
Captain Hook

Pirating AVs to Bypass
Exploit Mitigations

w w w . e n s i l o . c o m

A u g u s t 2 0 1 6

B y

e n S i l o R e s e a r c h T e a m

http://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/

Hooking in a Nutshell

Under-the-Hood of Inline User-Mode Hooking

Injecting the Hook Engine

The Security Issues of Hooking

Summary

R E S E A R C H P A P E R

3

4

23

TA B L E O F C O N T E N T S

About enSilo 25

10

13

3rd party hooking engines 20

https://www.ensilo.com/
https://www.ensilo.com/

User-mode hooks are used by most of the end-point security vendors today, specifically Anti-Virus (AV)

products, and Anti-Exploitation products such as EMET. Beyond their usage in security, hooks are used

in other invasive applications such as Application Performance Management (APM) technologies to

track performance bottlenecks.

The use of hooks allows intrusive software to intercept and monitor sensitive API calls. In particular,

security products use hooking to detect malicious activity. For example, most Anti-Exploitation solutions

monitor memory allocation functions, such as VirtualAlloc and VirtualProtect, in an attempt to detect

vulnerability exploitation.

On the other side of the security spectrum, hooks are also used extensively by malware for various

nefarious purposes, the most popular being Man-In-The-Browser (MITM) attacks.

The most common form of hooking in real-life products, especially security products, is inline hooking.

Inline hooking is performed by overwriting the first few instructions in the hooked function and

redirecting it to the hooking function. Although there are other forms of hooking, such as Import

Address Table (IAT)-hooking, this research focuses only on inline hooks.

H O O K I N G I N A N U T S H E L L

3 / 2 5

R E S E A R C H P A P E R

Our findings were

depressing– we revealed

six different security

problems and

vulnerabilities stemming

from this practice.

Hooking itself is a very intrusive coding

operation where function calls (mainly operating

system functions) are intercepted in order to

alter or augment their behavior.

Given the sensitivity of hooking

implementations, we sought to find their

robustness. For our research, we investigated

about a dozen popular security products. Our

findings were depressing – we revealed six

different security problems and vulnerabilities

stemming from this practice.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

Although hooking is quite common and there are several common hooking libraries out there, such as

Microsoft Detours, it seems that most security vendors develop their own hooking engines. That said,

apart from a few exceptions, most of these in-house inline hooking implementations are pretty much

similar.

U N D E R - T H E - H O O D O F I N L I N E
U S E R - M O D E H O O K I N G

R E S E A R C H P A P E R

I N L I N E H O O K I N G O N 3 2 - B I T P R O C E S S E S

Hooking 32-bit functions is straight forward most of the time. The hooking engine disassembles the first

few instructions of the target function in order to replace it with a 5 byte jmp instruction. After at least 5

bytes of disassembled instructions are found, the hooking engine copies the instructions to a

dynamically allocated code stub and follows with a jmp which returns the code to the original function.

At that stage, the hooking engine overwrites the instructions with a jmp to the actual hooking function.

For example, let's see how a hook on InternetConnectW looks in a windbg:

Figure 1: InternetConnectW before the hook is set (Marked in red are the instructions that will be replaced)

4 / 2 5

Hooking in user-mode is usually implemented within a DLL which is loaded into a process address

space. We refer to this DLL as the “Hooking Engine”.

In this paper we dive into inline user-mode hooking. We also take a deep look into injection techniques,

specifically kernel-to-user injections, since these are usually used to load the hooking engine into the

process address space. Kernel-to-user injections are not trivial to implement and accordingly, some of

the most severe issues that we found were not in the hooking engine itself but rather in the

implementation of the kernel-to-user injection.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

Figure 3: Disassembled code at 0x178940

This code calls the original InternetConnectW function, leading to:

5 / 2 5

Figure 4: Original instructions of the function followed by a jmp

As shown, the original instructions of the function are followed by a jmp to the original function.

Figure 2: After the hook is set

We can see that the jmp instruction leads to 0x178940, which is the hooking function itself.

Disassembling the code at 0x178940 provides:

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

6 / 2 5

Figure 5: Prior to hot-patching

Figure 6: After hot-patching

O T H E R T E C H N I Q U E S

There are also other ways to achieve function hooking:

• One Byte Patching – This technique is most used by malware. The idea is simple, hooking is

performed by patching the first byte with an illegal instruction (or with an instruction that generates

an exception) and installing an exception handler. Whenever the code executes, an exception will

occur whereas the exception handler will handle it and act as the hooking function.

• Microsoft Hot-Patching – Hot-Patching was developed by Microsoft to enable patching without the

need to reboot. The patching itself is done through the inline-hooking of the relevant function. To

make things easy, Microsoft decided to keep a 5-bytes’ space between functions and change the first

instruction to a 2-byte NOP, specifically mov edi, edi instructions.

The patch is done by replacing the 2-byte NOP with a short jmp instruction and replacing the 5-byte gap

with a long jmp. This way the hooking code doesn't need to copy any of the original instructions.

Hooking Function

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

7 / 2 5

P O S S I B L E C O M P L I C A T I O N S

In other 32-bit hooking scenarios, hooking is not that straight forward. For example:

• Relative instructions - If one of the instructions is a relative call/jmp it must be fixed before being

copied.

• Very short functions – If a function is less than 5 bytes it might be hard to patch without overriding

adjacent function.

• Jmp/Jxx to function's start – If some instruction in the function jumps back to the start of the

function, the instruction will jump to the middle of the jmp instruction, resulting in a crash. This

scenario is very difficult to solve without the full disassembly of the target function (or through one

byte patch). However, this scenario is extremely rare.

A nice read on possible hooking issues can be found in Binary Hooking Problems by Gil Dabah.

I N L I N E H O O K I N G O N 6 4 - B I T P R O C E S S E S

Hooking on 64-bit processes is a bit more difficult than on 32-bit because the address space is much

larger. This means that 5 bytes jmp instruction might not be enough in order to install a x64 hook since

it is limited to a 2GB range from the its location.

There are several solutions to this problem, some of them are described in Trampolines in X64 by Gil

Dabah.

The most common solution to this issue is to allocate code stub within 2GB range from the hooked

function and use the following code template:

For example, let's take a look at a hook on the 64-bit version of InternetConnectA.

MOV RAX, <Hooking Function>

JMP RAX

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.ragestorm.net/blogs/?p=348
http://www.ragestorm.net/blogs/?p=107

R E S E A R C H P A P E R

8 / 2 5

Figure 7: The original InternetConnectA function

As shown, the function jumps to 0x7fefe1ff000.

Figure 8: The function after the hook is set.

Figure 9: Disassembling the code in address0x7fefe1ff000

If we follow the hooking function like we did in the 32-bit version we get to the following code stub

which redirects the execution back to the original function:

Figure 10: 64-bit code stub

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

9 / 2 5

Figure 11: 6-byte patching

O T H E R T E C H N I Q U E S

There are also other ways to achieve function hooking:

• 6-Byte Patching – It is possible to avoid using trampolines by patching 6-bytes instead of 5 bytes,

and making sure that the target is in a 32-bit address space. The idea is simply to use a push-ret

instructions to do the jmp. This is how it looks like:

• Double Push (Nikolay Igotti) – One of the problem of the classic techniques is that it trashes the

rax register. One way to avoid it while still being able to jump anywhere in the address space is by

pushing the lower 4-byte of the address into the stack and then copying the high 4-bytes of the

address into the stack and then returning to that address.

Figure 12: Double-push patching

P O S S I B L E C O M P L I C A T I O N S

MOV RAX, QWORD [RIP+0x15020]

Complications in 64-bit hooking are similar to those in 32-bit hooking. However, since 64-bit code

supports an instruction-pointer relative instructions there is a greater chance that the hooking engine

will need to fix Instruction-pointer relative code. For example:

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 0 / 2 5

I N J E C T I N G T H E H O O K E N G I N E

Regardless of the way the hooking engine is implemented, a prerequisite for it to do its job is to inject it

into the target process. Most vendors use kernel-to-user DLL injections to perform this. In this section

we cover the most common methods used by security vendors.

Import Injection

This method is quite common and is relatively clean as it doesn’t require any code modifications. As far

as we know this injection technique was never used by malware.

It works by adding an import to the main image. These are the steps for import injection:

Figure 13: Internet Explorer patched import table

1. Register load image callback using

PsSetLoadImageNotifyRoutine and

wait for main module to load.

2. After the main module is loaded,

the import table is copied to a

different location and a new row

that imports the hook engine is

added to the beginning of the table.

The RVA of the import table is

modified to point to the new table.

This is how it looks like in Internet

Explorer:

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 1 / 2 5

Figure 14: The new import table

This is the new import table:

3. When the module completes loading, the RVA of the original import table is restored.

E N T R Y P O I N T P A T C H I N G

To the best of our knowledge, this kind of injection method was first used by the infamous Duqu

malware and is well documented. It is also used by security vendors.

These are the steps for entrypoint patching:

1. Register load image callback using PsSetLoadImageNotifyRoutine and wait for main module

to load.

2. Read the instructions from the entrypoint and allocate a payload to load the hook engine.

Patch the entry point with a jmp to the payload. This is how entry point patching looks like in Internet

Explorer:

Figure 15: Internet Explorer patched entrypoint

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet

R E S E A R C H P A P E R

1 2 / 2 5

3. When the payload executes, it first loads the hooking engine and then restores the bytes that

were copied from the original image.

Figure 16: Restoring the bytes from the original image

User-APC

Kernel-to-user DLL injection using User Mode APC (Asynchronous Procedure Call) is probably the most

documented and common method. This method was also extensively used by malware, TDL and Zero-

Access for example.

For detailed information on this injection method we refer the reader to:

• http://www.opening-windows.com/techart_windows_vista_apc_internals2.htm

• http://rsdn.ru/article/baseserv/InjectDll.xml

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://www.opening-windows.com/techart_windows_vista_apc_internals2.htm
http://rsdn.ru/article/baseserv/InjectDll.xml

R E S E A R C H P A P E R

1 3 / 2 5

This is how it works:

1. Register load image callback using PsSetLoadImageNotifyRoutine and wait for the target

module to load.

2. Once the module is loaded, a payload for loading the hook engine is injected into the

process and a function that will be called during the startup of the process is patched with a

jmp or push/ret to the payload. On user32.dll the patched function is used is usually

UserClientDllInitialize. On ntdll.dll the patched function is usually LdrLoadDLL. In this case,

the push/ret sequence is used to divert execution to the injected payload.

3. Once the payload executes it loads the hook engine and restores the original code in the

patched function.

Figure 17: LdrLoadDLL is used for injection

THE SECURITY ISSUES OF HOOKING

As stated above hooking has many benefits and is extensively used by many security vendors. However,

hooking is also a very intrusive operation and implementing it correctly is not a simple matter.

Our research of more than a dozen security products revealed six separate security issues stemming

from hooking-related implementations.

1. UNSAFE INJECTION

Severity: Very High

Affected Underlying Systems: All Windows versions

Description: This issue is a result of a bad DLL injection implementation. We have seen two cases of

this issue which although had the same effect, differed in their technical details.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 4 / 2 5

Description: This issue is a result of a bad DLL injection implementation. We have seen two cases of

this issue which although had the same effect, differed in their technical details.

• LoadLibrary from relative path: In this case, the implementation uses the entrypoint

patching injection method to load its hooking engine. The problem is that the DLL isn’t

loaded using a full path, making injected processes vulnerable to DLL hijacking vulnerability.

An attacker also uses this as a persistence mechanism by placing a malicious DLL in the

folder of the target process.

• Unprotected injected DLL file: In this case, the vendor loads the DLL using a full path but

the DLL is placed in the %appdata%\..\Local\Vendor folder. The problem is that an attacker

could replace the DLL with a malicious DLL thus causing the vendor to load the malicious DLL

into every injected process.

Impact: In both cases, the attacker could use the affected implementation as a way to inject into most

processes in system. This is a very convenient way to achieve persistency on the target system.

Exploitability: In both cases, exploitation of this issue is very simple. Although we believe that most

attackers will not use vendor specific persistency mechanisms, security vendors should not weaken the

integrity of the operating system.

2 . P R E D I C T A B L E R W X C O D E S T U B S (U N I V E R S A L)

Severity: Very High

Affected Underlying Systems: All Windows versions

Description: In this case, the implementation uses a constant address - both for 32-bit and 64-bit

processes, to allocate its injection code stub and leaves it as RWX. We have seen this issue only with one

vendor. We decided not to show the exact code stub of the vendor to avoid exploitation of the issue.

Impact: An attacker can leverage this issue as part of the exploitation process by overwriting the code

of the injection code stub with malicious code. Since the code stub also contains addresses of system

functions it also causes the following issues:

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 5 / 2 5

• Bypassing ASLR: Most of these code stubs contain addresses of important system functions,

such as LdrLoadDll, NtProtectVirtualMemory and more. These functions can be very useful as

part of an exploitation process. In the cases we researched, it was also possible to leak the

address of ntdll.dll.

• Bypassing Hooks: In cases where the hooks code stubs are allocated at a constant address it

is possible to easily bypass the hook by calling directly to the function prolog. Note that in all

the cases we saw the offsets of the code stubs were at a constant offset.

• Code Reuse: An attacker can also use the code in these code stubs as part of a code reuse

attack. For example, an attacker can build a ROP chain that uses the part of the code which is

used for loading the hook engine DLL. Attackers can manipulate the arguments in a way that

their own DLL will be loaded.

All these issues make it possible to easily exploit vulnerabilities that will be otherwise very hard to

exploit.

Exploitability: Past research of ours showed that these kind of issues are significant by weaponizing an

old vulnerability in Adobe Acrobat Reader v.9.3 CVE-2010-0188.

Later that year, on September 22, Tavis Ormandy from ProjectZero wrote a very interesting post,

“Kaspersky: Mo Unpackers, Mo Problems.“ about a vulnerability he discovered in Kaspersky that showed

that these threats are real. To exploit the vulnerability he found, Tavis used a second flaw in Kaspersky

which allocated RWX memory in a predictable address. To quote from Tavis’s blog “Kaspersky have

enabled /DYNAMICBASE for all of their modules which should make exploitation unreliable.

Unfortunately, a few implementation flaws prevented it from working properly.”

3 . P R E D I C T A B L E R X C O D E S T U B S (U N I V E R S A L)

Severity: High

Affected Underlying Systems: All Windows versions

Description: This issue usually occurs when the implementation uses a constant address to allocate its

injection code stub. One vendor we researched also uses a constant address to allocate the code stubs

for its hooks.

Impact: Depending on the exact implementation, an attacker can leverage this to bypass ASLR, bypass

Hooks or for code reuse as described in the previous issue (Predictable RWX Code Stubs - System

independent).

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188
http://googleprojectzero.blogspot.co.il/2015/09/kaspersky-mo-unpackers-mo-problems.html

R E S E A R C H P A P E R

1 6 / 2 5

Exploitability: This issue is very simple to exploit. All an attacker has to do is use the information in the

hardcoded address. Moreover, in all the cases that we have seen, the address was constant for both 32-

bit and 64-bit processes. In most cases, it is also possible to use these code stubs to inject DLL into the

target process using methods similar to the ones described in a former research of ours, Injection On

Steroids.

Technical Breakdown

Let's see how it looks in a vulnerable hooking engine. In this case, the hooks are set in Internet-Explorer

and always at a constant address. An attacker can simply call 0xXXXX01f8 in order to call

ShellExecuteExW.

4 . P R E D I C T A B L E R W X C O D E S T U B S
(O N W I N D O W S 7 A N D B E L O W)

Severity: High

Affected Underlying Systems: Windows 7 and below

Description: This issue is very common and was described thoroughly in our blog post “Vulnerability

Patching: Learning from AVG on Doing it Right”, as well as in a follow-up blog post 6 months later

“Sedating the Watchdog: Abusing Security Products to Bypass Mitigations”. In all the cases we have

seen, the issue was caused by the kernel-to-user dll injection and not by the hooking engine itself.

Impact: Similar to the above “Predictable RX Code Stubs (System independent)” issue.

The impact severity is lower here, since not all version of the operating system are affected.

Exploitability: Similar to the above “Predictable RX Code Stubs (System independent)” issue.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/
http://breakingmalware.com/injection-techniques/code-less-code-injections-and-0-day-techniques/
http://breakingmalware.com/vulnerabilities/vulnerability-patching-learning-from-avg-on-doing-it-right/
http://breakingmalware.com/vulnerabilities/sedating-watchdog-abusing-security-products-bypass-mitigations/

R E S E A R C H P A P E R

1 7 / 2 5

5 . R W X H O O K C O D E S T U B S

Severity: Medium

Affected Underlying Systems: All Windows versions

Description: This is the most common issue in the hooking engines we researched. Most hooking

engines leave their hook code stubs as RWX. We assume that the main reason for this is to avoid

changing the code stub page protection whenever a new hook is set.

Impact: This can potentially be used by an attacker as part of exploitation process by overwriting the

code stubs with malicious code. Overwriting such stubs can make it much easier for an attacker to

bypass exploit mitigations such as Windows 10 Control-Flow-Guard (CFG) or Anti-Exploitation hooks.

For example, an attacker that achieved arbitrary read/write in the target process may find the hook stub

by following the hook’s code and overwriting it. At that stage, the attacker only needs to trigger the

execution of the hooked function (or even directly call the hook stub) in order to achieve code

execution, effectively bypassing CFG mitigation.

Exploitability: We believe that an attacker that achieved arbitrary read/write will whatever find a way to

complete the exploit without taking advantage of such an issue. Thus, it is unlikely that an attacker will

actually exploit this issue in a real-life scenario. That said, we believe that security vendors should do

their best not to weaken system's protections.

Technical Breakdown

Let's see how it looks in a vulnerable hooking engine. In this case, the hook is set on LdrLoadDLL

function:

Figure 18: The hooking engine in windbg

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 8 / 2 5

6 . R W X H O O K E D M O D U L E S :

Severity: Medium

Affected Underlying Systems: All Windows versions

Description: Some hooking engines leave the code of the hooked modules as RWX. This happens both

as part of the initial dll injection code and in the hooking engine code. This issue is not very common

and frankly, the appearance of this issue took us by surprise since we didn’t even look for it given that

we couldn’t think of any good reason for a hooking engine to be implemented this way.

Impact: An attacker can leverage this issue as part of the exploitation process by overwriting the code

of the hooked modules with malicious code, thus simplifying the bypassing of Windows’ mitigations

such as Windows 10 Control-Flow-Guard.

For example, an attacker that achieved arbitrary read/write in the target process may then find the

hooked code and overwrite those permissions. At that stage, the attacker only needs to trigger the

execution of the hooked function in order to achieve code execution, effectively bypassing CFG

mitigation.

Exploitability: We believe that an attacker that achieved arbitrary read/write will whatever find a way to

complete the exploit without taking advantage of such an issue. Thus, it is unlikely that an attacker will

actually exploit this issue in a real-life scenario. That said, we believe that security vendors should do

their best not to weaken system's protections.

If we check the permissions on the jmp target we will see that its permissions are RWX:

Figure 19: Permissions on the jmp target

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

1 9 / 2 5

Technical Breakdown

As an example, we show how the issue appears as part for kernel-to-user mode DLL injection. Here, the

LdrLoadDll is used to inject the hooking engine.

Figure 20: Hooking engine injection using LdrLoadDll in a windbg

As shown, the LdrLoadDLL was patched with a push-ret sequence in order to jump to the code stub

which is located at 0x78919413. If we let windbg run we can see that the original code was restored:

Figure 21: the original code is restored

However, when we check the permissions we can see that the code is still RWX:

Figure 22: Code permissions were not restored

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

W H I T E P A P E R

2 0 / 2 5

3 R D P A R T Y H O O K I N G E N G I N E S

E A S Y - H O O K O P E N - S O U R C E H O O K I N G - E N G I N E

EasyHook is as its name suggests, is a simple to use hooking engine with advanced hooking features

that supports 32-bit and 64-bit platforms. To mention a few:

• Kernel Hooking support

• "Thread Deadlock Barrier" – deals with problems related to hooking of unknown APIs.

• RIP-relative address relocation for 64-bit

• …

However is has two drawbacks when it comes to security:

1. RWX Hooked Modules – EasyHook doesn’t restore the page-protection after the hook is set

on hooked modules.

2. RWX Code Stubs – EasyHook leaves its code stub as RWX. Moreover, when compiled in

release it uses non-executable heap for its code-stub allocations. In order to make its

As we showed, implementing a robust hooking engine is not a simple task. For this reason many

vendors choose to buy a commercial hooking engine or just use an open-source engine. Doing so saves

the vendor a lot of development and QA time. It's also clear that the implications of security issues in a

wide-spread hooking engine are much more serious for the following reasons:

• Affects Multiple Vendors – every vendor using the vulnerable engine will also be potentially

vulnerable.

• Hard to Patch – Each vendor which uses the affected hooking engine will need to update its

product.

When we started the research we didn’t even look into mature hooking engines since we assumed that

given their wide-spread use and massive amount of QA such engines are probably safe. We were

wrong.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

W H I T E P A P E R

2 1 / 2 5

D E V I A R E 2 O P E N - S O U R C E H O O K I N G - E N G I N E

Deviare2 is an open-source hooking engine with a dual-license, GPL for open-source and Commercial

for closed-source, that supports both 32-bit and 64-bit platforms. Like EasyHook it has an extensive list

of features:

• Defer Hook – Set a hook only when and if a module is loaded

• .NET Function hooking

• Interface for many languages: (C++, VB, Python, C#,…)

• …

In Deviare2 we found only a single security issue – RWX Code Stubs. Deviare2 allocates its code using

VirtualAlloc function with PAGE_EXECUTE_READWRITE and leaves it as such. Deviare2 has released a

patch with a couple of days from notification.

allocations executable, it uses VirtualProtect. The problem with this approach is that the heap

doesn’t guarantee that the code stub will be page-aligned which means that it may inadvertently

convert data to code.

M A D C O D E H O O K – C O M M E R C I A L H O O K I N G E N G I N E

madCodeHook hooking engine a powerful commercial hooking engine by Mathias Rauen that supports

both 32-bit and 64-bit platforms and even support windows 95. It used by many vendors – about 75% of

which are security-related products, for instance, used by Emsisoft anti-virus. To list some of its

features:

• Injection Driver – Used to perform kernel-injection into processes

• IPC API – Used to easily communicate with some main process

• IAT Hooking

• …

In madCodeHook engine we also found a single security issue - RWX Code Stubs.

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

W H I T E P A P E R

2 2 / 2 5

M I C R O S O F T D E T O U R S

Microsoft Detours is the most popular and probably the most mature hooking engine in the world, from

Microsoft's web site:

As far as we know, its also the only major hooking engine out there that supports ARM processors. It is

also used by many Microsoft own applications, for example Microsoft's Application Virtualization

Technology.

Since a patch was not yet released for Detours, we will not disclose the specifics of the vulnerability. An

updated version of this paper is expected to be released on 15.8.2016.

However, these are the implications:

• Potentially affects millions of users

• Introduces security issues into numerous products, including security products

• Hard to patch since it involved recompilation of affected products

“Under commercial release for over 10 years, Detours is

licensed by over 100 ISVs and used within nearly every

product team at Microsoft.”

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

W H I T E P A P E R

2 3 / 2 5

S U M M A R Y

Our research encompassed more than a dozen security products. As findings unveiled, we worked

closely with all affected vendors in order to fix the issues we found as fast as possible. Most vendors

responded professionally and in a timely manner.

As shown, some vendors implement their own proprietary hooking code, while others integrate a third-

party vendor for hooking. Given these third party hooking engines, these issues have become

widespread, affecting security and non-security products.

This pie chart shows a breakdown of the disclosed issues per the number of vendors suffering from the

issue:

Figure 23: Breakdown of issue type per number of affected vendor

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

R E S E A R C H P A P E R

2 4 / 2 5

We urge consumers of intrusive products to turn to their

vendors, requesting a double check of their hooking engines to

ensure that they are aware of these issues and make sure they

are addressed.

Unfortunately, our scope of research was limited given the endless number of products (security and

non-security) that integrate hooking into their technologies. We urge consumers of intrusive products to

turn to their vendors, requesting a double check of their hooking engines to ensure that they are aware

of these issues and make sure they are addressed.

Figure 24: Breakdown of issue type per number of affected vendor

https://www.ensilo.com/
https://www.ensilo.com/
http://www.ensilo.com/

enSilo buys organizations the time and peace of mind they need to

protect and remediate their sensitive information.

www.ensilo.com

contact@ensilo.com @enSiloSec

company/enSilo

E N S I L O B E N E F I T S

R E S E A R C H P A P E R

H O W E N S I L O W O R K S

enSilo prevents the consequences of cyber -

attacks, stopping data from being altered

(encrypted), wiped or stolen, while enabling

legitimate operations to continue

unaffected. The solution hones in on and shuts

down any malicious or unauthorized activity

performed by an external threat actor, while

allowing business to go on as usual. As soon as

the platform blocks a malicious communication

attempt, it sends an alert that contains the

detailed information that the security team will

need for their breach remediation process.

https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://www.linkedin.com/company/ensilo
https://www.linkedin.com/company/ensilo
https://twitter.com/enSiloSec?ref_src=twsrc^google|twcamp^serp|twgr^author
https://www.linkedin.com/company/ensilo
https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/
https://www.ensilo.com/

