
CAB: Cache Aware Bi-tier Task-stealing in
Multi-socket Multi-core Architecture

Quan Chen∗ , Zhiyi Huang†, Minyi Guo∗
∗Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China

chen-quan@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn
†Department of Computer Science, University of Otago, New Zealand

hzy@cs.otago.ac.nz

Abstract—Modern multi-core computers often adopt a Multi-
socket Multi-core architecture with shared caches in each socket.
However, traditional task-stealing schedulers tend to pollute the
shared cache and incur more cache misses due to their random
stealing. To relieve this problem, this paper proposes a Cache
Aware Bi-tier (CAB) task-stealing scheduler, which improves the
performance of memory-bound applications by reducing memory
footprint and cache misses of tasks running inside the same CPU
socket. CAB uses an automatic partitioning method to dividean
execution Directed Acyclic Graph (DAG) into the inter-socket tier
and the intra-socket tier. Tasks generated in the inter-socket tier
are scheduled across sockets, while tasks generated in the intra-
socket tier are scheduled within the same socket. Experimental
results show that CAB can improve the performance of memory-
bound applications up to 55% compared with the traditional
task-stealing.

Index Terms—Multi-socket Multi-core architecture, Cache
aware, Task-stealing, Work-stealing, Cilk

I. I NTRODUCTION

Multi-core processors have become mainstream as chip
manufacturers like AMD and Intel keep producing new CPU
chips with more cores. Modern multi-core computers often
use a Multi-Socket Multi-Core (MSMC) architecture in order
to obtain more computing power. In the MSMC architecture,
multiple multi-core chips share the main memory (RAM),
while the cores in the same CPU chip (also referred as CPU
socket in this paper) share the L2 or L3 caches. This archi-
tecture is popular now and will continue to be a dominating
architecture for high performance computing in future.

Despite the rapid development of the multi-core technology,
a lot of software are yet to be parallelized to utilize the
power of multi-core computers. This need has promoted the
development of parallel programming environments.

There are many parallel programming environments that are
popular nowadays. They can be classified into two groups in
terms of their task scheduling. The first group is based on
manual task scheduling. Pthread[1], MPI[2] and Maotai [3]
are examples of this group. Programmers need to manually
arrange tasks for every thread/process through careful pro-
gramming in order to achieve optimal load balance. This
manual task scheduling is often burdensome for developing
applications that recursively generate tasks.

* Quan Chen was a visiting PhD student at the University of Otago during
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The second group is based on automatic task scheduling. In
these programming environments, programmers can specify
and generate tasks at runtime. Parallelism in programs is
mostly expressed as tasks that are scheduled automatically
among the executing threads. Examples of this group are
Cilk[4], Cilk++[5], TBB[6], OpenMP[7], and Java’s fork-
join framework[8]. This feature of automatic task scheduling
enables convenient expression of dynamic tasks and automatic
load balancing.

In programming environments with automatic task schedul-
ing, the execution of a parallel program can be represented
by a task graph, which is a Directed Acyclic Graph (DAG)
G = (V,E), whereV is a set of nodes, and E is a set of
directed edges [9]. A nodeni in a DAG represents a task
(i.e., a set of instructions) that must be executed sequentially
without preemption. The edges in a DAG, denoted by(nj , nk),
correspond to the dependence relationship among the nodes
(tasks).

Most DAG-based automatic task scheduling algorithms such
as task-stealing (also known as work-stealing1) [10] and task-
sharing [7] schedule tasks onto processors randomly. This
randomness in task scheduling causesTask Relocation In-
curred Cache Yeastiness(TRICY) syndrome in the MSMC
architecture, which is depicted as follows.

Suppose there are three tasksγ1, γ2 andγ3 to be executed
in the MSMC architecture.γ1 and γ2 share data, but they
share nothing withγ3. If γ1 andγ2 are scheduled to the cores
of the same CPU socket, the shared data are loaded into the
shared caches (e.g. L3) only once but can be accessed by
both tasks through the caches. However, this data sharing is
not respected by traditional task scheduling algorithms due to
their randomness in selecting cores for the tasks. Most often
the task schedulers would moveγ1 or γ2 to a core in a different
socket, whereγ3 is being executed.

The above random sceduling causes two problems. First, it
increases cache misses. Supposeγ2 is scheduled to the socket
of γ3. γ2 cannot use the data already loaded into the caches by
γ1. Instead, it needs to read data from the main memory since
it cannot find its data in the caches of the new socket. Second,
the random scheduling enlarges the memory footprint of the
sockets. Sinceγ2 and γ3 share nothing but run in the same

1we use “task-stealing” in this paper for the consistency of terms.



socket, the memory footprint of the socket directly increases.
One immediate consequence of large memory footprint is the
increase of chances for more cache misses, sinceγ2 may
pollute the cache entries forγ3 due to conflicts or limited cache
capacity. We call the above performance degrading problem,
which is caused by the random task scheduling in the MSMC
architecture, as the TRICY syndrome.

The TRICY syndrome damages the performance of
memory-bound applications dramatically, since most of their
execution time is spent on accessing memory. If we can relieve
the TRICY syndrome by scheduling tasks with shared data to
the same socket, the performance of memory-bound applica-
tions will be greatly improved in the MSMC architecture.

Among traditional task scheduling algorithms, task-stealing,
which is introduced in Cilk[4], is increasingly popular dueto
its high performance. In task-stealing, each worker (i.e. thread)
has a task pool to store tasks. Whenever a worker finishes its
current task, the worker try to get a new task from its own task
pool first. If its task pool is empty, the worker will choose a
victim worker randomly to steal a task from the victim’s task
pool. If succeeded, the worker will execute the stolen task;
otherwise, the worker will keep trying to steal a task from
another randomly-chosen victim. Unfortunately, task-stealing
unexceptionally suffers from the TRICY syndrome due to its
random stealing.

In order to relieve the TRICY syndrome, we propose a
Cache Aware Bi-tier(CAB) task-stealing scheduler. CAB
addresses the syndrome by scheduling tasks that share data
onto the cores in the same socket in order for them to share
data in caches. It divides the execution DAG of a program
into two tiers: inter-socket tier and intra-socket tier. Tasks
in the inter-socket tier, which are called inter-socket tasks,
are scheduled across the sockets, while tasks in the intra-
socket tier, called intra-socket tasks, are scheduled within the
same socket. Moreover, CAB can automatically and optimally
partition the execution DAG into the two tiers according to the
data input size of an application, data cache size, the number
of sockets, and etc.

The contributions of this paper are three-fold.

• The CAB task-stealing significantly relieves the TRICY
syndrome by scheduling tasks with shared data onto cores
of the same socket.

• CAB presents an automatic partitioning method to divide
a DAG into two tiers so that tasks in different tiers are
generated and scheduled in different ways.

• The experiment shows that CAB can significantly achieve
a performance gain of up to 55% for memory-bound
applications.

The rest of this paper is organized as follows. Section II
introduces the background and motivation of CAB. Section III
presents the DAG partitioning method and the CAB task-
stealing algorithm, followed with a discussion of the theo-
retical time and space bounds of CAB. Section IV gives
the implementation details of CAB. Section V shows the
experimental results and evaluates the performance. Section VI

discusses related work. Finally, Section VII draws conclusions
and sheds light on future work.

II. BACKGROUND AND MOTIVATION OF CAB

There are two main classes of automatic task scheduling
algorithms: task-sharing and task-stealing. In task-sharing,
workers push new tasks into a central task pool when they
are generated. Tasks are popped out from the task pool when
workers are free to execute them. The push and pop operations
need to lock the central task pool, which often causes serious
lock contention.

Task-stealing, on the other hand, uses a task pool for each
worker. Most often each worker pushes and pops tasks to
its own task pool without locking. Only when a worker has
no tasks in its task pool, should it try to steal tasks from
other workers with locking. Since there are multiple task pools
for stealing, the lock contention is much lower than task-
sharing even at task steals. Therefore, task-stealing performs
even better than task-sharing when the number of workers is
increasing.

However, as mentioned before, task-stealing still suffers
from the TRICY syndrome. Let us take thefive-point heat
program as an example, which simulates the heat distribution
of a metal plate. In the program, the metal plate is divided into
points of a two-dimentional grid. At each simulation step, the
points in rowr are computed based on the points in rowsr,
r − 1 andr + 1 of the previous step.

Given a10∗10 matrixM as the input data with the data type
double (rows 0, 9 and columns 0, 9 are boundary data, and
the real grid to be computed is a8 ∗ 8 matrix). In the parallel
heat program, the heat procedure recursively generates two
subtasks until the data set for each task is small enough. Fig.
1 shows the execution DAG of the heat program. The input
data is recursively divided into two parts until each of the leaf
tasks in the DAG only processes two rows.

Fig. 1. Execution DAG of five-point heat program

According to the dependence relationship, tasks in the DAG
can be divided into levels. If a taskγ in level i generates a
task β, then β is in level i + 1. The task that executes the
“main” procedure is in level 0 and it is the initial task in the
DAG.

Note that, in Fig. 1, only the leaf tasks (i.e.,T4, T5, T6, T7)
touch data, while all the other tasks in levels 0, 1, and 2 only
divide the input data into two parts recursively.

Suppose this parallel heat program is executed on a dual-
socket dual-core architecture with a hypothetical shared cache



size of 480 bytes2 in each socket.

(a) One possible scheduling (b) Another possible scheduling

Fig. 2. Two possible scheduling of tasks of heat running on dual-socket
dual-core system. The first scheduling can gain performanceimprovement
from cache-sharing and reduction of memory footprint, becauseT4 andT5,
T6 andT7 have shared data.

In the above scenario, if the leaf tasksT4, T5, T6 andT7

are ideally scheduled in the way as shown in Fig. 2(a), data in
the shared cache can be re-used and thus cache misses can be
reduced. In Fig. 2(a), tasks running on the cores of the same
socket(e.g.T4 andT5) share two rows of input data. The two
tasks in each socket only need to read six rows into the shared
cache from the main memory altogether, i.e.,6 ∗ 10 ∗ 8 = 480
bytes. This data set size can fit into the shared cache of a
socket. The overall memory footprint of the system is2∗480 =
960 bytes.

However, for traditional task-stealing, since it distributes
tasks randomly, the leaf tasksT4, T5, T6 and T7 are very
likely scheduled in the way as shown in Fig. 2(b). Note that,
in Fig. 2(b), tasks running on the cores of the same socket
(e.g.,T4 andT6) do not share any data. In this situation, every
task needs to access the main memory and reads four rows
of the matrix into the cache. Because the two tasks in each
socket need to read2 ∗ 4 ∗ 10 ∗ 8 = 680 bytes, the data size
exceeds the capacity of the shared cache of each socket, which
leads to more capacity cache misses and increases the chances
for conflict cache misses. Furthermore, the overall memory
footprint of the system is2 ∗ 680 = 1280 bytes, which leads
to more compulsory cache misses.

In order to relieve the TRICY syndrome and schedule tasks
in the same way as in Fig. 2(a), we propose the CAB task-
stealing, which partitions the execution DAG into two tiers:
inter-socket tier and intra-socket tier. Tasks in the inter-socket
tier are scheduled across sockets, while tasks in the intra-
socket tier are scheduled within the same socket. For example,
in Fig. 1, tasks in levels 0-2 are in the inter-socket tier and
tasks in level 3 are in the intra-socket tier. The tasks in level 2,
the boundary of the two tiers, are called leaf inter-socket tasks.
In CAB, the intra-socket tasks such asT4 andT5 are bound to
the same socket. Since the intra-socket tasks generated by the
same leaf inter-socket task often share data in real applications,
their binding to the same socket in CAB can enforce the
scheduling in Fig. 2(a) and results in fewer cache misses.

In the next section, we will present the details of the
CAB task-stealing scheduler such as how the two tiers can

2We use this hypothetical small cache size for ease of explanation, but it
does not affect our analysis since input data will be proportionally larger for
a real cache size.

be optimally partitioned so that there are enough intra-socket
tasks for stealing in the same socket, while there should be
sufficient inter-socket tasks for balancing the workload among
sockets.

III. C ACHE AWARE BI-TIER TASK-STEALING SCHEDULER

This section presents CAB, a Cache Aware Bi-tier task-
stealing scheduler. First, we give an overview of CAB. Then
we introduce an automatic partitioning method for dividingthe
execution DAG into two tiers. Third, we present the CAB task-
stealing algorithm. Finally, we give the time and space bounds
of the parallel execution based on the CAB task-stealing.

A. Overview of CAB

CAB divides the workers into squads corresponding to the
MSMC architecture. Asquadis a group of workers running
in the same socket. Each squad has a head worker. Supposing
in an MSMC architecture there areM sockets withN cores
each, CAB launchesM ×N workers (i.e. threads) to work on
the DAG in parallel. The workers are divided intoM squads
with N workers in each squad. A worker is affiliated with a
hardware core, while a squad is affiliated with a socket. Fig.
3 depicts the relationship among cores, sockets, workers, and
squads.

Fig. 3. Relationship among cores, sockets, workers, and squads in an MSMC
architecture. Workers that run on the cores of the same socket are grouped
into the same squad. Each squad has one inter-socket task pool, which is used
by the head worker of the squad to store inter-socket tasks. Each worker has
one intra-socket task pool, which is used to store intra-socket tasks.

CAB adopts two types of task pools: inter-socket task pool
and intra-socket task pool. A task pool is a double-ended queue
(deque) that is used to store tasks. The inter-socket task pool
is used to store tasks from the inter-socket tier of the DAG,
and the intra-socket task pool stores tasks from the intra-socket
tier. Each squad has an inter-socket task pool, and each worker
has an intra-socket task pool, as shown in Fig. 3.

Suppose a new taskγ is generated by a workerw of a squad
ρ. If γ is an intra-socket task, it is pushed into the intra-socket
task pool ofw. If γ is an inter-socket task, it is pushed into
the inter-socket task pool ofρ.

When CAB starts to execute a parallel program in an
MSMC architecture, CAB uses an automatic partitioning
method (to be described shortly) to divide the execution DAG
of the program into the inter-socket tier and the intra-socket



tier. After the partitioning, CAB starts to execute the tasks
by scheduling the inter-socket tasks and the intra-socket tasks
based on the following stealing protocol.

A free worker in CAB first tries to obtain a task from its
intra-socket task pool. If the task pool is empty, it tries tosteal
a task from the intra-socket task pools of other workers in the
same squad. If all the workers of the squad have empty task
pools, the head worker of the squad tries to obtain a task from
its own inter-socket task pool. If its inter-socket task pool is
empty, the head worker of the squad tries to steal an inter-
socket task from other squads.

The above protocol only allows the head worker of a squad
to steal inter-socket tasks so that the lock contention of the
inter-socket task pools is reduced. Also a squad is not allowed
to execute more than one inter-socket task at the same time,
because the data of different inter-socket tasks may pollute
the shared caches if multiple inter-socket tasks are executed
at the same time in the same squad, which leads to more cache
misses.

B. Automatic DAG partitioning method

As mentioned before, tasks in a DAG are divided into inter-
socket tasks and intra-socket tasks according to their levels in
the DAG. We compute a boundary levelBL that partitions the
DAG into the inter-socket tier (the upper tier) and the intra-
socket tier (the lower tier). Tasks in the boundary levelBL
are calledleaf inter-socket tasks. Since intra-socket tasks are
scheduled within a squad, all the child tasks of a leaf inter-
socket task are executed in the same socket.

However, finding the proper boundary levelBL to partition
the DAG optimally is challenging. If the intra-socket tier is
too thick, the involved data for a squad can be too large to
fit into the shared caches of the socket of the squad. On the
other hand, if the intra-socket tier is too thin, the workload
of a squad can be too small to get better balanced among the
workers of the squad.

Therefore, we require that the DAG partitioning method
satisfy three constraints. The first constraint is that there should
be enough leaf inter-socket tasks to be distributed to the
sockets. The second constraint is that the involved data size of
a leaf inter-socket task is small enough to fit into the shared
caches of a socket. The third constraint is that a leaf inter-
socket task should be large enough to enable a squad to have
sufficient intra-socket tasks. After careful study, we model
these constraints as follows using the following parameters:
the input data size of the application, the number of socketsof
the MSMC architecture, the shared cache size of each socket,
and the branching degree of the DAG.

Note that in the following model we assume that the
program directly generates the task of the recursive divide-
and-conquer procedure in themain procedure, which is the
case for all our benchmarks. For example, in Fig. 1, themain
procedure directly spawns theheatprocedure that recursively
spawns tasks executing itself until a cut-off point. However, if
the recursive procedure is not directly generated bymain, we
need either manually adjust theBL value, or compiler support

to adjustBL automatically. We will discuss compiler support
in Section IV.

In the model, we suppose anM -socketN -core system has
a shared cache sizeSc for each socket and a recursive divide-
and-conquer program has an input data sizeSd. We assume the
program divides the input data intoB parts each time sub-tasks
are generated, i.e., the branching degree of the DAG of the
recursive procedure isB. In this scenario, the boundary level
BL should haveBBL−1 leaf inter-socket tasks, since each task
generatesB sub-tasks for the next level and this is repeated
BL − 1 times until the boundary level, assuming levels are
numbered from0 and the level0 starts withmain.

Since there areM squads, in order to balance workload
among squads, we should ensure that there are at leastM
leaf inter-socket tasks. Therefore,BL needs to satisfy Eq. 1 in
order to fulfill the aforementioned first constraint.

BBL−1 ≥ M (1)

In order to fulfill the second constraint, we should ensure
the data size for each leaf inter-socket task to fit into the shared
cache of a socket. Since the input data are often divided evenly
among the leaf inter-socket tasks, the second constraint can be
expressed with Eq. 2.

Sd/B
BL−1 ≤ Sc (2)

From Eq. 1 and 2, we can deduce two conditions for
selecting an appropriate value forBL, as shown in Eq. 3.

{

BL ≥ logB M + 1

BL ≥ logB (Sd/Sc) + 1
(3)

From Eq. 3, we can select anyBL that is large enough to
satisfy the two inequations. But, unfortunately, ifBL is too
large, the number of the intra-socket tasks generated by a leaf
inter-socket task will be too small, which leads to poor load
balance within a squad. Therefore, we setBL to be the smallest
value that satisfies both inequations, as shown in Eq. 4.

BL = max{⌈logB M + 1⌉, ⌈logB (Sd/Sc) + 1⌉} (4)

In our current implementation, we use a semi-automatic
method to acquire parametersB, M , Sd, and Sc and then
computesBL according to Eq. 4. ParametersM and Sc

are automatically acquired from/proc/cpuinfoby the runtime
system, butSd and B are provided through command line
arguments. In Section IV, we will discuss how to automatically
acquire these parameters by the compiler through program
analysis.

In summary, CAB choosesBL to be the smallest value while
ensuring that the data set of the leaf inter-socket tasks can
fit into the shared cache and that the number of leaf inter-
socket tasks is large enough so that there is at least one inter-
socket task for each and every squad. Experimental results in
section V show that our automatic DAG partitioning method
can find the optimal boundary level that enables the highest
performance of the CAB scheduler.



C. CAB task generation

Tasks in the inter-socket tier and the intra-socket tier are
generated with different policies in CAB. There are generally
two policies for task generation: child-first and parent-first.
In the child-first policy, a worker executes the child task
immediately once it is generated, leaving the parent task for
later execution or for stealing by other workers. For example,
the MIT Cilk uses the child-first policy, which is called work-
first in [4]. However, in the parent-first policy, a worker
executes the parent task continually after spawning a child
task, pushing the child task into the task pool. One such
example is the the help-first policy proposed in [11].

Both policies have their advantages in different situations.
The child-first policy works better than the parent-first policy
when the execution DAG is deep. However, the parent-first
policy works better when the initial DAG is shallow and the
steals are frequent, since it can quickly produce enough tasks
for free workers [11].

Because there are more steals needed in the inter-socket
tier where the execution DAG is expanding initially, CAB
adopts the parent-first policy in the inter-socket tier in order
to distribute the leaf inter-socket tasks to squads as soon as
possible. After a squad gets a leaf inter-socket task, it uses the
child-first policy to generate the intra-socket tasks. Since the
number of workers is small and the steals are not frequent in
a squad, the child-first policy is more suitable for intra-socket
tasks. Also the child-first policy is more space efficient, which
will be discussed shortly in Section III-E.

D. CAB task-stealing

As mentioned before, a free worker follows the stealing
protocol in Section III-A to obtain or steal tasks. According
to the stealing protocol, a squad is not allowed to execute
more than one inter-socket task at the same time. In order
to implement this requirement, CAB uses a boolean variable
busy statefor each squad.busy state indicates whether there
is an inter-socket task running in the squad right now. When
there is an inter-socket task running in a squad,busy stateof
the squad is true. When a squad finishes its inter-socket task,
its busy state is set false. Only whenbusy state is false, can
the squad obtain or steal another inter-socket task.

Algorithm I shows the detailed task-stealing algorithm that
implements the stealing protocol.

E. Theoretical time and space bounds

We model the execution of a parallel program as an execu-
tion DAG E . Each node inE represents a unit task, and each
edge represents a dependence between tasks. Our following
discussion is based on the time and space bounds of task-
stealing proved in [10].

1) Time bound: For a DAGE , thework T1(E) of E is the
number of nodes inE , and the critical-path lengthT∞(E) is
the number of nodes along the longest path from the start node
to the end node.

Since CAB divides a DAG into two tiers and executes them
differently, we need to divide a DAG into sub-DAGs using

ALOGRITHM I
CAB TASK-STEALING ALGORITHM

Assumption: Suppose a workerw belongs to a squadρ. The workerw
is free trying to get a new task.

Stealing from intra-socket tier:
Step 1: w tries to get a new task from its own task pool. If there is any
task in the task pool,w obtains a task from the task pool and jumps to
Step 7; otherwise,w goes to Step 2.
Step 2: w checksbusy stateof ρ. If busy state is true,w goes to Step
3; otherwise, ifw is the head worker ofρ, w goes to Step 4, or elsew
goes back to Step 1.
Step 3: w tries to steal an intra-socket task from the workers inρ. It
chooses a victim workerwvictim within ρ randomly and then goes to
Step 6.
Stealing from inter-socket tier:
Step 4: w tries to obtain an inter-socket task fromρ. If there is any task
in the inter-socket task pool ofρ, w obtains a task from the task pool.
Thenw setsbusy stateof ρ to be true and goes to Step 7. Otherwise, if
the inter-socket task pool ofρ is empty,w goes to Step 5.
Step 5: w tries to steal an inter-socket task from other squads.w randomly
chooses a victim squadρvictim and then goes to Step 6.
Stealing from victim:
Step 6:

(a) When the victim is a worker, if the task pool ofwvictim is
not empty,w pops a task from the task pool and then goes to Step 7,
otherwise,w goes back to Step 2.

(b) When the victim is a squad, if the inter-socket task pool of
ρvictim is not empty,w pops a task from the task pool. Thenw sets
busy stateof ρ to be true and goes to Step 7. Otherwise, if the task pool
of ρvictim is empty,w goes to Step 5.
Step 7: w starts to execute the task.

the leaf inter-socket tasks. Given a leaf inter-socket taskγ,
we use the notationEγ to represent the subgraph rooted with
γ, which includes the set of tasks that are generated fromγ.
Therefore, the total work ofE is divided as in Eq. 5, where
Einter represents the subgraph of the inter-socket tier andK is
the total number of the leaf inter-socket tasks at the boundary
level BL.

T1(E) = T1(Einter) +

K
∑

i=1

T1(Eγi
) (5)

The execution time ofE in an M -socketN -core architec-
ture, TM∗N (E), can be divided into two parts: the execution
time of the inter-socket tierTM∗N (Einter) and the execution
time of the intra-socket tierTM∗N (Eintra). Even though the
two parts can be overlapped, we use their sum to get the worst
bound ofTM∗N (E) as shown in Eq. 6.

TM∗N (E) = TM∗N (Einter) + TM∗N (Eintra) (6)

Since the inter-socket tier is executed byM head workers
using task-stealing, according to the proof of [10], the execu-
tion time of Einter is bounded by Eq. 7.

TM∗N (Einter) ≤
T1(Einter)

M
+ T∞(Einter) (7)

For the execution of the intra-socket tier, eachEγi
is

executed byN workers within a squad using task-stealing.
Therefore, the execution time ofEγi

is bounded by Eq. 8.

TN (Eγi
) ≤

T1(Eγi
)

N
+ T∞(Eγi

) (8)



SinceK leaf inter-socket tasks are scheduled amongM
squads using task-stealing, the execution time of the intra-
socket tier is bounded by Eq. 9.

TM∗N (Eintra) ≤

∑K

i=1
TN(Eγi

)

M
+ T∞(Eintra) (9)

Deducing from Eq. 8 and 9, we can get Eq. 10.

TM∗N (Eintra) ≤

∑K

i=1
T1(Eγi

)

M ∗N
+

∑K

i=1
T∞(Eγi

)

M
+ T∞(Eintra)

(10)

From Eq. 6, 7 and 10,TM∗N (E) can be bounded as in
Eq. 11.

TM∗N (E) ≤
T1(Einter)

M
+ T∞(Einter) +

∑K

i=1
T1(Eγi

)

M ∗N
+

∑K

i=1
T∞(Eγi

)

M
+ T∞(Eintra)

(11)
After further tidying Eq. 11 up, we have Eq. 12.

TM∗N (E) ≤
T1(Einter)

M
+

∑K

i=1
T1(Eγi

)

M ∗N
+

∑K

i=1
T∞(Eγi

)

M
+ T∞(E)

(12)

According to Eq. 4,K is at most several times ofM .
Therefore, the third item in Eq. 12 can be merged with the
fourth item. Finally, we have the time bound ofE in an M -
socketN -core architecture as shown in Eq. 13.

TM∗N (E) = O(
T1(Einter)

M
+

T1(Eintra)

M ∗N
+ T∞(E)) (13)

According to Eq. 13, the inter-socket tier is executed by only
M head workers. However, in most recursively divide-and-
conquer applications, only the leaf tasks in the DAG process
input data, while the higher level tasks only divide the input
data into smaller parts. Therefore, for a divide-and-conquer
application, the main part of the execution time is spent by the
leaf tasks, i.e., the intra-socket tasks. Our experiments show
that the execution time of the inter-socket tier is often less than
5% of the overall execution time. Therefore, the time bound of
Eq. 13 is very close to the traditional task-stealing schedulers
such as Cilk for many divide-and-conquer applications.

2) Space bound analysis: According to the proof of [10],
the space used byE in an M -socketN -core architecture is
bounded by Eq. 14, whereS1(E) denotes the space used by
the serial execution of the program.

SM∗N (E) ≤ M ∗N ∗ S1(E) (14)

Eq. 14 supposes there are at mostM∗N workers expanding
the DAG using the child-first policy. However, since CAB uses
the parent-first policy to expand the inter-socket tier quickly,
each of the leaf inter-socket tasks may useS1 space in the
worst case. Therefore, the space used by the CAB scheduler
SM∗N (E), can be bounded as in Eq. 15.

SM∗N (E) ≤ max{K ∗ S1(E),M ∗N ∗ S1(E)} (15)

Again, according to Eq. 4, the number of leaf inter-socket
tasks,K, is not much larger thanM , so the space bound has
the sameO-notationas the traditional task-stealing schedulers.

IV. I MPLEMENTATION OF CAB

In this section, we present the implementation of CAB.
First, we briefly introduce the MIT Cilk in which CAB is
implemented. Then, we present the compiler support imple-
mented for CAB, followed with the implementation of the
CAB runtime system. Finally, we discuss issues related to
the implementation. Note that Cilk programs can run in our
current implementation without any modification.

A. Overview of MIT Cilk

MIT Cilk is one of the earliest parallel programming envi-
ronments that implement task stealing [12]. It extends C with
three keywords:cilk, spawnandsyncto declare parallelism in
the program.cilk identifies a procedure as aCilk procedure,
spawnis used to generate a child task, andsyncwaits for all
the child tasks that are generated by the current task to return.
Only Cilk procedures can be invoked withspawn.

MIT Cilk consists of two main parts: compiler and sched-
uler. Cilk compiler, named ascilk2c, is a source-to-source
translator that transforms a Cilk source into a C program.
cilk2c generates afast clone and a slow clone for every
Cilk procedure. The slow clone is executed if the task of
the procedure is stolen; otherwise, the fast clone is executed
instead. In addition,cilk2c uses atask framedata structure for
every Cilk procedure. Once a task is generated, a task frame
is created to store the information needed by the task and the
scheduler.

B. Compiler support of CAB

We have modifiedcilk2c to support two types of spawns
for the inter-socket and intra-socket tasks respectively.At each
spawn, we compare the DAG level of the current task with the
boundary levelBL. If the level is smaller thanBL, we spawn
the child task as an inter-socket task and follow the parent-first
policy. Otherwise, we spawn the child task as in intra-socket
task and follow the child-first policy.

We also modifiedcilk2c to support two types ofsyncfor the
inter-socket and intra-socket tasks. This is because we usethe
child-first policy to generate the intra-socket tasks but use the
parent-first policy to generate the inter-socket tasks. We use
the differentsyncs to manipulate different return behaviors of
the tasks.

We add into each task frame three variables:level, parent
and inter counter. level represents the level of the task in
the execution DAG,parent is a pointer to the parent frame,
and inter counter is the number of outstanding child inter-
socket tasks spawned by the task. For example, when a taskγ
generates a child inter-socket taskγ1, the inter counterin the
task frame ofγ is increased by 1. Whenγ1 returns, through the



parentpointer in its task frame,γ1 decreases theinter counter
in the task frame ofγ by 1. If γ’s inter counterequals 0, that
means all the inter-socket tasks generated byγ have finished
and thesynccan be passed through.

The intra-socket tasks are handled similarly by an original
Cilk data structure calledclosure, which includes the infor-
mation of the above task frame but is more complicated than
necessary for us to handle the inter-socket tasks.

C. CAB runtime system

For an M-socket N-core architecture, CAB launchesM ∗
N workers, and affiliates each worker to one individual core.
The ID of each worker is the same as the ID of the core
on which the worker is running. CAB groups workers into
squads according to their IDs. If the corei is in the socketj,
the workeri is grouped into the squadj. In each squad, the
worker with the smallest ID is the head worker.

CAB executes a parallel program following the runtime
algorithm in Algorithm II. Note that in the algorithmBL is
set to 0 when there is only one socket in the architecture so
that all tasks are generated as intra-socket tasks, which isthe
same as MIT Cilk.

ALOGRITHM II
CAB RUNTIME ALGORITHM

Assumption: Suppose there is an M-socket and N-core architecture and
a workerw belongs to a squadρ.

Global initiation:
Step 1: CAB launchesM ∗ N workers and affiliates them to the
corresponding cores.
Step 2: CAB calculatesBL. If M equals 1, CAB setsBL to 0. Otherwise,
CAB calculatesBL according to Eq. 4.
Step 3: Worker 0 begins to execute the initial task, while all the other
workers are trying to steal tasks.
Task scheduling: Assume workerw is executing taskγ.

(a) γ generatesγ1: γ computes the level ofγ1. If γ1 is in the inter-
socket tier, it is generated as an inter-socket task. Thenw pushesγ1 into
the inter-socket task pool ofρ and continues to executeγ. Otherwise, if
γ1 is in the intra-socket tier, it is generated as an intra-socket task, which
is pushed into the task pool ofw and to be executed byw immediately.

(b) γ suspends: w tries to get a task according to Algorithm I.
(c) γ returns: w returns the results ofγ and setsbusy stateof ρ to

false if γ is an inter-socket task. Thenw tries to get a task according to
Algorithm I.
Termination: If all the tasks have finished, CAB terminates.

D. Discussion

CAB does not require modification of the existing Cilk
programs. Our current implementation uses a semi-automatic
method to acquire the parameters for the calculation ofBL. M
andSc are acquired automatically from the system, while the
branching degreeB and the input data sizeSd of the recursive
procedure are provided through command line.

An alternative method to use the CAB scheduler is through
a new keywordinter spawnwhich generates a task as an inter-
socket task. This method enables the programmer to explicitly
inform the scheduler about the type of tasks. Through the
new keyword, the programmer can control the scheduling
behavior and fine-tune the performance according to the

program requirements. However, this method requires the
programmer to modify the existing Cilk programs and more
programming effort is required. According to our experiments,
our semi-automatic method can achieve similar performance
comparable to the well-tuned programs using this manual
method.

It would be preferable to fully automate the acquisition
of the parameters used for the calculation ofBL. Compiler
support can be useful to automatically acquire the branching
degreeB and the input data sizeSd of the procedure.B can be
found by analyzing the source code based on the pattern of task
generation, e.g. the keywordspawnin Cilk. However, to track
the input data sizeSd of a procedure can be challenging. The
compiler needs to track the calling chains and arguments to
the procedure. This compiler support is an interesting research
issue. Fortunately, it is relatively easy to track the data size of
arguments in many strongly typed languages other than C.

Another issue in our current implementation is the cal-
culation of BL. Currently we assume themain procedure
directly calls a divide-and-conquer procedure that recursively
spawns tasks. Even though this assumption is valid in all our
benchmarks, there are real applications that may call multiple
divide-and-conquer procedures indirectly through low level
tasks. In such situations, we need to associate aBL with each
divide-and-conquer procedure and calculate theBL on-the-fly
when the procedure is initially spawned as a task. Though it is
feasible to implement it with compiler support, however, this
is not an issue we address in this paper.

To use the CAB scheduler for all applications with complete
automation, the compiler should tell if an application is
memory-bound or CPU-bound. A simple rule of thumb for
the compiler to make the decision is that if the application has
a large data size, it is memory-bound; otherwise, it is CPU-
bound. For CPU-bound applications, CAB setsBL to 0 so
that their tasks are scheduled as the traditional task-stealing.

Even though compiler support is an obvious way to trans-
parently utilize the CAB scheduler, there may be other ways
to use the scheduler without programming effort. For example,
heuristic information may also be acquired at runtime to
inform the scheduler about the inter-socket and intra-socket
tasks. Such information can flexibly guide the CAB scheduler
to schedule tasks within a socket or not. This is another
interesting issue for future research.

V. PERFORMANCEEVALUATION

In the performance evaluation, we use a Dell 16-core
computer which has four AMD Quad-core Opteron 8380
processors (codenamed ”Shanghai”) running at 2.5 GHz. Each
Quad-core socket has a 512K L2 cache for each core and a 6M
L3 cache shared by all four cores. The computer has 16GB
RAM and runs Linux 2.6.29. Accordingly CAB sets up four
squads with four workers each.

Table III lists the benchmarks used in our experiments.
The Cilk benchmarks run with CAB without any modifica-

tion. All benchmarks are compiled with “cilkc -O2”, which is



TABLE III
BENCHMARKS USED IN THE EXPERIMENTS

Name Type(bound) Description

queens(20) CPU N queens problem
fft CPU Fast Fourier Transform
ck CPU Rudimentary checkers
cholesky CPU Cholesky decomposition
Heat Memory Five-point heat
Mergesort Memory Merge sort on 1024*1024 numbers
SOR Memory Red/Black 2D Successive Over-Relaxation
GE Memory Gaussian elimination algorithm
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Fig. 4. Normalized execution time of memory-bound applications in CAB
with a 1024 ∗ 1024 matrix as input data.

based on gcc 4.4. For each test, every benchmark is run ten
times. The average execution time is used in the results.

A. Performance of memory-bound applications

Fig. 4 shows the performance of four memory-bound ap-
plications with a1024 ∗ 1024 matrix as input data. From the
figure, we can see that CAB can significantly improve the
performance of memory-bound applications, with the perfor-
mance gain ranging between 10% and 55%. For example,
Mergesort has achieved up to 55% performance gain with
CAB compared with Cilk.

The performance gain of CAB is resulted from the relieved
TRICY syndrome. According to Table IV, the L2 and L3 cache
misses are prominently reduced in CAB compared with Cilk.
Since the data set used by a squad is often shared by the
workers of the squad and can fit into the L3 cache according
to CAB, the number of L3 cache misses is much smaller than
Cilk whose random scheduling often causes larger memory
footprint and thus more cache misses for workers inside the
same socket. Likewise, in CAB, the small memory footprint
and the likely data sharing of workers in a squad help reduce
the L2 cache misses as well.

TABLE IV
L2/L3 CACHE MISSES INCAB AND CILK

GE cilksort heat SOR
L2 in Cilk 2413947 5932702 931738 695545
L2 in CAB 458209 892008 286784 130311
L3 in Cilk 1181241 4069389 1966314 1005938
L3 in CAB 939201 2871816 1603448 747291

B. Scalability of CAB

Input data sizes can affect the performance of CAB. If an
input data is very large, the performance gain of CAB tends to
be smaller. Due to limited space, we only useheatand SOR
to discuss the scalability of CAB, though other benchmarks
show similar results.

Fig. 5 shows the performance ofheatandSORwith different
input data sizes. According to the results, the performancegain
of CAB is 55% when the input data is small (512*512), but
drops to 5% when the input data is large (4k*8k).
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Fig. 5. Performance result of heat and SOR with different input data sizes.

One reason for the diminishing gain is that, with the
increasing input data sizes, the shared data set between intra-
socket tasks relatively becomes smaller, which increases the
proportion of non-shared data and the cache misses in the leaf
inter-socket tasks. Fig. 6 shows the L2 and L3 cache misses of
heatandSOR. When the input data is small, CAB can reduce
nearly 60% L3 cache misses and 80% L2 misses compared to
Cilk. When the input data size is large, CAB can only reduce
about 27% L3 cache misses and 59% L2 misses.
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Fig. 6. L2 and L3 cache misses of heat and SOR in CAB and Cilk.

Another reason for the diminishing gain is that, when the
input data is large, the granularity of the leaf tasks becomes
large, which is not good for load balance within a squad. In
order to relieve this problem, we have modified the the cut-off
point in theheatprogram. Instead of using the fixed 128 rows
of data as the data set for the leaf tasks, we use 64 rows and
32 rows respectively. According to Fig 7, when the number of
rows for each leaf task is 32, the performance gain is increased
to 10% compared with Cilk. Interestingly, the performance of
Cilk has also increased significantly when the number of rows
is 32 due to smaller grain of parallelism.

The above results show that when the input data is large,
we should adapt the cut-off point accordingly in the program,
so that the data size of each leaf inter-socket task can fit into
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Fig. 7. Execution time of heat with different data sizes for leaf tasks. When
the data size of each leaf task is large, CAB can have more performance gain
by splitting the leaf tasks further.

the shared cache while there are sufficient parallel tasks (intra-
socket tasks) within the socket. In this way, CAB can maintain
the performance gain of 10% when the input data sizes become
large.

C. Effectiveness of automatic DAG partitioning method

In Section III-B, we have proposed a model to calculate the
boundary levelBL in order to partition the DAG. The model
uses four parameters:B, M , Sd, andSc, as shown in Eq. 4.
In this section, we useheat to evaluate the effectiveness of
the model, though we have verified that the model works for
other applications as well.

We evaluate the performance ofheat with all possibleBL
values. Since theheat program divides the input data into
two parts each time sub-tasks are generated until the data size
becomes 128 rows, there are fewer possibleBL values when
the input data sizes are small.

Fig. 8 shows the performance ofheat with different input
data sizes and all possibleBL values. For example, for a
3k ∗ 2k matrix of double, there are 7 levels (0-6) in the
execution DAG and the overall input data size is3072 ∗
2048 ∗ 8 = 48MB. According to Eq. 4, CAB calculatesBL
asmax{⌈log2 4 + 1⌉, ⌈log2 (48MB/6MB) + 1⌉} = 4. From
Fig. 8, we see thatheat gains the best performance for data
size3k ∗ 2k whenBL is 4. TheBL values calculated for other
data sizes are the ones with the best performance as well
according to Fig. 8. This proves the effectiveness of Eq. 4
and our automatic DAG partitioning method.

Note that, for larger data sizes, whenBL is smaller than 3,
the performance of CAB is worse than Cilk. This is because,
whenBL is small, there is only a small number of leaf inter-
socket tasks. In this situation, workload is not balanced well
in CAB, because CAB may not utilize all the sockets due to
the lack of inter-socket tasks. One such extreme case is when
BL = 1, there is only one leaf inter-socket task, and thus only
one squad can get the task.

On the other hand, ifBL is too large (e.g.,>4), each leaf
inter-socket task only contains a small number of intra-socket

tasks. In such a situation, the workload within a squad cannot
be balanced well. For example, forBL = 6 in the case of
3k∗2k, leaf inter-socket tasks are in level 6 and do not generate
any intra-socket tasks. In this case, there is only one worker
contributing to the performance of every squad.
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method can find the best value forBL

D. Performance of CPU-bound applications

Since CAB is proposed to relieve the TRICY syndrome of
memory-bound applications, CPU-bound applications cannot
achieve better performance in CAB compared to the traditional
task-stealing. Therefore, CAB schedules the tasks of CPU-
bound applications as the traditional task-stealing by setting
BL to be 0.
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Fig. 9. Normalized execution times of CPU-bound applications in CAB. By
settingBL to be 0, CAB schedules tasks as the traditional task-stealing.

Fig. 9 shows the performance of CPU-bound benchmarks
listed in Table III. For most cases, the extra overhead added
into the applications by CAB is around 1-2%. Forfft, the extra
overhead caused by manipulating the variablelevel in the task
frames is less than 5%, though optimizations are possible to
further reduce this overhead.

VI. RELATED WORK

Task-stealing is increasingly popular for automatic task
scheduling. There have been a lot of research work on its
adaptation and improvement [13], [14], [15], [16], [17].



There are generally two policies for task scheduling based
on task-stealing: child-first and parent-first. In [11], the
performance of the two policies were compared. Both child-
first and parent-first policies have their strengths and are used
pervasively in task-stealing schedulers. For example, MIT
Cilk [4], Cilk++ [5], and Intel TBB [6] use the child-first
policy, while Java’s fork-join framework [8] and Task Parallel
Library (TPL) [18] use the parent-first policy. Also there are
some task-stealing schedulers that adopt both policies, e.g.,
SLAW [19]. In SLAW, tasks are generated following either
the child-first policy or the parent-first policy according to the
stack pressure and task-stealing conditions. Although SLAW
uses both policies as in our CAB scheduler, it does not
associate the policies to the DAG level of tasks as we do
in CAB. We adopt the parent-first policy to quickly generate
the tasks in the inter-socket tier, but use the child-first policy
to prevent the excessive task proliferation in the intra-socket
tier.

Reducing the overhead of task-stealing has been a popular
research issue. The overhead of task-stealing mainly includes
task generating overhead, large number of unnecessary steals
and etc. In [15], an adaptive task generation strategy, called
AdaptiveTC, was proposed. AdaptiveTC can adaptively gen-
erate tasks to keep all workers busy most of the time while
reducing the number of tasks generated. In [16], a non-
blocking steal-half algorithm was introduced for a worker to
steal half of the tasks from the victim worker, which can
reduce the number of steals. In [17], an idempotent task-
stealing was introduced and several algorithms were proposed
to exploit the relaxed semantics of task execution in order to
achieve a better performance. The relaxed semantics guarantee
that each task is eventually executed at least one time, instead
of exactly one time. These work could be applied to our CAB
scheduler to further reduce task-stealing overhead.

There were some works on extending task-stealing to asym-
metric multi-processors and distributed memory systems. In
[20], Cilk was extended to run on asymmetric multi-processors
and asymmetric multi-core processors. It presented a model
in which each processor maintains an estimation of its speed.
The model allows a fast processor to grab tasks from a slow
processor when all the task pools are empty. In [21], a
runtime system was proposed for supporting task-stealing on
8,192 processing cores on a cluster computer with distributed
memory. In contrast to these architectures, our CAB scheduler
is dedicated to the popular MSMC architecture.

Agrawal et al. in [22] proposed “helper locks” in task-
stealing to execute large parallel critical sections whichare
processed serially in Cilk. Helper locks allow programs with
large parallel critical sections, called parallel regions, to exe-
cute more efficiently by asking processors that might otherwise
be waiting on the helper lock to aid in the execution of the
parallel region. The notion of parallel region is somewhat sim-
ilar to our tiers in DAG, but CAB treats the TRICY syndrome
while the helper lock tries to accelerate the execution of a
large parallel critical section.

Cache awareness is another interesting issue in task-stealing.

In [23] a theoretical bound on the number of cache misses for
random task-stealing was presented and a locality-guided task-
stealing algorithm was implemented on a single-core SMP.
In [24] cache behaviors of task-stealing and a parallel depth-
first scheduler were compared and analyzed on a multi-core
simulator that has shared L2 caches between cores. It proposed
to promote constructive cache sharing through controllingtask
granularity. However, the above researches did not take the
MSMC architecture into consideration.

To the best of our knowledge, CAB is the first cache-aware
task-stealing scheduler that relieves the TRICY syndrome in
the MSMC architecture.

VII. C ONCLUSIONS ANDFUTURE WORK

The CAB scheduler can effectively relieve the TRICY
syndrome caused by the random task-stealing in the MSMC ar-
chitecture. For memory-bound applications, CAB can achieve
a performance gain up to 55% thanks to the large reduction
of cache misses. CAB partitions the execution DAG into the
inter-socket tier and the intra-socket tier using an automatic
partitioning method. The method models the calculation of
the partitioning boundary with four parameters. From our
experimental results, this method can effectively find the
optimal boundary level that enables CAB to achieve the best
performance. Moreover, the extra overhead introduced by
CAB is very small. For most CPU-bound applications, for
which CAB cannot improve performance, the overhead is only
around 1-2%.

Apart from the encouraging results, interesting issues have
been discussed in the paper. One issue is the scalability of
CAB when the input data size increases. Since the relative
proportion of shared data set becomes small when the input
data is large, the performance gain from reduced cache misses
is getting small. However, according to our experimental
results, CAB can still achieve 10% performance gain for large
input data sizes.

Another interesting issue is compiler support for automati-
cally acquiring the parameters such as the input data size and
the branching degree to calculate the boundary between the
inter-socket tier and the intra-socket tier. Though programmers
can manually provide these parameters through command line
in our current implementation, it is preferable to acquire them
through program analysis of compiler. This work opens a
door for program analysis to provide useful information for
runtime optimization of task-stealing in parallel programming
environments.

Future research includes a more flexible DAG partitioning
method that can decide inter-socket and intra-socket taskswith
heuristic information and compiler support instead of a single
boundary level. Prefetching techniques with helper threadas
in [3] can also be applied to CAB to further improve the
performance of CAB when input data sizes are large but the
data of each leaf inter-socket task can fit into the shared cache.
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