
• Effortless CUDA Graphs GTC Spring 2021 talk

• https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/ 

• Cuda Memory Nodes

• https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes 

• Cuda Graphs API Documentation:

• https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html

 

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html
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HOMEWORK

• Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

• Clone GitHub repository:

• Git clone git@github.com:olcf/cuda-training-series.git

• Follow the instructions in the readme.md file:

• https://github.com/olcf/cuda-training-series/blob/master/exercises/hw13/README.md 

• Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw13/README.md


QUESTIONS?
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