
Canopy: An End-to-End Performance
Tracing And Analysis System

Jonathan Kaldor† Jonathan Mace∗ Michał Bejda† Edison Gao† Wiktor Kuropatwa†
Joe O’Neill† Kian Win Ong† Bill Schaller† Pingjia Shan† Brendan Viscomi†

Vinod Venkataraman† Kaushik Veeraraghavan† Yee Jiun Song†

†Facebook ∗Brown University

Abstract
This paper presents Canopy, Facebook’s end-to-end perfor-
mance tracing infrastructure. Canopy records causally related
performance data across the end-to-end execution path of
requests, including from browsers, mobile applications, and
backend services. Canopy processes traces in near real-time,
derives user-specified features, and outputs to performance
datasets that aggregate across billions of requests. UsingCanopy,
Facebook engineers can query and analyze performance data
in real-time. Canopy addresses three challenges we have en-
countered in scaling performance analysis: supporting the
range of execution and performance models used by differ-
ent components of the Facebook stack; supporting interac-
tive ad-hoc analysis of performance data; and enabling deep
customization by users, from sampling traces to extracting
and visualizing features. Canopy currently records and pro-
cesses over 1 billion traces per day.We discuss howCanopy has
evolved to apply to a wide range of scenarios, and present case
studies of its use in solving various performance challenges.

1 Introduction
End-users of Facebook services expect a consistently perfor-
mant experience. However, understanding, analyzing, and
troubleshooting performance can be difficult. End-users can
perform a wide range of actions and access Facebook through
heterogeneous clients, including web browsers and mobile
apps, which offer varying levels of information and control
over the application. Each action, such as loading a page on
Facebook.com, entails complex executions spanning clients,
networks, and distributed back-end services.

Permission tomake digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner/author(s).
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5085-3/17/10.
https://doi.org/10.1145/3132747.3132749

Dynamic factors also influence performance, such as con-
tinuous deployment of new code, changing configurations,
user-specific experiments, and datacenters with distinct char-
acteristics. The metrics and events relevant to performance
are diverse and continually changing; different endpoints may
have different metric definitions, while some endpoints en-
compass end-to-end flows that cross multiple layers of the
system stack. Engineers need ready access to performance
data, ideally tailored to the problem they’re trying to solve and
the questions they typically ask.

This paper describes the design and implementation of
Canopy, Facebook’s end-to-end performance tracing infras-
tructure. Canopy is a pervasive tracing infrastructure that
records and processes performance traces, combining perfor-
mance data from the end-to-end execution path with struc-
tured and causally-related execution traces, to enable cus-
tomized performance analysis. Canopy extends prior tracing
systems such as X-Trace [24] and Dapper [54]; at its core,
Canopy constructs traces by propagating identifiers through
the system to correlate information across components. How-
ever, Canopy addresses three broader challenges we have faced
at Facebook in using tracing to solve performance problems.

First, end-to-end performance data is heterogeneous, with
multiple execution models and wide variations in the granular-
ity and quality of data available to be profiled. Consuming in-
strumented data directly is cumbersome and infeasible at scale
because engineers and tools must understand the mappings
from low-level event data to higher-level semantic structures
across all components of Facebook’s stack. However, designat-
ing a higher-level model in instrumentation leads to issues
because instrumentation is pervasive, includes legacy compo-
nents, must anticipate future components, and is difficult to
change even when integrated into common infrastructure.

Second, there is a mismatch in granularity between the high-
level, aggregated, exploratory analysis that operators perform
in practice, and the rich, fine-scale data in a single trace. Eval-
uating interactive queries over raw traces is computationally
infeasible, because Facebook captures over one billion traces
per day, with individual traces comprising thousands of events.
Nonetheless, rapidly solving performance problems requires

https://doi.org/10.1145/3132747.3132749

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

tools that can efficiently slice, group, filter, aggregate, and sum-
marize traces based on arbitrary features.

Finally, end-to-end performance over thewhole stackmeans
many engineers share the same tracing infrastructure. Only
a small fraction of data in each trace may be relevant to each
engineer, pertaining to specific features or products under in-
vestigation. However, by design, traces contain all of the data
necessary for any engineer to identify issues. This presents
an information overload, and motivates the need for both (1)
generalized interfaces as an entry-point for casual usage and
high-level scenarios, and (2) deep customization of everything
from the traces to sample, to the features to extract, to the
ways to navigate the extracted data.

Canopy addresses these challenges with a complete pipeline
for extracting performance data from system-generated traces
across the stack, including browsers, mobile applications, and
backend services. Canopy emphasizes customization at each
step of the pipeline, and provides a novel separation of con-
cerns between components to allow for their individual evo-
lution. At development time, Facebook engineers can instru-
ment their systems using a range of APIs tailored to different
execution models. At runtime, Canopy maps the generated
performance data to a flexible underlying event-based repre-
sentation. Canopy’s backend pipeline receives events in near-
realtime; reconstructs a high-level trace model that is more
convenient for analyzing and querying; extracts user-specified
features from traces; and outputs the results to datasets for
customized aggregate visualizations.
Canopy has been deployed in production at Facebook for

the past 2 years, where it generates and processes 1.3 billion
traces per day spanning end-user devices, web servers, and
backend services, and backs 129 performance datasets ranging
from high-level end-to-end metrics to specific customized use
cases. This paper makes the following contributions:
● A decoupled design for tracing that separates instrumenta-

tion from the trace model, enabling independent evolution
and the composition of different execution models.

● A complete pipeline to transform traces into a custom set
of extracted features to enable rapid analysis.

● A set of customizable tracing components to provide multi-
ple views of the same data for different use cases.

The rest of this paper proceeds as follows. We discuss previ-
ous experiences with tracing and motivate Canopy in §2. In
§3-4 we describe Canopy’s design and implementation. We
present case studies and evaluation in §5. Finally, we discuss
our experiences, related work, and future challenges in §6-8.

2 Motivation
For several years prior to Canopy, a number of tracing systems
were developed at Facebook to address various single- and

cross-system performance scenarios. Each system was spe-
cialized for a specific use case and difficult to extend to other
domains. For example, backend services had RPC call-tree
instrumentation that was difficult to adapt to other execution
models like event loops. Browser page-load tracing focused
on joining data from the client and a single server, and had
difficulty scaling to cover other backend systems. Mobile ap-
plications had standalone OS-provided tracing that lacked the
ability to look at aggregate production data. In each of these
cases, analysis over traces was confined to fixed workflows,
with limited customization for per-domain features and slow
iteration time for new features or analyses.

This siloed approach to tracing led to several problems. It
was difficult to get cross-system insights when the tools them-
selves didn’t cross all systems, and it meant that engineers
needed to understand multiple tracing tools and when to use
and switch between them. Each tracing system evolved tomeet
specific needs and respond to gaps in other tracing systems,
but no single system could handle the broad spectrum of issues
that arise in practice. The type of analysis supported by each
system was also fairly rigid and changes took days to deploy.

Based on these experiences we designed Canopy, a flexible
multi-domain tracing system for consuming and analyzing
trace data in aggregate. Canopy addressed a growing need for
a single tracing system, applicable to many domains, that engi-
neers could customize to quickly target relevant information.
2.1 Canopy in Action
We begin by motivating Canopy with an example of how engi-
neers typically investigate regressions in our web stack. When
a performance issue arises in one component, its symptoms
might manifest in a different part of the stack; diagnosing per-
formance issues thereby requires a global view, yet granular
attribution, of performance.
When an end-user loads a page on Facebook.com, it is as-

sembled from numerous page pieces that are developed by
many different product groups. Facebook’s core framework
code combines page pieces, and runs themboth onweb servers
and within client browsers. In March 2017, the average time
needed to display the initial portion of a particular page re-
gressed by 300ms, or approximately 13%, illustrated in Fig-
ure 1a. Canopy calculates this metric by recording end-to-end
traces of requests, including execution in both the browser
and throughout Facebook backends. Canopy backends receive
traces in near-realtime, derive a range of metrics including
page load latency from each trace, and pipe them to various
long-lived datasets of performance metrics.

To investigate the regression, engineers typically start with
a breakdown of page load time across the constituent compo-
nents. Figure 1b shows how server execution time and network
time were relatively unchanged, whereas browser execution
time and resource-fetching time (CSS, JS, etc.) were elevated.

Canopy SOSP ’17, October 28, 2017, Shanghai, China

To calculate these metrics, Canopy derives the critical path
of requests, using comprehensive timing and dependency in-
formation from the client and across all server-side processes.
Canopy’s instrumentation APIs capture this for a range of dif-
ferent execution models (e.g. threads, events, continuations,
queues, RPCs); internally, Canopy unifies the information us-
ing a generic underlying representation for trace data.

The next step in the investigationwas to diagnose the change
in resource loading time. The useful high-level metrics for
resource loading relate to a server-side mechanism called early
flush. Early flush optimizes the page load time by predicting
and preemptively sending batches of resources that might be
needed by the client. Canopy measures the success of early
flush by capturing information when resources are received on
the client, then incorporating them into critical path metrics.
Figure 1c plots the prediction accuracy for JavaScript and CSS
resources – 80% accuracymeans that 80% of the resources sent
were actually necessary for the initial page display. The page
load regression corresponded to a 5% drop in CSS prediction
accuracy and an additional 10kB of CSS before the page could
display (1d); this unnecessary CSS took the place of useful
resources, forcing clients to wait for the next batch of resources
before the page could display (an early flushmiss).

These metrics pointed to a problem at the page granular-
ity, but do not yet point to what caused the change. Canopy’s
datasets further break down metrics at the granularity of page
pieces, and grouping by page piece (1e) identified the culprit
– the UserInput page piece had added an additional 10kB of
CSS to the page load critical path. By comparison, other com-
ponents were unchanged. This pointed at the root cause – the
launch of a new feature in the UserInput page piece changed
the set of resources that it required. The early flush compo-
nent was unaware of this change, and grouped resources sub-
optimally. On the client, the UserInput page piece stalled wait-
ing for resources that weren’t initially available, increasing its
time on the critical path (1f). Engineers fixed the regression
by re-configuring the early flush mechanism.
2.2 Challenges
This example illustrates how a range of different information,
related across system components, is necessary to diagnose
problems. However, it is difficult to predict the information
that will be useful or the steps that engineers will take in their
analysis. In practice at Facebook, successful approaches to di-
agnosing performance problems are usually based on human
intuition: engineers develop and investigate hypotheses, draw-
ing on different kinds of data presented in different ways: indi-
vidual traces, aggregates across many traces, historical trends,
filtered data and breakdowns, etc. In the research literature,
a recent study of Splunk usage [3] drew similar conclusions
that human inference tends to drive analysis, while the use of
automated techniques is “relatively rare”. The goal of Canopy is

Previous
Week

+13%
Regression

0 0.5 Time (days) 1.5 2

+300ms

Page Load Latency

(a)

−25%
Prev Wk
+25%
+50%

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Client Browser Resources Network Server
Critical Path Latency Breakdown

(b)

40%

50%

0 0.5 1 1.5 2

−5%

CSS Prediction Accuracy

75%

85%

0 0.5 1 1.5 2

JS Prediction Accuracy

(c)

90kB

110kB

0 0.5 1 1.5 2

+10kB

CSS Bytes

0

1

2

0 0.5 1 1.5 2

Early-Flush Misses

+1(d)

−5kB
Prev Wk

+10kB

0 1 2 0 1 2 0 1 2 0 1 2

+10kB
Suggestions MainContent Navigation UserInput

Page Piece CSS Bytes

(e)

−25%
Prev Wk
+25%
+50%

0 0.5 Time (days) 1.5 2 0 0.5 Time (days) 1.5 2

Page Piece Critical Path Latency
MainContent UserInput

+150ms(f)

Figure 1: Using Canopy, an engineer quickly identifies UserInput as
responsible for a 300ms page load time regression (cf. §2.1).

to allow human-generated hypotheses to be tested and proved
or disproved quickly, enabling rapid iteration. To achieve this,
we must overcome three broad challenges.
Modeling Trace Data Performance traces incorporate a wide
range of information from all components on the execution
path of requests, from clients through backend services. Causal
relationships between events provide further information about
the concurrency and dependencies of execution. In their most
general form, these traces are directed, acyclic graphs (DAGs),
with nodes representing events in time, and edges representing
causality [23, 31]. However, exposing traces at this granularity
is inappropriate for two reasons.

First, in order to reconstruct high-level concepts, engineers
must understand and interpret trace events and their causal
relationships. For example, a segment of processing might de-
limit itself with start and end events, derive its latency from
event timestamps, and describe interesting features using in-
termediary events. Similarly, causal edges might be classified
as network communication if they link events annotated with
different hostnames. However, many engineers and teams par-
ticipate in recording traces, making ad-hoc decisions about
the events and information to record. There is wide variation
in the granularity and quality of data captured by different
software versions, and missing data is common due to best-
effort delivery from remote clients. In practice it is infeasible

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

to consume traces of this granularity, as few, if any, engineers
understand all mappings to high-level concepts.

Second, events are an inappropriate abstraction to expose to
engineers adding instrumentation to systems. Engineers must
understand how to describe their system’s execution model –
e.g. segments of computation, RPC calls – in terms of events,
and do so in a coherent manner across all system components.
However, researchers and practitioners consistently describe
instrumentation as the most time consuming and difficult part
of deploying tracing frameworks [22–24, 28, 50, 53].

To bridge these challenges, previous tracing frameworks
proposed that a higher-level trace representation should be a
first-class primitive [12, 54, 60]. This approach aligns instru-
mentation abstractions with the system’s execution model,
making it easier to instrument systems; it also directly en-
codes meaningful high level concepts in traces, making them
easier to consume. For example, Dapper models traces as trees
of spans – segments of computation – which naturally describe
executions in Google’s RPC-based infrastructure and can be
intuitively visualized as a call stack. [54]
However, promoting a first-class trace model led to sev-

eral problems in the open-source community. Frameworks
lost generality; for example, Zipkin [60] users struggled to in-
strument execution models not easily described as span trees,
such as queues [65], asynchronous executions [41, 42, 44], and
multiple-parent causality [9, 10, 43, 45]. Changing trace mod-
els entailed exhaustively revisiting system-level instrumenta-
tion [4,8, 11, 13, 14], or elaborate workarounds such as inferring
new attributes [22, 35, 46]. Mismatched models affected com-
patibility between mixed system versions; e.g. Accumulo and
Hadoop were impacted by the “continued lack of concern in the
HTrace project around tracing during upgrades” [4, 5, 7]. Some
tracing frameworks suffered “severe signal loss” [40] because a
simpler trace model discarded useful causal relationships.

We experienced similar challenges at Facebook. Instrument-
ing core frameworks is useful for making tracing widely avail-
able and reducing the need for every system to maintain its
own instrumentation. However, there are a wide variety of
custom system designs, third party code, and other issues that
limit use of those core frameworks. Furthermore, instrumenta-
tion is typically compiled into services as they are released, so
even when tracing is integrated into core frameworks, a single
trace may cross through multiple services each with their own
version of instrumentation. Thus, instrumentation must be
flexible and adaptable in order to inter-operate correctly both
within the trace, and across system components.
Analyzing Data Engineers need to be able to view, filter, and
aggregate metrics based on arbitrary features across all traces,
e.g. to view changes in specific counters, track durations of
well-defined subphases, compare metrics before and after a
regression; etc. However, traces are an inappropriate level of

granularity for ad-hoc analysis, even when the they are ab-
stracted to a higher level model as described in the previous
challenge. This is for two reasons.
First, traces are very rich, with an individual trace com-

prising potentially tens of thousands of performance events.
Queries over traces, including historical data, can apply to an
extremely large volume of traces – Canopy currently records
1.3 billion traces per day. Simultaneously we want to support
engineers analyzing traces at interactive time scales. It is com-
putationally infeasible to directly query this volume of traces
in real-time in response to some user query.

Second, it is cognitively demanding to expect users to write
queries at the granularity of traces. It should not be necessary
to know how to calculate high-level metrics such as page load
time, critical path breakdown, or CSS byte attributions (cf.
§2.1); in practice it is non-trivial to derive many such features
from traces. However, unless we provide further abstractions,
users will have to consume trace data directly, which entails
complicated queries to extract simple high-level features.
SupportingMultipleUseCases Facebook traces have evolved
over time as operators find new data they are interested in, and
new subsystems integrate with our tracing systems. Traces are
useful to different people in different ways, and we continually
encounter new use cases for tracing, new metrics and labels of
interest, new aggregations and breakdowns, etc. The volume
of data in a trace can overwhelm users and make it difficult to
distill the parts relevant to particular use cases.

This presents a delicate trade-off; on one hand, we want
simplicity and ease-of-use for the broadest possible audience,
implying a shared, curated, comprehensive entry point for
users. On the other hand, users should be able to view traces
through a lens appropriate for their particular task or compo-
nent, i.e. avoiding features and metrics that pertain to other
components. We must also support end-to-end analysis for
problems that spanmultiple components, and support drilling-
down to the lowest-level details of individual traces.

These challenges imply that users should have control over
the data presented to them, especially in terms of exploratory
analysis. This includes piping data to custom backends; view-
ing data through custom visualizations; extracting custom
features and metrics; and ensuring low QPS systems and un-
derrepresented execution types are sufficiently sampled.

3 Design
Canopy addresses these challenges by providing a pipeline
for extracting performance data from system-generated traces
across the stack. Canopy emphasizes user-customization at
each step of the pipeline, and provides a separation of concerns
between components to allow for their individual evolution.
In this section we describe Canopy’s high level design and the
flow for processing and analyzing performance traces.

Canopy SOSP ’17, October 28, 2017, Shanghai, China

2

1

4

TraceID
3

Engineers
Facebook
Components
Requests
Instrumentation
APIs
Canopy Events

Key

(a) Engineers instrument Facebook components using a range of
different Canopy instrumentation APIs (1○). At runtime, requests
traverse components (2○) and propagate aTraceID (3○); when requests
trigger instrumentation, Canopy generates and emits events (4○).

4

Event Aggregation5

7

Model Construction8

Feature Extraction9

Query Evaluation11

Query Results, Visualizations, Graphs, etc.

RawTrace
Events

6

Trace
Datasets10

12

Trace
Model

Canopy
Engineers

Feature
Lambdas

Performance
Engineers

Dataset
Queries

Any Facebook
Engineer

(b) Canopy’s tailer aggregates events (5○), constructs model-based
traces (8○), evaluates user-supplied feature extraction functions (9○),
and pipes output to user-defined datasets (10○). Users subsequently run
queries, view dashboards and explore datasets (11○, 12○).

Figure 2: Overview of how (a) developers instrument systems to
generate events and (b) Canopy processes trace events (cf. §3.1).

3.1 Canopy Overview
Figure 2 illustrates Canopy’s architecture. We refer to the num-
bers in the figure in our description. To begin, Facebook engi-
neers instrument system components to record performance
information (1○). Canopy provides several instrumentation
APIs to capture different aspects of performance, e.g. counters,
logs, causal dependencies, etc.

At runtime, incoming requests to Facebook will traverse the
instrumented system components (2○). To relate performance
events to requests, Canopy assigns each request a unique Tra-
ceID and propagates it along the request’s end-to-end execu-
tion path (3○), including across process boundaries and when
requests fan out and in. When instrumentation is triggered,
Canopy generates events capturing performance information
and causality with respect to prior events during execution (4○).
Internally, all instrumentation APIs map down to a common
underlying event representation.

Canopy routes events to the tailer, its sharded backend pro-
cessing pipeline. We shard by TraceID, so that events for each
trace route to the same tailer instance. Upon receiving them,

the tailer aggregates events in memory (5○) and persists them
to storage (6○). Once the tailer determines all events have been
received for a request, they are queued for processing (7○). Pro-
cessing begins by mapping events to a trace model (8○), which
provides a single high-level representation for performance
traces that unifies the different instrumentation models and
APIs used by Facebook developers. Next, Canopy evaluates
user-supplied feature lambdas (9○) which extract or compute
interesting features from each modeled trace. Users bundle
their feature lambdas with a dataset configuration that speci-
fies predicates for filtering unwanted traces and directions for
where to output the extracted features (10○); typically, datasets
are piped to Scuba [1], an in-memory database designed for
performance data.

Finally, Facebook engineers can query datasets directly and
view visualizations and dashboards backed by the datasets
(11○). In addition to user-configured datasets, Canopy provides
several shared datasets and visualizations containing common
high-level features, plus tools for drilling down into the under-
lying traces if deeper inspection is needed (12○).
3.2 Instrumentation APIs
Instrumentation broadly comprises three tasks: 1) propagating
the TraceID alongside requests as they execute, to associate per-
formance data generated by different components; 2) recording
the request structure, e.g.where and when it executes, causality
between threads and components, and network communica-
tion; and 3) capturing useful performance data, e.g. logging
statements, performance counters, and stack traces.

Each Canopy instrumentation API performs a slice of these
tasks depending on what best aligns with the component
or programming language in question. Canopy’s low-level li-
braries in several languages allow users to manually log events
and pass TraceIDs between threads; however most APIs layer
higher-level concepts on top of these. For instance, in most
Facebook components, causality tracking is handled automat-
ically as part of a RequestContext interface that is solely re-
sponsible for passing around metadata like TraceIDs. Instead
of events, some higher-level libraries have constructs for an-
notating segments of processing, such as try-with-resources
statements in Java:

try (Block b = Canopy.block(“Doing some work”)) { . . . }

Conversely, Facebook’s web servers are heavily continuation
based, so Canopy does not expose these concepts because it is
difficult to manually track causality through asynchronous calls
and accurately attribute performance counters to work done.
Instead, Canopy’s PHP instrumentation library only supports
noting points in time and wrapping functions to profile, e.g.:

Canopy()->inform(‘Evicting Cache Entry’);
Canopy()->measure(‘Evicting’, $evictFunction);

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

}
7: optional map<string,string> annotations;
6: required i64 timestamp;
5: optional i64 sequenceNumber;
4: optional string id2;
3: required string id1;
2: required string type;
1: required string traceID;

struct Event {

Figure 3: Thrift [55] declaration of Canopy events.

Internally, Facebook’s web runtime will: propagate the TraceID;
track causality through continuations; snapshot lightweight per-
formance counters exposed by the server; and generate events
that capture the order of, and relationships between, asynchro-
nous function calls. In several languages Canopy provides or-
thogonal performance APIs, e.g. to register user-defined coun-
ters which Canopy will regularly record; to enable and disable
stack trace sampling; and to capture OS-level information.

There are several reasons decoupling instrumentation APIs
is a successful approach. First, for any particular instrumenta-
tion task, engineers have access to a narrow API that naturally
fits the specific task at hand. This lowers the barrier to entry
for engineers to adopt tracing, and reduces instrumentation
errors. Second, by restricting engineers to narrow APIs, the
recorded data is more robust because APIs hide the underly-
ing representation; this avoids inconsistencies that arise when
developers are responsible for manually constructing and re-
porting trace elements. Third, there is no single perspective on
instrumentation, and no first-class system model, so we can
introduce APIs to capture new aspects of performance with-
out invalidating existing instrumentation; this is necessary to
support the wide spectrum of custom system designs, third
party code, and legacy instrumentation. This has also enabled
us to integrate third-party tracing libraries with Canopy, such
as HTrace [12] and Cassandra tracing [6]
3.3 Trace Events
Canopy does not designate a single execution or performance
model to be the only possible trace representation. Instead,
Canopy traces have a generic underlying representation based
on events. When instrumentation is triggered, it generates
and emits events that encode performance information and
causal relationships to other events. Together, the events of a
trace form a directed, acyclic graph (DAG). Event DAGs make
minimal assumptions about execution models, performance
data, or causality, and can describe any computation [31].

Figure 3 outlines Canopy’s event definition. Canopy attaches
the request’s TraceID to each event, so that the subsequent
processing stage can accumulate events related to each re-
quest. Canopy has an implicit and extensible set of event types
that determine how Canopy’s backend will interpret the event.
Instrumentation libraries map high-level concepts down to
events, and annotate performance information. Annotations
are opaque to the event representation, but enable Canopy’s
backend to reconstruct the high-level concepts.

To record structural information, instrumentation libraries
generate multiple related events which can be later recom-
bined to reason about the structures. For example, a segment
of computation might comprise a labeled start event (e.g.,
“Doing some work”) and an end event referencing the start
event. Canopy uses sequence numbers and timestamps to or-
der events within the same process or thread, and random IDs
to relate events to shared concepts. For example, to capture
inter-process causality, we typically generate and log an Even-
tID on the sender, propagate both the TraceID and EventID to
the receiver, then also log the EventID on the receiver.
Canopy does not enforce or restrict a mapping from high-

level concepts to events, and different instrumentation APIs or
system versions may represent the same concepts in different
ways. New instrumentation libraries can reuse existing com-
mon event types or define new ones; we currently define 22
event types. This loose coupling is important for compatibility,
since a single trace will cross through multiple services that
must inter-operate across different instrumentation library
versions. See §5.3 for a case study.
3.4 Modeled Traces
Canopy users do not consume events directly; instead Canopy
constructs a modeled trace from events. Modeled traces are
a higher-level representation of performance data that hide
inconsistencies in the low-level events, which may arise due
to different component and instrumentation versions.
In its current iteration, Canopy’s model describes requests

in terms of execution units, blocks, points, and edges. Execu-
tion units are high level computational tasks approximately
equivalent to a thread of execution; blocks are segments of
computation within an execution unit; points are instanta-
neous occurrences of events within a block; and edges are
non-obvious causal relationships between points.

Specific logic for constructing model elements varies by
event type. For example, segments of computation with ex-
plicit begin and end events naturally map to a block element;
intermediary events in the same thread typically annotate the
block or create points within the block, depending on their
type. On the other hand, an instrumentation API for queues
might instead generate events for the enqueue, dequeue and
complete operations (similarly for locks, request, acquire, and
release); mapping these events to the trace model entails creat-
ing several blocks in potentially multiple execution units, and
describing their dependencies explicitly using edges.
Edges represent causality, both between processes and ma-

chines, as well as between blocks and execution units within
the same process. Edges are especially useful for patterns such
as streaming between long-running execution units, bidirec-
tional communication; and indirect or application-level block
dependencies. For brevity we do not record some causal edges

Canopy SOSP ’17, October 28, 2017, Shanghai, China

within an execution unit; due to their nested structure, exe-
cution units, blocks, and points have implicit causality that is
sufficiently captured by timestamps and sequence numbers.

All trace elements can be annotated with performance data,
such as messages, labels, stack traces, sets of values, and coun-
ters with an associated unit. Performance data is decoded from
event annotations, with type information in the annotation key.
Counters have no strict rules governing their usage; in prac-
tice they either represent absolute values at a point, or deltas
over the duration of a block or edge. On edges, annotations
let us convey more information about relationships beyond
just causal ordering, e.g. timing and queuing information is
useful to accurately understand critical path dependencies, a
limitation of prior systems [35, 46].

All Canopy traces are backed by the same underlying trace
model. This may seem counter-intuitive given that user cus-
tomization is a goal of Canopy. However, this approach pro-
vides a necessary bridge across all system components and
performance data. This allows analysis across system compo-
nents; without it we risk siloed and incompatible performance
models, and a loss of generality. So far, we have successfully in-
corporated a wide range of systems and performance data. By
decoupling the trace model from instrumentation, we can also
update the model as necessary to incorporate new structures,
causal relationships, and types of performance data.
3.5 Trace Datasets
Trace-derived datasets are Canopy’s high-level output. They
comprise information collected acrossmany traces, and are the
main access point for Facebook engineers doing performance
analysis. Each row of a dataset corresponds to some element
in a trace – e.g. one high level dataset has a row per trace and
aggregates statistics such as overall latency, country of origin,
browser type, etc; conversely, a dataset for deeper analysis of
web requests has one row for each page piece generated by
each request, i.e. it is keyed by (TraceID, PagePieceID). The
case study in §2.1 used both of these datasets.
Features Each column of a dataset is a feature derived from
a trace. A feature might simply be a label taken from a trace
element. It can also be a straightforward aggregation, such
as the count of block occurrences or the change in a counter
value over a particular range. More elaborate features may
consider structural relationships, or compute statistics along
the critical path between two points in the trace. Features may
be any database column type; in practice, we make heavy use
of numerics, strings, stacktraces, sets, and lists.
Extraction Canopy transforms traces to features by applying
feature extraction functions:

f:Trace�Collection<Row<Feature>>
Functions are stateless and operate over a single trace at a time.
A row corresponds to an element in the trace and comprises
features computed over that element or related elements.

0
0.25
0.5
0.75

1

1k 10k 100k1 10 100

CD
F

Usage Count of Column

Figure 4: Frequency of columns
occurring in dataset queries, for
2,852 columns in 45 datasets,
from 6 months of queries to
Canopy’s main querying UI.

Themain requirements for feature extraction are to: 1) en-
able engineers to iterate and deploy changes quickly; 2) be
extensible to support new and unanticipated types of analysis;
and 3) encourage modular and composable extraction func-
tions, since custom datasets are often assembled as composites
of other, higher level datasets. To this end, Canopy provides
several ways to write feature extraction functions (cf. §4.4).
The choice of features to extract, and what elements to extract
them from, is done on a per-dataset or per-query level; we
do not make this decision globally. Features can be extracted
as traces arrive or retroactively, and new feature extraction
functions can be quickly deployed to production.
Analysis Canopy outputs features to subsequent processing
pipelines, including both online in-memory table stores and
persistent storage for offline batch analysis. These databases
can quickly query large datasets, which enables the kind of
interactive, ad-hoc analysis we presented in §2.1.

Although pre-computing features can leave a large quantity
of data from each trace unused, in practice we find it sufficient
for several reasons. First, the source events andmodeled traces
remain stored in our storage layer and can be retrieved for
either individual viewing or batch ad-hoc analysis. When engi-
neers form hypotheses about possible new features, they can re-
visit existing traces with the new extraction functions. Second,
features are causally related, so dataset queries can combine
and break down data in myriad ways; that is, we can slice data
by different dimensions without having to infer or compute
causality between distributions. In practice most problems
are solved by exploring different combinations of a small set
of features, and combining common features such as latency
with less common features (cf. §2.1 and §5.4). To illustrate,
Figure 4 plots the usage frequency for 2,852 columns from
45 datasets, aggregated over 6 months of queries to Canopy’s
main dataset-querying UI. The most popular column is page
load latency from the main Canopy dataset, used by 23,224
queries. However, most columns contributed to fewer than
100 queries, with a median of 70.

4 Implementation
In this section we present details of Canopy’s implementation.
4.1 Canopy Client Library
Canopy’s instrumentation APIs internally map down to a core
client API that provides two main functions: starting a trace,
and logging an event. Figure 5 illustrates this core API, and
we refer to the numbers in the figure in our descriptions.

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

requests

Policy APIs Instr. APIs

Canopy
API

Distributed
Token Bucket

1©Start Trace

4© Evaluate
Sampling Policies

3© Start Trace

2©Acquire Token

Configerator Scribe

6©Write Event

Log Event

Convert To Events

5©Log Perf Data

In-Memory
Buffering

7© Publish
Events

Token Bucket Config
(Canopy Engineers)

Sampling Policies
(Performance Engineers)

Figure 5: Components (e.g.web and backend services) invoke Canopy
client APIs to start traces (1○, 3○) and log data (5○) (cf. §4.1).

Initiating Traces Due to the number of requests and the
potentially rich set of captured detail, tracing all Facebook
requests is infeasible. Instead Canopy only initiates traces for
a subset of requests1. A call to start a trace (1○) must first ac-
quire a token from a distributed token bucket (2○). The token
bucket rate-limits traces both globally and per-tenant. Upon
acquiring a token, the call generates and returns a TraceID,
otherwise tracing is disabled. Rate limiting is necessary to
limit undesirably high volumes or bursts of trace data that can
occur due to, e.g. too-aggressive instrumentation. By default,
Canopy allocates tenants 5 traces per second, a relatively low
rate. Changing this limit is done by Canopy engineers.
Sampling Policies From the user’s perspective, rate limiting
is an insufficient granularity for sampling traces, for several
reasons: low QPS API calls will be underrepresented; users
cannot target requests with specific properties; different ten-
ants cannot initiate traces from the same entry point; and it
takes a long time to change the rate of generated traces, since
it involves interacting with Canopy engineers.

To address this, we introduce a higher-level sampling policy
abstraction for users to specify how to sample traces. Each
sampling policy specifies: 1) an owner, e.g. a user, team, etc.; 2)
a sampling strategy, either a probability or a rate; 3) restraints
that the request must satisfy, e.g. a specific endpoint, datacen-
ter, region, Gatekeeper [57] feature, etc.; 4) a lifetime for the
policy; and 5) the level of detail to record – the coarsest level
collects just a few high level events; finer levels capture in-
ternal service details. These options enable users to express
policies targeting a range of different scenarios. For example,
rate-based policies and restraints enable users to target low
QPS systems and infrequent events. Canopy also allows teams
to mark a codepath as having been reached; they can then
define policies that target those particular paths.

For web andmobile requests, before acquiring a token, a call
to initiate a trace (3○) will first consult the user-defined sam-
pling policies to determine whether any user is interested in
the request (4○). If a policymatches, the call invokes the policy’s
1Other scenarios also trigger tracing, such as scroll events and client interactions.

Browsers
& Mobile
Clients

Web Servers
& Backends

request

In-Memory
Storage

sampling decision �
1©Connect

Server

2© Log Events

3© Sample Trace

4© Server
Response

Browser/Mobile
Instrumentation API

5© Flush Events
To Server

Figure 6: Clients initially cache events in memory. If the server sam-
ples the trace, clients flush their events to the server.

sampling strategy, and only if it passes do we finally acquire
a token from the relevant tenant’s bucket (2○). This approach
gives users fine-grained control over which traces to target,
independent of Canopy engineer involvement, while the un-
derlying token bucket provides safety in case of configuration
errors. A local Configerator [57] daemon manages Canopy’s
sampling and token bucket configurations in-memory and
synchronizes global updates in real-time, thereby enabling
users to rapidly deploy sampling policies.
In some scenarios, such as for backend services, we only

support a subset of sampling policy features.When integrating
Canopy in new frameworks or languages, we typically begin
by interacting directly with the distributed token bucket, and
gradually introduce support for sampling policies as needed.
Generating Events

For sampled traces, calls to Canopy’s instrumentation APIs
(5○) will internally log events (6○). Some instrumentation APIs
buffer data in memory before flushing events; primarily in
systems that won’t benefit from partial trace data when crashes
occur. Finally, events are flushed to Scribe (7○), a distributed
messaging system for log data [27].
Opportunistic Tracing Canopy typically evaluates sampling
decisions at the beginning of a request. However, for a subset
of use cases there are restraints that can only be evaluated part-
way through the request; for example, a web request which
begins on the client but has server-side restraints. Figure 6
illustrates how Canopy captures events that precede the sam-
pling decision. After a client makes a request (1○) to a server
that might sample a trace, the client opportunistically persists
in memory any events (2○). After the server makes a sampling
decision (3○), it communicates that decision back to the client
in the response (4○). The Canopy client then flushes or discards
the pending events (5○). In general, opportunistic tracing is
only supported when the number of traced components are
small and known; it is infeasible for large fanouts or multi-
ple hops, because turning tracing off requires informing all
systems to which we have already propagated the TraceID.
4.2 Canopy Pipeline
Canopy’s tailer is a sharded backend process that receives, pro-
cesses, and persists trace data. The tailer balances two priori-
ties: to ensure all traces get processed, and to do so as quickly

Canopy SOSP ’17, October 28, 2017, Shanghai, China

Scribe Fetchers

Poll Events1©
H

client H HBase2©

In-Memory
Cache

Builders

Isolation
Queues

Delayed
Extractor

3©

Scheduler

4©Evaluate Triggers

5©Timeout Elapsed (expired/evicted)
6©

7©

8© (queue full)

Extractors

9©Deûcit Round-Robin
Scuba,
etc.Config-

erator

Dataset Configs
(Performance
Engineers)

ad-hoc
jobs

Figure 7: Tailer architecture; see §4.2 for description.

as possible – ideally in near-real time. This is challenging be-
cause of exceptional cases such as fluctuations in load, missing
and delayed events, and resource contention from expensive
datasets. In this section we describe the tailer’s constituent
components, illustrated in Figure 7.
Routing Events Scribe [27] routes events from instrumented
Facebook components to tailers, and shards events by TraceID
to ensure all events for a given trace will route to the same
tailer. A pool of fetcher threads run a loop of polling Scribe
(1○) and handling received events. Fetchers immediately write
each event to HBase for persistent storage (2○), then insert into
an in-memory cache (3○). The cache groups events by TraceID,
and expires a trace 15 minutes after its last event was added.
If the cache is full, the least recently used trace is evicted by
discarding all of its cached events, which account for the bulk
of its memory footprint. To prevent a trace re-entering the
cache with future events, we maintain an auxiliary cache of
TraceIDs seen in the past 5 hours.
Handling Events Next, fetchers must determine when the
trace an event belongs to is ready to be processed, i.e. all the
trace’s events have been received. However, we have no guaran-
tee that events will be received in-order, or even at all — events
may be dropped, components may not be instrumented, and
clients may fail to send data. End-user clients with intermit-
tent or slow network connectivity are particularly problematic:
there is a long tail of clients that both take a long time to suc-
cessfully transmit their events and have outlier performance
that is important to track.

Our approach targets the common case that trace events ar-
rive unhindered and temporally proximate. We pattern match
incoming events and initiate trace processing after sensible
timeouts. For each event, fetchers evaluate a set of triggers,
which examine the event for distinguishing markers or fea-
tures that can categorize the request (4○). If a trigger matches,
and the trace-trigger pair is not already scheduled, the fetcher

schedules the trace to be processed after a trigger-specified
timeout. Fetchers evaluate and schedule triggers regardless of
whether the event was successfully cached. Example triggers
include processing traces 10 minutes after their first event is re-
ceived, 10 minutes after the first client browser event, and one
day after identifying a trace from Facebook’s automated build
system (due to their long duration). In most cases Canopy
receives all of a trace’s events before a timeout elapses. Oc-
casionally, Canopy will process a trace only to receive more
events later. In this case, triggers are evaluated again, and it is
processed twice. However, in practice this occurs rarely; less
than 0.03% of traces are processed more than once, with the
vast majority from traces that include user clients.
Load Shedding A pool of builder threads initiate processing
for traces after timeouts elapse (5○). For each trace-trigger pair,
a builder will first retrieve the trace’s events from cache (6○)
before processing. If its events expired from the cache, the
builder abandons the trace-trigger pair and instead enqueues
it to a separate persistent global queue which is read by a
separate tier ofmachines called delayed extractors (7○). Delayed
extractors process traces from this queue, performing the same
actions as the tailer but retrieving their events from HBase.
Delayed extractors also process ad-hoc user jobs, e.g. to extract
new features from old traces. In practice most traces (99.5%)
are successfully processed directly from cache, since timeouts
exploit the temporal locality of events.
Model Construction To construct a modeled trace, for each
event builders inspect its type (e.g. “Edge Begin”, “Add Anno-
tation”, etc.) and delegates to an event handler for that type.
Event handlers mutate trace state by either creating model
elements or adding information to existing elements. Since
instrumentation may be buggy or incomplete, builders make
further passes over the trace to: 1) handle incomplete model
elements, e.g. blocks or edges missing end events; 2) correct
any errors, e.g. points that occur outside the bounds of their
containing block; 3) infer additional model elements, e.g. infor-
mation from services without data; and 4) align timestamps
across distinct hosts using causal edges, establishing a single
timeline relative to the start of the trace. Builders annotate
model elements with any changes or corrections — we track
model errors in several datasets so that Canopy engineers can
revisit and fix the model or instrumentation. Finally, builders
validate a set of invariants on the trace, e.g. ensuring the trace
has no cycles (which should be impossible).
FeatureExtractionBuilders next evaluate user-defined dataset
configs. A dataset config comprises: 1) an owner; 2) a filtering
predicate; 3) an extraction expression; and 4) output database
information. Builders apply the filtering predicates to deter-
mine valid configs, then enqueue the trace into one or more
isolation queues based on the config owners (8○). Isolation
queues are short, and if a builder cannot enqueue a trace due

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

to capacity restrictions it abandons the trace and writes the
TraceID to the delayed extractor queue.

A separate pool of extractor threads poll isolation queues for
traces, using deficit round-robin [52] to fairly share CPU time
between queues (9○). Extractors evaluate extraction expres-
sions and output to the configured databases. Most datasets
output to either Scuba [1], an in-memory database for real-
time aggregation and queries, or Hive [59] tables, for offline
processing as part of a general data warehouse pipeline.
Fair sharing is necessary for two reasons: arbitrary user-

supplied extraction expressions are potentially very expensive;
and users may misconfigure sampling policies to collect too
many traces. We offload surplus processing to delayed extrac-
tors to prevent lag from impacting other users.
4.3 Scalability
Routing Events We shard Canopy’s backend by TraceID, so
for any given trace, all events will route to the same tailer.
Consequently, there is no communication between tailers and
Canopy’s backend trivially scales by provisioning more ma-
chines. Routing events to tailers is Canopy’s main scalabil-
ity bottleneck; TraceIDs are random, so events generated by
one component can potentially route to any tailer. Canopy
currently generates and processes approximately 1.16 GB/s of
event data. However, Scribe can scale several orders of mag-
nitude beyond this, and this is a small fraction of the overall
capacity of Facebook’s Scribe infrastructure
Events and Datasets Canopy has two secondary scalability
concerns. As instrumentation in Facebook components has
matured, the number of events per trace has steadily grown:
~160 for backend services; >4500 for browser traces; and >7500
for mobile. This impacts the runtime overheads of generating
trace data, which are more pronounced for verbose traces (cf.
§5.1). To address this, we introduced multiple levels of trace
detail that users can specify in their sampling policies, as de-
scribed in §4.1. The number of users of Canopy and generated
datasets has also grown over time, from 35 datasets in Novem-
ber 2015 to 129 datasets in April 2017.
Load Shedding Under normal operation, fetchers consume
<5% CPU, builders ~25%, and extractors >55%. Under heavy
load, isolation queues back up, and traces above each owner’s
fair share offload to delayed extractors. On rare occasions
builders fail to keep up with the rate of traces, causing lag
to accrue between triggers timing out and a builder picking
up the trace; consequently, builders encounter more traces
expiring from cache. Due to the default expiry of 15 minutes,
builder lag does not exceed 5 minutes; beyond that all traces
expire, and it is cheap to clear expired traces. On several prior
occasions, issues with HBase caused fetcher threads to exhaust
client-side buffers and block onwriting events toHBase.When
this occurs events accumulate in Scribe, since fetchers only
receive events from Scribe by polling. Fetchers can lag by up

(a) Find the earliest client-side point
Begin = ExecUnits | Filter(name=“Client”) | Points | First

(b) Find the client-side “display done” marker.
DisplayDone = ExecUnits | Filter(name=“Client”) | Points |

Filter(marker=“display_done”) | First

(c) Calculate display done latency.
DisplayDone | Timestamp | Subtract(Begin | Timestamp) |
RecordAs(“display_done”)

(d) Find all network resource loading on the critical path.
ResourceEdges = CriticalPath(Begin->DisplayDone) | Edges |

Filter(type=“resource”)

(e) Calculate the total resource loading time on the critical path.
ResourceEdges | Duration | Sum | RecordAs(“res_load”)

(f) Calculate the total CSS bytes on the critical path.
ResourceEdges | Filter(resource=“css”) | Counter(bytes) |
Sum | RecordAs(“css_bytes”)

Figure 8: Extraction expressions for features used in §2.1.

to 3 days due to Scribe’s data retention guarantees; however in
practice they only lag by between 20 and 40 seconds.
4.4 Feature Extraction
Canopy provides a domain-specific language (DSL) for describ-
ing features as pipelines of functions. Each function specified
in the DSL is optimized and compiled into an efficient under-
lying implementation. Figure 8 illustrates DSL expressions for
several features from the case study from §2.1.
Feature extraction is Canopy’s most heavily iterated com-

ponent. We designed Canopy’s DSL when many features were
straightforward functional extractions of trace data. The DSL
initially offered a limited set of transforms with modest ex-
pressibility, and we expected to regularly extend the DSL with
new functions as necessary. In practice, computed features
grew more complex than expected, and the DSL had to in-
corporate more general-purpose features like data structures.
Furthermore, engineers found the DSL insufficiently expres-
sive for speculative or exploratory feature analysis, and were
forced to jump to another language to write a user-defined
function, then wait for redeployment. To address this, for ad-
hoc queries we currently allow for integration with iPython
notebooks (§4.5), and we are expanding support for dataset
extraction to allow these to be stream processed online.
4.5 Querying and Visualization
Canopy provides multiple entry points to consume trace data,
illustrated in Figure 9. Typically, engineers start from an aggre-
gate view of the collected trace data. Figure 9a shows a visual-
ization for comparing function calls between two populations
to identify regressions in the Facebook mobile app. Figure 9b
is a customized view for browser traces that visualizes time
spent in different critical path components; the visualization
is interactive and users can drill down into the data, view dis-
tributions, and select samples. Engineers also interact with

Canopy SOSP ’17, October 28, 2017, Shanghai, China

1870 traces 734 traces 1136 traces

Sampled Functions filters...

Function Trace % Incl. ms Nrm. ms Nrm. Δms▼ Excl. ms
50

0
543

0
269

0 269 0
0com/facebook/Layout::create

50
0

392
0

198
0 198 0

0com/facebook/layout/Lifecycle::createLayout
…

56
54

2,278
2,017

1,266
1,085 182 2

2com/facebook/tools/tracing/RunnableWrapper::run
…

52
0

266
0

139
0 139 0

0com/facebook/layout/LayoutDefinition::prepare
…

56
54

559
383

311
206 105 0

0android/support/v7/widget/RecyclerView::dispatchLayout
…

56
54

557
383

309
206 103 0

0android/support/v7/widget/RecyclerView::onLayout
…
…

Version [A] Date after Apr 11, 2017 Date before Apr 13, 2017 Version [B] Date after Apr 8, 2017 Date before Apr 10, 2017

mean

p5 p25

p50

p75

p95

Trace Duration Micros

Pe
rc

en
t

2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 12M
0
1
2
3
4
5
6
7Interaction Time

Total: XXXX ms

Client
Javascript

Server
Resource

js: Rxqi7lfkvHd

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
dd 5.5server_only 4.5tti 3.7

Main Thread_6430_P[0]

DataUnitCollection::addElementsAtTail [DataUnitCollection.add…

RecyclerView::onLayout [RV OnLayout]

DataLoaderUIHandler::doSendStoriesToUI [DataLoader] …

ObservableAdaptersCollection$ListItemCollectionObserver::onI…

RV OnLayout
NewsFeedRecyclerView::onLayout [NewsFeedRecyclerView.onLayout]

traversal to Missing

createLayout:FeedTreePropsWra…

FeedUnitAdapter::lazyGroupPrepare […

RV OnBindView

SinglePartHolder::prepare [SinglePartHolder.prepare]
RecyclerView$Adapter::bindViewHolder [RV OnBindView] RecyclerView$Adapter::bind…

layout

RV CreateView

SinglePartHolder::prepare […

Choreographer#doFrame to Missing

RV OnBindView
RecyclerView$Adapter::createViewHo

createLayout:FeedStoryMessage…

cpu

cpu_duration 40.92ms

db

db_connect_duration 0.9301ms

db_duration 1.34ms

db_read_count 1

db_read_duration 0.4098ms

cache

cache_bytes 9.14 KB

cache_count 169

cache_duration 0.6320ms

mem

mem_alloc_bytes 859 KB

mem_peak_bytes 1.84 MB

page piece

page_piece_wait_duration 1.79ms

page_piece_user_input:RENDER Counters Details Points Edges

(a) (b) (c)

(d)

(e)

(f)

Figure 9: Engineers can use aggregate visualizations (a-c) to explore features. They can continue to drill down to individual traces (d-e) or
elements within the trace (f). All visualizations support customizations to focus on relevant data for that view (cf. §4.5)

Mean 1st 25th 50th 75th 99th

WWW CPU 6.76% 1 1.1 1% 7.31% 6.86% 6.44% 4.44%
Wallclock 2.28% 7.1 1% 2.18% 2.14% 2.38% 2.70%

Android Cold Start 8.57% 5.29% 4.88% 10.78% 13.37% 0.00%

Service ServiceAWallclock 8.15% 6.83% 7.03% 7.15% 7.53% 10.44%
ServiceBWallclock 0.76% 0.72% 0.79% 0.80% 0.79% 0.38%

Table 1: Latency increase with tracing enabled (Mean and Percentiles).

datasets through visualizations and query interfaces provided
by the underlying datastores. For example, Scuba [1] supports
a subset of SQL2 and provides a wide range of visualization
and charting options (9c).

Each of these views provides ways to filter and slice features,
enabling engineers to quickly explore the data along different
dimensions. These also link between each other, so engineers
can always jump from one custom view to other relevant views,
or to the underlying view for the datastore.
At some point in an investigation, engineers may need to

pivot from viewing aggregate data to exploring a single trace.
From aggregate views, individual traces matching the filtered
characteristics can be found and then explored. These views
may also be customized based on the type of trace and nature
of the investigation.Web traces have custommarkers denoting
important phases and execution units grouped by type (9d);
mobile traces display sampled profiling data as a flame chart
(9e). Engineers can inspect properties of individual model
elements (9f), customized to group, aggregate, and display
certain properties. Due to Canopy’s single underlying trace
model, a single trace may be viewed through many different
visualizations, each emphasizing different aspects.

To analyze traces and datasets programmatically, Canopy
integrates with iPython and we provide several iPython tem-
plates to get started. Engineers can load individual traces; write
DSL functions or UDFs and process traces in bulk; or load
and explore datasets from backend datastores.

2Scuba SQL supports grouping and aggregations, but not joins. By default
Scuba subsamples data beyond 30 days and gives confidence bounds for
aggregation queries. Scuba queries typically complete within a few seconds.

5 Evaluation
Canopy has been deployed in production at Facebook for the
past 2 years. In this section we present case studies where
Canopy has enabled Facebook engineers to detect and diag-
nose performance problems. We examine Canopy’s overheads
and load-shedding properties, and show that in addition to
addressing the challenges described in §2.2, Canopy:
● Enables rapid performance analysis across heterogeneous

systems with different execution and performance models;
● Supports many users concurrently and enables customiza-

tion for different use cases;
● Enables independent evolution of the trace model, to adapt

to new use cases and execution types;
● Scales to a large number of traces with low overhead.
5.1 Overheads
Table 1 details how the latency distributions change when trac-
ing is enabled, for requests loading Facebook.com, starting
the Android app, and two backend services (ServiceA and Ser-
viceB). The median wallclock time for web requests increases
by 2.14%with tracing enabled, and by 10.78% for Android cold-
start at the finest granularity of tracing. In all cases, wallclock
time increases less than CPU time, since some tasks happen
off the critical path. For backend services, overheads are typi-
cally proportional to request duration: ServiceA requests are
short and instrumented in detail, incurring 8.15% overhead;
conversely ServiceB requests are longer and do not extend the
default instrumentation, so incur < 1%. Overheads are higher
in clients than on servers because we often lack system-level
methods for capturing data and instead rely on application-
level methods. Finally, Canopy’s backend components require
less than 0.1% of available datacenter resources.
5.2 Load Shedding
In this experiment we evaluate the tailer’s ability to isolate
tenants, manage load spikes, and prevent tenant interference.
We mirror traffic from one production tailer for a period of 2
hours and 40 minutes, and simulate a load spike by gradually
inserting additional load for the Mobile tenant (Figure 10a).

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

Load increases at t=10, t=40, and t=70; we sustain maximum
load from t=70-115; and revert to normal at t=115.

Load introduced at t=40 pushes Mobile above its fair share.
At t=50, the 10-minute triggers start elapsing for these traces,
and Mobile’s isolation queue backs up (10b). From t=50-125,
the queue is consistently at or near its capacity of 5 traces, and
some Mobile traces are scheduled for delayed extraction (10c).
However, traces from non-mobile tenants remain unaffected.

Figure 10d plots the processing lag for traces on the delayed
extractor, i.e. the time between being queued and processed.
From t=0-90, the delayed extractor is under-utilized and pro-
cesses traces immediately. At t=90, traces are queued faster
than they can be processed, increasing the processing lag. After
load reverts to normal at t=115, the delayed extractor continues
processing traces and clears its backlog by t=155.

Figure 10e plots output rows generated for non-Mobile ten-
ants, comparing the experiment to the source production tailer
whose traffic we mirror. The figure shows little discrepancy
between experiment and production, and demonstrates how
Canopy isolates non-Mobile tenants from the load spike.

In practice, load spikes can happen for a variety of reasons.
The distributed token bucket assumes a fixed cost per trace ini-
tiation, but in practice the number of events generated for one
trace can vary significantly. New instrumentation that gener-
ates additional events can therefore increase the cost per trace.
Changes to dataset configs can also change the cost of process-
ing a trace, i.e. by introducing expensive extraction functions.
This is usually caught by a canary system for changes, but
sometimes the effects aren’t observed for hours. For example,
an instrumentation bug increased the number of blocks in
each browser trace; this increased backend costs because sev-
eral datasets for browser traces do work proportional to the
number of blocks. However, lag only began accumulating the
following morning, corresponding to the daily traffic peak.
5.3 Trace Model Evolution
Canopy has enabled us to evolve our trace model as new use
cases arise, without having to revisit existing system instru-
mentation. Figure 11 illustrates several successive refinements
we made to our model of RPC communication. Initially we
modeled RPC communication using a block-basedmodel (11a)
analogous to Dapper’s spans [54]. Each block corresponded to
a request within one process and was identifiable by a unique
block ID (e.g. A, B, etc.). When making an RPC, the sender
(A) would generate a block ID (B) for the child and include
the ID within the call. To record the RPC, we used four event
types corresponding to client send (CS), server receive (SR),
server send (SS), and client receive (CR), and annotated events
with the block ID to enable later reconstruction of the RPC
structure in the trace. However, we were unable to express
more fine-grained dependencies within services, such as time
blocked waiting for the RPC response.

(a)
0
4
8 Additional Load

M
B/
s Mobile

(b)
0

5 Isolation Queue
Median Length

Mobile

(c)
0

100
200 Rescheduled Traces

Tr
ac
es

/s Mobile
Non-
Mobile

(d)
0

20
40 Trace Processing

Lag (Mobile)

M
in

ut
es 95th Percentile

Median

(e)
40k

80k

120k

0 30 60 90 120 150

Output Rows (Non-Mobile)

Ro
w
s/
s

Time (minutes)

Production
Experiment

Figure 10: Load-shedding experiment using traffic mirrored from a
production tailer: (a) we insert additional Mobile Load; (b) Mobile
exceeds its fair share and its queue fills up; (c) excess Mobile traces
are sent for delayed extraction; (d) the delayed extractor lags behind
processing excess Mobile traces but clears the backlog after load
reverts to normal; (e) non-Mobile traffic is unaffected and processed
at the same rate as on the production tailer.

Our second model (11b) introduced execution units, dis-
tinct from blocks, so that processes could more naturally de-
pict their internal events. We added new instrumentation to
measure idle time and incorporated that information into the
model. We reused the same event types as our initial instru-
mentation, and simply relaxed themodel to allow client receive
events to occur within a different block (C) from client send
(A). However, while this approach enabled accurate measure-
ment of client idle time, it did not account for time between
receiving and processing the RPC response, which primarily
occurs in two ways: backend servers that have dedicated net-
work IO threads read responses from the network and enqueue
them while the main thread is busy completing other work
(11c); and asynchronous execution models can demarshall re-
sponses in the same threads that run the response handler,
but defer the handler to a later time (11d) – this is common in
web browsers. To handle these cases, we added a new event
type called client queue (CQ) generated when a response is
received and queued to be processed, and extended the trace
model’s RPC structure with metadata to indicate this queuing
time. Finally, as more systems at Facebook integrated with
Canopy we encountered a wider range of patterns, such as
one-way RPCs, RPCs that send multiple responses, and more
general streaming and pub-sub communication. This led us to
decouple our model’s representation of RPCs into sets of edges
as described in §3.4, where an edge is a one-way communica-
tion between any two blocks (11e). With this, any two blocks
can indicate network communication by generating a send
event on sender (A, D) and a receive event on the receiver
(B, C). Although we no longer require the four event types
of the initial model (11a), the existing instrumentation is still

Canopy SOSP ’17, October 28, 2017, Shanghai, China

CSA�B CRA�
B

SRA�
B SSA�B

Block A

Block B
(a)

CSA�B CRC�
B

SRA�
B SSC�B

Block A

Block B

Block C

(b)

CSA�B CRA�
BCQA�

B

SRA�
B SSA�B

Block A

Block B
(c)

CSA�B CRC�
BCQC�

B

SRA�
B SSC�B

Block A

Block B

Block C

(d)

SA�B
R
D�
C

RA�
B S

D�
C

Block A

Block B

Block C

Block D
(e)

Figure 11: Evolution of Canopy’s instrumentation and model for RPCs and network communication (cf. §5.3)

MainContent
MainLayout

Headers
Reminders

ContentCard
LastResponse

Suggestions
Footer

Announcements

Page Piece Frequency (millions)
0 10 20 30 40 50

(a) The low-priority ‘Suggestions’ page piece un-
expectedly appears on the execution critical path
in 10.4M requests, initiating the investigation.

Server:AwaitSuggestions
Server:ParseSuggestions

Client:SuggestionsReceived
Client:ShowSuggestions

Block Frequency (thousands)
0 100 200 300 400 500

Page Load Latency (s)
0 1 2 3 4 5

(b) ‘Suggestions’ appears on the critical path in two circumstances: on slow clients that receive
suggestions before the page is done loading; and on the server during initial page construction.

Time (s)
Th

re
ad

s

2 3 4 5 5.4

1○ 6○

2○

3○
5○

4○ Server

Client
Browser

Suggestions
Blocks

(c) ‘Suggestions’ blocks server execution (2○) and delays flush (ideal 3○, actual 5○).
Figure 12: An engineer sees something unusual on the critical path and investigates, ultimately finding a server execution issue (cf. §5.4)

compatible with each revision of the model, as they simply
translate to a pair of edges in the current model.
Other Integrations Canopy’s flexible model lets us incorpo-
rate the output of other trace systems and profilers. For exam-
ple, to integrate HTrace [12] with Canopy, we map HTrace
spans to blocks; timeline annotations to points within the
block; and parent-child relationships to edges between blocks.
Parent-child relationships in HTrace only convey hierarchy
and not fine-grained timing information, so the edges map
between the block begin points (and similarly for the ends).
5.4 Case Studies
Causal Ordering The Facebook.com page load process is care-
fully ordered to try and get important page-pieces displayed
early, with distinct phases for groups of page-pieces. One of
the features extracted for analysis is the set of page-pieces
on the critical path for these phases. An engineer looking
at this data was surprised to see a low-priority ‘Suggestions’
page-piece sometimes appearing on the critical path of the
highest-priority phase (Figure 12a). To investigate, the engineer
checked which specific ‘Suggestions’ blocks were appearing
on the critical path, and cross-referenced with the average
request latency when present (Figure 12b). When ‘Suggestions’
is on the client-side critical path, the high latency provides a
sufficient explanation – the server sent all page-piece phases
but the client was slow to process them. However, it was un-
expected to find ‘Suggestions’ on the server-side critical path.
The engineer inspected an affected trace and discovered the
root cause: a bug in the server execution environment, where
some asynchronous continuations were treated differently;

as a result, the server may wait for these continuations even
though the code wasn’t. Figure 12c illustrates the execution
timeline of an affected request: when the server received the
initial request, it executed an asynchronous call to ‘Sugges-
tions’ (1○). However, it unexpectedly blocked waiting for this
continuation (2○). Normally, the server would have flushed
some initial high-priority page pieces (3○); instead, execution
was blocked waiting for further computation to complete (4○)
which delayed flushing data to the client (5○) and eventually
displaying the page (6○). This issue only occurred in a subset
of requests; however, Canopy was still able to surface these as
an issue. The customized feature extraction exposed this as an
issue, and was also able to identify how often this happened
and the estimated overall impact.
Regressions in Subpopulations Sometimes shifts happen as
a result of internal changes, but sometimes those changes are
exogenous. An example of this occurred in December 2016
and January 2017, when internet to the Indian subcontinent
was disrupted on multiple occasions, due to a cyclone and
multiple submarine cable cuts, respectively. This caused re-
gressions in performance for affected end-users, and was large
enough to cause a global regression in pageload latency of
~50ms. Country is an extracted feature, so splitting the data
on that axis clearly showed the difference, while the critical
path breakdown showed that the largest change for those end-
users was in network and resource downloads, as expected.
Here, Canopy was able to help engineers rapidly identify the
cause and prevent long-term investigation for something ulti-
mately outside of their control.

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

Identifying Improvements In addition to dataset exploration,
Canopy traces can also be used to perform hypothetical anal-
ysis. Engineers responsible for the early flush component de-
scribed in §2.1 improved page load time by considering the
cause for the performance breakdowns in the critical path.
Their analysis showed that clients were spending an inordinate
amount of time on the critical path waiting for additional re-
sources (CSS/JavaScript) before the page load was complete.
This occurred because Facebook.com already sent down re-
sources at the start of the page that were expected to be needed
later on, but it was possible for page pieces to require addi-
tional resources after construction. They predicted that send-
ing down a secondwave of resourcesmidway through the page
load, particularly those typically used by low priority page-
pieces, would lead to a noticeable performance improvement,
which was borne out when the feature was implemented.
Mobile Clients Canopy is used across many domains at Face-
book to analyze production trace data, including mobile ap-
plications. Canopy helps to identify resource bottlenecks and
expensive function calls during various phases of important
flows like cold-start (the time to start the application) and long-
scroll-frames (other application work preventing timely display
updates). Engineers used Canopy’s feature extraction of call-
stacks to identify a slow-building regression over multiple
releases caused by a gradual increase in the number of initial-
ization modules. Ad-hoc queries with Python notebooks have
also been used to investigate metric quality; a query found
cold-start traces with large gaps with nothing executing, which
led engineers to find that their startup metric was including
background app starts that they wanted to exclude.
Exploratory Analysis Features determined to be generally
useful for a broad set of users are exposed in general datasets
for engineers to use for quick investigations. Sometimes there’s
a slow request, and engineers just want quick help to find the
cause. As an example, in February 2017, an engineer noticed
a poorly performing endpoint which frequently timed out,
and so examined features from a few traces. One of these was
database time along the critical path, which led the engineer
to find and fix an expensive query without an index, speeding
up the DB query by 99% and page load time by 50%.
Custom Analysis For longer or more complex investigations,
engineers can define custom views. Canopy allows these teams
to quickly set up a customized table, and reuse many of the
features from general tables, without forcing all features to
exist in a shared global table. As an example, search results
were broken up into several page-pieces, where the first may
be empty. The latency of this page was defined as the display of
the first non-empty page-piece. Engineers defined this metric
as a complex extracted feature in a dataset, added existing,
modular critical path features to further break it down, and
then used this dataset for long-term monitoring of the flow.

6 Experiences
Some observations from our experiences with Canopy:
● Common datasets give casual users an entry point without
exposing them to the underlying trace structure. Since not
all features are applicable to all trace types, our common
datasets vary by domain. For example, we widely use critical
path breakdowns for web stack analysis, but not for mobile,
where it is more difficult to correctly instrument all block-
ing (locks, CPU scheduling, framework code, etc.). Instead,
mobile datasets center on common resource counters.
● It is an open question whether a DSL can express all possible
analyses, or if a general purpose language is required.
● Canopy is applicable to average case, edge case, and tail
latency analysis, because at scale, many strange behaviors
are frequent enough to identify as statistical outliers. One
limitation is investigating a specific instance or request that
wasn’t sampled, e.g. a single user error report of an anomaly.
● Canopy is suitable for tracing any action with a well-defined
begin and end. We currently trace user-facing systems (web,
mobile), backend systems (services, data analytics), and data
provenance scenarios (e.g. the end-to-end lifecycle of a user
notification). Trace durations vary by multiple orders of mag-
nitude, which we handle with per-domain triggers and time-
outs. The main scenarios we’ve encountered where Canopy’s
assumptions don’t apply are long running dataflow pipelines
and scenarios with multiple beginning points.
● Our most effective and scalable instrumentation strategies
include instrumenting core frameworks, and capturing data
from existing profilers and loggers.
● Common instrumentation errors include conflatingTraceID
propagation with tracing (and wanting to trace all requests),
and propagating TraceIDs incorrectly (causing traces that
never end). The latter leads to a large number of events
being generated for a single trace; to deal with this, we added
triggers for blacklisting erroneous traces.
●We only support opportunistic tracing (cf. §4.1) in a subset
of components, because it requires updating instrumenta-
tion to propagate sampling metadata in addition to the Tra-
ceID. It is an open question whether context propagation
can generalize, i.e. to propagate arbitrary metadata without
requiring instrumentation changes.

7 RelatedWork
In §2.2 we discuss the challenges Canopy addresses that are
shared with many other tracing tools. We complement the
discussion on related work here.
GeneratingPerformanceDataExisting tools for troubleshoot-
ing distributed systems make use of a range of different input
data. They include tools that ingest existing per-process and

Canopy SOSP ’17, October 28, 2017, Shanghai, China

per-component logs [29, 37, 66]; end-to-end tracing tools that
generate causally-related event data [12,24,39,50,54,60]; state-
monitoring systems that track system-level metrics and per-
formance counters [36]; and aggregation systems to collect
and summarize application-level monitoring data [30, 34, 61].
Wang et al. provide a comprehensive overview of datacenter
troubleshooting tools in [63]. Canopy is designed to provide a
common entry point for this breadth of data, since all of these
input types are useful for different kinds of analysis.

Like Canopy, many tools record causality between events ex-
plicitly by propagating identifiers along the request execution
path [12,24,39,50,54,60]. Prior systems alleviate the instrumen-
tation burden (cf. §2.2) by propagating context in shared under-
lying communication and concurrency layers [24, 49, 54, 56];
recent work has also used source and binary rewriting tech-
niques to automatically instrument common execution mod-
els [26, 32, 34, 48].
An alternative approach to instrumenting systems is to in-

fer correlation or causality from existing outputs such as logs.
Approaches include combining identifiers – i.e. call ID, IP ad-
dress, etc.– present across multiple logging statements [16, 22,
29, 58, 66, 67]; inferring causality using machine learning and
statistical techniques [18, 35, 38, 66]; and augmenting models
with static source code analysis [66–68]. In practice it is chal-
lenging to scale black-box analysis because inferring causal
relationships is expensive; for example, computing a Facebook
model from 1.3M traces took 2 hours for the Mystery Ma-
chine [22]. Canopy scales well beyond this, to 1.3 billion traces
per day currently, because of its sharded backend; we require
no communication between either traces or shards (cf. §4.3).
Analyzing Data Prior work in troubleshooting distributed
systems has presented a variety of automated analysis tech-
niques: semi-automatically honing in on root causes of perfor-
mance anomalies [64]; identifying statistical anomalies [29];
online statistical outlier monitoring [15]; analyzing critical
path dependencies, slack, and speedup [22,47]; and explaining
structural and statistical differences between ‘before’ and ‘after’
traces [35, 51]. Manual analysis has covered an even broader
range of issues, such as requests whose structure or timing
deviate from the norm [2, 17, 20, 21, 46, 51]; identifying slow
components and functions [19, 35, 54]; and modelling work-
loads and resource usage [16, 17, 35, 58]. Use cases for tracing
tools deployed in production at 26 companies range from
debugging individual anomalous requests, to capturing perfor-
mance, resource, and latency metrics, to correlating failures
and behavioral clustering [33].
Canopy does not obviate any of these techniques, but in-

stead provides the data extraction pipeline that generates the
input to many of them. For example, Spectroscope [51] di-
agnoses regressions between before- and after- sets of traces,
by comparing trace structures and performing ANOVA tests.

Similarly, Facebook developers have made extensive use of
statistical comparison techniques to find correlations between
features and compare distributions, e.g. between application
versions. However, operator-driven exploration is a prerequi-
site to most automated approaches in order to identify salient
features [37]. In a recent analysis of Splunk usage, Alspaugh et
al. noted that the use of statistical and machine learning infer-
ence techniques is “relatively rare” and that human inference
is the key driver of analyses [3]. Canopy’s primary use case
is to support ad hoc high-level exploratory analysis, because
problems arising in practice are difficult to anticipate and there
are a wide range of potential features to explore [34].

Several prior systems support ad hoc exploration similar
to the case studies we present. G2 [25] is a system for writ-
ing queries over execution traces at the level of raw traces, so
faces the scalability and abstraction challenges of §2.2. For
example, evaluating a G2 query over 130 million events takes
100 seconds; by comparison, interactive Canopy queries de-
rive from trillions of events. Stratified sampling can improve
query time by returning approximate results [62]; similarly,
for historical data older than 30 days, Scuba subsamples and
provides confidence bounds (cf. §4.5). Pivot Tracing [34] is a
dynamic instrumentation framework that enables operators
to iteratively install new queries during the diagnosis process;
however it does not apply to historical analysis, which is an
important Facebook use case that necessitates capturing and
storing full traces.

8 Conclusion
In this paper we presented Canopy, which emphasizes a decou-
pled, customizable approach to instrumentation and analysis,
allowing each to evolve independently. Canopy addresses sev-
eral challenges in generating, collecting, and processing trace
data, and introduces feature extraction as an important inter-
mediary step for aggregate analysis. Canopy has been used for
the past 2 years to solve numerous production performance
problems across the Facebook stack, over both end-user client
code as well as server-side code.

9 Acknowledgements
We thank our shepherd Rebecca Isaacs and the anonymous
SOSP reviewers for their invaluable feedback and suggestions,
and Canopy teammembers and collaborators past and present,
including Philippe Ajoux, David Chou, Jim Hunt, Delyan
Kratunov, Jérémie Marguerie, Ben Maurer, and Dawid Pus-
tulka.

References
[1] Abraham, L., Allen, J., Barykin, O., Borkar, V., Chopra, B., Gerea,

C., Merl, D., Metzler, J., Reiss, D., Subramanian, S., Wiener, J. L.,
and Zed, O. Scuba: Diving into Data at Facebook. In 39th International
Conference on Very Large Data Bases (VLDB ’13). (§3.1, 4.2, and 4.5).

SOSP ’17, October 28, 2017, Shanghai, China J. Kaldor et al.

[2] Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and
Muthitacharoen, A. Performance Debugging for Distributed Systems
of Black Boxes. In 19th ACM Symposium on Operating Systems Principles
(SOSP ’03). (§7).

[3] Alspaugh, S., Di Chen, B., Lin, J., Ganapathi, A., Hearst, M. A.,
and Katz, R. H. Analyzing Log Analysis: An Empirical Study of User
Log Mining. In 28th USENIX Large Installation System Administration
Conference (LISA ’14). (§2.2 and 7).

[4] Apache. ACCUMULO-3741: Reduce incompatibilities with htrace 3.2.0-
incubating. Retrieved January 2017 from https://issues.apache.org/
jira/browse/ACCUMULO-3741. (§2.2).

[5] Apache. ACCUMULO-4171: Update to htrace-core4. https://issues.
apache.org/jira/browse/ACCUMULO-4171. [Online; accessed January
2017]. (§2.2).

[6] Apache. CASSANDRA-10392: Allow Cassandra to trace to custom
tracing implementations. Retrieved January 2017 from https://issues.
apache.org/jira/browse/CASSANDRA-10392. (§3.2).

[7] Apache. HBASE-12938: Upgrade HTrace to a recent supportable in-
cubating version. Retrieved January 2017 from https://issues.apache.
org/jira/browse/HBASE-12938. (§2.2).

[8] Apache. HBASE-9121: Update HTrace to 2.00 and add new example
usage. Retrieved January 2017 from https://issues.apache.org/jira/
browse/HBASE-9121. (§2.2).

[9] Apache. HDFS-11622 TraceId hardcoded to 0 in DataStreamer, cor-
relation between multiple spans is lost. Retrieved April 2017 from
https://issues.apache.org/jira/browse/HDFS-11622. (§2.2).

[10] Apache. HDFS-7054: Make DFSOutputStream tracing more fine-
grained. Retrieved January 2017 from https://issues.apache.org/jira/
browse/HDFS-7054. (§2.2).

[11] Apache. HDFS-9080: update htrace version to 4.0.1. Retrieved January
2017 from https://issues.apache.org/jira/browse/HDFS-9080. (§2.2).

[12] Apache. HTrace. Retrieved January 2017 from http://htrace.
incubator.apache.org/. (§2.2, 3.2, 5.3, and 7).

[13] Apache. HTRACE-118: support setting the parents of a span after the
span is created. Retrieved January 2017 from https://issues.apache.
org/jira/browse/HTRACE-118. (§2.2).

[14] Apache. HTRACE-209: Make span ID 128 bit to avoid collisions. Re-
trieved January 2017 from https://issues.apache.org/jira/browse/
HTRACE-209. (§2.2).

[15] Bailis, P., Gan, E., Madden, S., Narayanan, D., Rong, K., and Suri,
S. MacroBase: Analytic Monitoring for the Internet of Things. arXiv
preprint arXiv:1603.00567 (2016). (§7).

[16] Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. Using Mag-
pie for Request Extraction and Workload Modelling. In 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’04).
(§7).

[17] Barham, P., Isaacs, R., Mortier, R., and Narayanan, D. Magpie:
Online Modelling and Performance-Aware Systems. In 9th USENIX
Workshop on Hot Topics in Operating Systems (HotOS ’03). (§7).

[18] Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishnamurthy, A. In-
ferring Models of Concurrent Systems from Logs of Their Behavior with
CSight. In 36th ACM International Conference on Software Engineering
(ICSE ’14). (§7).

[19] Chanda, A., Cox, A. L., and Zwaenepoel,W.Whodunit: Transactional
Profiling for Multi-Tier Applications. In 2nd ACM European Conference
on Computer Systems (EuroSys ’07). (§7).

[20] Chen,M. Y., Accardi, A., Kiciman, E., Patterson, D. A., Fox, A., and
Brewer, E. A. Path-Based Failure and Evolution Management. In 1st
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’04). (§7).

[21] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. Pin-
point: Problem Determination in Large, Dynamic Internet Services. In

32nd IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN ’02). (§7).

[22] Chow, M., Meisner, D., Flinn, J., Peek, D., and Wenisch, T. F. The
Mystery Machine: End-to-end Performance Analysis of Large-scale In-
ternet Services. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’14). (§2.2 and 7).

[23] Fonseca, R., Freedman, M. J., and Porter, G. Experiences with Trac-
ing Causality in Networked Services. In 2010 USENIX Internet Network
Management Workshop/Workshop on Research on Enterprise Networking
(INM/WREN ’10). (§2.2).

[24] Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and Stoica, I.
X-Trace: A Pervasive Network Tracing Framework. In 4th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI ’07).
(§1, 2.2, and 7).

[25] Guo, Z., Zhou, D., Lin, H., Yang, M., Long, F., Deng, C., Liu, C., and
Zhou, L. G2 : A Graph Processing System for Diagnosing Distributed
Systems. In 2011 USENIX Annual Technical Conference (ATC). (§7).

[26] Jiang, Y., Ravindranath, L., Nath, S., and Govindan, R. WebPerf:
Evaluating “What-If ” Scenarios for Cloud-hosted Web Applications. In
2016 Conference of the ACM Special Interest Group on Data Communica-
tion (SIGCOMM). (§7).

[27] Johnson, R. Facebook’s Scribe technology now open source. (Octo-
ber 2008). Retrieved August 2017 from https://www.facebook.com/note.
php?note_id=32008268919. (§4.1 and 4.2).

[28] Karumuri, S. PinTrace: Distributed Tracing at Pinterest. (August 2016).
Retrieved July 2017 from https://www.slideshare.net/mansu/pintrace-
advanced-aws-meetup. (§2.2).

[29] Kavulya, S. P., Daniels, S., Joshi, K., Hiltunen, M., Gandhi, R., and
Narasimhan, P. Draco: Statistical Diagnosis of Chronic Problems in
Large Distributed Systems. In 42nd IEEE/IFIP Conference on Dependable
Systems and Networks (DSN ’12). (§7).

[30] Ko, S. Y., Yalagandula, P., Gupta, I., Talwar, V., Milojicic, D., and
Iyer, S. Moara: Flexible and Scalable Group-Based Querying System. In
9th ACM/IFIP/USENIX International Conference on Middleware (Mid-
dleware ’08). (§7).

[31] Leavitt, J. End-to-End Tracing Models: Analysis and Unification. B.Sc.
Thesis, Brown University, 2014. (§2.2 and 3.3).

[32] Li, D., Mickens, J., Nath, S., and Ravindranath, L. Domino: Under-
standingWide-Area, Asynchronous Event Causality inWebApplications.
In 6th ACM Symposium on Cloud Computing (SoCC ’15). (§7).

[33] Mace, J. End-to-End Tracing: Adoption and Use Cases. Survey,
Brown University, 2017. http://cs.brown.edu/people/jcmace/papers/
mace2017survey.pdf. (§7).

[34] Mace, J., Roelke, R., and Fonseca, R. Pivot Tracing: Dynamic Causal
Monitoring for Distributed Systems. In 25th ACM Symposium on Oper-
ating Systems Principles (SOSP ’15). (§7).

[35] Mann, G., Sandler, M., Krushevskaja, D., Guha, S., and Even-Dar,
E.Modeling the Parallel Execution of Black-Box Services. In 3rd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud ’11). (§2.2, 3.4,
and 7).

[36] Massie, M. L., Chun, B. N., and Culler, D. E. The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience. Parallel
Computing 30, 7 (2004), 817–840. (§7).

[37] Nagaraj, K., Killian, C. E., and Neville, J. Structured Comparative
Analysis of Systems Logs to Diagnose Performance Problems. In 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’12). (§7).

[38] Oliner, A. J., Kulkarni, A. V., andAiken, A. UsingCorrelated Surprise
to Infer Shared Influence. In 40th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’10). (§7).

[39] OpenTracing. OpenTracing. Retrieved January 2017 from http://
opentracing.io/. (§7).

https://issues.apache.org/jira/browse/ACCUMULO-3741
https://issues.apache.org/jira/browse/ACCUMULO-3741
https://issues.apache.org/jira/browse/ACCUMULO-4171
https://issues.apache.org/jira/browse/ACCUMULO-4171
https://issues.apache.org/jira/browse/CASSANDRA-10392
https://issues.apache.org/jira/browse/CASSANDRA-10392
https://issues.apache.org/jira/browse/HBASE-12938
https://issues.apache.org/jira/browse/HBASE-12938
https://issues.apache.org/jira/browse/HBASE-9121
https://issues.apache.org/jira/browse/HBASE-9121
https://issues.apache.org/jira/browse/HDFS-11622
https://issues.apache.org/jira/browse/HDFS-7054
https://issues.apache.org/jira/browse/HDFS-7054
https://issues.apache.org/jira/browse/HDFS-9080
http://htrace.incubator.apache.org/
http://htrace.incubator.apache.org/
https://issues.apache.org/jira/browse/HTRACE-118
https://issues.apache.org/jira/browse/HTRACE-118
https://issues.apache.org/jira/browse/HTRACE-209
https://issues.apache.org/jira/browse/HTRACE-209
https://www.facebook.com/note.php?note_id=32008268919
https://www.facebook.com/note.php?note_id=32008268919
https://www.slideshare.net/mansu/pintrace-advanced-aws-meetup
https://www.slideshare.net/mansu/pintrace-advanced-aws-meetup
http://cs.brown.edu/people/jcmace/papers/mace2017survey.pdf
http://cs.brown.edu/people/jcmace/papers/mace2017survey.pdf
http://opentracing.io/
http://opentracing.io/

Canopy SOSP ’17, October 28, 2017, Shanghai, China

[40] OpenTracing. Specification 5: Non-RPC Spans and Mapping to
Multiple Parents. Retrieved February 2017 from https://github.com/
opentracing/specification/issues/5. (§2.2).

[41] OpenZipkin. Zipkin 1189: Representing an asynchronous span in Zipkin.
Retrieved January 2017 from https://github.com/openzipkin/zipkin/
issues/1189. (§2.2).

[42] OpenZipkin. Zipkin 1243: Support async spans. Retrieved January 2017
from https://github.com/openzipkin/zipkin/issues/1243. (§2.2).

[43] OpenZipkin. Zipkin 1244: Multiple parents aka Linked traces. Re-
trieved January 2017 from https://github.com/openzipkin/zipkin/
issues/1244. (§2.2).

[44] OpenZipkin. Zipkin 925: How to track async spans? Retrieved January
2017 from https://github.com/openzipkin/zipkin/issues/925. (§2.2).

[45] OpenZipkin. Zipkin 939: Zipkin v2 span model. Retrieved January 2017
from https://github.com/openzipkin/zipkin/issues/939. (§2.2).

[46] Ostrowski, K., Mann, G., and Sandler, M. Diagnosing Latency in
Multi-Tier Black-Box Services. In 5th Workshop on Large Scale Dis-
tributed Systems and Middleware (LADIS ’11). (§2.2, 3.4, and 7).

[47] Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., and Chun,
B.-G. Making Sense of Performance in Data Analytics Frameworks. In
12th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI ’15). (§7).

[48] Ravindranath, L., Padhye, J., Mahajan, R., and Balakrishnan, H.
Timecard: Controlling User-Perceived Delays in Server-Based Mobile
Applications. In 24th ACM Symposium on Operating Systems Principles
(SOSP ’13). (§7).

[49] Reynolds, P., Killian, C. E., Wiener, J. L., Mogul, J. C., Shah, M. A.,
and Vahdat, A. Pip: Detecting the Unexpected in Distributed Systems.
In 3rd USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI ’06). (§7).

[50] Sambasivan, R. R., Shafer, I., Mace, J., Sigelman, B. H., Fonseca, R.,
and Ganger, G. R. PrincipledWorkflow-Centric Tracing of Distributed
Systems. In 7th ACM Symposium on Cloud Computing (SOCC ’16). (§2.2
and 7).

[51] Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat, E., Whitman,
S., Stroucken, M., Wang, W., Xu, L., and Ganger, G. R. Diagnosing
Performance Changes by Comparing Request Flows. In 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’11).
(§7).

[52] Shreedhar, M., and Varghese, G. Efficient Fair Queuing Using Deficit
Round Robin. In 1995 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM). (§4.2).

[53] Sigelman, B. H. Towards Turnkey Distributed Tracing. (June 2016). Re-
trieved January 2017 from https://medium.com/opentracing/towards-
turnkey-distributed-tracing-5f4297d1736. (§2.2).

[54] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S., and Shanbhag, C. Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure. Technical Re-
port, Google, 2010. (§1, 2.2, 5.3, and 7).

[55] Slee, M., Agarwal, A., and Kwiatkowski, M. Thrift: Scalable Cross-
Language Services Implementation. Technical Report, Facebook, 2007.
(§3).

[56] Spring. Spring Cloud Sleuth. Retrieved January 2017 from http://cloud.
spring.io/spring-cloud-sleuth/. (§7).

[57] Tang, C., Kooburat, T., Venkatachalam, P., Chander, A., Wen,
Z., Narayanan, A., Dowell, P., and Karl, R. Holistic Configuration
Management at Facebook. In 25thACMSymposium onOperating Systems
Principles (SOSP ’15). (§4.1 and 4.1).

[58] Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-Malek, M.,
Lopez, J., andGanger, G. R. Stardust: Tracking Activity in a Distributed
Storage System. In 2006 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). (§7).

[59] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N.,
Antony, S., Liu, H., and Murthy, R. Hive - A Petabyte Scale Data
Warehouse Using Hadoop. In 26th IEEE International Conference on
Data Engineering (ICDE ’10). (§4.2).

[60] Twitter. Zipkin. Retrieved July 2017 from http://zipkin.io/. (§2.2
and 7).

[61] Van Renesse, R., Birman, K. P., and Vogels, W. Astrolabe: A Robust
and Scalable Technology For Distributed System Monitoring, Manage-
ment, and Data Mining. ACM Transactions on Computer Systems 21, 2
(2003), 164–206. (§7).

[62] Wagner, T., Schkufza, E., and Wieder, U. A Sampling-Based Ap-
proach to Accelerating Queries in Log Management Systems. In Poster
presented at: 7th ACMSIGPLAN International Conference on Systems, Pro-
gramming, Languages and Applications: Software for Humanity (SPLASH
’16). (§7).

[63] Wang, C., Kavulya, S. P., Tan, J., Hu, L., Kutare, M., Kasick, M.,
Schwan, K., Narasimhan, P., and Gandhi, R. Performance Trou-
bleshooting in Data Centers: An Annotated Bibliography. ACM SIGOPS
Operating Systems Review 47, 3 (2013), 50–62. (§7).

[64] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K., Talwar, V.,
Wolf,M., andHuneycutt, C.VScope:Middleware for Troubleshooting
Time-Sensitive Data Center Applications. In 13th ACM/IFIP/USENIX
International Middleware Conference (Middleware ’12). (§7).

[65] Workgroup, D. T. Tracing Workshop. (February 2017). Retrieved Feb-
ruary 2017 from https://goo.gl/2WKjhR. (§2.2).

[66] Xu,W.,Huang, L., Fox, A., Patterson,D., and Jordan,M. I. Detecting
Large-Scale System Problems by Mining Console Logs. In 22nd ACM
Symposium on Operating Systems Principles (SOSP ’09). (§7).

[67] Zhao, X., Rodrigues, K., Luo, Y., Yuan, D., and Stumm, M. Non-
Intrusive Performance Profiling for Entire Software Stacks Based on the
FlowReconstruction Principle. In 12th USENIX Symposium onOperating
Systems Design and Implementation (OSDI ’16). (§7).

[68] Zhao, X., Zhang, Y., Lion, D., Faizan, M., Luo, Y., Yuan, D., and
Stumm, M. lprof: A Non-intrusive Request Flow Profiler for Distributed
Systems. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14). (§7).

https://github.com/opentracing/specification/issues/5
https://github.com/opentracing/specification/issues/5
https://github.com/openzipkin/zipkin/issues/1189
https://github.com/openzipkin/zipkin/issues/1189
https://github.com/openzipkin/zipkin/issues/1243
https://github.com/openzipkin/zipkin/issues/1244
https://github.com/openzipkin/zipkin/issues/1244
https://github.com/openzipkin/zipkin/issues/925
https://github.com/openzipkin/zipkin/issues/939
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736
http://cloud.spring.io/spring-cloud-sleuth/
http://cloud.spring.io/spring-cloud-sleuth/
http://zipkin.io/
https://goo.gl/2WKjhR

	Abstract
	1 Introduction
	2 Motivation
	2.1 Canopy in Action
	2.2 Challenges

	3 Design
	3.1 Canopy Overview
	3.2 Instrumentation APIs
	3.3 Trace Events
	3.4 Modeled Traces
	3.5 Trace Datasets

	4 Implementation
	4.1 Canopy Client Library
	4.2 Canopy Pipeline
	4.3 Scalability
	4.4 Feature Extraction
	4.5 Querying and Visualization

	5 Evaluation
	5.1 Overheads
	5.2 Load Shedding
	5.3 Trace Model Evolution
	5.4 Case Studies

	6 Experiences
	7 Related Work
	8 Conclusion
	9 Acknowledgements

