Chihuahua: A Concurrent, Moving, Garbage
Collector using Transactional Memory

Todd A. Anderson

Intel Labs
todd.a.anderson@intel.com

Abstract

Hardware Transactional Memory (HTM) offers a powerful new
parallel synchronization mechanism, but one whose performance
properties are different from techniques that it competes with,
such as locks and atomic instructions. Because of HTM’s differ-
ing characteristics, when algorithms based on earlier synchroniza-
tion mechanisms are adapted to use HTM instead, the performance
may be disappointing, sometimes even appearing not to signifi-
cantly outperform software transactional memory. In this paper,
however, we show that HTM, and specifically its strong atomicity
property, allows approaches to synchronization that would not oth-
erwise be possible, allowing simpler synchronization algorithms
than would otherwise be possible that nevertheless have promising
performance.

Specifically, we present a new garbage collector named Chi-
huahua that is designed specifically for HTM, in which garbage
collector threads execute transactionally but the mutator does not.
In contrast to other work which has adapted existing parallel collec-
tors to make them transactional, Chihuahua is a transactional adap-
tation of a serial collector (taken from MMTXk in the Jikes RVM).

Although Chihuahua is a proof of concept rather than an
industrial-strength, production garbage collector, we believe it
highlights opportunities in the design space of garbage collectors
and other parallel algorithms that are available in HTM but not
available in competing techniques.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Memory Management (garbage collection)

General Terms Algorithms, Performance, Design, Experimenta-
tion

Keywords Transactional Memory, Concurrent Garbage Collec-
tion, Virtual Machines

1. Introduction

Garbage collection can be viewed as an intrinsically concurrent
problem domain—while a program (a.k.a. the mutator) runs, the
garbage collector must examine memory and determine which
objects are no longer reachable and can thus be reclaimed. The

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

TRANSACT 2015, June 15, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).

Melissa O’Neill

Harvey Mudd College
oneill@cs.hmc.edu

John Sarracino

University of California San Diego
jsarraci@cs.ucsd.edu

garbage collector’s task is made challenging by the fact that the
mutator can make arbitrary changes to memory even as the collec-
tor examines it. One approach to these challenges is to minimize
concurrency by adopting a turn-taking approach (the most extreme
form being “stop the world collection” where the mutator is sus-
pended for the entire collection process), but although this strategy
has the advantage of simplicity, arbitrary lengthy pauses in pro-
gram execution are unacceptable in many domains. For that rea-
son, numerous concurrent approaches have been proposed, from
more fine-grained turn-taking approaches to full-blown concurrent
collection [13, 14, 23].

Typically concurrent garbage collectors require complex and
potentially heavyweight synchronization mechanisms to mediate
access to memory and ensure that both mutator and collector op-
erate correctly. As a result, many programming language imple-
mentations avoid concurrent collection and adopt simpler stop-the-
world schemes, despite their performance disadvantages.

Transactional memory [9] claims to make challenging synchro-
nization problems easier, and hardware implementations provide
this facility with low overheads. Until recently, few mainstream im-
plementations of hardware transactional memory existed, but that
situation is starting to change as newer Intel CPUs now include In-
tel Transactional Synchronization Extensions (TSX).

Garbage collection appears to be a good proving ground for
hardware transactional memory because the coordination problem
is nontrivial and both ease of implementation and performance mat-
ter. In particular, a transactional approach allows new implementa-
tion options that have not previously been considered. It also pro-
vides a testbed where we can determine whether the restrictions
imposed by a hardware implementation are acceptable or consti-
tute a challenge to overcome.

In this paper, we introduce Chihuahua, a new concurrent
garbage collector implemented with Jikes” Memory Management
Toolkit (MMTK) [3] that uses Intel TSX. Chihuahua is designed as
a minimal extension of a non-concurrent GC algorithm. The thesis
behind this design was that, unlike most concurrent collectors, Chi-
huahua would be sufficiently simple that it could be implemented
by a small team of undergraduates as a final-year capstone project.

As a result of our work developing Chihuahua, this paper:

e Describes the desirable properties for hardware transactional
memory in the GC domain (Section 2).

e Suggests how these properties can be used to design a concur-
rent collection algorithm (Sections 3 and 4).

e Describes the characteristics of the GC transactions, including
transaction failure causes (Sections 4 and 5).

e Suggests how these characteristics can be use to drive transac-
tion retry strategies (Secction 5).

2. Transactional Memory

Transactional semantics for system memory was first envisioned
by Herlihy and Moss in 1993 [9]. This concept of transactional
memory laid out the promise of performance and programmability
benefits. In the absence of transactional memory, the largest atom-
ically manipulable memory size on x86 architectures has been a
single word. To create larger synchronized structures, a plethora of
locking and non-locking algorithms and data structures have been
invented, each implemented in terms of those single-word atomic
operations. However, determining the best kind and granularity of
synchronization to use and implementing these choices correctly by
programmers has proven notoriously difficult. Conversely, an ideal
transactional memory system would improve programmability by
requiring just one easy-to-use synchronization paradigm, namely
transactions themselves, and would largely eliminate considera-
tions of granularity. Such transactions could be arbitrarily sized,
and would have strong atomicity (non-transactional writes would
abort any transaction that they interfered with), no spurious aborts
(would abort only when memory conflicts actually occur) and even-
tual success (repeatedly retried transactions would eventually suc-
ceed). All that would be left to the programmer would be a concep-
tually higher-level task of identifying which operations need to be
grouped to produce consistent results and then wrapping those in a
transaction. Likewise, in an ideal system, transactions would have
no overhead and performance would be increased by ensuring that
maximum concurrency is maintained in the system.

In the two subsequent decades, a variety of software transac-
tional memory (STM) systems were developed where transactions
were provided by the language runtime. Some simpler STM sys-
tems augment transactional reads and writes with some additional
bookkeeping but forgo this bookkeeping for non-transactional ac-
cesses. As a consequence, these STM systems often lack strong
atomicity, but offer arbitrarily sized transactions, no spurious
aborts, and eventual success. These systems are easy to use from
the programmer’s perspective but are regarded in the literature as
inefficient [2, 8, 18].

More complicated STM systems either implement strong atom-
icity or focus on performance, often through the tuning of various
STM settings for a particular workload. These systems are gener-
ally reported by the literature ([7, 16, 17, 25]) as an improvement
over previous STMs. However, tuning these systems for a fixed ap-
plication (or conversely, tuning an application to the fixed settings
of a system) is relatively difficult and there is still often substan-
tial STM overhead. Thus, despite being relatively faithful to Her-
lihy and Moss’ semantics, STM systems have not seen widespread
adoption [5].

Until recently, no commodity processors implemented hardware
transaction memory (HTM). Intel has introduced Intel® Transac-
tional Synchronization Extensions (Intel® TSX) in the Intel 4th
Generation Core™ Processors [1] to provide HTM. TSX provides
two ways to execute code transactionally. The first is hardware lock
elision (HLE) which is an instruction prefix backward compati-
ble with processors without TSX support. The second is restricted
transaction memory (RTM) which is a new instruction set extension
and provides the programmer more flexibility in dealing with failed
transactions. While RTM provides strong atomicity, transactions in
TSX cannot be of arbitrary size due to architectural limitations.

Similarly, RTM guarantees neither eventual success nor no spu-
rious aborts—a transaction might never succeed, even in the ab-
sence of actual contention, as numerous architectural conditions
can cause aborts. Such architectural limitations are likely to be
common in any processor providing HTM for the foreseeable fu-
ture. As a consequence, any system that uses Intel RTM must
have a fallback, non-transactional mechanism that accomplishes
the same result as the transactional path. These transactional and

non-transactional paths are typically co-designed so as to prop-
erly interoperate with one another. The performance and therefore
the complexity of this fallback path is often less critical, as the
frequency with which it is run is much lower than if there were
no primary transactional path. From a performance perspective,
TSX transactions have some startup overhead equivalent to about
3 compare-and-swap (CAS) operations [20] and thus CAS is of-
ten used to synchronize single words. For larger critical sections,
TSX offers both improved performance and a simpler concurrency
model.

As a programming model, RTM is in many ways the dual of
STM; it is relatively efficient and offers strong atomicity, while
lacking eventual success, no spurious aborts, and arbitrarily sized
transactions. RTM can sometimes require somewhat more pro-
grammer effort than simple STM since every transactional path
requires a corresponding fallback path. However, our experience
is that creating an algorithm that uses RTM and accommodates its
lack of guarantees is easier than the difficulty of making STM effi-
cient.

3. Concurrent Garbage Collection

Garbage collection is an important feature of modern programming
languages that removes the burden (and error proneness) of manual
memory management from the programmer by automatically de-
tecting and freeing memory which is no longer referenced by the
program. Programs can be conceptually divided into the GC com-
ponent, which is typically provided by the language runtime, and
the mutator component. The mutator threads do all the real work of
the application while the GC facilitates the mutators by providing
memory management services, primarily memory allocation and
reclamation. Thus, time spent in the GC is overhead to the muta-
tors and GCs are typically designed to have low overhead and to in-
terfere with the mutators as little as possible. For applications that
are response-time sensitive, such as video or telephony, this low
interference implies minimizing the amount of time that mutators
are paused to cooperate with the GC. Pauses on the order of 10ms
(or less) are required for such applications so as not to create no-
ticeable artifacts to the user. This maximum pause time is difficult
for nonconcurrent GCs, which typically have the property that all
reachable objects must be scanned while the mutators are stopped.
Even generational GCs, where there is a small “ephemeral” genera-
tion that is collected frequently and quickly, must also occasionally
scan for all reachable objects. Current application trends, such as
larger working set sizes, larger heaps, larger memory sizes exacer-
bate these difficulties. Concurrent GCs, in which mutators run at
the same time as the GC, can dramatically decrease pause times
which results in a smoother and more consistent user experience.
In concurrent GCs, mutators may be paused briefly to determine
the starting points for garbage collection (a.k.a. GC roots) but are
then restarted and run concomitantly with the GC threads as those
GC threads scan the heap to locate reclaimable memory.

In addition to pause times, mutator throughput remains critical.
Mutator throughput can be negatively effected by a GC if the GC
allows the heap to become fragmented. A fragmented heap is one
is which there are many small areas of free space interspersed
with reachable objects. Memory allocation in a fragmented heap is
expensive because there is overhead for the GC to switch between
allocating in these many different small areas. These small areas
also result in more unused space (and therefore more GCs) as it is
unlikely that the last allocation in each such space will exactly fill
that space. Fragmentation is also bad for subsequent cache locality
as objects that are allocated close together in time are likely to
be subsequently accessed close together in time. The higher the
degree of fragmentation, the more likely it is that related objects
will be placed on different cache lines and cause more memory

traffic. A typical solution to prevent fragmentation and to maximize
locality is to use a “moving” GC. As its name implies, a moving GC
moves objects to create larger free spaces for faster and more cache
friendly allocation. Moreover, a moving GC will typically try to
maintain object order as it moves objects so as to maximize cache
locality.

3.1 The Lost Update Problem

While concurrency and object movement appear to be desirable
techniques to minimize mutator interference, all GCs that wish to
employ both techniques will encounter and must solve the critical
lost-update problem, a data-race that we will describe below.

In all concurrent, moving GCs, a mutator may attempt to write
to an object that a GC thread is in the process of moving to a
new location. Once in its new location, the GC will typically direct
mutators to start using the new location rather than the old location,
often by installing a forwarding pointer in the old object to point to
the new object. Any mutator that sees such a forwarding pointer
will follow it and begin to use the new object location. However,
there must necessarily be a time delay between when the object is
started to be copied and when this forwarding pointer is activated.
Consider the example in Figure 1. A GC thread begins to move an
object by allocating space for it in the to-space and then copies field
A. Then, a mutator writes an update to field A while the GC thread
is concurrently copying field B. After copying field B, the GC
thread installs the forwarding pointer. Subsequently, any mutator
that attempts to read field A and notices that the forwarding pointer
is present will redirect its access to the new location of the object.
The new location of the object has the value of field A before the
mutator’s update and so the mutator’s update has been lost.

From-space To-space

Forwarding Ptr Field A Field B
S

1. Start Copy
| [+ [=2 | | | |
2. Copy Field A
| [+ [=]| I |
3. Copy Field B. Mutator writes Field A,
| IERN EEN [+ [=]
4, Install Forwarding Pointer

R Lo [+ [2|

|]

Figure 1. The lost-update problem.

3.2 A Transactional Solution

This lost-update problem poses a synchronization issue that exist-
ing concurrency models (e.g. CAS signals) do not elegantly solve.
The mutator and the collector contend over object bodies, a rela-
tively large portion of shared memory.

In contrast, transactional memory offers a cleaner solution. If
both the mutator’s writes and the GC’s copying operation were
atomic, the race condition depicted in Figure 1 would be impossi-
ble. This is essentially the path taken by [15], modulo some perfor-
mance tweaks. However, in practice, the performance overhead of
transactions prohibits making mutator writes purely transactional.

® N UL R W N =

o ©

11

4. Chihuahua GC

Our key insight is that transactional mutator writes are only neces-
sary when the TM system is not strongly atomic (e.g. STM). Con-
sider a strongly atomic system (e.g. TSX) in which the GC copying
procedure is atomic but the mutator’s writes are unconstrained. In
such a system, the race condition in Figure 1 would cause the col-
lector’s transaction to abort but leave the mutator unaffected. In
essence, the transactional abort (reported as a synchronization con-
flict) signals the collector that it missed a mutator’s write and that
it should retry the copying operation.

This key insight into solving the lost-update problem forms the
basis of our concurrent collection algorithm (termed Chihuahua)
which relies upon the strong atomicity of TSX. Chihuahua is a con-
current, parallel, moving GC implemented in MMTk whose heap
structure consists of two semi-spaces plus the normal MMTk im-
mortal and large-object spaces (for objects 4KB and larger). During
each GC cycle, all objects in the current semi-space (also called the
“from-space”) are moved to the other semi-space (called the “to-
space”). For clarity, in this section we describe only the aspects
of our algorithm that deal with transactional memory or the lost-
update problem. Moreover, we limit our discussion here to a non-
parallel (i.e., single GC thread) version of our algorithm although
our algorithm is extensible to multiple GC threads. Appendix B
contains a full description of our GC algorithm, that includes sup-
port for multiple GC threads.

4.1 Concurrent Moving Collection

The GC threads and the mutators in Chihuahua collaborate to safely
move objects and avoid the lost-update problem. Chihuahua re-
quires that mutators use a write barrier, Section 4.1.3, on refer-
ence and non-reference fields during the time in which GC threads
are moving objects. Conversely, GC threads perform transactional
copying, Section 4.1.1.

Listing 1. Pseudo-code for moving an object with only one GC
thread.

Object * moveObject(Object *object) {

0; tries < MAX_RETRIES;
Touch the pages spanned by the object.

for (int tries = ++tries) {

Execute atomically {

Copy object into the to-space, creating a new object.

Set object’s forwarding pointer to point to the new object.

}

If the transaction succeeded {
Return the new object.

} Otherwise {

Wait some time before continuing.

do {
Set the object’s state to forwarding.
Wait for mutators to see the new object state.
Copy object into the to-space, creating a new object.
Create a pointer to the new object.

} while !(Atomically {install the pointer to the new object

and update object’s state to forwarded.})

Return the new object.

4.1.1 Transactional Copying

For each object subject to collection, the GC thread attempts to
copy the object using the pseudo-code shown in Listing 1. This
function is responsible for copying an object (which includes allo-
cating space in the to-space), setting the forwarding word in the old
object to point to the new copy, and returning a pointer to the new
object.

We first attempt these operations transactionally in lines 4-7.

Should the copy operation fail, we retry transactions up to a pre-
specified limit, pausing between transactions. The implementation
of this retry mechanism (namely, selecting an optimal retry limit
and pause strategy) is described in Section 5.2.

We attempt to avoid a page fault within transactional code
(and the subsequent abort) by touching the pages spanned by the
object before every transaction in line 3. If a mutator writes to an
object here while a GC thread is transactionally copying it, strong
atomicity will cause the transaction to abort. The critical lost-
update problem is resolved in this circumstance by the subsequent
transaction retry which will now copy the updated version of the
object.

4.1.2 Fall-back Copying

If our transactional system had the property of eventual success,
lines 2-9 would be our entire copying algorithm. Unfortunately,
TSX does not have this property and so we must provide a non-
transactional fall-back path that solves the lost-update problem.
Lines 10-16 represent the fall-back portion of our algorithm. This
fall-back path is based on the CHICKEN algorithm by Pizlo, et
al. [19], in which the collector sets the lower bits of the object’s
forwarding word to the FORWARDING state prior to performing the
copy. The GC then ensures that all mutators have a chance to
see the new state by performing a handshake in line 12. If the
mutator observes an object in the FORWARDING state, it changes the
object’s state in the forwarding word to WRITTEN, signaling to the
collector that it potentially missed an update. This signal is received
via a compare-and-swap failure, which forces lines 15 and 16 to
evaluate to false, thus restarting the copying operation. Again, a
more complete description of this fall-back path can be found in
Appendix B.

An equivalent but more efficient approach to the fall-back path
is to batch objects that need to be moved until the size of the batch
reaches a certain threshold. Once reached, the GC would set the for-
warding state of every object in the batch and then perform a single
mutator handshake. In this way, the cost of the handshake would
be amortized across a number of objects. After the handshake, the
GC thread would copy every object in the batch to the to-space and
then individually try to atomically set the objects’ states to be for-
warded. If such an atomic were to fail (indicating that a mutator
had modified the object), that individual object would be included
in the next batch and attempted again. This approach has the poten-
tial to greatly reduce handshake overhead at the cost of a relatively
small increase in the chance that a mutator will write to one of the
objects in the batch. Intuitively, the incremental increase in mutator
contention as the size of a batch grows is small so these batches
could be relatively large in size. Pizlo, et al. [19] suggests possible
batch sizes of 1-10 kilobytes but we did not investigate optimum
batch size further in this current work.

4.1.3 Write Barriers

Both the transactional and fall-back paths of our algorithm require
mutator cooperation to avoid lost updates. To enforce this coopera-
tion, we require all mutator writes to be caught in a level of indirec-
tion, known in the GC literature as a barrier. Pseudo-code for our
write barrier is shown in Listing 2.

To cooperate with the fall-back path, lines 5-7 detect if the ob-
ject is in the FORWARDING state and if so atomically moves it to the
WRITTEN state. In lines 8-11, the write barrier determines whether
the GC has already moved this object and if so the mutator updates
itself to start using the new location of the object. In line 13, the bar-
rier writes the new value of the field into the object. Since the check
on line 8 and the write on line 13 are done non-transactionally, there

is still a data race with the GC thread’s transactional path and there
are three possible cases to consider.

e Write before transaction - The write on line 13 completes before
the GC thread starts a transaction to move the object. In this
case, the GC thread already sees the updated version of the
object on its first transaction attempt and the update is not lost.

e Write during transaction - The write on line 13 happens while
the GC thread is attempting to transactionally move the object.
In this case, strong atomicity will cause the transaction to abort
and on retry the mutator’s update will be copied and not lost.

e Write after transaction - A GC transaction may have moved the
object after line 8 but before line 13. In this case, the mutator’s
update would be lost (since the write on line 13 would be to
the old version of the object) if not for the presence of lines
15-21 in the write barrier. These lines check if the barrier did
not previously see the object in the FORWARDED state but
now does see the object in the FORWARDED state and by
implication that a transaction has moved the object. To prevent
the update from being lost, the mutator updates itself to now
use the new location of the object (lines 17 and 18) and then
re-performs the write, which will now be to the object’s new
location.

Listing 2. Pseudo-code for write barrier.
movePhaseWriteBarrier (
Object **containing_obj,
Object **xlocation,
Object *new_value) {
If the containing object’s state is FORWARDING {
Atomically set its state to WRITTEN.
¥
If the containing object’s state is FORWARDED {
Update the containing object to the forwarded version.
Update the location to the field in the forwarded version.

}
Write the new value to location.

If containing object’s state was not FORWARDED before write {
If the containing object’s state is now FORWARDED {
Update the containing object to the forwarded version.
Update the location to the field in the forwarded version.

Write the new value to location.

5. Experiments

To determine the effectiveness of RTM transactions in Chihuahua,
we instrumented Chihuahua to record the number of successful
transactions and the number and causes of transaction aborts. Fol-
lowing an aborted transaction, a transaction abort code is reported
by RTM as a bitmask in the EAX register (see Section 8.3.5 of
[11D).

For Chihuahua, we observed only three of these bits set.
e Bit 1 - indicates that the transaction may succeed on retry.

¢ Bit 2 - indicates that another logical processor conflicted with a
memory address that was part of the aborted transaction.

e Bit 3 - indicates an internal buffer overflow which usually
indicates a transaction that is too large.

For each aborted transaction, RTM will set zero or more of these
bits. During our testing of Chihuahua, only the following bit com-
binations were observed:

e No bits set - The cause of the abort is not one of the limited set
of enumerated abort causes. We report this in the graphs below
as Unknown. Possible causes of such unattributable aborts in-
clude RTM-unfriendly instructions and page faults. To prevent
possible page fault aborts, we non-transactionally touch the be-
ginning and end of each object before attempting to move it
transactionally. Since our maximum semi-space object size is
4KB, semi-space objects can span only two (4KB) pages and
by touching these parts we are guaranteed to touch each such

page.
Bits 1 and 2 - A memory conflict has occurred but the transac-
tion may succeed upon retry. We report this in the graphs below
as Conflict & Retry.

Bit 2 - The conflict bit set (but not the retry bit) was observed
only a handful of times and is therefore excluded from the
graphs.

e Bit 3 - In our initial experiments, we observed some transac-
tions fail with the overflow abort code. We reduced the large-
object space threshold from 8K to 4K and this eliminated all
overflow aborts.

All numbers were collected on a 64-bit Ubuntu distribution with
an Intel i7-4770 desktop processor. The processor runs at 3.4 GHz,
has 4 physical (8 virtual) cores, and has L1, L2, and L3 caches of
size 32KB, 256KB, and 8MB respectively.

5.1 Results

While a single GC thread is often sufficient to keep pace with mem-
ory allocation, we still wanted to investigate how the parallel ver-
sion of our algorithm (multiple concurrent GC threads) would per-
form for larger machines and/or more allocation intensive work-
loads. Therefore, we collected transaction statistics for numbers of
GC threads ranging from 1 to 4 in combination with the bench-
marks of the DaCapo suite [4]. We found that these statistics are
consistent across all of the suite’s benchmarks and so here we only
report numbers for the Avrora benchmark. We initially tried to exe-
cute each Chihuahua transaction 1000 times or until it was success-
ful, whichever came first. We experimented with this large retry
value because, as we note below, there were some transactions that
consistently failed with an Unknown abort cause and we wanted to
know if those transactions would eventually succeed given enough
retries. However, here we present figures for only up to 10 of those
retries as very few successful transactions were observed after 10
retries. We ran each benchmark multiple times and the transaction
numbers reported here are averaged across those runs and across
each GC cycle within those runs (so the figures may show frac-
tional transactions).

Results from our initial tests are shown in Figure 2. In these
tests, we observed a significant amount of Conflict & Retry aborts
between GC threads. We also observed a core set of pathological
transactions (about 0.2% of the original set) that would never suc-
ceed regardless of how many times they were retried. Moreover,
these transactions generally failed with the Unknown abort code,
providing no information as to the cause of their failures. We used
the Linux perf tool to collect TSX-related performance monitor-
ing events and noted a correlation between the number of Unknown
aborts and the number of “transaction failed due to unfriendly RTM
instruction” perf events. With this clue, we determined that the
cause of these pathological transactions was the Jikes semi-space
allocator “slow-path.” At the beginning of a transaction, Chihuahua
first allocates space in the destination semi-space before copying
the object there. This allocation usually uses a synchronization-free
fast-path but occasionally this allocation uses a slow-path that in-

Initial Transaction Transaction Retry 6

120000 T 400 T T T T
100000 |—| t] 2(5,8
1% 1%
S 80000 | H & 250
& 60000 [- & 200
< £ 150
8 40000 s
= ~ 100
20000 (| — 50
0 0
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 1 Transaction Retry 7
25000 T T T T 400 T T T T
350
20000 —|
N
= 15000 — — =
3 § 200
g 10000 — — E 150
= 5000 = 100
50
0 0
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 2 Transaction Retry 8
6000 ‘ ‘ 400 ‘ ‘
5000 ggg
1% 1%
& 4000 & 250
Q Q
g 3000 — § 200 W —
g 2000 < L § 180 —
= = 100 —
1000 — 50 |
0 = 0
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 3 Transaction Retry 9
1800 T T T T 400 T T T T
1600 — 350
o 1400 : — o 300
S 1200 — S 250
S 1000 — 3]
® @ 200 —
g 8o | 2 150
@ 600 — < T
= 400 { ~ 100 —
200 W — 50 L
0 0
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 4 Transaction Retry 10
800 400 ‘ ‘
700 — — 350
@ 600 — 2 300
2 500 S 250
g 400 — g 200 —|
S 300 1 £ 150 -
= 200 X — = 100 —
100 :@ — 50 —
0 0
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 5
500 T T T
450

Unknown =7~z
Conflict & Retry &zl
Success [~]

Transactions
N
o
o

200
150
100
50
0

1 2 3 4
GC Threads

Figure 2. Transaction Retry - Before optimization.

cludes a RTM-unfriendly (i.e., abort inducing) instruction for syn-
chronization.

To solve this problem, we modified our algorithm to determine,
before starting a transaction, if moving the current object would
cause the slow-path allocation code to be invoked. If so, we artifi-
cially cause the allocator to move to the next allocation area within
the semi-space. Note that this does not increase fragmentation but
merely switches allocation areas outside the transactional region
rather than within it. Then, when we begin the transaction and call
the allocator, we are guaranteed that the transaction will use the al-
locator fast-path that does not have a RTM-unfriendly instruction.
With these changes, all pathological transactions were eliminated
as were almost all of the Unknown aborts and the bulk of the Con-
flict & Retry aborts. Thus, while eventual success with TSX is not
guaranteed, we did observe eventual success in practice.

Number of GC Threads Initial Transaction Success
1 99.94%
2 99.95%
3 99.93%
4 99.89%

Table 1. Initial Transaction Success Percentage

The percentage of the time that the first transaction attempt now
successfully completes is shown in Table 1. We note that about
99.9% of transactions complete in their initial attempt regardless of
the number of GC threads so there is little contention between GC
threads attempting to move the same object. Figure 3 shows our
final set of numbers with our slow-path allocator fix. On average,
there is less than one outstanding transaction in the system after
three transaction retries. For one GC thread, all transactions com-
plete within three retries while it takes four retries for 3 GC threads.
For two and four GC threads, the maximum number of retries is 32
and 43 respectively. The only abort code observed is the Conflict &
Retry abort code.

5.2 Transaction Retry Strategy

In this section, we discuss how to handle transactions that fail in
their first attempt. First, we note that with so few transactions fail-
ing in their initial attempt, the cost of retrying the remaining trans-
actions is small. This is especially true when considering the rela-
tively high cost of the fall-back path. Also, when we do repeatedly
retry Chihuahua transactions, we observe that they will all eventu-
ally complete in at most 43 retries. Thus, in Chihuahua we use the
simple retry strategy of retrying until all transactions are complete.
However, despite not being observed, pathological transactions are
still possible and so it is still necessary to have some transaction
retry threshold at which point the fall-back path will be triggered.
Given the evident rarity of pathological transactions, the selection
of this threshold is not critical and we recommend twice the longest
successful transaction retry number.

We speculated that it might happen that a GC thread may at-
tempt to move an object to which the mutators are in a phase of ac-
tive modification (e.g., updating every element of an array). Each
such modification would then cause a GC transaction to abort. If
the transaction retry loop were a tight loop, this might cause re-
peated transaction aborts. In this case, the GC would essentially
have to wait for the mutators to be done with the object before the
GC could move it. There could also be some potential systemic
overhead related to the GC’s repeated transaction aborts. Thus, we
experimented with adding various delay mechanisms (such as con-
stant delay, delay proportional to the object size, and exponential
backoff) inside the transaction retry loop. One might expect that as
this delay was increased, that the maximum transaction retry num-
ber would decrease. While in general this was true, there were cases
where the opposite was observed. There were some indications that
perhaps proportional delay could reduce transactional retries by up

Initial Transaction Transaction Retry 6

120000 — 0.18 ‘ ‘ ‘ ‘
N f 0.16 —
" 100000 — — » 014 |
S 80000 | S N\ Ef 5 012
3] 3] 0.1 —
g 60000 — — 2 0.08 { |
® 40000 — s 0.06
= = 0.04 —
20000 — 0.02 ||
0 0 | |
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 1 Transaction Retry 7
90 T T T T 0.18 T T T T
80 — 0.16 —
o 70 : — s 014
§ 60 H & 012
g 50 N — g 0.1 —
a 40 —F— — a 0.08 — —
s 30 — < 0.06
= 20 — = 0.04 —
NN NNNNE —
0 0 | |
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 2 Transaction Retry 8
4 ; 0.18 ; ;
35 1 0.16 T
0 3 - s 014 —
S o5 L | & 012
R 15 o —
@ 15 @ 0.08 —
s] & 006
= 1 — F 004 R
0.5 L — 0.02 —
0 0 ‘ ‘
1 2 3 4 1 2 3 4
GC Threads GC Threads

Transaction Retry 3 Transaction Retry 9

14 T T T 81(83 T T T T
1.2 ; E— . |
%) 1 s 014 —
S] § o1
S 0.8 — 5 0.1 —
2 06 | & oo08 I
S 04 L | < 0.06
= ’ = 0.04 —
0.2 NNl | 0.02
P I -5 2 ‘
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 4 Transaction Retry 10
0.5 ‘ 0.18 ‘ ‘
0.45 — 0.16 ——
0.4 — 0.14 R
g o035 — 2 o1
g 03 1 % o1 S
s 025 — g 0 68
2 02 - |
S 015 } | & 006
= 0.1 { | = 0.04 —
0.05 L 0.02 —
0 ! 0 ! !
1 2 3 4 1 2 3 4
GC Threads GC Threads
Transaction Retry 5
035 R
0.3 z—
2 025 — Conflict & Retry xxxx
2 L Success [~
3] 0.2
g 015 I e
= 0.1 — —
0.05 —
0 1 1

1 2 3 4
GC Threads

Figure 3. Transaction Retry - With slow-path allocator fix.

to 50% but the small number of transaction retries to start with
make this result statistically insignificant.

6. Conclusions

We have shown how HTM with strong atomicity can be used
to solve the lost-update problem in a concurrent, moving GC.
We investigated the behavior of Intel TSX in the context of the
Chihuahua GC by collecting and analyzing transaction success
ratios and failure codes. This investigation led us to make several
small changes to the implementation of our algorithm to avoid
aborts caused by page faults, RTM-unfriendly instructions, and
overflows. After these changes, we saw eventual success for each of
our collector’s transactions. Our initial transaction attempt success
rate is largely independent of benchmark and the number of GC
collector threads with roughly 99.9% of transactions successfully
completing on their first attempt. With eventual success and such
a high percentage of initial transaction successes, we find that the
performance of our collector is not very sensitive to the transaction
retry strategy. With the relatively high cost of the fall-back path,
we recommend its use only for pathological transactions which
we speculatively identify as those transactions which have retried
more than twice that of the successful transaction with the highest
number of retries. These results also confirm that there is not a
universally applicable (i.e., context free) transaction retry strategy
as our algorithm generally retries until successful whereas other
work such as Yoo, et al. [24] used a default of 5 retries and found
that up to 80 retries were beneficial for some applications.

7. Future Work

Our work suggests several avenues for further exploration. In par-
ticular, there is plenty of opportunity to explore which strategies
would increase memory conflicts and cause more interference and
which would reduce it. For example, we believe that batching ob-
ject movement in a manner similar to Ritson [21] would increase
the contention rate. Experiments could confirm this outcome and
help to determine the best transaction retry strategy in such cases
(e.g., debatching the retries). Similarly, although we have provided
results for different numbers of GC threads, it would also be use-
ful to explore how to dynamically determine the optimal number of
GC threads. We suspect that in many cases, one GC thread (the case
that had minimal contention in our experiments) is entirely ample.

8. Related Work

McGachey, et al. [15] describe a block-based (not semi-space),
concurrent, moving GC in the context of a software transactional
memory (STM) system. Like Chihuahua, they employ a flip phase
in addition to the mark and move phases of the GC. In each GC
cycle, rather than moving/compacting every object, some selection
of blocks are made whose contents are to be moved. The STM
system itself required its own set of read and write barriers which
were integrated with the barriers required by the GC. Various ways
of optimizing this integration of the STM and GC barriers are then
described. Unlike Intel TSX, these STM transactions could not fail
indefinitely and so no non-transactional fallback path was needed.

McGachey was itself related to the concurrent, moving Sapphire
GC [10] in its mark, flip, and sweep functionality. However, Sap-
phire did not make use of transactional memory and so the copy/-
move phase was different and required no read barrier. In Sapphire,
no to-space objects were used by mutators until the flip phase. Dur-
ing the copy phase, Sapphire maintains consistency between the
from and to-space versions of the same object by mirroring writes
to both copies through a write barrier.

Collie [12] is a wait-free, concurrent, moving GC that uses hard-
ware transactional memory provided by Azul Systems Vega proces-
sors. These processors also support a read barrier that Collie uses
to ensure mutators always access to-space object replicas. During
the mark phase, Collie constructs ‘referrer sets’ of objects (up to

some small threshold) which contain references to each object. To
minimize transaction size, when Collie moves an individual object,
it copies its contents non-transactionally to the to-space. Then, in a
transaction, Collie updates references in the object’s referrer set to
point to the to-space. If the number of referrers is too large or if an
object is referenced by a root or is accessed by a mutator while be-
ing moved then the object is not moved in this manner but instead
the object is virtually copied by mapping its from-space page to the
to-space.

Ritson and Barnes [20] collected many TSX performance statis-
tics on an Intel i7-4770 processor and evaluated the suitable of
TSX for the implementation of communicating process architec-
tures. One important finding is that TSX transaction overhead is
about three times the cost of a compare-and-swap (CAS) so simply
replacing CAS with transactions is not beneficial and that transac-
tions can still have reasonable failure rates up to 16KB in size.

Ritson, et al. [21] investigate three possible GC applications of
Intel TSX in JikessMMTk. The first application was in a parallel
semi-space collector to coordinate multiple GC threads to ensure
that each object is only moved to the to-space once. Given transac-
tion overhead, they modified this collector to copy to the to-space
optimistically so they could transactionally do batch updates to 16
objects’ forwarding pointers and state bits at a time but found no
benefit from TSX in this application. The second application was
for bitmap marking in the MMTk mark-sweep collector. Again, due
to transaction overhead, they batched up to 8 bitmap marks locally
in a GC thread before committing those marks en-masse to global
bitmap. In this case, they found the benefits of the transaction were
outweighed by the overhead of the batching process. These results
support the notion that merely replacing existing synchronization
schemes with transactions does not necessarily lead to improved
performance.

The above paper’s third application of TSX was for copying
objects in an implementation of Sapphire GC in Jikes/MMTKk.
They determine that 13 objects will fit inside a maximally sized
16KB transaction and explore two ways to form such transactions:
inline and planned. Inline starts a transaction while scanning the
heap and thus scanning-related reads enter the transaction. Planned
copying locally batches up objects to go in the transaction and
then starts the transaction and thus there is no extraneous data
in the transaction. Planned copying was shown to be superior to
inline copying past transaction sizes of about 256 bytes. Finally,
concurrent copying with transactional methods was about 60-80%
faster than Sapphire’s original CAS implementation. Once again,
however, this approach is one of replacing an existing CAS-based
algorithm with a transactional one. In contrast, our approach relies
more heavily on transactional properties like strong atomicity.

Yoo, et al. [24] study how to increase performance of Java mon-
itor locks with TSX and without source or bytecode modifications.
In their approach, uncontended (thin) locks continue to be entered
with a CAS since CAS has less overhead than a TSX transaction.
However, their contended (fat) lock implementation is an integra-
tion of a new transactional path (with retries) and the existing JVM
fat lock implementation as a non-transactional fallback path. Yoo
et al. find that the best retry strategy is this context is application
dependent and can be up to 80 retries.. They maintain statistics of
transaction success rates for each monitor and use those statistics to
switch the monitor implementation on a case-by-case to the origi-
nal, transactionless implementation if the transaction failure rate of
the monitor is too high. Likewise, if lock count is above a threshold,
they can switch the monitor to a faster implementation that does not
have the overhead of statistics gathering.

Acknowledgments

This work began under the auspices of the Harvey Mudd College Clinic
program, a capstone project in which a team of four undergraduates tackles
a problem of particular interest to an industry sponsor (in this case Intel) in
an academic setting. The four students were John Sarracino, Joe Agajanian,
Claire Murphy, and Will Newbury. We would like to extend our thanks to
everyone at Intel and Harvey Mudd College who helped make the project
possible. We would also like to thank James Cownie and Roman Dementiev
at Intel for their help in answering various questions we had about the
behavior of TSX on Intel CPUs.

References

[11 Intel architecture instruction set extensions programming reference.,
chapter 8. Intel Corporation, 2012.

[2] A. Baldassin, E. Borin, and G. Araujo. Performance implications
of dynamic memory allocators on transactional memory systems. In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, pages 87-96, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3205-7. . URL
http://doi.acm.org/10.1145/2688500.2688504.

[3] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water?
High performance garbage collection in Java with MMTk. In 26th
International Conference on Software Engineering, pages 137-146,
Edinburgh, May 2004.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The dacapo benchmarks: Java benchmark-
ing development and analysis. In Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’06, pages 169-190,
New York, NY, USA, 2006. ACM. ISBN 1-59593-348-4. . URL
http://doi.acm.org/10.1145/1167473.1167488.

C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software transactional memory: Why is it only a
research toy? Queue, 6(5):40, 2008.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Sholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation. In
Communications of the ACM, pages 966-975, 1978.

[7]1 A. Dragojevic. On the performance of software transactional memory.

[5

=

[8] A. Dragojevié, P. Felber, V. Gramoli, and R. Guerraoui. Why stm can
be more than a research toy. Communications of the ACM, 54(4):70—
77,2011.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Architec-
tural support for lock-free data structures. SIGARCH Comput. Ar-
chit. News, 21(2):289-300, May 1993. ISSN 0163-5964. . URL
http://doi.acm.org/10.1145/173682.165164.

[10] R. L. Hudson and J. E. B. Moss. Sapphire: Copying gc with-

out stopping the world. In Proceedings of the 2001 Joint ACM-

ISCOPE Conference on Java Grande, JGI *01, pages 48-57, New

York, NY, USA, 2001. ACM. ISBN 1-58113-359-6. . URL

http://doi.acm.org/10.1145/376656.376810.

Intel Corporation. Intel architecture instruction set extensions pro-

gramming reference, 2012.

[12] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The collie: A wait-
free compacting collector. In Proceedings of the 2012 International
Symposium on Memory Management, ISMM 12, pages 85-96, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1350-6. . URL
http://doi.acm.org/10.1145/2258996.2259009.

[13] R. Jones. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management. Wiley & Sons, 1996. ISBN 0471941484 (alk.
paper).

[14] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. CRC Applied Al-

[11

gorithms and Data Structures. Chapman & Hall, 2011. ISBN 978-
1420082791.

[15] P. McGachey, A.-R. Adl-Tabatabai, R. L. Hudson, V. Menon, B. Saha,
and T. Shpeisman. Concurrent gc leveraging transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’08, pages 217-226,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. . URL
http://doi.acm.org/10.1145/1345206.1345238.

[16] M. Moir and D. Nussbaum. What kinds of applications can benefit
from transactional memory? In Computer Architecture, pages 150—
160. Springer, 2012.

[17] V. Pankratius and A.-R. Adl-Tabatabai. Software engineering with
transactional memory versus locks in practice. Theory of Computing
Systems, 55(3):555-590, 2014.

[18] V. Pankratius, A.-R. Adl-Tabatabai, and F. Otto. Does transactional
memory keep its promises?: results from an empirical study. Univ.,
Fak. fiir Informatik, 2009.

[19] E. Pizlo, E. Petrank, and B. Steensgaard. A study of con-
current real-time garbage collectors. In Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’08, pages 33-44, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. . URL
http://doi.acm.org/10.1145/1375581.1375587.

[20] C. G. Ritson and F. R. Barnes. An evaluation of intel’s restricted trans-
actional memory for cpas. In Communicating Process Architectures,
2013.

[21] C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring garbage
collection with haswell hardware transactional memory. In
Proceedings of the 2014 International Symposium on Mem-
ory Management, ISMM ’14, pages 105-115, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2921-7. . URL
http://doi.acm.org/10.1145/2602988.2602992.

[22] G. L. Steele, Jr. Multiprocessing compactifying garbage collection.
Commun. ACM, 18(9):495-508, Sept. 1975. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/361002.361005.

[23] P. R. Wilson. Uniprocessor garbage collection techniques.
In Y. Bekkers and J. Cohen, editors, Proceedings of the
International Workshop on Memory Management, volume
637 of Lecture Notes in Computer Science, pages 1-42, St
Malo, France, 16-18 Sept. 1992. Springer Verlag. URL
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps.

[24] R. Yoo, S. Viswanathan, V. Deshpande, C. Hughes, and S. Aundhe.
Early experience on transactional execution of java programs using in-
tel transactional synchronization extensions. In Ninth ACM SIGPLAN
Workshop on Transactional Computing, March 2014,

[25] M. Zhang, J. Huang, M. Cao, and M. D. Bond. Larktm: Efficient,
strongly atomic software transactional memory. Technical report,
Technical Report OSU-CISRC-11/12-TR17, Computer Science & En-
gineering, Ohio State University, 2012.

S O 00NN R W -

eI B e R S N S

_ e
N = O o

RTINS

Appendices

A. Implementation of Transactions

Hardware transactional memory is key to our algorithm and using
it in C code is relatively straightforward. Listing 3 shows an exam-
ple RTM algorithm in C, written with the inline assembly directive
asm. The programmer starts a transaction with the xbegin instruc-
tion (line 1). This xbegin instruction will jump to its argument on
a transactional failure, so the programmer passes the tx_retry la-
bel on line 7. Finally, xend on line 5 ends the transaction. Lines 4-7
are only reached within a transaction while line 9 is only reached
on transaction failure.

Listing 3. C transactional memory example.

tx_start:

asm goto("xbegin %1l[tx_retryl;":

,"ax":tx_retry);

// transactional

asm volatile("xend");

// unreached if transaction fails

goto done
tx_retry:

// retry policy and fail-path code
done:

:"memory"

code

However, our GC is written in Java because the Jikes Java Re-
search Virtual Machine (RVM) is itself written largely in Java. The
Jikes code generator does not yet contain a __xbegin compiler in-
trinsic or the atomic keyword used in our algorithm, so we needed
a way to work with RTM in Java code. JikesRVM’s internals in-
clude a way to call short, non-recursive C functions (called syscalls)
from Java code, which are essentially inlined. Using this mecha-
nism, we exported RTM to high-level code through two function
calls, BeginTransaction and EndTransaction, shown in List-
ing 4. EndTransaction is relatively trivial, as it merely inlines
xend. BeginTransaction starts a transaction and returns a signal
for whether the transaction succeeded or failed.

If a transaction fails, this code does not attempt to retry the
transaction, so application code is responsible for the retry strategy.

Listing 4. JikesRVM transactional memory interface.
int BeginTransaction() {
tx_start:
asm goto("xbegin %l[tx_retryl;":
,"ax":tx_retry);
return 1; // signal entrance to transaction
tx_retry:
return O;

:"memory"

// signal fail case
}

void EndTransaction() {
asm volatile("xend");

}

This implementation is straightforward but overall control flow
merits some explanation. A naive application might be tempted
to logically consider BeginTransaction and EndTransaction
as inlining xbegin and xend, respectively. This might result
in code such as Listing 5, in which BeginTransaction and
EndTransaction delimit a transaction. However, such code is
not correct, as control returns to lines 2-3 both when a transaction
starts and when a previous transaction fails.

Listing 5. Erroneous JikesRVM transactional memory example.
BeginTransaction ()

// transactional code

// or is it?

EndTransaction ()

NN R W =

This error can be rectified by using the return value of BeginTransaction

in a conditional to determine the mode of operation. For example, a
conditional pattern such as Listing 6 correctly encodes the seman-
tics (of a single transaction) intended by most applications. Our
Chihuahua algorithm moves objects using identical logic.

Listing 6. Correct JikesRVM transactional memory example.
if BeginTransaction() {

// transactional code

EndTransaction ()

// unreached if transaction fails
} else {

// fail-path code

B. Detailed Chihuahua Algorithm

Chihuahua is a concurrent, parallel, moving GC implemented in
MMTk whose heap structure consists of two semi-spaces plus the
normal MMTk immortal and large-object spaces (for objects 4KB
and larger). This arrangement was chosen for simplicity and expe-
diency as we were able to borrow from the existing non-concurrent
MMTk semi-space collector. Our implementation of Chihuahua
supports multiple GC and mutator threads. The concurrent GC
threads runs continuously and in each GC cycle moves all reach-
able, semi-space objects from the current semi-space to the other
semi-space. While perhaps not practical in a production collec-
tor, this semi-space approach of moving every object every GC
cycle has the benefit from a testing perspective that it maximizes
the amount of object movement and therefore stresses the transac-
tional part of the collector better allowing us to test the correctness
of the algorithm and performance of the transactions themselves.
Likewise, unless the number of hardware threads is large, it is not
usually necessary to have multiple GC threads or to run them con-
tinuously (as it can typically free memory faster than it is allocated)
but we do so to stress the collector for testing purposes. In terms of
object format, the Chihuahua collector requires header space for a
forwarding pointer and also uses the two lower bits of this pointer
which would otherwise be unused due to alignment. The purpose
of these extra bits is described below. The following sub-sections
describe the Chihuahua algorithm from the perspectives of the GC
thread and of the mutators.

B.1 GC Phases

Each cycle of the concurrent GC thread consists of three major
conceptual phases, inspired by McGachey, et al. [15]. Those phases
are the mark-scan phase, the move (what McGachey calls the copy)
phase, and the flip phase.

B.1.1 Mark Phase

Before starting this phase, we make sure that the mutators have
enabled their mark phase write barrier (described in the mutator
section). Then, each mutator is individually stopped only long
enough to scan its stack and registers to find GC roots. After all
roots have been found, the mark phase uses the classic tri-color
marking algorithm and invariant [6, 22] to transitively identify all
reachable objects in the current semi-space starting from the GC
roots. We borrow most of our implementation of this phase from
the MMTk concurrent mark-sweep collector’s mark phase. The
purpose of the write barrier in this phase is to ensure that the tri-
color invariant is maintained.

B.1.2 Move Phase

The move phase is responsible for moving objects to the destina-
tion semi-space safely and avoiding the lost-update problem. Be-
fore starting the move phase, we install the move phase read and

write barriers. Then, for each reachable object identified in the
mark phase, the GC thread attempts to move the object to the other
semi-space using the pseudo-code shown in Listing 7. In line 2, the
GC first reads the old forwarding pointer word which consists of the
forwarding pointer and in the lower two bits are flags which indi-
cate whether the object has been forwarded (the ‘FORWARDED’
bit) or is being forwarded (the ‘FORWARDING’ bit). If the for-
warding word was clear, line 2 also sets the forwarding word to
‘FORWARDING’. The forwarded state indicates that the object has
been moved to the new semi-space whereas the forwarding state in-
dicates that a GC thread is moving the object.

These lines mediate GC-GC contention in that each object is
intended to be moved by exactly one GC thread.

In lines 3-7, we check if the object has or is in the process of
being forwarded and if so wait until that is fully completed and
return the new location of the object. Lines 3-7 are only strictly
necessary for the FORWARDING case when there are multiple GC
threads.

Lines 9-20 constitute our transactional copy, in which we retry
upon transactional failures.

On line 10, we prevent a possible page fault from aborting the
subsequent transaction by reading the pages possibly spanned by
an object (see Section 5).

At line 11, the current thread will attempt to move the object
transactionally and starts a hardware transaction. If the object has
still not been forwarded then in lines 12-14 we allocate room for
and copy the object into the destination semi-space and set the
forwarding pointer and the FORWARDED bit in the forwarding
word of the header of the old location of the object in the current
semi-space.

If a mutator writes to an object non-transactionally during this
copying process, strong atomicity will cause the GC transaction to
abort. If an abort occurs, the transaction retry policy is applied. If
the number of transaction retries does not exceed a certain max-
imum then control reverts to line 10 and the transaction is tried
again. During such retries, the GC thread will now copy the updated
version of the object and thus prevent the lost-update problem. This
policy of the maximum number of transaction retries is examined
in Section 5.

The non-transactional fallback path is based on the CHICKEN
algorithm by Pizlo, et al. [19]. On line 22, we non-atomically set the
FORWARDING bit of the object to be moved and on line 23 update
oldFwd to reflect the new state of the forwarding word. Then, on
line 24 we wait for all mutators to reach a certain point whereat they
are guaranteed to see the FORWARDING bit set if they happen to
examine the object’s forwarding word.

On line 25, we allocate space for and copy the object to the des-
tination semi-space and on line 26 compute what the new forward-
ing word of the old object should contain, namely the new address
of the object or’ed with the FORWARDED bit. Finally, on line 27,
we attempt to atomically set the forwarding word of the old object
location to the new one from line 26. This atomic operation will fail
if the forwarding word does not have the FORWARDING bit set as
contained in oldFwd. As discussed in Section B.2.2, a mutator can
atomically clear this FORWARDING bit if it needs to write to the
object. In which case, the GC thread repeats the loop so that the
copy on line 25 will include the modified data. In this approach,
the mutator fast path, in which the FORWARDING bit is not set,
is privileged and fast by being free of atomics. Conversely, the GC
thread is disadvantaged and is responsible for waiting until muta-
tors are guaranteed to see the FORWARDING bit and for retrying
as many times as necessary until moving the object succeeds.

The handshake with the mutators on line 24 is potentially a very
expensive operation. One possible optimization, which for lack of
time we did not implement, is to batch objects whose transactions

[N e R T S

B B B B2 P B D B D) DD = = = —m e e e e e
O 01U hEWN—=O 0O WNnEWwND— O 0

fail and to then attempt to move multiple such objects while sharing
a single mutator handshake. In such a batch, the forwarding bit
of each object would be set, one handshake performed, the copies
performed, and a compare and swap on the forwarding pointer of
each object performed. All objects for which the compare and swap
fails to find the FORWARDING bit set would similarly need to be
repeated.

Listing 7. Pseudo-code for moving an object.
Object * moveObject(Object *object) {
0ldFwd = readAndAcquireForwardingWord (object)
if isForwardingOrForwarded (oldFwd) {
while !isForwarded(oldFwd) {
0ldFwd = readForwardingWord(object)
}
return getForwardingPtr (object)
} else {
for (int i = 0; i < RETRY_DEPTH;
touchMiddleEnd (object)
if BeginTransaction() {
new_object =
setForwardingPtr (object, new_object)
setForwardedBit (object)
EndTransaction ()
return new_object
} else {
pauseBeforeRetry (object)
}

++i) {

allocateAndCopy (object)

}
do {

setForwardingBit (object)
0ldFwd |= FORWARDING_BIT
mutatorHandshake ()
new_object = allocateAndCopy (object)
newFwd = new_object | FORWARDED_BIT

} while (CASForwardingPtr (object, newFwd)

B.1.3 Flip Phase

The flip phase uses the same set of mutator read and write barriers
as the move phase. The purpose of the flip phase is to ensure that
all references in the program now refer to the destination semi-
space. As described in Section B.2.2, some such references will
be updated by mutator read/write barriers but most such references
will be updated by the flip phase. The flip phase is nearly identical
to the mark-scan phase and in our implementation is a modified
version of the mark-scan phase in which each thread is temporarily
suspended in turn to identify GC roots which are then updated to
point to the destination semi-space. Those roots are then used to
transitively visit each object in the destination semi-space and to
then update all references in those objects to point to the destination
semi-space if they do not do so already. After the flip phase is done,
the read and write barriers can be eliminated for the mutators until
the start of the next GC cycle.

B.2 Mutator Barriers

Different kinds of read and write barriers are required for muta-
tors to cooperate with the GC during the different phases of the GC
cycle. For example, during the mark-scan phase of the GC, the mu-
tators require a write barrier on reference fields only. Conversely,
during the other phases read and write barriers are required as de-
scribed below.

B.2.1 Mark Phase Barriers

The only barrier required during the mark/move phase is a write
barrier on references. Here we reuse the existing MMTk concurrent

!= o0ldFwd)

[l B Y

mark-sweep collector write barrier. This barrier ensures that the tri- 27
color invariant is maintained by graying otherwise white objects if 28

they are written into a black object.

B.2.2 Move Phase Barriers

During the move phase, write barriers are required for both refer-
ence and scalar fields and a read barrier is required for reference
fields. All the write barriers function in the same manner and have
the same purpose of preventing the lost-update problem. Pseudo-
code for the reference version of the write barrier is shown in List-
ing 8 (scalar versions are similar). When the write barrier is in-
voked, it first reads the forwarding word of the object containing
the location to be written in line 6. In line 7, the FORWARDING
bit is set on the object which indicates the GC is trying to move this
object using the non-transactional fallback path. Since the mutator
has priority, we atomically clear the FORWARDING bit in line 8 so
that the GC thread will fail the CASForwardingPtr in Listing 7 and
will try to move the object again. On line 10, we check the object
has already been moved. If so, we compute the offset of the loca-
tion to be written from the base of the object in line 12, modify the
reference used to access this object on line 13 and compute the new
location to be written by adding the computed offset to the new ob-
ject location in line 14. On line 17, the barrier then writes the new
value into the location. If on line 19 the FORWARDED bit we orig-
inally read was not set, then there is the potential that the GC thread
has transactionally moved the object since the FORWARDED bit
was read in line 7. To test for this case, we read the forwarding
word again in line 20 and check the FORWARDED bit in line 21.
If the FORWARDED bit is now set, we cannot know whether the
mutator’s write occurred before or after the GC thread’s transaction
which moved the object. If the write occurred after the transaction
then this would result in a lost-update and so on lines 22-24 we up-
date the containing object and location just as we did in lines 12-14.
Then the write of the new value into the location is repeated. Note
that if the barrier’s first write occurred before the GC transaction
and was therefore included in it that this second write will write the
same value and be benign. Also note that if a transaction does move
the object prior to line 20 that the transaction will have invalidated
the cache line on the processor running the barrier and so line 20 is
guaranteed to see the FORWARDED bit set.

Listing 8. Pseudo-code for move phase write barrier.
movePhaseWriteBarrier (
Object **containing_obj,
Object **location,
Object *new_value) {

0ldFwd = readForwardingWord (*containing_obj)
if isForwarding(oldFwd) {
atomicClearForwardingBit (*containing_obj)
}
originally_forwarded = isForwarded(oldFwd)
if originally_forwarded {
offset = location - *containing_obj
xcontaining_obj = getForwardingPtr (*xcontaining_obj)
location = *containing_obj + offset

*location = new_value;
if !originally_forwarded {
readForwvardingWord (*containing_obj)
if isForwarded(curFwd) {
offset = location - *containing_obj
*containing_obj =
location = *containing_obj + offset
new_value;

curFwd =

*location =

N R W N =

getForwardingPtr (*containing_obj)

}
}

The move phase read barrier is only applied to reference fields.
Its purpose is to ensure that a read following a write to a destination
semi-space object will see that write. Pseudo-code for this read bar-
rier is shown in Listing 9. In line 2, the barrier reads the forwarding
word for the value currently in the reference field. If that object has
been forwarded (line 3) then the reference field is updated to point
to the new location of the object in line 4. Finally, the most recent
reference field is returned on line 6.

Listing 9. Pseudo-code for move phase read barrier.
Object * movePhaseReadBarrier (Object **ref_field) {
0ldFwd = readForwardingWord (*ref_field)
if isForwarded (oldFwd) {
xref_field = getForwardingPtr (*ref_field)
}

return *ref_field

B.2.3 Flip Phase Barriers

The flip phase barriers must ensure that reads and writes occur
to destination semi-space objects. While not optimal, this can be
simply accomplished by leaving the move phase barriers in place
and this is what we do in our implementation. The minimal move
phase and flip phase read barriers are identical. However, for the
flip phase write barrier, the FORWARDING state is impossible as
is the FORWARDED bit changing between lines 6 and 20 and thus
lines 7-9 and 19-27 are superfluous in the flip phase.

