SILO YOUR DATA FROM THRE

[ENSILO

Captain Hook |
Pirating AVs to Bypass
Exploit Mitigations /

|

enSilo Research Team
THy \i\

L'\ -
” . -
= =
3—
RS A ; | =i e
== , e e - A e e et O 2
SR e e o T | auer s =i —_—
S - . August 206 : :
g e GG -
e a~—

www.ensilo.com . ;‘,”

http://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

TABLE OF CONTENTS

Hooking in a Nutshell 3
Under-the-Hood of Inline User-Mode Hooking 4
Injecting the Hook Engine 10
The Security Issues of Hooking 13
3rd party hooking engines 20
Summary 23

About enSilo 25

https://www.ensilo.com/
https://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

User-mode hooks are used by most of the end-point security vendors today, specifically Anti-Virus (AV)
products, and Anti-Exploitation products such as EMET. Beyond their usage in security, hooks are used
in other invasive applications such as Application Performance Management (APM) technologies to

track performance bottlenecks.

Hooking itself is a very intrusive coding
operation where function calls (mainly operating
system functions) are intercepted in order to

alter or augment their behavior.

Given the sensitivity of hooking
implementations, we sought to find their
robustness. For our research, we investigated
about a dozen popular security products. Our
findings were depressing - we revealed six
different security problems and vulnerabilities

stemming from this practice.

HOOKING IN A NUTSHELL

The use of hooks allows intrusive software to intercept and monitor sensitive API calls. In particular,
security products use hooking to detect malicious activity. For example, most Anti-Exploitation solutions
monitor memory allocation functions, such as VirtualAlloc and VirtualProtect, in an attempt to detect

vulnerability exploitation.

On the other side of the security spectrum, hooks are also used extensively by malware for various

nefarious purposes, the most popular being Man-In-The-Browser (MITM) attacks.

The most common form of hooking in real-life products, especially security products, is inline hooking.
Inline hooking is performed by overwriting the first few instructions in the hooked function and
redirecting it to the hooking function. Although there are other forms of hooking, such as Import

Address Table (IAT)-hooking, this research focuses only on inline hooks.

3/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

Hooking in user-mode is usually implemented within a DLL which is loaded into a process address

space. We refer to this DLL as the “Hooking Engine”.

In this paper we dive into inline user-mode hooking. We also take a deep look into injection techniques,
specifically kernel-to-user injections, since these are usually used to load the hooking engine into the
process address space. Kernel-to-user injections are not trivial to implement and accordingly, some of
the most severe issues that we found were not in the hooking engine itself but rather in the

implementation of the kernel-to-user injection.

UNDER-THE-HOOD OF INLINE
USER-MODE HOOKING

Although hooking is quite common and there are several common hooking libraries out there, such as
Microsoft Detours, it seems that most security vendors develop their own hooking engines. That said,
apart from a few exceptions, most of these in-house inline hooking implementations are pretty much

similar.

INLINE HOOKING ON 32-BIT PROCESSES

Hooking 32-bit functions is straight forward most of the time. The hooking engine disassembles the first
few instructions of the target function in order to replace it with a 5 byte jmp instruction. After at least 5
bytes of disassembled instructions are found, the hooking engine copies the instructions to a
dynamically allocated code stub and follows with a jmp which returns the code to the original function.

At that stage, the hooking engine overwrites the instructions with a jmp to the actual hooking function.

For example, let's see how a hook on InternetConnectW looks in a windbg:

0:000:x86 u WINIHET!InternetConhectW
I .

ec
77090ec?
77090=c3

T an =D,
77090ecd 8iecic =ub e=p, /Ch
77090ech &3 pu=h ebx
77090ecc 56 push e=1
77090eczd 57 push =di

Figure 1: InternetConnectW before the hook is set (Marked in red are the instructions that will be replaced)

4/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SIL@ RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

0:014:x836> u WINIHNET! InternetConhectW

77090ecl =37b7al=59 jmp 001748940

7709028 83ecicoc =uhb e=p. fCh
77090ech 53 pu=h b
?7090ecc 56 push 2=l
77090ecd 57 pu=sh edi

Figure 2: After the hook is set

We can see that the jmp instruction leads to 0x178940, which is the hooking function itself.

Disassembling the code at 0x178940 provides:

noo178940 55 pu=h =bp

00178941 Sbhec mow ebp. esp

00178943 53 pu=h b

nn17a8944 8btdlc now ebx,dvord ptr [ebp+lCh]
00178947 LSa pu=sh 2=1

00178948 &7 pu=sh edi

00178949 ££7524 push dword ptr [ebp+24h]
00178%4c 33f6 HOT ezl ezl

0017894= f£75210 pu=h dword ptr [sbp+20h]
non178951 &3 push ebx

00178952 ff75148 pu=h dword ptr [=bp+l18h]
Q0178955 ££7514 push dword ptr [=ebp+l4h]
0178958 f£7510 pu=sh dword ptr [ebp+l0h]
00178950b f£750c pu=h dword ptr [ebp+0Ch]
[11] HY9EL = [1H u - ; u

Figure 3: Disassembled code at 0x178940

This code calls the original InternetConnectW function, leading to:

0:014: =86 uw poi(0019f22c)

03110000 8bff mor edi,edi

03110002 55 push ebp

03110003 8hec o ebp . e=p

03110005 =%bbl=fd73 Jnp WINIHET ! InternetConnectW+0x5 (77090ech)
0311000a 90 nop

0311000k 90 noo

0311000z 90 nop

Figure 4: Original instructions of the function followed by a jmp

As shown, the original instructions of the function are followed by a jmp to the original function.

5/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

OTHER TECHNIQUES

There are also other ways to achieve function hooking:

+ One Byte Patching - This technique is most used by malware. The idea is simple, hooking is
performed by patching the first byte with an illegal instruction (or with an instruction that generates
an exception) and installing an exception handler. Whenever the code executes, an exception will
occur whereas the exception handler will handle it and act as the hooking function.

* Microsoft Hot-Patching - Hot-Patching was developed by Microsoft to enable patching without the
need to reboot. The patching itself is done through the inline-hooking of the relevant function. To
make things easy, Microsoft decided to keep a 5-bytes’ space between functions and change the first

instruction to a 2-byte NOP, specifically mov edi, edi instructions.

0:027> ub kermelbas=e!loadlibraryi+s LE
FEBKELERSE ! CreatefamaphoreEwi-Iuth:
T5dZbElb oo int 3
T53ZbEle oo int 2
T8dZbEld oo int 3
T5dzZbEle oo int a
TSIZLELE cc int a
FERKELRASE ! LoadLibrary:

T532bEZ0 BLEE mov edi,edi
T53ZhEEE 55 push ebp
753ZbEZ3 Ebec mor ebp, &2p

Figure 5: Prior to hot-patching

The patch is done by replacing the 2-byte NOP with a short jmp instruction and replacing the 5-byte gap

with a long jmp. This way the hooking code doesn't need to copy any of the original instructions.

0:033* vb kernelbase!loadlibraryds L4

FEFHELEASE ! CreateSemaphoreEwd+-Iubh:

T4dfbElb =E004000E0 Jup faenaezn <

FEFHELEAIE ! LoadLibraryH:

T4dfLEZD ebfl Jmp HERK ASE | CreateFemaphoraEwi+-fxCh lj'!t!dﬂ:-Elb])
T4dfhEZE 55 pu=h =bp

T4dfhEZ3 Bber mor ebp, f=p

)) Hooking Function
Figure 6: After hot-patching

6/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

POSSIBLE COMPLICATIONS

In other 32-bit hooking scenarios, hooking is not that straight forward. For example:

+ Relative instructions - If one of the instructions is a relative call/jmp it must be fixed before being
copied.

» Very short functions - If a function is less than 5 bytes it might be hard to patch without overriding
adjacent function.

+ Jmp/Jxx to function's start - If some instruction in the function jumps back to the start of the
function, the instruction will jump to the middle of the jmp instruction, resulting in a crash. This
scenario is very difficult to solve without the full disassembly of the target function (or through one

byte patch). However, this scenario is extremely rare.

A nice read on possible hooking issues can be found in by Gil Dabah.

INLINE HOOKING ON 64-BIT PROCESSES

Hooking on 64-bit processes is a bit more difficult than on 32-bit because the address space is much
larger. This means that 5 bytes jmp instruction might not be enough in order to install a x64 hook since

it is limited to a 2GB range from the its location.

There are several solutions to this problem, some of them are described in by Gil
Dabah.

The most common solution to this issue is to allocate code stub within 2GB range from the hooked

function and use the following code template:

MOV RAX, <Hooking Function>

JMP RAX

For example, let's take a look at a hook on the 64-bit version of InternetConnectA.

7/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.ragestorm.net/blogs/?p=348
http://www.ragestorm.net/blogs/?p=107

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

0:000x u
oooon?fe”

oooonife’
oooon?fe”
oooonife’
oooon?fe”
oooon?fe”
oooon?fe”

WIHIHET | InternetConhecth

WIHIHET | InternetConnecti:

feib70a0 48895=2408 o quord ptr [r=p+8].rbx
feldb?0ab 4889%cc2410 mow guord ptr [r=p+l10h].xbp
feib7laa 4889742418 o quvord ptr [r=p+l18h].r=1i
felib?0af &7 push rdi

fe3db?70b0 4154 pu=sh rlz2

fe3b?0b2 4155 pu=sh rl3

fe3b?0b4 4156 push rld

Figure 7: The original InternetConnectA function

0:009: u

goooo?fe”
gooon7fe”
ooooovte”

goooo?fe”
gooon7fe”
DDDDD?EE“

DDDDD?fE”

HIHIHETlInternetCDnnecté

feEh?DaD eBEh?fe4ff i Qoooo?fe felffoon
feadb?0at 53
fedb?0at 90
fedb?0a?
feadb?0al
feEh?DaB
Jaa
fEEb?Daf 57 pu=sh rdi

Figure 8: The function after the hook is set.

As shown, the function jumps to Ox7fefe1ff000.

0:00%9: u
goooo7fe”
goooo7fe”
Qooooife”
goooo7fe”

ooo0Yfe" felf£000
felff000 428b8c094006300000000 mow rax, 00000000 6200940

felffilda ffel imp rax
felffdld=z 20 nop
felffo0d 20 hop

Figure 9: Disassembling the code in address0x7fefe1ff000

If we follow the hooking function like we did in the 32-bit version we get to the following code stub

which redirects the execution back to the original function:

ooo0o000" 00380000 488952408 O qword ptr [r=p+8].rb=

ooooooo0 00330005 488%6c2410 oy gword ptr [r=p+l0h].zrbp

oooooooo-0038000a 50 push rax

ooooo000To0038000b 48b8a5?03bfefeD?DDDD nov rax,of fzet WININET!InternetConnectA+0=5 (000007fe" fe3b70ab)
00000000 00380015 ffel0 jmp rax

Figure 10: 64-bit code stub

8/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

OTHER TECHNIQUES

There are also other ways to achieve function hooking:

6-Byte Patching - It is possible to avoid using trampolines by patching 6-bytes instead of 5 bytes,

and making sure that the target is in a 32-bit address space. The idea is simply to use a push-ret

instructions to do the jmp. This is how it looks like:

D007 £ BeBdBTES 3
[FUFLAL CoHan HG

r GEEME YL W [z=p+llh] =i
00007 EEc BeBdBTEL 57 puzh =di

Figure 11: 6-byte patching

[[lo-o08r v kernelbas=e!loadlibrarya
EFANFLER ST] -

Double Push (Nikolay Igotti) - One of the problem of the classic techniques is that it trashes the
rax register. One way to avoid it while still being able to jump anywhere in the address space is by
pushing the lower 4-byte of the address into the stack and then copying the high 4-bytes of the

address into the stack and then returning to that address.

r0007 £fc BeBdBTED EBOOOO0ADD pu=h F0000h
CO00T7EEc BeB4dBTES 7442404 EcTERODD mowr dword ptr [r=p+i] . TEECh

00007 Efc BeBdRTEd 3 et
0007 £fc BeBdR 76 2048EL and byte ptr [raw-T5h].cl

Figure 12: Double-push patching

POSSIBLE COMPLICATIONS

Complications in 64-bit hooking are similar to those in 32-bit hooking. However, since 64-bit code

supports an instruction-pointer relative instructions there is a greater chance that the hooking engine

will need to fix Instruction-pointer relative code. For example:

MOV RAX, QWORD [RIP+0x15020]

9/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO

SILO YOUR DATA FROM THREAT ACTORS

RESEARCH PAPER

INJECTING THE HOOK ENGINE

Regardless of the way the hooking engine is implemented, a prerequisite for it to do its job is to inject it

into the target process. Most vendors use kernel-to-user DLL injections to perform this. In this section

we cover the most common methods used by security vendors.

Import Injection

This method is quite common and is relatively clean as it doesn't require any code modifications. As far

as we know this injection technique was never used by malware.

It works by adding an import to the main image. These are the steps for import injection:

1. Register load image callback using
PsSetLoadlmageNotifyRoutine and

wait for main module to load.

2. After the main module is loaded,
the import table is copied to a
different location and a new row

that imports the hook engine is

added to the beginning of the table.

The RVA of the import table is
modified to point to the new table.
This is how it looks like in Internet

Explorer:

0:000> !'dh iexplore

File Type: EXECUTABLE IMAGE
FILE HEADER VALUES
14C machine {1386)
5 nunber of sections
S3F262AC tine date stamp Mon Aug 18 23:31:40 2014

0 file pointer to symbol table
0 number of symbols
E0 size of optional header
102 characteristics
Ezecutable
32 bit word machine

OPTIONAL HEADER VALUES
10B magic #
11.00 linker wersion
3400 size of code
BEAQD size of initialized data
0 size of uninitialized data
1DDD address of entry point
1000 base of code
————— new -————-—
00000000008c0000 image base
1000 section alignment
200 file alignment
2 subsystem (Windows GUI)
6.03 operating system version
6.03 image wversion
6,01 subsystem version
Ce000 size of image
400 size of headers
CAEE4 checksun
0000000000100000 =ize of stack reserve
000000000000e000 size of stack commit
0000000000100000 size of heap reserve
0000000000001000 =ize of heap comnit
8040 DLL characteristics
Dynamnic base
Terminal server aware
a

Import Directory RVA is
out of image

0 address [size] of Export Directorwy
[FF7CO000 9C] address [size] of Import Directory]
7000 BDAUE] address [=1ze] oI Resource Directory
0] address [size] of Exception Directory
C2800 3CBE8] address [size] of Security Directory
C5000 328] address [size] of Base Relocation Directory
4828 38] address [size] of Debug Directory
1] 0] address [size] of Description Directory
0 0] address [size] of Special Directory
0] address [=ize] of Thread Storage Directory
2D88 40] address [=ize] of Load Configuration Directory
0 address [size] of Bound Import Directory
6000 138] address [size] of Import Address Table Directory
45E0 A0] address [size] of Delay Import Directory
1] 0] address [size] of COR20 Header Directory
0 0] address [size] of Reserved Directory

Figure 13: Internet Explorer patched import table

10/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SIL@ RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

This is the new import table:
0.000.x86> dd /o6 sogpg 1NE NEW row

00080000 f££f7c009c ffffffff fEffEfEf ££7c00b4 ff7c008c

00080028 00006294 00000000 00000000 00006214 00006064
0008003c 00006328 00000000 00000000 00006le8 OOOOGOLS
00080050 00006345 00000000 00000000 00006148 00006118
00080064 00006360 00000000 00000000 000061bO 00006130

Figure 14: The new import table

3. When the module completes loading, the RVA of the original import table is restored.

ENTRYPOINT PATCHING

To the best of our knowledge, this kind of injection method was first used by the infamous

malware and is well documented. It is also used by security vendors.
These are the steps for entrypoint patching:
1. Register load image callback using PsSetLoadlmageNotifyRoutine and wait for main module
to load.

2. Read the instructions from the entrypoint and allocate a payload to load the hook engine.

Patch the entry point with a jmp to the payload. This is how entry point patching looks like in Internet

Explorer:
iexplore+0=xlddd:
00cS51ddd e91ee257£ff jmp 0oidoooo
00c51de? =955f9ffff Imp iexplore+03y] 73c (00=5173c)
00c51de? 90 nop
00c51deld 90 nop
00cS1ded 90 nop JMP to the payload
00cS51dea 90 nop
00=51deb 90 nop
00cS1ldec 8bff mov edi,edi
0D:000:=86> uf 00140000
00140000 55 push ebp
00140001 8hec MoV ebp. esp
00140003 83ecdd sub e=p, 48h
00140006 ebS0D imp oo1dooss

Figure 15: Internet Explorer patched entrypoint

11725

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet

SILO

SILO YOUR DATA FROM THREAT ACTORS

RESEARCH PAPER

3. When the payload executes, it first loads the hooking engine and then restores the bytes that

were copied from the original image.

iexplore+0xlddd:
00c=51ddd e91es25711 inp 00140000
00cb1ldeZ e955f9fEff np iexplore+0x173c (00c5173c)
00=51d=7 90 nop
00c51des 90 nop
00=51ded 90 nop
00=51dea 90 nop
00=51d=b 90 nop
00cSldec &bff mov edi,edl
0:000:=86> uf 00140000
00140000 55 push ebp
00140001 8bec mov ebp,esp
00140003 §3ecds sub esp, 46h
00140006 ehbS0 Fnp 00140088
140058 6a40 push 40h
0014005a 6808001400 push 1D0008h
0014005f 244CEb& lea eax, [ebp-42h]
001d00ez 50 push Eax
00140063 bE840238077 nov eax,offset ntdll32!nemcpy (77802340) dth
001d0068 f£d0 call eax Load the
001d006a 8d45b8 lea eax, [ebp-48h] . .
001d006d 50 push eax hooking engine
001d006e bEE3487276 mov eax, of fset kernell?|loadlibraryl (76724B£3)
00140073 f£d0 call eax
140075 8heb WOy e=p_s=hp
00140077 5d pop ebp
00140078 55 push ebp
00140079 fbec mov sbp, esp
0014007b 83ec08 sub esp, §
001d007e <745f800000000 mow dword ptr [ebp-8].0
00140085 c745fc02000000 mowv dword ptr [ebp-4].2
001d008c c745£8dd1dc500 mow dword ptr [ebp-8].offset iexplore+0zlddd (00cb51ddd)
00140093 8dd5fc lea eax. [ebp-4]
00140096 50 push eax
00140097 6240 push 40h
00140099 £805000000 push B
0014009 8b4dfs mowv ecx,.dvord ptr [ebp-8]
00140021 51 push ecx
001d00az bB827437270 mov eax,offset kerneliZ!VirtualProtect (76724327)
001400a7 f£d0 call E3X
M001d00a9 6805000000 push S
001d00== £8d£001d00 push 1D0ODFh Restore the code of
001d00b3 68ddldc500 push offset ilexplore+0xlddd (00cS51ddd) .
001d00h2 h840238077 mnov eax, of fset ntdl132Imemncpy (77802340) the entrypoint
L8 i 181 T s 5 1) [==3 =58
001d00bf 8dSSfc lea ed=, [ebp-4]
001d00c2 52 push ed=x
001400=3 8b4Sfc nowv eax, dvord ptr [sbp-4]
001d00cé S50 push eax
001d400<7 £805000000 push S
001d00cc 8b4dfs mov ecx.dwvord ptr [ebp-8]
001d400=f 51 push ecx
001d00d0 b827437276 mov eax,offset kerneli2!VirtualProtect (76724327)
o01do0ds f£40 call eax
Oncnud) Shes it Eff'Ebp Jump back to the
001400ds =9f=lcaB00 Jmp iexplore+0xlddd (00c51ddd)

entrypoint

Figure 16: Restoring the bytes from the original image

User-APC

Kernel-to-user DLL injection using User Mode APC (Asynchronous Procedure Call) is probably the most

documented and common method. This method was also extensively used by malware, TDL and Zero-

Access for example.

For detailed information on this injection method we refer the reader to:

12/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.opening-windows.com/techart_windows_vista_apc_internals2.htm
http://rsdn.ru/article/baseserv/InjectDll.xml

SILO

SILO YOUR DATA FROM THREAT ACTORS

This is how it works:
1. Register load image callback using PsSetLoad

module to load.

process and a function that will be called duri

jmp or push/ret to the payload. On user32.dll

RESEARCH PAPER

ImageNotifyRoutine and wait for the target

Once the module is loaded, a payload for loading the hook engine is injected into the

ng the startup of the process is patched with a

the patched function is used is usually

UserClientDllInitialize. On ntdll.dll the patched function is usually LdrLoadDLL. In this case,

the push/ret sequence is used to divert execution to the injected payload.

0:000> u ntdll132!LdrLoadDll
ntdl132!LdrLoadDll:

00000000° 77e0c4dd 6800000077 [push 77000000k]
00000000 77elcde c3 ret

00000000 77elcdeld cc int 3

00000000 77elcded cc int 3

Figure 17: LdrLoadDLL is used for injection

3. Once the payload executes it loads the hook engine and restores the original code in the

patched function.

THE SECURITY ISSUES

OF HOOKING

As stated above hooking has many benefits and is extensively used by many security vendors. However,

hooking is also a very intrusive operation and implementing it correctly is not a simple matter.

Our research of more than a dozen security products revealed six separate security issues stemming

from hooking-related implementations.

1. UNSAFE INJECTION

Severity: Very High
Affected Underlying Systems: All Windows versions

Description: This issue is a result of a bad DLL injection

implementation. We have seen two cases of

this issue which although had the same effect, differed in their technical details.

13/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

Description: This issue is a result of a bad DLL injection implementation. We have seen two cases of
this issue which although had the same effect, differed in their technical details.

+ LoadLibrary from relative path: In this case, the implementation uses the entrypoint
patching injection method to load its hooking engine. The problem is that the DLL isn't
loaded using a full path, making injected processes vulnerable to DLL hijacking vulnerability.
An attacker also uses this as a persistence mechanism by placing a malicious DLL in the
folder of the target process.

+ Unprotected injected DLL file: In this case, the vendor loads the DLL using a full path but
the DLL is placed in the %appdata%\..\Local\Vendor folder. The problem is that an attacker
could replace the DLL with a malicious DLL thus causing the vendor to load the malicious DLL

into every injected process.

Impact: In both cases, the attacker could use the affected implementation as a way to inject into most

processes in system. This is a very convenient way to achieve persistency on the target system.

Exploitability: In both cases, exploitation of this issue is very simple. Although we believe that most
attackers will not use vendor specific persistency mechanisms, security vendors should not weaken the

integrity of the operating system.

2. PREDICTABLE RWX CODE STUBS (UNIVERSAL)

Severity: Very High

Affected Underlying Systems: All Windows versions

Description: In this case, the implementation uses a constant address - both for 32-bit and 64-bit
processes, to allocate its injection code stub and leaves it as RWX. We have seen this issue only with one

vendor. We decided not to show the exact code stub of the vendor to avoid exploitation of the issue.
Impact: An attacker can leverage this issue as part of the exploitation process by overwriting the code

of the injection code stub with malicious code. Since the code stub also contains addresses of system

functions it also causes the following issues:

14/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SIL@ RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

+ Bypassing ASLR: Most of these code stubs contain addresses of important system functions,
such as LdrLoadDll, NtProtectVirtualMemory and more. These functions can be very useful as
part of an exploitation process. In the cases we researched, it was also possible to leak the
address of ntdll.dll.

+ Bypassing Hooks: In cases where the hooks code stubs are allocated at a constant address it
is possible to easily bypass the hook by calling directly to the function prolog. Note that in all
the cases we saw the offsets of the code stubs were at a constant offset.

» Code Reuse: An attacker can also use the code in these code stubs as part of a code reuse
attack. For example, an attacker can build a ROP chain that uses the part of the code which is
used for loading the hook engine DLL. Attackers can manipulate the arguments in a way that

their own DLL will be loaded.

All these issues make it possible to easily exploit vulnerabilities that will be otherwise very hard to

exploit.

Exploitability: Past research of ours showed that these kind of issues are significant by weaponizing an

old vulnerability in Adobe Acrobat Reader v.9.3

Later that year, on September 22, Tavis Ormandy from ProjectZero wrote a very interesting post,

about a vulnerability he discovered in Kaspersky that showed
that these threats are real. To exploit the vulnerability he found, Tavis used a second flaw in Kaspersky
which allocated RWX memory in a predictable address. To quote from Tavis's blog “Kaspersky have
enabled /DYNAMICBASE for all of their modules which should make exploitation unreliable.

Unfortunately, a few implementation flaws prevented it from working properly.”

3. PREDICTABLE RX CODE STUBS (UNIVERSAL)

Severity: High

Affected Underlying Systems: All Windows versions

Description: This issue usually occurs when the implementation uses a constant address to allocate its
injection code stub. One vendor we researched also uses a constant address to allocate the code stubs
for its hooks.

Impact: Depending on the exact implementation, an attacker can leverage this to bypass ASLR, bypass
Hooks or for code reuse as described in the previous issue (Predictable RWX Code Stubs - System

independent).

15725

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188
http://googleprojectzero.blogspot.co.il/2015/09/kaspersky-mo-unpackers-mo-problems.html

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

Exploitability: This issue is very simple to exploit. All an attacker has to do is use the information in the
hardcoded address. Moreover, in all the cases that we have seen, the address was constant for both 32-
bit and 64-bit processes. In most cases, it is also possible to use these code stubs to inject DLL into the

target process using methods similar to the ones described in a former research of ours,

Technical Breakdown
Let's see how it looks in a vulnerable hooking engine. In this case, the hooks are set in Internet-Explorer

and always at a constant address. An attacker can simply call 0xXXXX01f8 in order to call

ShellExecuteExW.

ROV edi edi

push rbp

now ebp.esp

Imp SHELL32 1Shel lExecuteExW+0x5 (00000000° 754blelb)
int 3

TRT 3

4. PREDICTABLE RWX CODE STUBS
(ON WINDOWS 7 AND BELOW)

Severity: High
Affected Underlying Systems: Windows 7 and below
Description: This issue is very common and was described thoroughly in our blog post “
", as well as in a follow-up blog post 6 months later
“ ".In all the cases we have

seen, the issue was caused by the kernel-to-user dll injection and not by the hooking engine itself.

Impact: Similar to the above “Predictable RX Code Stubs (System independent)” issue.
The impact severity is lower here, since not all version of the operating system are affected.

Exploitability: Similar to the above “Predictable RX Code Stubs (System independent)” issue.

16/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://breakingmalware.com/injection-techniques/code-less-code-injections-and-0-day-techniques/
http://breakingmalware.com/vulnerabilities/vulnerability-patching-learning-from-avg-on-doing-it-right/
http://breakingmalware.com/vulnerabilities/sedating-watchdog-abusing-security-products-bypass-mitigations/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

5. RWX HOOK CODE STUBS

Severity: Medium
Affected Underlying Systems: All Windows versions

Description: This is the most common issue in the hooking engines we researched. Most hooking
engines leave their hook code stubs as RWX. We assume that the main reason for this is to avoid

changing the code stub page protection whenever a new hook is set.

Impact: This can potentially be used by an attacker as part of exploitation process by overwriting the
code stubs with malicious code. Overwriting such stubs can make it much easier for an attacker to
bypass exploit mitigations such as Windows 10 Control-Flow-Guard (CFG) or Anti-Exploitation hooks.

For example, an attacker that achieved arbitrary read/write in the target process may find the hook stub
by following the hook’s code and overwriting it. At that stage, the attacker only needs to trigger the
execution of the hooked function (or even directly call the hook stub) in order to achieve code

execution, effectively bypassing CFG mitigation.

Exploitability: We believe that an attacker that achieved arbitrary read/write will whatever find a way to
complete the exploit without taking advantage of such an issue. Thus, it is unlikely that an attacker will
actually exploit this issue in a real-life scenario. That said, we believe that security vendors should do

their best not to weaken system's protections.

Technical Breakdown
Let's see how it looks in a vulnerable hooking engine. In this case, the hook is set on LdrLoadDLL

function:

0:028:%%6> u ntdll 7&6£700001LdrloadDll’
ntdll 7EE70000!LdrToadD] b

76facddd =9163d40829 imp noo3nlss

7efacde? allcf7£976 ! . [ntdll_76ef70000!we=nicmp+0xbl (76£9£70c)]
7efacde? 83eclc =ub esp. 0Ch

7efacdea 53 push ebx

7efacdeb 83cB01 or =ax, 1

Figure 18: The hooking engine in windbg

17725

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

If we check the permissions on the jmp target we will see that its permissions are RWX:

0:028:x86> laddre=s=s 000301f8

U=zage: <unclas=sified:
Allocation Ba=ze: aoozoonon

Ba=ze Addre==s: aoozo0non

End Addre==s: Q003b00on

Fegion Size: aooobo0n

Tvpe: ooozoonn MEM FRIVATE

State: goooliooo =
Protect: noooon4n FAGE EXECUTE_READWRITE
Figure 19: Permissions on the jmp target

6. RWX HOOKED MODULES:

Severity: Medium
Affected Underlying Systems: All Windows versions

Description: Some hooking engines leave the code of the hooked modules as RWX. This happens both
as part of the initial dll injection code and in the hooking engine code. This issue is not very common
and frankly, the appearance of this issue took us by surprise since we didn't even look for it given that

we couldn't think of any good reason for a hooking engine to be implemented this way.

Impact: An attacker can leverage this issue as part of the exploitation process by overwriting the code
of the hooked modules with malicious code, thus simplifying the bypassing of Windows' mitigations
such as Windows 10 Control-Flow-Guard.

For example, an attacker that achieved arbitrary read/write in the target process may then find the
hooked code and overwrite those permissions. At that stage, the attacker only needs to trigger the
execution of the hooked function in order to achieve code execution, effectively bypassing CFG

mitigation.

Exploitability: We believe that an attacker that achieved arbitrary read/write will whatever find a way to
complete the exploit without taking advantage of such an issue. Thus, it is unlikely that an attacker will
actually exploit this issue in a real-life scenario. That said, we believe that security vendors should do

their best not to weaken system's protections.

18725

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

Technical Breakdown

As an example, we show how the issue appears as part for kernel-to-user mode DLL injection. Here, the

LdrLoadDll is used to inject the hooking engine.

780104130

3

77be2b7e 48 dec Eax

?77be257f 78bd i= ntdll IEtllengthRequiredSid+0=z16 {77be2b3e)
77be2581 7753 ja ntdll ! LdrLoadDll+0=x60 {(77be25d6)

77b=2583 56 push 2=l

Figure 20: Hooking engine injection using LdrLoadDll in a windbg

As shown, the LdrLoadDLL was patched with a push-ret sequence in order to jump to the code stub

which is located at 0x78919413. If we let windbg run we can see that the original code was restored:

. +Uxaa (Vib=dbZ2U)
0:011r u ntdll!LdrLoadDll
ntdll ! LdrLoadDll:
77be2576 8bif nov edi,.edi
77b=2578 &5 push ebp
77be2t79 8bec How ebp. esp
77be257b B1 push =CH
77be257z 51 ush [=lwy:A
= a mnow eax,.dword ptr [ntdll!RtlUpcaselnicodeChar+0x51 (77bd7848)]
77be2532 B3 push =bx
77be?583 Bn push e=1

Figure 21: the original code is restored

However, when we check the permissions we can see that the code is still RWX:

Tzage: Inage

Allocation Base: ?7bE0000

Ba=ze Address: 7be2000

End Address: 77b=3000

Fegion Size: goooio000

Tvpe: gil00000n MEM THAGE
State: goooiooon il
More info: Inv m ntdl

Hore info: l1lmi ntdll

Hore info: In 0x?7be576

Figure 22: Code permissions were not restored

19/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO WHITEPAPER

SILO YOUR DATA FROM THREAT ACTORS

3RD PARTY HOOKING ENGINES

As we showed, implementing a robust hooking engine is not a simple task. For this reason many
vendors choose to buy a commercial hooking engine or just use an open-source engine. Doing so saves
the vendor a lot of development and QA time. It's also clear that the implications of security issues in a

wide-spread hooking engine are much more serious for the following reasons:

+ Affects Multiple Vendors - every vendor using the vulnerable engine will also be potentially
vulnerable.

+ Hard to Patch - Each vendor which uses the affected hooking engine will need to update its
product.

When we started the research we didn't even look into mature hooking engines since we assumed that
given their wide-spread use and massive amount of QA such engines are probably safe. We were

wrong.

EASY-HOOK OPEN-SOURCE HOOKING-ENGINE

EasyHook is as its name suggests, is a simple to use hooking engine with advanced hooking features
that supports 32-bit and 64-bit platforms. To mention a few:

» Kernel Hooking support

» "Thread Deadlock Barrier" - deals with problems related to hooking of unknown APIs.

* RIP-relative address relocation for 64-bit

However is has two drawbacks when it comes to security:

1. RWX Hooked Modules - EasyHook doesn't restore the page-protection after the hook is set

on hooked modules.

2. RWX Code Stubs - EasyHook leaves its code stub as RWX. Moreover, when compiled in

release it uses non-executable heap for its code-stub allocations. In order to make its

20/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO WHITEPAPER

SILO YOUR DATA FROM THREAT ACTORS

allocations executable, it uses VirtualProtect. The problem with this approach is that the heap
doesn't guarantee that the code stub will be page-aligned which means that it may inadvertently

convert data to code.

DEVIARE2 OPEN-SOURCE HOOKING-ENGINE

Deviare2 is an open-source hooking engine with a dual-license, GPL for open-source and Commercial
for closed-source, that supports both 32-bit and 64-bit platforms. Like EasyHook it has an extensive list

of features:

» Defer Hook - Set a hook only when and if a module is loaded

.NET Function hooking
» Interface for many languages: (C++, VB, Python, C#,...)

In Deviare2 we found only a single security issue - RWX Code Stubs. Deviare2 allocates its code using
VirtualAlloc function with PAGE_EXECUTE_READWRITE and leaves it as such. Deviare2 has released a

patch with a couple of days from notification.

MADCODEHOOK - COMMERCIAL HOOKING ENGINE

madCodeHook hooking engine a powerful commercial hooking engine by Mathias Rauen that supports
both 32-bit and 64-bit platforms and even support windows 95. It used by many vendors - about 75% of
which are security-related products, for instance, used by Emsisoft anti-virus. To list some of its

features:

* Injection Driver - Used to perform kernel-injection into processes

3

IPC API - Used to easily communicate with some main process
+ |AT Hooking

In madCodeHook engine we also found a single security issue - RWX Code Stubs.

21/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

ENSILO WHITEPAPER

SILO YOUR DATA FROM THREAT ACTORS

MICROSOFT DETOURS

Microsoft Detours is the most popular and probably the most mature hooking engine in the world, from
Microsoft's web site:

“Under commercial release for over 10 years, Detours is

licensed by over 100 ISVs and used within nearly every

product team at Microsoft.”

As far as we know, its also the only major hooking engine out there that supports ARM processors. It is
also used by many Microsoft own applications, for example Microsoft's Application Virtualization
Technology.

Since a patch was not yet released for Detours, we will not disclose the specifics of the vulnerability. An
updated version of this paper is expected to be released on 15.8.2016.

However, these are the implications:
» Potentially affects millions of users

» Introduces security issues into numerous products, including security products

» Hard to patch since it involved recompilation of affected products

22/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

S"_O WHITEPAPER

SILO YOUR DATA FROM THREAT ACTORS

SUMMARY

Our research encompassed more than a dozen security products. As findings unveiled, we worked
closely with all affected vendors in order to fix the issues we found as fast as possible. Most vendors

responded professionally and in a timely manner.

As shown, some vendors implement their own proprietary hooking code, while others integrate a third-
party vendor for hooking. Given these third party hooking engines, these issues have become

widespread, affecting security and non-security products.

This pie chart shows a breakdown of the disclosed issues per the number of vendors suffering from the

issue:

UnSafe
RWX Hooked .. Predictable
Injection, 2

Modules, 5 RWX(Universal),

Predictable
RX(Universal), 6

RWX Hook code
stubs, 7

Figure 23: Breakdown of issue type per number of affected vendor

23/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

ENSILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

UnSafe Predictable Predictable Predictable RWX Hook RWX Hooked
Products/Vendors S Time To Fi
st Injection RWX(Uni I) RX(Uni 1) RWX code stubs Modules ime To Fix (Days)

X 90

X 30

X X 30

X X 29
X X 30
X 90

X(64-bit) X X ?

X ?

Fixed Independently

Figure 24: Breakdown of issue type per number of affected vendor

Unfortunately, our scope of research was limited given the endless number of products (security and
non-security) that integrate hooking into their technologies. We urge consumers of intrusive products to
turn to their vendors, requesting a double check of their hooking engines to ensure that they are aware

of these issues and make sure they are addressed.

We urge consumers of intrusive products to turn to their
vendors, requesting a double check of their hooking engines to

ensure that they are aware of these issues and make sure they
are addressed.

24/25

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

SILO RESEARCH PAPER

SILO YOUR DATA FROM THREAT ACTORS

HOW ENSILO WORKS

enSilo prevents the consequences of cyber - performed by an external threat actor, while
attacks, stopping data from being altered allowing business to go on as usual. As soon as
(encrypted), wiped or stolen, while enabling the platform blocks a malicious communication
legitimate operations to continue attempt, it sends an alert that contains the
unaffected. The solution hones in on and shuts detailed information that the security team will
down any malicious or unauthorized activity need for their breach remediation process.

ENSILO BENEFITS

enSilo buys organizations the time and peace of mind they need to

protect and remediate their sensitive information.

WCE oﬁ(}_ WCE oﬁq- WCE o, ﬁ(}_
One alert per one Real-time, Real-time,
live threat exfiltration prevention = ransomware prevention Frictionless security
v Low number of alerts v Prevent the consequences of an advanced attack v Allow working on a
compromised environment
-/ Forensics on your own time '/ Before Real-time, It never starts
v Only stop the malicious
~/ Lower forensics costs '/ You don't need to know where the data lives communication or process
v No action required

Amb,

S"—O & www.ensilo.com in company/enSilo

SILO YOUR DATA FROM THREAT ACTORS ’X‘ Contact@ensllocom , @ensllosec

https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://www.linkedin.com/company/ensilo
https://www.linkedin.com/company/ensilo
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://www.linkedin.com/company/ensilo
https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/

