Cache Organization and Memory Management
of the Intel Nehalem Computer Architecture

Trent Rolf
University of Utah Computer Engineering
CS 6810 Final Project
December 2009

Abstract—Intel is now shipping microprocessors using their
new architecture codenamed “Nehalem” as a successor to the
Core architecture. This design uses multiple cores like its prede-
cessor, but claims to improve the utilization and communication
between the individual cores. This is primarily accomplished
through better memory management and cache organization.
Some benchmarking and research has been performed on the
Nehalem architecture to analyze the cache and memory improve-
ments. In this paper | take a closer look at these studies to
determine if the performance gains are significant.

Nehalem Quadcore Nehalem Quadcore

I. INTRODUCTION

v v

The predecessor to Nehalem, Intel's Core architectureema 1/0 Hub I
use of multiple cores on a single die to improve performanc : 8
over traditional single-core architectures. But as morego
and processors were added to a high-performance system,
some serious weaknesses and bandwidth bottlenecks began to Fig. 1. Eight-core Nehalem Processor [1]
appear.

After the initial generation of dual-core Core processor .
Intel began a Core 2 series processor which was not mLF:ﬁthon model can .have eight cores, and four QP! bus_ con-
more than using two or more pairs of dual-core dies. The corerzg"erS [5]..The grch]tecture allows the cores to commatac
communicated via system memory which caused large dela\é?sry effectively in either case. The specifics of the memory

due to limited bandwidth on the processor bus [5]. Addin 'ganization are described In detail later.

. jgure 1 is an example of an eight-core Nehalem pr r
more cores increased the burden on the processor and memot:gue S an example of an eight-core Nehalem processo

buses, which diminished the performance gains that could \Blréocé\glso(rgPslebdusncolntrolIers. This is the configuration of the
possible with more cores. P used in [1].
The new Nehalem architecture sought to improve core-tg- Branch Prediction

core communication by establishing a point-to-point togs Another significant improvement in the Nehalem microar-

in which microprocessor cores can communicate directl WiEhitecture involves branch prediction. For the Core aethit

one another and have more direct access to system memq[[}/r.e, Intel designed what they call a “Loop Stream Detéttor,

Il. OVERVIEW OF NEHALEM which detects loops in code execution and saves the instruc-
tions in a special buffer so they do not need to be contin-
ually fetched from cache. This increased branch prediction
The approach to the Nehalem architecture is more modutarccess for loops in the code and improved performancd. Inte
than the Core architecture which makes it much more flexibdgineers took the concept even further with the Nehalem
and customizable to the application. The architecturelyreahrchitecture by placing the Loop Stream Detecadier the
only consists of a few basic building blocks. The main blocksecode stage eliminating the instruction decode from a loop
are a microprocessor core (with its own L2 cache), a sharggration and saving CPU cycles.
L3 cache, a Quick Path Interconnect (QPI) bus controller, an)
integrated memory controller (IMC), and graphics core. ~ C. Out-of-order Execution
With this flexible architecture, the blocks can be configured Out-of-order execution also greatly increases the perfor-
to meet what the market demands. For example, the Bloomance of the Nehalem architecture. This feature allows the
field model, which is intended for a performance desktop aprocessor to fill pipeline stalls with useful instructions s
plication, has four cores, an L3 cache, one memory controll¢he pipeline efficiency is maximized. Out-of-order exeonti
and one QPI bus controller. Server microprocessors like thes present in the Core architecture, but in the Nehalem

DDR3D
DDR3 E

A. Architectural Approach

architecture the reorder buffer has been greatly incre&sed
allow more instructions to be ready for immediate executior

D. Instruction Set

Intel also added seven new instructions to the instructbn s
These are single-instruction, multiple-data (SIMD) instions
that take advantage of data-level parallelism for todagtad
intensive applications (like multimedia). Intel referstie new
instructions as Applications Targeted Accelerators (AtAg
to their specialized nature. For example, a few instrustion
are used explicitly for efficient text processing such as XML
parsing. Another instruction is used just for calculatimgeck-
sums.

E. Power Management

For past architectures Intel has used a single power ma
agement circuit to adjust voltage and clock frequencies eve
on a die with multiple cores. With many cores, this strateq:
becomes wasteful because the load across cores is rarely t
form. Looking forward to a more scalable power managemet
strategy, Intel engineers decided to put yet another psaugs
unit on the die called the Power Control Unit (PCU).

The PCU firmware is much more flexible and capable
than the dedicated hardware circuit on previous architestu
Figure 2 shows how the PSU interacts with the cores. It usgg 2. Power Control Unit (PSU) in a Multi-core Nehalem Aitelature [5]
sensors to read temperature, voltage, and current acrbss al
cores in the system and adjusts the clock frequency andysuppl

voltage accordingly. This enables the cores to get exadtigtw Of cores. For the Nehalem architecture each core has its own

used at all. of the Core architecture, it is lower latency allowing foster
While these and other features contribute to the performarleg c@che performance. _

and efficiency of a Nehalem processor, the remainder ofNehalem does still have shared cache, though, implemented

this paper will focus on the cache organization, memo@s L3 cache. This cache is shared among all cores and is rela-

architecture, and communication between cores. tively large. For example, a quad-core Nehalem procesdbr wi
have an 8MB L3 cache. This cache is inclusive, meaning that
lll. CACHE AND MEMORY SPECIFICS it duplicates all data stored in each indivitual L1 and L2h=c
A. Transition Lookaside Buffer This duplication greatly adds to the inter-core commuimicat

The transition lookaside buffer (TLB) plays a critical roleefflmency because any given core does not have to locate data

in the cache performance. It is a high-speed buffer that ma Sanot?er lprofc&ssors c,ache.hlf thte krequestthed gatta 'S ulnﬁfo i
virtual addresses to physical addresses in the cache orrytemI any teye 0 t?] cores ’cac eh' nows the dala IS also no
When a page of memory is mapped in the TLB, it is accessBEfSENt I any other core's cache.

quickly in the cache. When the TLB is too small, misses occur 10 insure coherency across all caches, the L3 cache has

more frequently. The TLB in the Nehalem architecture is mudfiditional flags that keep track of which core the data came

larger than previous architectures which allows for manyeno oM If the data is modified in L3 cache, then the L3 cache
knows if the data came from a different core than last time,

memory page references to remain in the TLB.

In addition, Intel made the TLB dual-level by adding aitnd that the data in the first core needs its L1/L2 values
L2 TLB. The second-level TLB is larger than the first Ieve\"pdalted with the new data. This greatly reduces the amount

and can store up to 512 entries [5]. The gains from the TLY traditional “snooping” coherency traffic between cores.

changes are significant, but the most dramatic improvements NS Néw cache organization is known as the MESIF (Mod-

come from the changes to the overall cache-memory layoufi€d: Exclusive, Shared, Invalid, Forward) protocol, whis
a modification of the popular MESI protocol. Each cache line

B. Cache and Cache Coherency is in one of the five states:

In the Core architecture, each pair of cores shared an L2. Modified - The cache line is only present in the current
cache. This allowed the two cores to communicate efficiently cache and does not match main memory (dirty). This line
with each other, but as more cores were added it proved must be written back to main memory before any other
difficult to implement efficient communication with more i reads of that address take place.

Nehalem 3.2GHz Penryn 3.2GHz Entry High Performance
St | 2chommat | 1chomma | 2arommal 1 2en

’
Everest 4.60
DDR3-1067 | DDR3-1067 | DDR3-1067 | DDR3-1067 | DDR3-1600 Memory Memory Memory
I

7-7-7-20 7-7-7-20 7-7-7-20 7-7-7-20 7-7-7-20

Read, MB/s 15057 14030 8199 8125 10101
Write, MB/s 14727 12038 3200 3464 3495
Copy, MB/s 15522 13314 3560 7207 8175

Latency, ns 39.2 349 33.5 64,2 51.7

Fig. 3. Comparison of Memory Channel Performance - Nehalem wse C
2 (Penryn model) [5]

PCI PCI
« Exclusive - The cache line is only present in the current Express* Express*®
cache and matches main memory (clean).
« Shared- The cache line is clean similar to the exclusiv&ig. 4. Examples of QuickPath Interconnect in a Single andtiMubcessor
state, but the data has been read and may exist in anofigfalem System [5]
cache. This other cache should be updated somehow if

the I|.ne changes. L Figure 4 shows how this might work. On an entry-level
« Invalid - The cache line is invalid. Nehalem system with one processor the QPI bus becomes an
« Forward - This cache line is designated as the respondgfsrqved FSB allowing for higher bandwidth communication

to update all caches who are sharing this line. between the processor and high-speed hardware like PCI Ex-
With the extra “Forward” state, the excessive respondingess. As more processors are added to the sytem, the QPI bus

among shared cache lines is eliminated. also provides an efficient point-to-point communicationthpa
between processors by facilitating high-speed non-umifor
C. Memory Controller memory accesses (NUMA).

The location of the memory controller was a significant Now that we have given an overview of the most important
change from the Core processors. Previously the memory conprovements to the Nehalem architecture, let's take aeclos
troller was located off-chip on the motherboard’s norttlgd, look at some studies that have been performed on actual Ne-
but Nehalem integrates the memory controller to the praresfalem processors that validate the performance improvemen
die with the hope to reduce the latency of memory accesse&ims.

In keeping with the modular design approach, Intel enggeer |\, A STuUDY oF MEMORY PERFORMANCE AND CACHE
introduced flexibility into the size of the memory controlle COHERENCY

and the number of channels. h M Perf d Cache Coh
The first Nehalem processors were the quad-core mod%Iﬁ € paperiiemory rerlormance an ache t.onerency

which had a triple-channel memory controller. To show th A th?ho?fan Intel N?’r:al_em Multlpro;:efsor Sgs{&l]réls a
effectiveness of this on-chip design, the authors of [5} pe udy that focuses on In€ improvements fo cache and memory.

formed memory subsystem tests in which they compared e authors have devised new benchmarks that can measure

new architecture to the Core 2 (Penryn model) architectu‘EtenCy and bandwidth for accesses to main memory and

They varied the number of channels for each architecture a other processors ca(t:)he. dPr.Zf[/r']OL.JS studleslarf1d benld;lmlar
found that even a single-channel Nehalem processor was fa ly measure memory bandwi in general (for example,

than the dual-channel Core 2 system with an external mem(.I) STREAM_ benchmark [1]) W'thO.Ut prow_d ing any cache-
controller. Figure 3 shows the exact results of the test. specific metrics. The authors consider their study to be the

Another benefit to an on-chip memory controller is thdirst to provide metrics that measure the effectiveness ef th
che coherency protocol.

it is totally independent of the motherboard hardware. Thi&

provides the processor more predictable memory performancT0 perform these tests, the authors used BenchlT open-
that will run just as fast on any hardware platform. source performance measurement software (www.bend)it.or

It compares algorithms and implementations of algorithms o

D. QuickPath Interconnect Bus a given architecture. o
The details of the system under test are given in Figure 5,

~With the memory controller now located on the processgrg 5 diagram of the system is shown in Figure 1. To remove
die, the load on the Front-side Bus (FSB) for a singlgnecessary variables from the test, the authors disabted s

processor system has been greatly reduced. But for mulfis.q\are features such as dynamic overclocking, simute
processor systems (like servers) there is a need for faster fnulti-threading (SMT), and hardware prefetching.
more direct chip-to-chip communication, and the FSB doés no

have the bandwidth to fill that need. So Intel developed tife Assembler Benchmarks
QuickPath Interconnect (QPI) bus as a means of connectingrhe first benchmarks that were performed on the system
multiple processors to each other in addition to the chip.setvere a series of hand-optimized assembly routines compiled

L3 cache and the integrated memory controller. The resfilts o
these benchmarks will be described in the following sestion

Processors | 2x Intel Xeon X5570 |

Core arrangement | Processor (: core 0-3

B. Modified STREAM Benchmarks
Processor 1: core 4-7

Core frequency | 2.933 GHz To verify the results obtained using the assembler bench-
3666 Gl marks the authors use a modified version of the well-known
set of benchmarks known as the STREAM benchmarks. In ad-
dition, the benchmarks are used to perform more complicated
memory access patterns that are not easily implementeein th
assembler benchmarks.
The unmodified STREAM benchmarks implement

read/write tests using four different memory access pater

Uncore frequency
QPI bandwidth 25.6 GB/s per link
L1 cache size | 32 KiB/32 KiB
L2 cache size | 256 KiB
L3 cache size 8 MiB
Cache line size | 64 Bytes

Page size | 4 KiB/2 MiB (small/huge pages) These tests perform calculations on a one-dimensionay arra
L1 data TLB | 48/32 entries for small/huge pages of double precision floating point numbers.
L2 TLB | 312 entries for small pages The authors made the following modifications to the original
Memory type | 6x 2 GiB DDR3-1333, registered, ECC STREAM benchmarks to better compliment the assembler
3 channels per processor, 10.66 GB/s each benchmarks:
Operating System | Debian 5.0, Kernel 2.6.28.1 « Every thread is bound to a specific core and allocates its
Compiler | gee 4.3.2 and ice 11.0 own memory.

o The time stamp counter is used for time measurement
which excludes overhead caused by the spawning of new
Fig. 5. Test System Configuration for [1] threads.
o The authors adde#lpr agma vect or al i gned pre-

o))) processor commands to the code to optimize memory
in-line with a test program written in C. These benchmarks 5ccesses andtpr agma vect or nont enporal to

are designed to run on 64-bit x86 processors, and by design perform explicit writes of data to main memory without
execute code that would not be generated by a compiler. The affecting cache.

authors are using a high-resolution time stamp counter that

adds very little overhead to the measurements. The overheadLatency Benchmarks

is somewhat noticable in the higher-speed tests like the LlThe latency benchmark uses pointer chasing to measure the

test. - .
latency for cache/memory accesses. It is perfomed using the

To make a meaningful e_valuatlon_of the memory and Cacr1’8llowing general strategy where thread O is running on core
the authors use the following techniques throughout tm:teso and is accessing memory associated with core N

« Each thread of the benchmark program is “pinned” to a First, thread 0 “warms up” the TLB by accessing all the
certain core. required pages of memory. This ensures that the TLB entries
« Allmemory pages of a given thread are physically locatageeded for the test are present in core 0.
on the corresponding memory module to that core to helpNext, thread N places the data in the caches of core N
identify the effects of the NUMA architecture. into one of the three cache coherency states describeérearli
« Before the benchmarks begin, the caches can be placeqrﬂbdiﬁed, exclusive, or shared).
certain coherency states-modified, exclusive, or shared-Tpe |atency measurement then takes place on core 0 as the

by performing initial reads and writes. test runs a constant number of access and uses the time stamp
« With the help of a special cache flush routine, the authoggunter to collect data. Each cache line is accessed once and

can invalidate an entire level of cache to isolate th@my once in a pseudo-random order.
performance of just one cache. The following figures show the results of testing different
« Toreduce the effects of the TLB on memory latency testgarting cache coherency states among the different lefels
the authors use *huge pages” that prevent TLB misses i¢fe memory hierarchy. The measurements for the lines in the
data sets of up to 64MB of memory. exclusive cache coherency state are shown in Figure 6. igur
In this assembler test, three specific benchmarks are takeshows the lines in the modified state. Figure 8 shows a
for each iteration. First, the authors takéagency benchmark summary of the graphical results including the results from
to determine the latency for accesses to main memory andthi shared state test.
three cache levels. Next they measuigrayle-core bandwidth ~ The latency of the local accesses is the same regardless of
benchmarkto determine how the cache coherency schenttee cache coherency state since a cache is always coherent
affects memory performance on a single core. Finally they uwith itself. The authors measure a latency of 4 clock cycles
a multi-core bandwidth benchmaitkat runs multiple threads for L1 cache, 10 clock cycles for L2 cache, and 38 cycles for
simultaneously to demonstrate the effectiveness of theedhal.3 cache.

(a) Exclusive cache lines due to the shared L3 cache. Latency for modified cache lines

120 can be 100ns or more because the caches are forced to write
110 s back the value to main memory due to the cache coherency
100 protocol.
€0 Main memory was measured to have a latency of 65 ns for
z ?g . local accesses. When the memory of another core is accessed
Z 6o PPN RPN RNEARRNIC L L L via the QPI bus it takes an additional 41 ns bringing the total
2 50 latency to 106 ns.
gg : D. Bandwidth Benchmarks
ZA0L S T The tests for the bandwidth benchmarks were very similar
10T it to the latency tests. The caches and memory were initialized
? 1E5 1E6 1E7 1E8 in the same way. But instead of using a timer the authors
Merrory Size [Bytel developed a measurement routine that can access any focatio
[Core0local 7 CoreO-Corel * Cored - Cored | in the memory hierarchy, including other cores’ cachesnysi

this tool the authors were able to determine local, inteeco
Fio. 6. Read latendies of o _ el otosal and inter-processor bandwidth.
. g lenciesof ot sccesang sache nes ofneal ¢ The test continuously accesses data using load and store
coherency state[1] assembly calls eliminating any arithmetic instructionsisT
way the bandwidth can be measured as accurately as possible.
It is important to note that the architecture does not allow

(b) Modified cache lines one core to write directly to another core’s cache. This bas t

120 be done in a two-step process. The core must read the value

LDy b b b i first to obtain ownership then write to its local cache. This

100"+ must be considered when analyzing the results.
_ 28 Each core in the architecture has a 128-bit write port and a
£ - e 128-bit read port to the L1 cache. This means that at a clock
g & Bl rate 2.933 GHz (the core clock for the specific chip they used
2 50 for the test) the theoretical limit for L1 cache bandwidth is
= 4D 46.9 Gbps in each direction. The L2 and L3 caches each have

E1V b A0 it e a 256-bit port for reading or writing, but the L3 cache must

2 NIRRT N share its port with three other cores on the chip.

12 IR T The benchmarks also measure main memory bandwidth.

1E5 1E6 1E7 1E8 Each integrated memory controller has a theoretical badtttiwi
Memory Size [Bytel peak of 32 Gbps.
[" Core0local ” Core - Corel * CoreD - Cored | Figure 9 shows the measured bandwidth (in Gbps) for

different memory sizes where the cache has been initialized
. . . . to the exclusive state. Figure 10 shows a similar test where
Fig. 7. Read latencies of core 0 accessing cache lines ofCc@ioeal), core L g
1 (on die) or core 4 (via QPI) with cache lines initialized teetmodified the cache has been initialized to the modified state. The read
coherency state[1] bandwidth measurements are compared in Figure 11, and write
bandwidth measurements are compared in Figure 12.
As with latency results, we should expect to see bandwidth
The latency to a core on the same die shows a strotigg same independent of the cache coherency protocol. This
correlation to the cache coherency state. Shared cache liieindeed the case with the L1 bandwidth measuring near its
can be accessed within 13 ns. This is because the inclusivedeak performance at 45.6 Gbps regardless of the coherency
cache contains a valid copy of the data and can immediatelates.
respond to the request. Exclusive lines, however, may haveAs was expected, the write bandwidth is lower than the read
been modified in the other core’s higher level cache whidiandwidth because a write is made up of a read and and write.
forces the L3 cache to check the data in that core. This chefhis would seem like it would double the amount of traffic
costs 9.2 ns which increases the latency for reads to exelusand cut bandwidth in half, but the measurements suggest that
lines to 22.2 ns. the penalty is not that large. The authors suggest that shis i
Data accesses to cores on a different processor sufferdue to the large 256-bit interfaces on the L2 cache.
additional penalty due to the transfer over the QPI bus. Any The bandwidth toother cores does have strong ties to the
access off-chip to an exclusive cache line requires at lmast cache coherency state. Reading or writing data that hits in
snoop to the other core’s cache/memory which takes 63 tise L3 cache achieves a bandwidth of 26.2 Ghps for reading
The latency for shared lines is only slightly better at 58 rend 19.9 Gbps for writing. If the core must get the data from

Exclusive cache lines Modified cache lines Shared cache lines
Source L1 L2 L3 L1 L2 L3 L1 L2 L3 RAM
Local 1.3¢4) | 3.4 (10) | 13.0 (38) 1.3 (4) 3.4 (10) 13.0 38) 1.3(4) | 34(10) | 13.0(38) 65.1
Corel (on die) 22.2 (65) 283 (83) | 255(79) 13.0 (38)
Cored (QPI) 63.4 (186) 102 - 109 58.0 (170 106.0

Bandwidih [GB/s]
— = (SR N
oo O Y T N oo B O o A

Fig. 8. Read latencies of core 0 accessing cache lines ofc@axal), core 1 (on die) or core 4 (via QPI) [1]

(a) Exclusive cache lines

fd P L ikt

IIIIIIIIIII||IIIIIII|||I
T F Ty r Y rYTYTYTYTY YIY
L 4

L
T

TR ey et SR FLEd Lhd i s 1 3 P e PP
bl i o Bl s

1ES 1E& 1E7 1E8
tMemary Size [Byte]

Exclusive Modified
L1 L2 L3 L1 L2 L3 RAM
Local | 456 | 31.1 | 262 | 456 | 31.1
Corel | 103 19.7 94 13.2
Cored | 9.0 9.2 5.6 6.3

26.2 10.1

Fig. 11. Core 0 Read Bandwidth in Gbps [1]

Exclusive Modified
L1 L2 L3 L1 L2 L3 RAM
Local | 456 | 28.8 | 199 | 456 | 288
Corel | 234 | 222 | 176 | 94 13.0
Cored 9.0 8.3 0.6 5.5

19.9 8.4

Fig. 9.

| " CoreQlocal ™ CoreQ - Corel * CoreD - Cored |

Read bandwidth of core 0 accessing cache lines of @dtecal),

core 1 (on die) or core 4 (via QPI) with cache lines initiatize the exclusive

Fig. 12. Core 0 Write Bandwidth in Gbps [1]

coherency state[1]

Bandwidih [GE/ 5]
— = g g W)
{me T I i T ¥ N e R) B e B ¥

(b) Modified cache lines

T T T Ty ey 1
1
Eraliatiatsdidd ¥
FYTY vy Iy R R T PR P AR AF AV ey
hidsldodaadihihdibdiad AT TR r R pi tyrTeTe
b il i ol i g

1ES LEG 1E7 1ES
Memary Size [Bytel

Corglocal ¥ CoreQ - Corel = Corel - Cored |

Fig. 10.

Read bandwidth of core 0 accessing cache lines ef @dfocal),
core 1 (on die) or core 4 (via QPI) with cache lines initiatize the modified

coherency state[1]

another processor's cache, then the bandwidth decreases to
13.2 Ghps in the L2 cache and 9.4 Gbps in the L1 cache.
These results show us that the memory subsystem in the
Nehalem architecture is able to maintain a high level of
efficiency in terms of latency and bandwidth due to the well-
designed memory hierarchy and cache coherency strategy. It
performs particularly well for on-chip data transfers betm
cores. The shared L3 cache seems to eliminate much of the
snooping traffic and allow the architecture to be more séalab

V. A COMPARISON WITHOTHER ARCHITECTURES

To gain some perspective on the efficiency of the Nehalem
architecture, we will take a look at the studyPerformance
Evaluation of the Nehalem Quad-core Processor for Scientifi
Computing[4]. This paper compares Nehalem with its prede-
cessors and competing architectures for a scientific cangput
application. Specifically, the three nodes used in the test a

1) Two quad-core Intel Core i7 (Nehalem) processors (8
cores total), 45nm fabrication technology

2) Four quad-core AMD Opteron 8350 (Barcelona) proces-
sors (16 cores total), 65nm fabrication technology

3) Four quad-core Intel Xeon X7350 (Tigerton) processors
(16 cores total), 65nm fabrication technology

Pracessor Memary [Node

Speed Peak L1 L2 L3 Type Speed | Memory Peak 40 - - I— —
GHz Gflops KB MB MB MHz | controllers Gflops 1| OBarcelona {Q-UGHZ)
Nehalem 28 148 64 02 8 DDR3 1333 2 89.6 a5)
Barcelona | 2.0 32 64 025 2 DDR2 667 4 128.0 & Tigerton (2.83GHz)
Tigerton 2.93 46.9 64 4 - FBDIMM 667 1 187.6 |
30 1| MNehalem (2.8GHz) | _
! I 2]
Fig. 13. Characteristics of the quad-core processors, meraog/ node a5 L -

organization [4]

To compare these architectures, the authors of [4] use

a suite of scientific applications taken from existing U.S 10 - _
Department of Energy workloads. They are most intereste
in the capability of each architecture to efficiently impksmh 5
parallelism at the core level, the processor level, and duen o]

(]

=

level. These processors will be the building blocks of large
scale parallel scientific computers. o

Partisn
SAGE
SPaSM
Sweep3D
VH1
VRIC

A. Description of Other Architectures

. . . o Fig. 14. Application iteration time, single-core [4]
The Nehalem architecture has been described in detail in

previous sections. To make the comparisons more meaningful
the following is a brief overview of the Barcelona and Tigert B. Application Testing

Processors. To provide a comparison of the three architectures for

1) Barcelona: The Barcelona is a first generation quadscientific computations, the authors used applicationsatly

core processor developed by Advanced Micro Devices (AMRy yse by the U.S. Department of Energy. The testing corsiste
as part of the Opteron series. The Barecelona architectyge

combines four Opteron cores onto a single die with 65nm
technology. Each core has its own L1 cache (64 KB) and”’
L2 cache (512 KB). The four cores on a single processor'
share a 2MB L3 cache. The Opteron architecture has special

instructions that enable each core to execute 4 doublésprec cores per processor that gives the best performance.

floating-point operations per clock cycle. The clock speéd o . . .
aJr) Single-core Measurementgigures 14 and 15 illustrate

each core is 2.0 GHz which gives each processor a theoreti% ; ¢ h hi T Th
peak performance of 32 billion floating-point operations pé e performance of each architecture using just one core.

second. Y-axis in Figure 14 denotes the time it takes for one iteratio

. f the main com tional | nd the X-axis shows th
For this test, the Barcelona node has four quad-core proo— e main computational loop, and the X-axis shows the

. esults of each test application. In Figure 15, a value of 1.0
cessors each with 4 GB of DDR2 memory for a total of béndicates the same performance between the two processors,
GB of memory for the node. The processors are connecte

in R .
a 2x2 HyperThread mesh which classifies this as a NUM%Value of 2.0 indicates a 2x improvement, etc.
architecture.

As you can see in the figures the Nehalem core is 1.1-
1.8 times faster than a Tigerton core and 1.6-2.9 timesrfaste

2) Tigerton: The Intel Tigerton processor is a first generhan a Barcelona core. Note that Nehalem has a slower clock
ation quad-core processor which contains two dual-core digan Tigerton but achieves much better performance fohall t
that are packaged into a single module. Each core containggylications in the test. This suggests that Nehalem can “do
private L1 cache (64 KB), and two cores on each die shar§eds with more” with the improvements such as the memory
4 MB L2 cache. and cache organization.

The Tigerton node in this setup contains four processors?) Node Measurementsthe authors took the best results
and 16 GB of memory using fully-buffered DIMMs. Unlike from running the applications on each node (exercising all
the Barcelona or Nehalem that have a NUMA configuratiogores on the node) and compared their execution time side-by
Tigerton uses a single memory controller hub in what iside in Figure 16. The relative performance of the Nehalem
called a symmetric multiprocessor (SMP) configuration.sThirchitecture is shown once again in Figure 17. As you can
memory controller hub contains a Dedicated High Spegge, the Nehalem node achieves performance 1.4-3.6 times
Interconnect (DHSI) to provide point-to-point communioat faster than the Tigerton node and 1.5-3.3 times faster than t
between processors and memory channels. Barcelona node.

Some key features of each architecture are compared inrhe scaling behavior (going from a single core to many
Figure 13. cores) of the Tigerton seems to be particularly bad. This

Comparing single core performance of each architecture.
Comparing scaling performance by using all processors
in the node.

Determining the combinations of cores or number of

a0 _ . . _
‘ | O Mehalem vs. Barcelona

a5 T — | mNehalem vs. Tigerion

830 - - e

o

c 1

E !

..g 245

&

@ 1

2201

3]

1]

[, |
¥ _- | l:i |
10] 1 . .

] = L = -
=] 0 w =
6] i= < T =
1] ol o
o 7]

Sweep3D

Fi

12
| | OBarcelona (2.0GHz) !
1g 1. & Tigerton (2.93GHz)

m Nehalem (2. 8GHZ) - %
e .

0 %
: s .
E %
i

5 g

Z

7

24 g

' ,ﬁ

7

[V é

GTC
Partisn
SAGE
SPaSM
Sweep3D
VH1

Fig. 16. Application iteration time, multi-core [4]

VPIC

VPIC

4
|

g. 15. Performance advantage of Nehalem, single-core [4]

a0 -

O Nehalem vs_ Barcelona.

a5 | - —| mNehalem vs. Tigerton
e 30"
m
a i
E
.E 25 -
@ -
o
@
2 20-
= :
=]
2 |
] ’—A. “ “
10 - L . , L
&) e w =] - o
= [I o
o £ 2 ke 2 > e
@ 0 o o
o 7] "gl
A

Fig. 17. Performance advantage of Nehalem, multi-core [4]

that have shown by benchmarking measurements the effective
ness of these improvements. The inclusive, shared L3 cache
has reduced much of the complexity and overhead associated
with keeping caches coherent between cores. The integrated
memory controller reduces memory access latencies. | have
shown that the Nehalem architecture scales well; it allows
for as many cores as are needed for a particular application.
Previous and competing architectures do not scale nearly as
well; more cores can be added, but the limitations of the
memory organization introduce bottlenecks to data movémen
Nehalem has identified and removed these bottlenecks. This
positions Nehalem well to be a flexible solution to future
parallel processing needs.

REFERENCES

[1] D. Molka, D. Hackenberg, R. Schone, and M.S. Muller, “Meawm®erfor-
mance and Cache Coherency Effects on an Intel Nehalem Madggsor
System”, in2009 18th International Conference on Parallel Architeetu
and Compilation TechniqueSeptember 2009

[2] JJ. Treibig, G. Hager, and G. Wellein, “Multi-core argdtures: Com-
plexities of performance prediction and the impact of cachgolto
ogy”, Regionales Rechenzentrum Erlangen, Friedrich-dieler Univer-
siat Erlangen-urnberg, Erlangen, Germany, October 2009

is likely because the memory subsystem of the Tigertd#l BB. Qian, L. Yan, “The Research of the Inclusive Cache duse

architecture was not designed for scalabilty. It was mostly

designed with just the two cores in mind.

Multi-Core Processor”, Key Laboratory of Advanced Displ&ySystem
Applications, Ministry of Education, Shanghai Universifuly 2008
[4] KK.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lar§g. Pakin, J.C.

These tests show that the improvements made to the mem-Sancho, “A Performance Evaluation of the Nehalem Quad-careeBsor

ory architecture in the Nehalem processor make a huge impact

for Scientific Computing”,Parallel Processing Letters\Vol. 18, No. 4
(2008), World Scientific Publishing Company

on performance when it comes to performing data-intensiy® 1. Gavrichenkov, “First Look at Nehalem Microarchitece”,

parallel computations for scientific applications.

VI. CONCLUSION

November 2008, http://www.xbitlabs.com/articles/cpuystiy/
nehalem-microarchitecture.html

In this paper | have taken a close look at Intel's Nehalem
architecture. | have given an overview of the major improve-
ments to the architecture over Intel's previous multi-core

architectures with a special focus on the memory orgamizati

and cache coherency scheme. | have looked into severagstudi

