
Cache Organization and Memory Management
of the Intel Nehalem Computer Architecture

Trent Rolf
University of Utah Computer Engineering

CS 6810 Final Project
December 2009

Abstract—Intel is now shipping microprocessors using their
new architecture codenamed “Nehalem” as a successor to the
Core architecture. This design uses multiple cores like its prede-
cessor, but claims to improve the utilization and communication
between the individual cores. This is primarily accomplished
through better memory management and cache organization.
Some benchmarking and research has been performed on the
Nehalem architecture to analyze the cache and memory improve-
ments. In this paper I take a closer look at these studies to
determine if the performance gains are significant.

I. I NTRODUCTION

The predecessor to Nehalem, Intel’s Core architecture, made
use of multiple cores on a single die to improve performance
over traditional single-core architectures. But as more cores
and processors were added to a high-performance system,
some serious weaknesses and bandwidth bottlenecks began to
appear.

After the initial generation of dual-core Core processors,
Intel began a Core 2 series processor which was not much
more than using two or more pairs of dual-core dies. The cores
communicated via system memory which caused large delays
due to limited bandwidth on the processor bus [5]. Adding
more cores increased the burden on the processor and memory
buses, which diminished the performance gains that could be
possible with more cores.

The new Nehalem architecture sought to improve core-to-
core communication by establishing a point-to-point topology
in which microprocessor cores can communicate directly with
one another and have more direct access to system memory.

II. OVERVIEW OF NEHALEM

A. Architectural Approach

The approach to the Nehalem architecture is more modular
than the Core architecture which makes it much more flexible
and customizable to the application. The architecture really
only consists of a few basic building blocks. The main blocks
are a microprocessor core (with its own L2 cache), a shared
L3 cache, a Quick Path Interconnect (QPI) bus controller, an
integrated memory controller (IMC), and graphics core.

With this flexible architecture, the blocks can be configured
to meet what the market demands. For example, the Bloom-
field model, which is intended for a performance desktop ap-
plication, has four cores, an L3 cache, one memory controller,
and one QPI bus controller. Server microprocessors like the

Fig. 1. Eight-core Nehalem Processor [1]

Beckton model can have eight cores, and four QPI bus con-
trollers [5]. The architecture allows the cores to communicate
very effectively in either case. The specifics of the memory
organization are described in detail later.

Figure 1 is an example of an eight-core Nehalem processor
with two QPI bus controllers. This is the configuration of the
processor used in [1].

B. Branch Prediction

Another significant improvement in the Nehalem microar-
chitecture involves branch prediction. For the Core architec-
ture, Intel designed what they call a “Loop Stream Detector,”
which detects loops in code execution and saves the instruc-
tions in a special buffer so they do not need to be contin-
ually fetched from cache. This increased branch prediction
success for loops in the code and improved performance. Intel
engineers took the concept even further with the Nehalem
architecture by placing the Loop Stream Detectorafter the
decode stage eliminating the instruction decode from a loop
iteration and saving CPU cycles.

C. Out-of-order Execution

Out-of-order execution also greatly increases the perfor-
mance of the Nehalem architecture. This feature allows the
processor to fill pipeline stalls with useful instructions so
the pipeline efficiency is maximized. Out-of-order execution
was present in the Core architecture, but in the Nehalem



architecture the reorder buffer has been greatly increasedto
allow more instructions to be ready for immediate execution.

D. Instruction Set

Intel also added seven new instructions to the instruction set.
These are single-instruction, multiple-data (SIMD) instructions
that take advantage of data-level parallelism for today’s data-
intensive applications (like multimedia). Intel refers tothe new
instructions as Applications Targeted Accelerators (ATA)due
to their specialized nature. For example, a few instructions
are used explicitly for efficient text processing such as XML
parsing. Another instruction is used just for calculating check-
sums.

E. Power Management

For past architectures Intel has used a single power man-
agement circuit to adjust voltage and clock frequencies even
on a die with multiple cores. With many cores, this strategy
becomes wasteful because the load across cores is rarely uni-
form. Looking forward to a more scalable power management
strategy, Intel engineers decided to put yet another processing
unit on the die called the Power Control Unit (PCU).

The PCU firmware is much more flexible and capable
than the dedicated hardware circuit on previous architectures.
Figure 2 shows how the PSU interacts with the cores. It uses
sensors to read temperature, voltage, and current across all
cores in the system and adjusts the clock frequency and supply
voltage accordingly. This enables the cores to get exactly what
they need, including putting a core to sleep if it is not being
used at all.

While these and other features contribute to the performance
and efficiency of a Nehalem processor, the remainder of
this paper will focus on the cache organization, memory
architecture, and communication between cores.

III. C ACHE AND MEMORY SPECIFICS

A. Transition Lookaside Buffer

The transition lookaside buffer (TLB) plays a critical role
in the cache performance. It is a high-speed buffer that maps
virtual addresses to physical addresses in the cache or memory.
When a page of memory is mapped in the TLB, it is accessed
quickly in the cache. When the TLB is too small, misses occur
more frequently. The TLB in the Nehalem architecture is much
larger than previous architectures which allows for many more
memory page references to remain in the TLB.

In addition, Intel made the TLB dual-level by adding an
L2 TLB. The second-level TLB is larger than the first level
and can store up to 512 entries [5]. The gains from the TLB
changes are significant, but the most dramatic improvements
come from the changes to the overall cache-memory layout.

B. Cache and Cache Coherency

In the Core architecture, each pair of cores shared an L2
cache. This allowed the two cores to communicate efficiently
with each other, but as more cores were added it proved
difficult to implement efficient communication with more pairs

Fig. 2. Power Control Unit (PSU) in a Multi-core Nehalem Architecture [5]

of cores. For the Nehalem architecture each core has its own
L2 cache of 256KB. Although this is smaller than the L2 cache
of the Core architecture, it is lower latency allowing for faster
L2 cache performance.

Nehalem does still have shared cache, though, implemented
as L3 cache. This cache is shared among all cores and is rela-
tively large. For example, a quad-core Nehalem processor will
have an 8MB L3 cache. This cache is inclusive, meaning that
it duplicates all data stored in each indivitual L1 and L2 cache.
This duplication greatly adds to the inter-core communication
efficiency because any given core does not have to locate data
in another processor’s cache. If the requested data is not found
in any level of the core’s cache, it knows the data is also not
present in any other core’s cache.

To insure coherency across all caches, the L3 cache has
additional flags that keep track of which core the data came
from. If the data is modified in L3 cache, then the L3 cache
knows if the data came from a different core than last time,
and that the data in the first core needs its L1/L2 values
updated with the new data. This greatly reduces the amount
of traditional “snooping” coherency traffic between cores.

This new cache organization is known as the MESIF (Mod-
ified, Exclusive, Shared, Invalid, Forward) protocol, which is
a modification of the popular MESI protocol. Each cache line
is in one of the five states:

• Modified - The cache line is only present in the current
cache and does not match main memory (dirty). This line
must be written back to main memory before any other
reads of that address take place.



Fig. 3. Comparison of Memory Channel Performance - Nehalem vs. Core
2 (Penryn model) [5]

• Exclusive - The cache line is only present in the current
cache and matches main memory (clean).

• Shared - The cache line is clean similar to the exclusive
state, but the data has been read and may exist in another
cache. This other cache should be updated somehow if
the line changes.

• Invalid - The cache line is invalid.
• Forward - This cache line is designated as the responder

to update all caches who are sharing this line.

With the extra “Forward” state, the excessive responding
among shared cache lines is eliminated.

C. Memory Controller

The location of the memory controller was a significant
change from the Core processors. Previously the memory con-
troller was located off-chip on the motherboard’s northbridge,
but Nehalem integrates the memory controller to the processor
die with the hope to reduce the latency of memory accesses.
In keeping with the modular design approach, Intel engineers
introduced flexibility into the size of the memory controller
and the number of channels.

The first Nehalem processors were the quad-core models
which had a triple-channel memory controller. To show the
effectiveness of this on-chip design, the authors of [5] per-
formed memory subsystem tests in which they compared the
new architecture to the Core 2 (Penryn model) architecture.
They varied the number of channels for each architecture and
found that even a single-channel Nehalem processor was faster
than the dual-channel Core 2 system with an external memory
controller. Figure 3 shows the exact results of the test.

Another benefit to an on-chip memory controller is that
it is totally independent of the motherboard hardware. This
provides the processor more predictable memory performance
that will run just as fast on any hardware platform.

D. QuickPath Interconnect Bus

With the memory controller now located on the processor
die, the load on the Front-side Bus (FSB) for a single-
processor system has been greatly reduced. But for multi-
processor systems (like servers) there is a need for faster and
more direct chip-to-chip communication, and the FSB does not
have the bandwidth to fill that need. So Intel developed the
QuickPath Interconnect (QPI) bus as a means of connecting
multiple processors to each other in addition to the chip sets.

Fig. 4. Examples of QuickPath Interconnect in a Single and Multi-processor
Nehalem System [5]

Figure 4 shows how this might work. On an entry-level
Nehalem system with one processor the QPI bus becomes an
improved FSB allowing for higher bandwidth communication
between the processor and high-speed hardware like PCI Ex-
press. As more processors are added to the sytem, the QPI bus
also provides an efficient point-to-point communication path
between processors by facilitating high-speed non-uniform
memory accesses (NUMA).

Now that we have given an overview of the most important
improvements to the Nehalem architecture, let’s take a closer
look at some studies that have been performed on actual Ne-
halem processors that validate the performance improvement
claims.

IV. A STUDY OF MEMORY PERFORMANCE ANDCACHE

COHERENCY

The paperMemory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System[1] is a
study that focuses on the improvements to cache and memory.
The authors have devised new benchmarks that can measure
latency and bandwidth for accesses to main memory and
the other processors’ cache. Previous studies and benchmarks
only measure memory bandwidth in general (for example,
the STREAM benchmark [1]) without providing any cache-
specific metrics. The authors consider their study to be the
first to provide metrics that measure the effectiveness of the
cache coherency protocol.

To perform these tests, the authors used BenchIT open-
source performance measurement software (www.benchit.org).
It compares algorithms and implementations of algorithms on
a given architecture.

The details of the system under test are given in Figure 5,
and a diagram of the system is shown in Figure 1. To remove
unnecessary variables from the test, the authors disabled some
hardware features such as dynamic overclocking, simultaneous
multi-threading (SMT), and hardware prefetching.

A. Assembler Benchmarks

The first benchmarks that were performed on the system
were a series of hand-optimized assembly routines compiled



Fig. 5. Test System Configuration for [1]

in-line with a test program written in C. These benchmarks
are designed to run on 64-bit x86 processors, and by design
execute code that would not be generated by a compiler. The
authors are using a high-resolution time stamp counter that
adds very little overhead to the measurements. The overhead
is somewhat noticable in the higher-speed tests like the L1
test.

To make a meaningful evaluation of the memory and cache,
the authors use the following techniques throughout the tests:

• Each thread of the benchmark program is “pinned” to a
certain core.

• All memory pages of a given thread are physically located
on the corresponding memory module to that core to help
identify the effects of the NUMA architecture.

• Before the benchmarks begin, the caches can be placed in
certain coherency states–modified, exclusive, or shared–
by performing initial reads and writes.

• With the help of a special cache flush routine, the authors
can invalidate an entire level of cache to isolate the
performance of just one cache.

• To reduce the effects of the TLB on memory latency tests
the authors use “huge pages” that prevent TLB misses for
data sets of up to 64MB of memory.

In this assembler test, three specific benchmarks are taken
for each iteration. First, the authors take alatency benchmark
to determine the latency for accesses to main memory and all
three cache levels. Next they measure asingle-core bandwidth
benchmarkto determine how the cache coherency scheme
affects memory performance on a single core. Finally they use
a multi-core bandwidth benchmarkthat runs multiple threads
simultaneously to demonstrate the effectiveness of the shared

L3 cache and the integrated memory controller. The results of
these benchmarks will be described in the following sections.

B. Modified STREAM Benchmarks

To verify the results obtained using the assembler bench-
marks the authors use a modified version of the well-known
set of benchmarks known as the STREAM benchmarks. In ad-
dition, the benchmarks are used to perform more complicated
memory access patterns that are not easily implemented in the
assembler benchmarks.

The unmodified STREAM benchmarks implement
read/write tests using four different memory access patterns.
These tests perform calculations on a one-dimensional array
of double precision floating point numbers.

The authors made the following modifications to the original
STREAM benchmarks to better compliment the assembler
benchmarks:

• Every thread is bound to a specific core and allocates its
own memory.

• The time stamp counter is used for time measurement
which excludes overhead caused by the spawning of new
threads.

• The authors added#pragma vector aligned pre-
processor commands to the code to optimize memory
accesses and#pragma vector nontemporal to
perform explicit writes of data to main memory without
affecting cache.

C. Latency Benchmarks

The latency benchmark uses pointer chasing to measure the
latency for cache/memory accesses. It is perfomed using the
following general strategy where thread 0 is running on core
0 and is accessing memory associated with core N.

First, thread 0 “warms up” the TLB by accessing all the
required pages of memory. This ensures that the TLB entries
needed for the test are present in core 0.

Next, thread N places the data in the caches of core N
into one of the three cache coherency states described earlier
(modified, exclusive, or shared).

The latency measurement then takes place on core 0 as the
test runs a constant number of access and uses the time stamp
counter to collect data. Each cache line is accessed once and
only once in a pseudo-random order.

The following figures show the results of testing different
starting cache coherency states among the different levelsof
the memory hierarchy. The measurements for the lines in the
exclusive cache coherency state are shown in Figure 6. Figure
7 shows the lines in the modified state. Figure 8 shows a
summary of the graphical results including the results from
the shared state test.

The latency of the local accesses is the same regardless of
the cache coherency state since a cache is always coherent
with itself. The authors measure a latency of 4 clock cycles
for L1 cache, 10 clock cycles for L2 cache, and 38 cycles for
L3 cache.



Fig. 6. Read latencies of core 0 accessing cache lines of core0 (local), core
1 (on die) or core 4 (via QPI) with cache lines initialized to the exclusive
coherency state[1]

Fig. 7. Read latencies of core 0 accessing cache lines of core0 (local), core
1 (on die) or core 4 (via QPI) with cache lines initialized to the modified
coherency state[1]

The latency to a core on the same die shows a strong
correlation to the cache coherency state. Shared cache lines
can be accessed within 13 ns. This is because the inclusive L3
cache contains a valid copy of the data and can immediately
respond to the request. Exclusive lines, however, may have
been modified in the other core’s higher level cache which
forces the L3 cache to check the data in that core. This check
costs 9.2 ns which increases the latency for reads to exclusive
lines to 22.2 ns.

Data accesses to cores on a different processor suffer an
additional penalty due to the transfer over the QPI bus. Any
access off-chip to an exclusive cache line requires at leastone
snoop to the other core’s cache/memory which takes 63 ns.
The latency for shared lines is only slightly better at 58 ns

due to the shared L3 cache. Latency for modified cache lines
can be 100ns or more because the caches are forced to write
back the value to main memory due to the cache coherency
protocol.

Main memory was measured to have a latency of 65 ns for
local accesses. When the memory of another core is accessed
via the QPI bus it takes an additional 41 ns bringing the total
latency to 106 ns.

D. Bandwidth Benchmarks

The tests for the bandwidth benchmarks were very similar
to the latency tests. The caches and memory were initialized
in the same way. But instead of using a timer the authors
developed a measurement routine that can access any location
in the memory hierarchy, including other cores’ caches. Using
this tool the authors were able to determine local, inter-core,
and inter-processor bandwidth.

The test continuously accesses data using load and store
assembly calls eliminating any arithmetic instructions. This
way the bandwidth can be measured as accurately as possible.

It is important to note that the architecture does not allow
one core to write directly to another core’s cache. This has to
be done in a two-step process. The core must read the value
first to obtain ownership then write to its local cache. This
must be considered when analyzing the results.

Each core in the architecture has a 128-bit write port and a
128-bit read port to the L1 cache. This means that at a clock
rate 2.933 GHz (the core clock for the specific chip they used
for the test) the theoretical limit for L1 cache bandwidth is
46.9 Gbps in each direction. The L2 and L3 caches each have
a 256-bit port for reading or writing, but the L3 cache must
share its port with three other cores on the chip.

The benchmarks also measure main memory bandwidth.
Each integrated memory controller has a theoretical bandwidth
peak of 32 Gbps.

Figure 9 shows the measured bandwidth (in Gbps) for
different memory sizes where the cache has been initialized
to the exclusive state. Figure 10 shows a similar test where
the cache has been initialized to the modified state. The read
bandwidth measurements are compared in Figure 11, and write
bandwidth measurements are compared in Figure 12.

As with latency results, we should expect to see bandwidth
the same independent of the cache coherency protocol. This
is indeed the case with the L1 bandwidth measuring near its
peak performance at 45.6 Gbps regardless of the coherency
states.

As was expected, the write bandwidth is lower than the read
bandwidth because a write is made up of a read and and write.
This would seem like it would double the amount of traffic
and cut bandwidth in half, but the measurements suggest that
the penalty is not that large. The authors suggest that this is
due to the large 256-bit interfaces on the L2 cache.

The bandwidth toother cores does have strong ties to the
cache coherency state. Reading or writing data that hits in
the L3 cache achieves a bandwidth of 26.2 Gbps for reading
and 19.9 Gbps for writing. If the core must get the data from



Fig. 8. Read latencies of core 0 accessing cache lines of core0 (local), core 1 (on die) or core 4 (via QPI) [1]

Fig. 9. Read bandwidth of core 0 accessing cache lines of core0 (local),
core 1 (on die) or core 4 (via QPI) with cache lines initialized to the exclusive
coherency state[1]

Fig. 10. Read bandwidth of core 0 accessing cache lines of core 0 (local),
core 1 (on die) or core 4 (via QPI) with cache lines initialized to the modified
coherency state[1]

Fig. 11. Core 0 Read Bandwidth in Gbps [1]

Fig. 12. Core 0 Write Bandwidth in Gbps [1]

another processor’s cache, then the bandwidth decreases to
13.2 Gbps in the L2 cache and 9.4 Gbps in the L1 cache.

These results show us that the memory subsystem in the
Nehalem architecture is able to maintain a high level of
efficiency in terms of latency and bandwidth due to the well-
designed memory hierarchy and cache coherency strategy. It
performs particularly well for on-chip data transfers between
cores. The shared L3 cache seems to eliminate much of the
snooping traffic and allow the architecture to be more scalable.

V. A COMPARISON WITH OTHER ARCHITECTURES

To gain some perspective on the efficiency of the Nehalem
architecture, we will take a look at the studyA Performance
Evaluation of the Nehalem Quad-core Processor for Scientific
Computing[4]. This paper compares Nehalem with its prede-
cessors and competing architectures for a scientific computing
application. Specifically, the three nodes used in the test are:

1) Two quad-core Intel Core i7 (Nehalem) processors (8
cores total), 45nm fabrication technology

2) Four quad-core AMD Opteron 8350 (Barcelona) proces-
sors (16 cores total), 65nm fabrication technology

3) Four quad-core Intel Xeon X7350 (Tigerton) processors
(16 cores total), 65nm fabrication technology



Fig. 13. Characteristics of the quad-core processors, memory, and node
organization [4]

To compare these architectures, the authors of [4] used
a suite of scientific applications taken from existing U.S.
Department of Energy workloads. They are most interested
in the capability of each architecture to efficiently implement
parallelism at the core level, the processor level, and the node
level. These processors will be the building blocks of large-
scale parallel scientific computers.

A. Description of Other Architectures

The Nehalem architecture has been described in detail in
previous sections. To make the comparisons more meaningful
the following is a brief overview of the Barcelona and Tigerton
processors.

1) Barcelona: The Barcelona is a first generation quad-
core processor developed by Advanced Micro Devices (AMD)
as part of the Opteron series. The Barecelona architecture
combines four Opteron cores onto a single die with 65nm
technology. Each core has its own L1 cache (64 KB) and
L2 cache (512 KB). The four cores on a single processor
share a 2MB L3 cache. The Opteron architecture has special
instructions that enable each core to execute 4 double-precision
floating-point operations per clock cycle. The clock speed of
each core is 2.0 GHz which gives each processor a theoretical
peak performance of 32 billion floating-point operations per
second.

For this test, the Barcelona node has four quad-core pro-
cessors each with 4 GB of DDR2 memory for a total of 16
GB of memory for the node. The processors are connected in
a 2x2 HyperThread mesh which classifies this as a NUMA
architecture.

2) Tigerton: The Intel Tigerton processor is a first gener-
ation quad-core processor which contains two dual-core dies
that are packaged into a single module. Each core contains a
private L1 cache (64 KB), and two cores on each die share a
4 MB L2 cache.

The Tigerton node in this setup contains four processors
and 16 GB of memory using fully-buffered DIMMs. Unlike
the Barcelona or Nehalem that have a NUMA configuration,
Tigerton uses a single memory controller hub in what is
called a symmetric multiprocessor (SMP) configuration. This
memory controller hub contains a Dedicated High Speed
Interconnect (DHSI) to provide point-to-point communication
between processors and memory channels.

Some key features of each architecture are compared in
Figure 13.

Fig. 14. Application iteration time, single-core [4]

B. Application Testing

To provide a comparison of the three architectures for
scientific computations, the authors used applications currently
in use by the U.S. Department of Energy. The testing consisted
of:

• Comparing single core performance of each architecture.
• Comparing scaling performance by using all processors

in the node.
• Determining the combinations of cores or number of

cores per processor that gives the best performance.

1) Single-core Measurements:Figures 14 and 15 illustrate
the performance of each architecture using just one core. The
Y-axis in Figure 14 denotes the time it takes for one iteration
of the main computational loop, and the X-axis shows the
results of each test application. In Figure 15, a value of 1.0
indicates the same performance between the two processors,
a value of 2.0 indicates a 2x improvement, etc.

As you can see in the figures the Nehalem core is 1.1-
1.8 times faster than a Tigerton core and 1.6-2.9 times faster
than a Barcelona core. Note that Nehalem has a slower clock
than Tigerton but achieves much better performance for all the
applications in the test. This suggests that Nehalem can “do
less with more” with the improvements such as the memory
and cache organization.

2) Node Measurements:The authors took the best results
from running the applications on each node (exercising all
cores on the node) and compared their execution time side-by
side in Figure 16. The relative performance of the Nehalem
architecture is shown once again in Figure 17. As you can
see, the Nehalem node achieves performance 1.4-3.6 times
faster than the Tigerton node and 1.5-3.3 times faster than the
Barcelona node.

The scaling behavior (going from a single core to many
cores) of the Tigerton seems to be particularly bad. This



Fig. 15. Performance advantage of Nehalem, single-core [4]

Fig. 16. Application iteration time, multi-core [4]

is likely because the memory subsystem of the Tigerton
architecture was not designed for scalabilty. It was mostly
designed with just the two cores in mind.

These tests show that the improvements made to the mem-
ory architecture in the Nehalem processor make a huge impact
on performance when it comes to performing data-intensive
parallel computations for scientific applications.

VI. CONCLUSION

In this paper I have taken a close look at Intel’s Nehalem
architecture. I have given an overview of the major improve-
ments to the architecture over Intel’s previous multi-core
architectures with a special focus on the memory organization
and cache coherency scheme. I have looked into several studies

Fig. 17. Performance advantage of Nehalem, multi-core [4]

that have shown by benchmarking measurements the effective-
ness of these improvements. The inclusive, shared L3 cache
has reduced much of the complexity and overhead associated
with keeping caches coherent between cores. The integrated
memory controller reduces memory access latencies. I have
shown that the Nehalem architecture scales well; it allows
for as many cores as are needed for a particular application.
Previous and competing architectures do not scale nearly as
well; more cores can be added, but the limitations of the
memory organization introduce bottlenecks to data movement.
Nehalem has identified and removed these bottlenecks. This
positions Nehalem well to be a flexible solution to future
parallel processing needs.

REFERENCES

[1] D. Molka, D. Hackenberg, R. Schone, and M.S. Muller, “Memory Perfor-
mance and Cache Coherency Effects on an Intel Nehalem Multiprocessor
System”, in2009 18th International Conference on Parallel Architectures
and Compilation Techniques, September 2009

[2] JJ. Treibig, G. Hager, and G. Wellein, “Multi-core architectures: Com-
plexities of performance prediction and the impact of cache topol-
ogy”, Regionales Rechenzentrum Erlangen, Friedrich-Alexander Univer-
siat Erlangen-urnberg, Erlangen, Germany, October 2009

[3] BB. Qian, L. Yan, “The Research of the Inclusive Cache used in
Multi-Core Processor”, Key Laboratory of Advanced Display& System
Applications, Ministry of Education, Shanghai University, July 2008

[4] KK.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, J.C.
Sancho, “A Performance Evaluation of the Nehalem Quad-core Processor
for Scientific Computing”,Parallel Processing Letters, Vol. 18, No. 4
(2008), World Scientific Publishing Company

[5] II. Gavrichenkov, “First Look at Nehalem Microarchitecture”,
November 2008, http://www.xbitlabs.com/articles/cpu/display/
nehalem-microarchitecture.html


