CAB: Cache Aware Bi-tier Task-stealing in
Multi-socket Multi-core Architecture

Quan Cheh, Zhiyi Huang, Minyi Guo*
*Department of Computer Science, Shanghai Jiao Tong UitiyeBhanghai, China
chen-quan@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn
fDepartment of Computer Science, University of Otago, Newlaed
hzy@cs.otago.ac.nz

Abstract—Modern multi-core computers often adopt a Multi- The second group is based on automatic task scheduling. In
socket Multi-core architecture with shared caches in eachacket. these programming environments, programmers can specify
However, traditional task-stealing schedulers tend to pdute the and generate tasks at runtime. Parallelism in programs is

shared cache and incur more cache misses due to their random .
stealing. To relieve this problem, this paper proposes a Che mostly expressed as tasks that are scheduled automatically

Aware Bi-tier (CAB) task-stealing scheduler, which improwes the among the executing threads. Examples of this group are
performance of memory-bound applications by reducing memry ~ Cilk[4], Cilk++[5], TBB[6], OpenMP[7], and Java’s fork-
footprint and cache misses of tasks running inside the sameRU join framework[8]. This feature of automatic task schedgli

socket. CAB uses an automatic partitioning method to dividean oy ap|es convenient expression of dynamic tasks and atitomat
execution Directed Acyclic Graph (DAG) into the inter-soclet tier load balancing

and the intra-socket tier. Tasks generated in the inter-sdcet tier]) .)
are scheduled across sockets, while tasks generated in thera- In programming environments with automatic task schedul-
socket tier are scheduled within the same socket. Experimésl ing, the execution of a parallel program can be represented
results show that CAB can improve the performance of memory- py a task graph, which is a Directed Acyclic Graph (DAG)
bound applications up to 55% compared with the traditional G = (V,E), whereV is a set of nodes, and E is a set of

task-stealing. . .
Index Terms—Multi-socket Multi-core architecture, Cache directed edges [9]. A node; in a DAG represents a task

aware, Task-stealing, Work-stealing, Cilk (i.e., a set of instructions) that must be executed secplbnti
without preemption. The edges in a DAG, denoteddy; ny),
. INTRODUCTION correspond to the dependence relationship among the nodes

tasks).

Multi-core processors have become mainstream as clg|p'vI . : .
: : ost DAG-based automatic task scheduling algorithms such
manufacturers like AMD and Intel keep producing new CPUS task-stealing (also known as work-steajr{d0] and task-

chips with more cores. Modern multi-core computers ofte?l1) 71 schedule task ¢ domlv. Thi
use a Multi-Socket Multi-Core (MSMC) architecture in ordep '&'N9 [7] schedule tasks onto processors randomly. This

. . : domness in task scheduling cau§esk Relocation In-
to obtain more computing power. In the MSMC archﬂecturé‘?‘n . :
multiple multi-core chips share the main memory (RAM)CurLPTtd Ct:ache t\}(.e:;l]s_tlnss{iRtICdY) s?c/nlfirome in the MSMC
while the cores in the same CPU chip (also referred as Céf,FS ec ureh:/v Ich 1S theplcte as 1o OV(;/S' b ted
socket in this paper) share the L2 or L3 caches. This archi- uppose there are three tasks v, and-; to be execute

tecture is popular now and will continue to be a dominatin§1 the MiMC grchltel;:tureqldand 72 sr;]arde Idzata, k;]Ut they
architecture for high performance computing in future. are nothing withys. If 1 andvy, are scheduled to the cores

Despite the rapid development of the multi-core technalog hthedsameh CPU socll_<§t, th? sharedbd::\ta arebloaded 'nt% t?)e
a lot of software are yet to be parallelized to utilize th ared caches (e.g. L3) only once but can be accessed by

power of multi-core computers. This need has promoted t gth tasks through th_? caches. Howeve_r, this da_ta sharing is
development of parallel programming environments. not respected by traditional task scheduling algorithmes thu

There are many parallel programming environments that a{%ew randomness in selecting cores for the tasks. Moshofte

popular nowadays. They can be classified into two groupst ¢ task schedulgrs W.OUId movyeor y; to a core in a different
terms of their task scheduling. The first group is based &g‘)cket, whereys is being exe_cuted. o
manual task scheduling. Pthread[1], MPI[2] and Maotai [3 The above randqm sceduling causes two problems. First, it
are examples of this group. Programmers need to manué}}(}reases cache misses. Suppses scheduled to the socket
arrange tasks for every thread/process through careful pP

gramming in order to achieve optimal load balance. Thi§"
manual task scheduling is often burdensome for developi
applications that recursively generate tasks.

~3. 2 cannot use the data already loaded into the caches by

Instead, it needs to read data from the main memory since
annot find its data in the caches of the new socket. Second,
the random scheduling enlarges the memory footprint of the
sockets. Sincey, and s share nothing but run in the same

* Quan Chen was a visiting PhD student at the University ofgOtduring
the course of this research. lwe use “task-stealing” in this paper for the consistencyeofns.

socket, the memory footprint of the socket directly incemas discusses related work. Finally, Section VIl draws coriclus
One immediate consequence of large memory footprint is thad sheds light on future work.

increase of chances for more cache misses, sicenay

pollute the cache entries fog due to conflicts or limited cache I[I. BACKGROUND AND MOTIVATION OF CAB
capacity. We call the above performance degrading problem

which is caused by the random task scheduling in the MSMCThere are two main classes of automatic task scheduling
architecture, as the TRICY syndrome. algorithms: task-sharing and task-stealing. In taskisbar

The TRICY syndrome damages the performance rkers push new tasks into a central task pool when they

memory-bound applications dramatically, since most ofrthé®"® kgenerat?cd. T?sks aret p?ﬁpedfﬁt frorr;]thedtask pool V\t/_hen
execution time is spent on accessing memory. If we can religfOTKErs are free to execute them. The push and pop operations

the TRICY syndrome by scheduling tasks with shared data%id to LOCIE_ the central task pool, which often causes seriou
the same socket, the performance of memory-bound appliJ:%Q conten |.on.
tions will be greatly improved in the MSMC architecture. 12sk-stealing, on the other hand, uses a task pool for each

Among traditional task scheduling algorithms, task-steg! ytvorker. tMokst oft;an .fhaCht ;/volr(lfer %Jslhes hand popsktasﬁs to
which is introduced in Cilk[4], is increasingly popular dte IS own task pool without focking. nly when a worker has

its high performance. In task-stealing, each worker (neead) 'O tasks km Its 'Eﬁslk i.OOI’ Ss.homilh't try to Stﬁ.all tatlskzlfrom
has a task pool to store tasks. Whenever a worker finishesol{gerwor €rs with locking. since there are multiple taskipo

current task, the worker try to get a new task from its own tag%r ;tealmg, thtetlockk tconlten_lt_lrc: n '? mui:h llowt/erl_than tafsk—
pool first. If its task pool is empty, the worker will choose gharing even at task steals. Therefore, task-stealin®ipes

victim worker randomly to steal a task from the victim’s task VEN b(_atter than task-sharing when the number of workers is
pool. If succeeded, the worker will execute the stolen tasllg,creasmg.

otherwise, the worker will keep trying to steal a task fror? Howr?ver, aé ment(ljoned before, taik-str?almg §t|llhsuﬁers
another randomly-chosen victim. Unfortunately, taskaite rom the TRICY syndrome. Let us take tive-point heat

unexceptionally suffers from the TRICY syndrome due to jldrogram as an example, which simulates the heat distributio
random stealing of a metal plate. In the program, the metal plate is divided in

In order to relieve the TRICY syndrome, we propose %omts of a two-dimentional grid. At each simulation stdpe t

Cache Aware Bi-tier(CAB) task-stealing scheduler. CAB p0|n1tsa|:dr0Wr1 %:cetr?gmfeut%d :‘;Seed on the points in rows
addresses the syndrome by scheduling tasks that share dat: T . previou : P- .
iven al0x10 matrix M as the input data with the data type

onto the cores in the same socket in order for them to sha%g

data in caches. It divides the execution DAG of a prograt ublel(rov_vdsto,bg and coltur;QSSaS,SQ arte_ born?r?ry datﬁ' Iand
into two tiers: inter-socket tier and intra-socket tiershg | '¢ f€al grid 1o be computed IS matrix). In the paralle

in the inter-socket tier, which are called inter-sockeksas heat program, the heat procedure recur.sively generates t_NO

are scheduled across the sockets, while tasks in the int?H-btaSks until the d:?\ta set for each task is small enough. Fig

socket tier, called intra-socket tasks, are scheduledimwitie 1 shqws the ?XeCUt.'O.n DA.G of the heat program. The input

same socket. Moreover, CAB can automatically and optima ta is recursively divided into two parts until each of thafl

partition the execution DAG into the two tiers accordingtie t tasks in the DAG only processes two rows.

data input size of an application, data cache size, the humbe

of sockets, and etc. Level 0
The contributions of this paper are three-fold. Level 1

main

heat (0-7) inter-socket
Tier

() -1 l

« The CAB task-stealing significantly relieves the TRICY Level 2

syndrome by scheduling tasks with shared data onto cores BL = 2

of the same socket. Level 3 (T)(0-1)(T5) (2-3) ([)(6-7) intrasocket
« CAB presents an automatic partitioning method to divide)
a DAG into two tiers so that tasks in different tiers are Fig. 1. Execution DAG of five-point heat program

generated and scheduled in different ways.

« The experiment shows that CAB can significantly achieve according to the dependence relationship, tasks in the DAG
a performance gain of up to 55% for memory-boungan e divided into levels. If a task in level i generates a
applications. task 8, then g is in level i + 1. The task that executes the
The rest of this paper is organized as follows. Section ‘imain” procedure is in level 0 and it is the initial task in the
introduces the background and motivation of CAB. Section IPAG.
presents the DAG partitioning method and the CAB task- Note that, in Fig. 1, only the leaf tasks (i.€4, 15, Ts, 1)
stealing algorithm, followed with a discussion of the thedouch data, while all the other tasks in levels 0, 1, and 2 only
retical time and space bounds of CAB. Section IV givedivide the input data into two parts recursively.
the implementation details of CAB. Section V shows the Suppose this parallel heat program is executed on a dual-
experimental results and evaluates the performanceoBeéti socket dual-core architecture with a hypothetical shaemthe

size of 480 bytesin each socket. be optimally partitioned so that there are enough intrasbc
tasks for stealing in the same socket, while there should be
sufficient inter-socket tasks for balancing the workloadam

- sockets.

n
@ @ [1l. CACHE AWARE BI-TIER TASK-STEALING SCHEDULER

0 [0 00
LOE| [O®®

Socket 0 Socket 1 Socket 0 Socket 1 This section presents CAB, a Cache Aware Bi-tier task-

| | stealing scheduler. First, we give an overview of CAB. Then
(a) One possible scheduling (b) Another possible scheduling we mtrpduce an aUtomat]C partlt!omng method for dividthg
_ _ _ _ execution DAG into two tiers. Third, we present the CAB task-
Fig. 2. Two possible scheduling of tasks of heat running oal-ducket gtaqjing algorithm. Finally, we give the time and space loisun
dual-core system. The first scheduling can gain performamgFovement . .
from cache-sharing and reduction of memory footprint, beed’s andT5, Of the parallel execution based on the CAB task-stealing.
Ts andT7 have shared data.

A. Overview of CAB

In the above scenario, if the leaf tasks, 75, Tg and T CAB divides the workers into squads corresponding to the
are ideally scheduled in the way as shown in Fig. 2(a), dataMSMC architecture. Asquadis a group of workers running
the shared cache can be re-used and thus cache misses cam the same socket. Each squad has a head worker. Supposing
reduced. In Fig. 2(a), tasks running on the cores of the samean MSMC architecture there afd sockets withV cores
socket(e.g7, andT5) share two rows of input data. The twoeach, CAB launches/ x N workers (i.e. threads) to work on
tasks in each socket only need to read six rows into the shatkd DAG in parallel. The workers are divided inld squads
cache from the main memory altogether, ie+,10+8 = 480 with IV workers in each squad. A worker is affiliated with a
bytes. This data set size can fit into the shared cache ohadware core, while a squad is affiliated with a socket. Fig.
socket. The overall memory footprint of the syster4d80 = 3 depicts the relationship among cores, sockets, workats, a
960 bytes. squads.

However, for traditional task-stealing, since it disttisi
tasks randomly, the leaf taskg,, Ts, Ts and 77 are very Socket 0 Socket 1
likely scheduled in the way as shown in Fig. 2(b). Note that, [L2 or L3 Cache| | | [L2 or L3 Cache |

2

in Fig. 2(b), tasks running on the cores of the same socket @
(e.g.Ty andT;) do not share any data. In this situation, every
]
]
]
]

task needs to access the main memory and reads four rows
of the matrix into the cache. Because the two tasks in each
socket need to rea®lx 4 x 10 x 8 = 680 bytes, the data size
exceeds the capacity of the shared cache of each sockeh whic
leads to more capacity cache misses and increases the shanc
for conflict cache misses. Furthermore, the overall memotyter-socket lmﬂizsocklct Intra-socket Inter-socket
footprint of the system i * 680 = 1280 bytes, which leads P! task poo task pool task pool
to more CompUI§Ory cache misses. Fig. 3. Relationship among cores, sockets, workers, anddsgn an MSMC
In order to relieve the TRICY syndrome and schedule task&hitecture. Workers that run on the cores of the same sarkegrouped
in the same way as in Fig. 2(a), we propose the CAB taSiRLO the same squad. Each squad has one inter-socket taskybazh is used
l hich y L. gh () . P ISAG . . by the head worker of the squad to store inter-socket tasksh Borker has
_Stea Ing, wi '9 partl’Flons the exe_CUtlon) mto_two t[ersone intra-socket task pool, which is used to store intr&etotasks.
inter-socket tier and intra-socket tier. Tasks in the sterket

tier are scheduled across sockets, while tasks in the intracapg adopts two types of task pools: inter-socket task pool
socket tier are scheduled within the same socket. For ©@mRind intra-socket task pool. A task pool is a double-endedeue
in Fig. 1, tasks in levels 0-2 are in the inter-socket tier an@leque) that is used to store tasks. The inter-socket task po
tasks in level 3 are in the intra-socket tier. The tasks iRlldv s ysed to store tasks from the inter-socket tier of the DAG,
the boundary of the two tiers, are called leaf inter-sockss. and the intra-socket task pool stores tasks from the irtciet
In CAB, the intra-socket tasks such&sandT}s are bound to tier, Each squad has an inter-socket task pool, and eactework
the same socket. Since the intra-socket tasks generatdwbyras an intra-socket task pool, as shown in Fig. 3.
same leaf inter-socket task often share data in real apiplisa Suppose a new taskis generated by a worker of a squad
their binding to the same socket in CAB can enforce the |f is an intra-socket task, it is pushed into the intra-socket
scheduling in Fig. 2(a) and results in fewer cache misses. a5k pool ofw. If v is an inter-socket task, it is pushed into
In the next section, we will present the details of thghe inter-socket task pool of
2We use this hypothetical small cache size for ease of exjitemaebut it MSMC architecture, CAB uses an automatic partitioning
does not affect our analysis since input data will be propoally Iar’ger for method (to be dgscr'bed.Shortly) to d“_”de the exepuuon DAG
a real cache size. of the program into the inter-socket tier and the intra-sbck

Squad 1

©

tier. After the partitioning, CAB starts to execute the twskio adjustBL automatically. We will discuss compiler support

by scheduling the inter-socket tasks and the intra-socleiist in Section IV.

based on the following stealing protocol. In the model, we suppose aw-socketN-core system has
A free worker in CAB first tries to obtain a task from itsa shared cache sizg. for each socket and a recursive divide-

intra-socket task pool. If the task pool is empty, it triesteal and-conquer program has an input data sizeWe assume the

a task from the intra-socket task pools of other workers @ thprogram divides the input data inf® parts each time sub-tasks

same squad. If all the workers of the squad have empty tasle generated, i.e., the branching degree of the DAG of the

pools, the head worker of the squad tries to obtain a task fraecursive procedure i8. In this scenario, the boundary level

its own inter-socket task pool. If its inter-socket task piso BL should haveBBL~! leaf inter-socket tasks, since each task

empty, the head worker of the squad tries to steal an intgenerates3 sub-tasks for the next level and this is repeated

socket task from other squads. BL — 1 times until the boundary level, assuming levels are
The above protocol only allows the head worker of a squamimbered fron® and the leveD starts withmain

to steal inter-socket tasks so that the lock contention ef th Since there arel/ squads, in order to balance workload

inter-socket task pools is reduced. Also a squad is not aliowamong squads, we should ensure that there are at Mast

to execute more than one inter-socket task at the same tideaf inter-socket tasks. Therefo!l. needs to satisfy Eq. 1 in

because the data of different inter-socket tasks may gollatrder to fulfill the aforementioned first constraint.

the shared caches if multiple inter-socket tasks are esdcut

at the same time in the same squad, which leads to more cache BBETL > M (1)

misses. In order to fulfill the second constraint, we should ensure

B. Automatic DAG partitioning method the data size for each leaf inter-socket task to fit into traesth
. . - .. cache of a socket. Since the input data are often dividedyven

As mentioned before, tasks in a DAG are divided |nto_|nte5m0ng the leaf inter-socket tasks, the second constrainbea
socket tasks and intra-socket tasks according to theitdéwe expressed with Eq. 2
the DAG. We compute a boundary le\igll that partitions the T
DAG into the inter-socket tier (the upper tier) and the intra S4/BPLL < @)
socket tier (the lower tier). Tasks in the boundary leBél =7
are calledleaf inter-socket tasksSince intra-socket tasks are From Eg. 1 and 2, we can deduce two conditions for
scheduled within a squad, all the child tasks of a leaf integelecting an appropriate value fBL, as shown in Eq. 3.
socket task are .executed in the same socket. N {BL > logy M+ 1

However, finding the proper boundary le\&l to partition
the DAG optimally is challenging. If the intra-socket ties i BL >logg (Sa/Sc) +1
too thick, the involved data for a squad can be too large toFrom Eq. 3, we can select aBBL that is large enough to
fit into the shared caches of the socket of the squad. On #uisfy the two inequations. But, unfortunately,Bf is too
other hand, if the intra-socket tier is too thin, the workloalarge, the number of the intra-socket tasks generated bgfa le
of a squad can be too small to get better balanced among ifer-socket task will be too small, which leads to poor load
workers of the squad. balance within a squad. Therefore, we Betto be the smallest

Therefore, we require that the DAG partitioning methodalue that satisfies both inequations, as shown in Eq. 4.
satisfy three constraints. The first constraint is thatetstould
be enough leaf inter-socket tasks to be distributed to the
sockets. ?’he second constraint is that the involved dagaddiz BL = max{[logg M + 1], [logp (Sa/Sc) + 11} (4)

a leaf inter-socket task is small enough to fit into the sharedIn our current implementation, we use a semi-automatic
caches of a socket. The third constraint is that a leaf intenethod to acquire parametef$, M, S;, and S. and then
socket task should be large enough to enable a squad to hessnputesBL according to Eg. 4. Parameter® and S.
sufficient intra-socket tasks. After careful study, we nmlodare automatically acquired frofproc/cpuinfoby the runtime
these constraints as follows using the following paransetesystem, butS; and B are provided through command line
the input data size of the application, the number of soaletsarguments. In Section IV, we will discuss how to automalycal
the MSMC architecture, the shared cache size of each sockeijuire these parameters by the compiler through program
and the branching degree of the DAG. analysis.

Note that in the following model we assume that the In summary, CAB chooseBL to be the smallest value while
program directly generates the task of the recursive dividensuring that the data set of the leaf inter-socket tasks can
and-conquer procedure in thmain procedure, which is the fit into the shared cache and that the number of leaf inter-
case for all our benchmarks. For example, in Fig. 1,rtteén socket tasks is large enough so that there is at least orre inte
procedure directly spawns theeatprocedure that recursively socket task for each and every squad. Experimental results i
spawns tasks executing itself until a cut-off point. Howeife section V show that our automatic DAG partitioning method
the recursive procedure is not directly generatedriayn, we can find the optimal boundary level that enables the highest
need either manually adjust tiB value, or compiler support performance of the CAB scheduler.

®3)

C. CAB task generation CAB TASQI_SO'I'ES{IFNHGNLI[GORITHM

Tasks in the inter-socket tier and the intra-socket tier are
generated with different policies in CAB. There are gerigral Assumption: Suppose a workew belongs to a squag. The workerw
two policies for task generation: child-first and parerstfir 's free trying to get a new task.

In the child-first policy, a worker executes the child task Stealing from intra-socket tier: . .
tep 1. w tries to get a new task from its own task pool. If there is any

immediately_ once it is ger]erated, leaving the parent task foiask in the task pooky obtains a task from the task pool and jumps to
later execution or for stealing by other workers. For exanpl Step 7; otherwisew goes to Step 2. _
the MIT Cilk uses the child-first policy, which is called werk Step 2: w checksbusy stateof p. If busy stateis true, w goes to Step

. 3; otherwise, ifw is the head worker op, w goes to Step 4, or else
first in [4]. However, in the parent-flrst policy, a Worker. goes back to Step 1.
executes the parent task continua aiter spawning a chil&tep 3: w tries to steal an intra-socket task from the workerspint

tes the p t task t lly after sp g hilé lan i ock k f h kerspi
task, pushing the child task into the task pool. One suclgt‘ggsgs a victim worketvyiceim Within p randomly and then goes to
example is the the help-first policy proposed in [11]. Stealing from inter-socket tier:
Both policies have their advantages in different situation Step 4: w tries to obtain an inter-socket task fromf there is any task
The child-first policy works better than the parent-firstippl $h;hne '”;g;sbcij‘;ke;t;"’t‘zléfpoct’(') %ffé ;ﬁugb;":‘]'gs getsaf(')‘ ;’t%m ;h%:ﬁj:wﬁ’sg'-if
. . . w . s
Whgn the execution DAG is Qe_gp. Howeyer, the parent-firsg,e inter-socket)tLask poof) of is empty,w goges to Step %'

OlICY WOrKS petter wnen the Initial IS shallow an € Step 5: w tries to steal an inter-socket task from other squadsandomly
policy ks bett hen th tial DAG hall d the s i lani k k f h adsandoml
steals are frequent, since it can quickly produce enoudts tas ‘“éft‘g:“s:g f?o\g]ﬁ\i/?gtﬁyammm and then goes to Step 6.
for free workers [11]. Step 6: '

Because there are more steals needed in the inter-socket (a) When the victim is a worker, if the task pool @fyictim IS
tier where the execution DAG is expanding initially, CAB gfgefx‘igéy'wg%‘égsbchﬁ fsrferg the task poal and then goes to Step 7,
) W .
adopts_the parent-flrgt policy in the inter-socket tier inleor (b) When the victim is a squad, if the inter-socket task pobl o
to distribute the leaf inter-socket tasks to squads as S80N @uictim is Not empty,w pops a task from the task pool. Them sets
possible. After a squad gets a leaf inter-socket task, & thee g;’slsmeoifsf; :T(]’ptt’; “Ugeo:;‘dtogg‘t?:pt% Step 7. Otherwise, if the task pool
H . H H H victim , W .
child-first policy to generate the intra-socket tasks. 8itfve _Stepp T Starts to execute the task,
number of workers is small and the steals are not frequent=m
a squad, the child-first policy is more suitable for intraiest
tasks. Also the child-first policy is more space efficientjath

will be discussed shortly in Section IlI-E.

the leaf inter-socket tasks. Given a leaf inter-socket task

we use the notatiod, to represent the subgraph rooted with

D. CAB task-stealing ~, which includes the set of tasks that are generated from

. . Therefore, the total work of is divided as in Eq. 5, where

As mentioned before, a free worker follows the stealmg .) 3

protocol in Section IlI-A to obtain or steal tasks. Accomlin ;""" represents the subgrap h of the inter-socket tier &g

o the stealing protocol, a squad is not allowed to exec tee total number of the leaf inter-socket tasks at the bogynda
X ’ . Ijievel BL.

more than one inter-socket task at the same time. In ordér

to implement this requirement, CAB uses a boolean variable &) = T (& K c

busy statefor each squadbusy stateindicates whether there T1(&) = T(Einter) + Z Ti(&y))

is an inter-socket task running in the squad right now. When o . =1 .

there is an inter-socket task running in a squagsy stateof ~ The execution time of in an M-socketN-core architec-

the squad is true. When a squad finishes its inter-socket taske, Tar«n (€), can be divided into two parts: the execution

its busy stateis set false. Only whebusy stateis false, can time of the inter-socket tie?ys. v (€inter) and the execution

the squad obtain or steal another inter-socket task. time of the intra-socket tief'/. n (Einira). Even though the
Algorithm | shows the detailed task-stealing algorithmtthgwo parts can be overlapped, we use their sum to get the worst

implements the stealing protocol. bound of T.n (€) as shown in Eg. 6.

E. Theoretical time and space bounds Trrn (€) = Trsn (Einter) + Taren (Eintra) (6)

We model the execution of a parallel program as an execu-Since the inter-socket tier is executed b head workers
tion DAG £. Each node irf represents a unit task, and eaclysing task-stealing, according to the proof of [10], thecexe
edge represents a dependence between tasks. Our followisg time of &;,,., is bounded by Eq. 7.
discussion is based on the time and space bounds of task- Ty (Eimer)
stealing proved in [10]. Toren (Einter) < —mtnter)

1) Time bound: For a DAGE, thework T3 (€) of £ is the) M_ . _
number of nodes i€, and the critical-path lengtif,, () is ~ For the execution of the intra-socket tier, ea€h, is
the number of nodes along the longest path from the start ndgcuted byN workers within a squad using task-stealing.
to the end node. Therefore, the execution time &%, is bounded by Eq. 8.

Since CAB divides a DAG into two tiers and executes them Ti(E,,)
differently, we need to divide a DAG into sub-DAGs using In(Ey) < — 5 + Tw(éx) (8)

+ Too (ginter) (7)

Since K leaf inter-socket tasks are scheduled amddg
squads using task-stealing, the execution time of the-intra
socket tier is bounded by Eq. 9.

Z_K Tn(E,) Again, according to Eq. 4, the number of leaf inter-socket
=1 12+ Too(Eintra) (9) tasks,K, is not much larger thai/, so the space bound has

. M the sameD-notationas the traditional task-stealing schedulers.
Deducing from Eg. 8 and 9, we can get Eq. 10.

Saen(€) < max{K x S1(E), M * N % S1(€)} (15)
TM*N(gintra) S

IV. IMPLEMENTATION OF CAB

P <Zfil Ti(E) SR To(&y) In this section, we present the implementation of CAB.
Tarsn (Eintra) < MxN M (10) First, we briefly introduce the MIT Cilk in which CAB is
+ Too (Eintra) implemented. Then, we present the compiler support imple-

._mented for CAB, followed with the implementation of the

From Eq. 6, 7 and 107s..v(€) can be bounded as incap 1ntime system. Finally, we discuss issues related to

Eg. 11. the implementation. Note that Cilk programs can run in our
, K current implementation without any modification.
Taren (€) SiTl(i\l/;ter) + Too (Einter) + 72111, i) + P Y
. *N A. Overview of MIT Cilk
M + Too (Eintra) MIT Cilk is one of the earliest parallel programming envi-
M (11) ronments that implement task stealing [12]. It extends G wit
After further tidying Eq. 11 up, we have Eq. 12. three keywordscilk, spawnandsyncto declare parallelism in
the programcilk identifies a procedure as@ilk procedure
T P <T1 (Einter) Zfil T1(&5,) spawnis used to generate a child task, asyhcwaits for all
aen (€) < M T MeN T (12) the child tasks that are generated by the current task tonetu
Zfil T (&) Only Cilk procedures can be invoked witipawn
- M + Too(€) MIT Cilk consists of two main parts: compiler and sched-

uler. Cilk compiler, named asilk2c, is a source-to-source
htéanslator that transforms a Cilk source into a C program.
cilk2c generates dast cloneand aslow clonefor every

Cilk procedure. The slow clone is executed if the task of
the procedure is stolen; otherwise, the fast clone is erecut
instead. In additiorgilk2c uses dask framedata structure for

T (Einter) i 11 (Eintra) + T (E)) (13) every Cilk procedure. Once a task is generated, a task frame

M M N is created to store the information needed by the task and the
According to Eq. 13, the inter-socket tier is executed byonkcheduler.

M head workers. However, in most recursively divide-and-
conquer applications, only the leaf tasks in the DAG proceBs Compiler support of CAB
input data, while the higher level tasks only divide the inpu We have modifieccilk2c to support two types of spawns
data into smaller parts. Therefore, for a divide-and-c@nqgufor the inter-socket and intra-socket tasks respectivilgach
application, the main part of the execution time is spentiey tspawn, we compare the DAG level of the current task with the
leaf tasks, i.e., the intra-socket tasks. Our experimemsvs boundary levelBL. If the level is smaller thal3L, we spawn
that the execution time of the inter-socket tier is ofters lg®n the child task as an inter-socket task and follow the pafiesit-
5% of the overall execution time. Therefore, the time bouhd policy. Otherwise, we spawn the child task as in intra-sbocke
Eg. 13 is very close to the traditional task-stealing scherdu task and follow the child-first policy.
such as Cilk for many divide-and-conquer applications. We also modifieatilk2c to support two types adyncfor the

2) Space bound analysis. According to the proof of [10], inter-socket and intra-socket tasks. This is because wéhese
the space used bg in an M-socket N-core architecture is child-first policy to generate the intra-socket tasks bt e
bounded by Eqg. 14, wher§,(£) denotes the space used byarent-first policy to generate the inter-socket tasks. \&& u
the serial execution of the program. the differentsyne to manipulate different return behaviors of

the tasks.
Saren (€) < M x N x 51(E) (14)""We add into each task frame three variablese| parent

Eq. 14 supposes there are at mbst N workers expanding and inter_counter level represents the level of the task in
the DAG using the child-first policy. However, since CAB usethe execution DAG parentis a pointer to the parent frame,
the parent-first policy to expand the inter-socket tier glyic and inter_counteris the number of outstanding child inter-
each of the leaf inter-socket tasks may usespace in the socket tasks spawned by the task. For example, when aytask
worst case. Therefore, the space used by the CAB schedglenerates a child inter-socket tagk theinter_counterin the
Sm«n(E), can be bounded as in Eq. 15. task frame ofy is increased by 1. When, returns, through the

According to Eq. 4,K is at most several times of/.
Therefore, the third item in Eq. 12 can be merged with t
fourth item. Finally, we have the time bound &fin an M-
socketN-core architecture as shown in Eq. 13.

Taren(€) = O(

parentpointer in its task framey; decreases thiater_counter program requirements. However, this method requires the
in the task frame ofy by 1. If 4’s inter_counterequals 0, that programmer to modify the existing Cilk programs and more
means all the inter-socket tasks generatedythave finished programming effort is required. According to our experitisen
and thesynccan be passed through. our semi-automatic method can achieve similar performance

The intra-socket tasks are handled similarly by an originabmparable to the well-tuned programs using this manual
Cilk data structure calleglosure which includes the infor- method.
mation of the above task frame but is more complicated thanit would be preferable to fully automate the acquisition
necessary for us to handle the inter-socket tasks. of the parameters used for the calculationBif. Compiler
support can be useful to automatically acquire the brarmchin
degreeB and the input data siz&; of the procedureB can be

For an M-socket N-core architecture, CAB launchés« found by analyzing the source code based on the patterniof tas
N workers, and affiliates each worker to one individual corgeneration, e.g. the keywospawnin Cilk. However, to track
The ID of each worker is the same as the ID of the cot@e input data sizé&,; of a procedure can be challenging. The
on which the worker is running. CAB groups workers int@ompiler needs to track the calling chains and arguments to
squads according to their IDs. If the carés in the sockeyj, the procedure. This compiler support is an interestingamese
the workeri is grouped into the squafl In each squad, the jssue. Fortunately, it is relatively easy to track the data of
worker with the smallest ID is the head worker. arguments in many strongly typed languages other than C.

CAB executes a parallel program following the runtime another issue in our current implementation is the cal-
algorithm in Algorithm II. Note that in the algorithnBL is cylation of BL. Currently we assume theain procedure
setto O When there iS Only one SOCket in the al’ChiteCture éﬁecﬂy calls a divide_and_conquer procedure that re"zabs
that all tasks are generated as intra-socket tasks, whittfeis spawns tasks. Even though this assumption is valid in all our

C. CAB runtime system

same as MIT Cilk. benchmarks, there are real applications that may call plelti
ALOGRITHM I divide-and-conquer procedures indirectly through lowelev
CAB RUNTIME ALGORITHM tasks. In such situations, we need to associdd avith each

divide-and-conquer procedure and calculate Bheon-the-fly
Assumption: Suppose there is an M-socket and N-core architecture andyhen the procedure is initia”y spawned as a task. Though iti
a workerw belongs to a squag feasible to implement it with compiler support, howeveisth

Global initiation: N is not an issue we address in this paper.

Step I CAB launches M x N workers and affiliates them to the .. .
corresponding cores. To use the CAB scheduler for all applications with complete
Step 2 CAB calculatesBL. If M equals 1, CAB setBL to 0. Otherwise, ~ automation, the compiler should tell if an application is
CAB calculatesBL according to Eq. 4. _ memory-bound or CPU-bound. A simple rule of thumb for
Step 3 Worker 0 begins to execute the initial task, while all théest
workers are trying to steal tasks. the compiler to make the decision is that if the applicatias h
Task scheduling: Assume workerw is executing tasky. a large data size, it is memory-bound; otherwise, it is CPU-

(a) v generatesys: y computes the level ofy. If 71 is in the inter- hoynd. For CPU-bound applications, CAB sdid. to 0 so
socket tier, it is generated as an inter-socket task. Theushesy; into h hei K heduled h diti | i
the inter-socket task pool gf and continues to executg Otherwise, if that their tasks are scheduled as the traditional taskisgea
~1 s in the intra-socket tier, it is generated as an intra-sbtisk, which Even though compiler support is an obvious way to trans-
is pushed into the task pool a@f and to be executed by immediately. — parently utilize the CAB scheduler, there may be other ways
(b) v suspends: w tries to get a task according to Algorithm 1. . .
(c) v retums: w returns the results of and setsusy stateof p to 0 USe the scheduler without programming effort. For exampl
false if v is an inter-socket task. Then tries to get a task according to heuristic information may also be acquired at runtime to
Algorithm . ; ; _ ;
Termination: If all the tasks have finished, CAB terminates. inform the s_cheduler about the. Inter S.OCket and intra-ebck
tasks. Such information can flexibly guide the CAB scheduler
to schedule tasks within a socket or not. This is another

interesting issue for future research.

D. Discussion

CAB does not require modification of the existing Cilk V. PERFORMANCE EVALUATION
programs. Our current implementation uses a semi-automati
method to acquire the parameters for the calculatioBLofA/ In the performance evaluation, we use a Dell 16-core

and S, are acquired automatically from the system, while theomputer which has four AMD Quad-core Opteron 8380
branching degre® and the input data siz€, of the recursive processors (codenamed "Shanghai”) running at 2.5 GHz. Each
procedure are provided through command line. Quad-core socket has a 512K L2 cache for each core and a 6M
An alternative method to use the CAB scheduler is throudt3 cache shared by all four cores. The computer has 16GB
a new keywordnter_spawnwhich generates a task as an intetRAM and runs Linux 2.6.29. Accordingly CAB sets up four
socket task. This method enables the programmer to exyplicigquads with four workers each.
inform the scheduler about the type of tasks. Through theTable Il lists the benchmarks used in our experiments.
new keyword, the programmer can control the schedulingThe Cilk benchmarks run with CAB without any modifica-
behavior and fine-tune the performance according to thien. All benchmarks are compiled with “cilkc -O2”, which is

TABLE Il

BENCHMARKS USED IN THE EXPERIMENTS B. Scalability of CAB

— Input data sizes can affect the performance of CAB. If an
Name Type(bound) Description jnput data is very large, the performance gain of CAB tends to
?ﬁueeHS(ZO) CSEU . FN qyeegs pr?blem be smaller. Due to limited space, we only Ussatand SOR

ast Fourier Transform H HH
ck CPU Rudimentary checkers to dlscgs_s the scalability of CAB, though other benchmarks
cholesky CPU Cholesky decomposition Show similar results.
ueat . '\'\/lﬂemory " . 102?**/5(-)22“ hegt Fig. 5 shows the performanceloéatandSORwith different
ergeso emory erge sort on numbers . : . :

SOR Memory Red/Black 2D Successive Over-Relaxation INPUt dat_a sizes. Accordmg_ to the resu_lts, the performgage
GE Memory Gaussian elimination algorithm Of CAB is 55% when the input data is small (512*512), but

drops to 5% when the input data is large (4k*8k).

H Cilk CAB M Pthread

—+—heat in Cilk heat in CAB 12 ~+=SOR in Cilk SOR in CAB

12
1 1
08 0.8

1 T 06 0.6
04 0.4
0.8 2. £ 02
0 T 0 T
06) 0.5%0.5 1*1 2*2 3*2 4*2 4*4 4*8 512*512 1k*1k 2k*2k 4k*2k 3k*4k 4k*4k
0.4 - Input data size (1k*1K) Input data size
0.2 (a) Heat in CAB (b) SOR in CAB
0 4
GE

Fig. 5. Performance result of heat and SOR with differentingata sizes.

1.2

Normalized execution time
Normalized execution time

Normalized execution time

Mergesort Heat SOR

Memory bound applications One reason for the diminishing gain is that, with the
increasing input data sizes, the shared data set betwaan int
socket tasks relatively becomes smaller, which incredses t
proportion of non-shared data and the cache misses in the lea
inter-socket tasks. Fig. 6 shows the L2 and L3 cache misses of
based on gcc 4.4. For each test, every benchmark is run B§@tandSOR When the input data is small, CAB can reduce
times. The average execution time is used in the results. nearly 60% L3 cache misses and 80% L2 misses compared to

Cilk. When the input data size is large, CAB can only reduce
A. Performance of memory-bound applications about 27% L3 cache misses and 59% L2 misses.

Fig. 4 shows the performance of four memory-bound ap- .
plications with a1024 » 1024 matrix as input data. From the g= :
figure, we can see that CAB can significantly improve thes o
performance of memory-bound applications, with the perfor ” : :/:
mance gain ranging between 10% and 55%. For exampl{ » :

Mergesort has achieved up to 55% performance gain wit;ﬁ O e ok sk e ae O e e v en sed aca
CAB compared with Cilk. z it dat e

The performance gain of CAB is resulted from the relieved (a) Heat in CAB (b) SOR in CAB
TRICY syndrome. According to Table IV, the L2 and L3 cache
misses are prominently reduced in CAB compared with Cilk. Fig. 6. L2 and L3 cache misses of heat and SOR in CAB and Cilk.
Since the data set used by a squad is often shared by the

workers of the squad and can fit into the L3 cache accordinganother reason for the diminishing gain is that, when the
to CAB, the number of L3 cache misses is much smaller thaiput data is large, the granularity of the leaf tasks become
Cilk whose random scheduling often causes larger memagyge, which is not good for load balance within a squad. In
footprint and thus more cache misses for workers inside tBeder to relieve this problem, we have modified the the chit-of
same socket. Likewise, in CAB, the small memory footprirjoint in theheatprogram. Instead of using the fixed 128 rows
and the likely data sharing of workers in a squad help reduggdata as the data set for the leaf tasks, we use 64 rows and

Fig. 4. Normalized execution time of memory-bound appiaat in CAB
with a 1024 x 1024 matrix as input data.

——L21n Cilk 13inCilk —+-L2inCAB =<L3in CAB
14
12
10

(——2

Number of cache misses x1000,000

the L2 cache misses as well. 32 rows respectively. According to Fig 7, when the number of
TABLE IV rows for each leaf task is 32, the performance gain is inetas
L2/L3 CACHE MISSES INCAB AND CILK to 10% compared with Cilk. Interestingly, the performanée o

Cilk has also increased significantly when the number of rows

GE cilksort heat SOR ; ; ;
[2in Cilk | 2413947 | 5932702 | 931738 | 695545 is 32 due to smaller grain of parallelism. . .
[2n CAB | 458200 | 892008 | 286784 | 130311 The above results show that when the input data is large,
L37in Cilk | 1181241 4069389 | 1966314 | 1005938 we should adapt the cut-off point accordingly in the program
L3in CAB | 939201 | 2871816] 1603448 747291 so that the data size of each leaf inter-socket task can dit int

B Cilk CAB tasks. In such a situation, the workload within a squad canno

8000 be balanced well. For example, f&L = 6 in the case of
3kx*2k, leaf inter-socket tasks are in level 6 and do not generate
g 6000 — any intra-socket tasks. In this case, there is only one worke
T contributing to the performance of every squad.
£ 4000 —
=)
c
——512*512 1k*1k ——2k*2k =<3k*2k
2 2000 |
o — 2000
= 0 - £ 1600 ,/(\\\\
128 64 32 £ 1200 //\ B
Row number of leaf tasks _E 800 7#
L
§ 400
Fig. 7. Execution time of heat with different data sizes feafltasks. When] — * —t
the data size of each leaf task is large, CAB can have morempesahce gain 0 ‘ ‘
by splitting the leaf tasks further. Gk 0 1 2 3 4 5 6
Value of LEVEL

the shared cache while there are sufficient parallel tagks¢i
socket taSkS) Wlthm,the socket. In this V,Vay’ CAB ca}n mamtalzig. 8. Impact oBL on performance of heat. Our automatic DAG patrtitioning
the performance gain of 10% when the input data sizes becom&nhod can find the best value Bt

large.

D. Performance of CPU-bound applications

In Section 111-B, we have proposed a model to calculate theSlnce CAB is proposed to relieve the TRICY syndrome of

boundary leveBL in order to partition the DAG. The modelmer_nory-bound applications.’ CPU-bound applications qgnno
uses four parameter®, M, S, andS,, as shown in Eq. 4. achieve better performance in CAB compared to the tradition

In this section, we uséeatto evaluate the effectiveness Ogask-steahn_g. Therefore, CAB .s.chedules the “T"S"S qf CPU-
the model, though we have verified that the model works f round applications as the traditional task-stealing byirget

other applications as well. L 10 be 0.
We evaluate the performance béatwith all possibleBL
cholesky

C. Effectiveness of automatic DAG partitioning method

m Cilk CAB

) fft ck

CPU bound applications

values. Since théneat program divides the input data into
two parts each time sub-tasks are generated until the daga si
becomes 128 rows, there are fewer posshillevalues when
the input data sizes are small.

Fig. 8 shows the performance beatwith different input
data sizes and all possibBL values. For example, for a
3k x 2k matrix of double there are 7 levels (0-6) in the
execution DAG and the overall input data size 3872 x
2048 x 8 = 48 M B. According to Eq. 4, CAB calculateBL
asmax{[log, 4 + 1], [log, (48M B/6M B) + 1]} = 4. From
Fig. 8, we see thaheatgains the best performance for data
Slzegk.* 2k whenBL s 4. Th_EBL values calculated for other Fig. 9. Normalized execution times of CPU-bound applicatiin CAB. By
data sizes are the ones with the best performance as WetingBL to be 0, CAB schedules tasks as the traditional task-stgalin
according to Fig. 8. This proves the effectiveness of Eq. 4

and our automatic DAG partitioning method. Fig. 9 shows the performance of CPU-bound benchmarks
Note that, for larger data sizes, whBh is smaller than 3, |isted in Table IIl. For most cases, the extra overhead added

the performance of CAB is worse than Cilk. This is becausgyto the applications by CAB is around 1-2%. Ffir the extra

whenBL is small, there is only a small number of leaf intergyerhead caused by manipulating the varidelelin the task

socket tasks. In this Situation, workload is not balanced W¢rames is less than 5%’ though Optimizations are possib|e to
in CAB, because CAB may not utilize all the sockets due tQrther reduce this overhead.

the lack of inter-socket tasks. One such extreme case is when

BL = 1, there is only one leaf inter-socket task, and thus only VI. RELATED WORK

one squad can get the task. Task-stealing is increasingly popular for automatic task
On the other hand, iBL is too large (e.g.>4), each leaf scheduling. There have been a lot of research work on its

inter-socket task only contains a small number of intrakebc adaptation and improvement [13], [14], [15], [16], [17].

1.2

1
0.8 -
0.6 -
0.4 -
0.2
0 -

queens(20

Normalized execution time

There are generally two policies for task scheduling baséu [23] a theoretical bound on the number of cache misses for
on task-stealing: child-first and parent-first. In [11], theandom task-stealing was presented and a locality-guatsd t
performance of the two policies were compared. Both childtealing algorithm was implemented on a single-core SMP.
first and parent-first policies have their strengths and aeslu In [24] cache behaviors of task-stealing and a parallelfdept
pervasively in task-stealing schedulers. For example, Mfifst scheduler were compared and analyzed on a multi-core
Cilk [4], Cilk++ [5], and Intel TBB [6] use the child-first simulator that has shared L2 caches between cores. It prdpos
policy, while Java’s fork-join framework [8] and Task Paehl to promote constructive cache sharing through controtirsl
Library (TPL) [18] use the parent-first policy. Also theresar granularity. However, the above researches did not take the
some task-stealing schedulers that adopt both policigs, eMSMC architecture into consideration.

SLAW [19]. In SLAW, tasks are generated following either To the best of our knowledge, CAB is the first cache-aware
the child-first policy or the parent-first policy accordirgthe task-stealing scheduler that relieves the TRICY syndrome i
stack pressure and task-stealing conditions. AlthoughV8LAthe MSMC architecture.

uses both policies as in our CAB scheduler, it does not
associate the policies to the DAG level of tasks as we do

in CAB. We adopt the parent-first policy to quickly generate 1he CAB scheduler can effectively relieve the TRICY
the tasks in the inter-socket tier, but use the child-firdtego Syndrome caused by the random task-stealing in the MSMC ar-

to prevent the excessive task proliferation in the intrekep Chitecture. For memory-bound applications, CAB can achiev
tier. a performance gain up to 55% thanks to the large reduction

Reducing the overhead of task-stealing has been a pop@hfache misses. CAB partitions the execution DAG into the
research issue. The overhead of task-stealing mainly deslu INter-socket tier and the intra-socket tier using an autama
task generating overhead, large number of unnecessaity st@g'titioning method. The method models the calculation of
and etc. In [15], an adaptive task generation strategyeatallthe partitioning boundar_y with four parameters. From our
AdaptiveTC, was proposed. AdaptiveTC can adaptively geﬁxperlmental results, this method can effectively find the

erate tasks to keep all workers busy most of the time whiptimal boundary level that enables CAB to achieve the best
reducing the number of tasks generated. In [16], a noperformance. Moreover, the extra overhead introduced by

blocking steal-half algorithm was introduced for a worker tCAB iS very small. For most CPU-bound applications, for
steal half of the tasks from the victim worker, which cafvhich CAB cannotimprove performance, the overhead is only

reduce the number of steals. In [17], an idempotent tagk‘ound 1-2%. _ _ o
stealing was introduced and several algorithms were pesbos “Part from the encouraging results, interesting issue hav
to exploit the relaxed semantics of task execution in order Peen discussed in the paper. One issue is the scalability of

achieve a better performance. The relaxed semantics gaaralqAB When the input data size increases. Since the relgtlve
that each task is eventually executed at least one tim&aaidstpmport'on of shared data set becomes small when the input

of exactly one time. These work could be applied to our CAgata is_large, the performance gain f_rom reduced cache snisse
scheduler to further reduce task-stealing overhead. is getting small. However, according to our experimental

There were some works on extending task-stealing to asy[ﬁ;sults, CAB can still achieve 10% performance gain fordarg

metric multi-processors and distributed memory systems. Put data sizes. _ . .
[20], Cilk was extended to run on asymmetric multi-processo Anotherll_nterestmg issue is compiler support for automati
and asymmetric multi-core processors. It presented a moagpybacqurl]r_lng (tjhe parametelrs ISUCh ﬁs Lhe n det dg\ta sde a;:
in which each processor maintains an estimation of its spedef ranE Ing eg(;eﬁ to calcu al'[(e the Or:m ar:y etween the
The model allows a fast processor to grab tasks from a sIdier-Socket tier and the intra-socket tier. Though progreers
processor when all the task pools are empty. In [21], Gan manually prowde thes_e parameters through command line
runtime system was proposed for supporting task-stealing |5 ©U" current implementation, it is preferable to acquiverh

8,192 processing cores on a cluster computer with dist;rd)utthrough program analysis of compiler. This work opens a

memory. In contrast to these architectures, our CAB sctmduﬁjoo_r for program analysis to pro_wde_z useful mformatl_on for
runtime optimization of task-stealing in parallel prograing

is dedicated to the popular MSMC architecture. ;
" in taskEnvironments.

Agrawal et al. in [22] proposed “helper locks . : N
stealing to execute large parallel critical sections whéch Future research 'F‘C'“P'es a more erX|pIe DAG partlyomng
processed serially in Cilk. Helper locks allow programshNitmEth,oq that can dgmde mter-sqcket and mtra-socket taﬂ;k;

heuristic information and compiler support instead of ajk&n

large parallel critical sections, called parallel regiotzsexe- boundary level. Prefetchi hni ih hel hrasd
cute more efficiently by asking processors that might otfsgw oundary level. Prefetching techniques with helper thras:

be waiting on the helper lock to aid in the execution of the! f[3] can als;)Ckaapﬂlied_ to C'S‘B to _further irlnprovg thi
parallel region. The notion of parallel region is somewtiat-s performance o when input data sizes are large but the

ilar to our tiers in DAG. but CAB treats the TRICY syndroméjata of each leaf inter-socket task can fit into the sharekecac
while the helper lock tries to accelerate the execution of a REFERENCES

Iarge paraIIeI critical .SeCt'on') o . i [1] D. Butenhof, Programming with POSIX threads Addison-Wesley
Cache awareness is another interesting issue in taskagteal Longman Publishing Co., Inc. Boston, MA, USA, 1997.

VII. CONCLUSIONS ANDFUTURE WORK

(2]
(3]

(4]

(5]

6]
(7]

(8]
El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: portableanallel
programming with the message passing interface,” 1999.

J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng, “Maota
View-Oriented Parallel Programming on CMT processors,” 3ifth
International Conference on Parallel Processjngp. 636-643, IEEE,
2008.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserskn H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded rime system,”
in Proceedings of the Fifth ACM SIGPLAN Symposium on Prinsipted
Practice of Parallel Programming (PPoPP(Santa Barbara, California),
pp. 207-216, July 1995.

C. Leiserson, “The Cilk++ concurrency platform,” Rroceedings of the
46th Annual Design Automation Conferenpp. 522-527, ACM, 2009.
J. Reinders|ntel threading building blocksO’Reilly, 2007.

E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.a8kaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of opetasks,”
IEEE Transactions on Parallel and Distributed Systews. 20, no. 3,
pp. 404-418, 2009.

D. Lea, “A Java fork/join framework,” inrProceedings of the ACM 2000
conference on Java Grandpp. 36-43, ACM, 2000.

A. Gerasoulis and T. Yang, “A comparison of clusteringutistics
for scheduling directed acyclic graphs on multiprocessalsurnal of
Parallel and Distributed Computingvol. 16, no. 4, pp. 276-291, 1992.
R. D. Blumofe, Executing Multithreaded Programs EfficientlyPhD
thesis, Department of Electrical Engineering and Comp&eience,
Massachusetts Institute of Technology, Cambridge, M&ssaits, Sept.
1995. Available as MIT Laboratory for Computer Science Techl
Report MIT/LCS/TR-677.

Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first ahdlp-
first scheduling policies for async-finish task parallelism IPDPS’09:
Proceedings of the 2009 IEEE International Symposium omlfdrand
Distributed Processingpp. 1-12, IEEE Computer Society, 2009.

M. Frigo, C. E. Leiserson, and K. H. Randall, “The implentation of
the Cilk-5 multithreaded language,” pp. 212—-223, June 19&ceed-
ings published ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998
D. Hendler, Y. Lev, M. Moir, and N. Shavit, “A dynamiczgd non-
blocking work stealing deque,” tech. rep., Mountain Viewj,GJSA,
2005.

D. Chase and Y. Lev, “Dynamic circular work-stealingqde,” in
Proceedings of the seventeenth annual ACM symposium ofliefiara
in algorithms and architectureg. 28, ACM, 2005.

L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P. Yew, “An atlae
task creation strategy for work-stealing scheduling,Piroceedings of
the 8th annual IEEE/ACM international symposium on Codesg&ion
and optimization pp. 266-277, ACM, 2010.

D. Hendler and N. Shavit, “Non-blocking steal-half Wogueues,”
in Proceedings of the twenty-first annual symposium on Priesipf
distributed computingp. 289, ACM, 2002.

M. M. Michael, M. T. Vechev, and V. A. Saraswat, “ldempot work
stealing,” in PPoPP '09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programgni(New
York, NY, USA), pp. 45-54, ACM, 2009.

D. Leijen, W. Schulte, and S. Burckhardt, “The desigradfsk parallel
library,” ACM SIGPLAN Noticesvol. 44, no. 10, pp. 227-242, 2009.
Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “Slaw: a scaldblelity-
aware adaptive work—stealing scheduler,thie 24th IEEE International
Parallel and Distributed Processing Symposium, IPDR&10.

M. Bender and M. Rabin, “Scheduling Cilk multithreadqurallel
programs on processors of different speeds,’Piroceedings of the
twelfth annual ACM symposium on Parallel algorithms andhétec-
tures pp. 13-21, ACM, 2000.

J. Dinan, D. Larkins, P. Sadayappan, S. Krishnamooprthnd
J. Nieplocha, “Scalable work stealing,” Rroceedings of the Conference
on High Performance Computing Networking, Storage and ysisl
pp. 1-11, ACM, 2009.

K. Agrawal, C. Leiserson, and J. Sukha, “Helper locks fork-join
parallel programming,” inProceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel computipg. 245—
256, ACM, 2010.

U. Acar, G. Blelloch, and R. Blumofe, “The data localityf work
stealing,” Theory of Computing Systemeol. 35, no. 3, pp. 321-347,
2002.

S. Chen, P. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailaki, G. Blel-
loch, B. Falsafi, L. Fix, N. Hardavellas, T. Mowregt al, “Scheduling

threads for constructive cache sharing on CMPs,Pioceedings of
the nineteenth annual ACM symposium on Parallel algorithamsl
architectures p. 115, ACM, 2007.

