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Abstract

The Chinese Remainder Problem appeared around the first century AD in Sun 

Zie’s book. Its uses ranged from the computation of calendars and counting soldiers 

to building the wall and base of a house. Later on, it became known as the Chinese 

Remainder Theorem involving integers and remainders under division. Over a period of 

time, people had expanded the theorem into abstract algebra for rings and principal ideal 

domains. Furthermore, the application of the Chinese Remainder Theorem can be found 

in computing, codes, and cryptography.

In this manuscript, the Chinese Remainder Theorem will be introduced as the 

original theorem dealing with integers. Then, its expansion and application into rings, 

principal ideal domains, and Dedekind Domains will be discussed. Finally, we will see how 

the theorem, as a secret-sharing scheme, takes part in the development of cryptography.
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Chapter 1

Introduction

In the mid thirteenth century, a method for solving systems of linear congruences 

was published by the Chinese mathematican Ch’in Chiu-Shao. He wrote the Mathematical 

Treatises in the Nine Sections. This method was then called the Chinese Remainder 

Theorem due to the contribution of Ch’in Chiu-Shao ([Gal06]).

In an old guide book for magicians ([DPS96]), the form of the Chinese Remainder 

Theorem is found as a mind-reading trick to impress the audience. A magician would 

ask a helper to think of a number less than 60. Then the helper is asked to divide this 

number by 3 and tell the remainder. The process continues as the helper divides the 

original number by 4 and 5. Upon hearing the remainders, the magician will announce 

the number. For example, the number will be 23 corresponding to the remainders 2, 3, 

and 3, obtained by dividing by 3, 4, and 5 respectively. By the instruction of the guide 

book, the magician divides the numbers 40a + 455 + 36c by 60 where a, b, c are the three 

remainders. So, in the above case 40x2+45x3+36x3 = 80+135+108 = 323+60 = 5r23. 

The last remainder 23 is the answer. This is a concrete example of using the Chinese 

Remainder Theorem with three moduli.

In arithmetic, modulo indicates a congruence relations on the integers. Two 

integers a and b are said to be congruent of modulo m if their difference a—b is a multiple of 

m. Also if we divide both a and b by m, their remainders will be the same. The magician 

problem above starts with simple moduli of the integers; however, the congruence relation 

is expanded into abstract algebra with the operations on rings, domains, fields, and so 

on.
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The Chinese Remainder Theorem began with a problem similar to that of the 

magician and the Chinese used its algorithm to calculate the calendar, compute the 

number of soldiers when marching in lines, or compute the construction of building a 

wall. Nowadays, we have found more uses involving the application of this theorem. 

In dealing with logic and mathematics, the theorem was used to prove that any finite 

sequence of integers can be represented in terms of two integers ([DPS96]). The property 

shows part of the power of the Chinse Remainder Theorem which will be proved in chapter 

4.

Property: Let at, 0 < i < t, be a finite sequence of nonnegative integers. Then 

there are integers u and v such that (u mod (1 + (i + l)v)) = cq, for every i = 0,1,..., t.

Modern mathematicians also generalized the theorem into rings and integral 

domains which is our topic in chapter 3. Other applications that directly involve the 

theorem are seen in Dedekind domains and cryptography which will be discussed in 

chapter 4. In dealing with cryptography, the theorem itself is already a secret-sharing 

scheme which as mentioned above, was employed to compute the number of soldiers 

to prevent the enemy from such information as follows. A general asks his soldiers to 

stand in ri,r2, rows in turn, and each time he counts the remainders. Finally, he 

computes the number of his soldiers using the Chinese Remainder Algorithm, the process 

of applying the Chinese Remainder Theorem. This is a secret method to calculate the 

number of soldiers.

Even though the theorem, originated as a puzzle, first appeared in China, the 

concept was also recognized in other areas of the world. There were several mathemati­

cians exploring this idea. The work of Brahmagupta in Indian involved planar geometry, 

arithmetic progressions, and quadratic equations. A form of the theorem was also men­

tioned in his work. Even though the Chinese Remainder Theorem was just a glimpse in 

Fibonacci’s work, we could see the substantial spread of the theorem. We will take a brief 

glance of how the Chinese Remainder Theorem is treated by Fibonacci.

In Fibonacci’s book Liber Abaci, the Chinese Remainder Theorem was discussed 

as follows. “Let a contrived number be divided by 3, also by 5, also by 7; and ask each 

time what remains from each division. For each unity that remains from the division 

by 3, retain 70; for each unity that remains from the division by 5, retain 21; and for 

each unity that remains from the division by 7, retain 15. And as much as the number 
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surpasses 105, subtract from it 105; and what remains to you is the contrived number. 

Example: suppose from the division by 3 the remainder is 2; for this you retain twice 70, 

or 140; from which you subtract 105, and 35 remains. From the the division by 5, the 

remainder is 3; for which you retain three times 21, or 63, which you add to the above 35; 

you get 98. From the division by 7, the remainder is 4, for which you retain four times 

15, or 60; which you add to the above 98, and you get 158, from which you subtract 105, 

and the remainder is 53, which is the contrived number. From this rule comes a pleasant 

game, namely if someone has learned this rule with you; if somebody else should say some 

number privately to him, then your companion, not interrogated, should silently divide 

the number for himself by 3, by 5, and by 7 according to the above-mentioned rule; the 

remainders from each of these divisions he says to you in order; and in this way you can 

know the number said to him in private.” ([DPS96])

Fibonacci’s presentation is very similar to Sun Zi’s approach in generating a 

method to find the mystery number. Chinese Remainder type of problems as mentioned 

above were also considered by other mathematicans such as Euler, Gauss, and Lagrange. 

Its popularity took a great part in our modern application to cryptography.
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Chapter 2

Foundation and Development of 
the Chinese Remainder Theorem

2.1 Historical Development

In historical times, problems involving finding the number of objects, such as 

the numbers of baskets, blocks of bricks, or numbers of soldiers in a group under certain 

conditions were to compute the remainders when dividing the mystery number in different 

steps. One of the examples was as follow: “We have a number of things, but do not know 

exactly how many. If we count them by threes we have two left over. If we count them 

by fives we have three left over. If we count them by sevens we have two left over. How 

many things are there?” ([DPS96])

This problem is presented in the mathematical classic of Sun Zi, a mathematician 

in ancient China. Sun Zi Suanjing, Sun’s Mathematical Manual was dated approximately 

to the beginning of Graeco-Roman time, A.D. 100 - A.D. 500. The oldest Chinese math­

ematical classic is Chou Pei Suanjing. This book recorded mathematics for astronomical 

calculations. It was dated about 1000 B.C. The Pythagorean Theorem was used in the 

astronomical calculations in this book. Therefore, Sun Zi’s book is not the oldest Chinese 

mathematical classic; however, the Chinese Remainder Theorem appeared in it for the 

very first time.

The calculation of calendars in ancient China was the main source of the re­

mainder theorem. Around A.D. 237, the Chinese astronomers defined the starting point 
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of the calendar as “shangyuan”, which is a moment that occurred simultaneously with 

the midnight of the first day of the 60 days cycle, the Winter Solstice and the new moon. 

The system of congruences

xN = n mod 60

xN = r2 mod y

indicates the number of years N after shangyuan. So for the above system of congurences, 

if the Winter Solstice of a certain year occurred ri days aftershangyuan and r2 days after 

the new moon, then that year was N years after shangyuan, where x is the number of 

days in a tropical year and y is the number of days in a lunar month.

This example is considered the very first application of the Chinese Remainder 

Theorem ([DPS96]. This kind of computation was also used in building a wall or the base 

of a house such as the construction of the Great Wall during feudal times 475-221 B.C. 

It is described as follows. To construct a rectangular base for a building, there are four 

kinds of materials available: big cubic materials with each side 130 units long; small cubic 

materials with each side 110 units; city bricks that are 120 units long, 60 units wide, and 

25 units deep; and “six-door” bricks that are 100 units long, 50 units wide, and 20 units 

deep. These four materials were used to build the base without breaking any of them into 

little pieces. Therefore, we end up with a system of congruences as we calculate different 

materials for each time a specific type of material is used. If big cubic materials are used, 

then 60 units base length is left, but 60 units more base width is needed. If small cubic 

materials are used, then 20 units based length is left, but 30 units more base width is 

needed. If the length of the city bricks is used, then 30 units base length is left, but 10 

units more base width is needed. If the width of the city brick is used, then 30 units base 

length is left, but 10 units more base width is needed. If the depth of the city bricks is 

used, then 5 units base length is left, and 10 units base width is needed. If the length, 

width and depth of the six-door bricks are used, the base length has 30, 30 and 10 units 

left respectively, and the base width has 10, 10 and 10 units left respectively. The goal is 

to determine how large the base length X and base width Y are.

The above example is simplified into the following congruences where X is the 

material used each time and Y is the material needed:

X = 60 mod 130

= 30 mod 120
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= 20 mod 110

= 30 mod 100

= 30 mod 60

= 30 mod 50

= 5 mod 25

= 10 mod 20

and Y = 60 mod 130

= 10 mod 120

= 30 mod 110

= 10 mod 100

= 10 mod 60

= 10 mod 50

= 10 mod 25

= 10 mod 20.

As mentioned in Chapter 1, this algorithm is also used to compute the number 

of soldiers that went out for battles. To avoid the enemy of knowing the number of 

soldiers he has, a general would count his soldiers in a certain way. For example, first he 

asks his soldiers to line up in rows of 11, then in rows of 17, 29, and 31. Respectively, 

each time, he is reported with remainder 8, 5, 16, and 24. Then he will calculate his 

soldiers in private. Since not many people know of this secret computation, the general 

can conceal his number of soldiers. From this example, we compile the following system 

of congruences with relatively prime moduli where x would be the number of soldiers:

x = 8 mod 11,

x = 5 mod 17,

x = 16 mod 29,

x = 24 mod 31.

We will solve these three types of problems in the last section of this chapter.

2.2 Basic Properties of Relatively Prime Integers

Before introducing the theorem, there are several terms, lemmas, and theorems 

that we need to know concerning relatively prime integers.
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Definition 2.1. A set of integers is said to be pairwise relatively prime if every pair of 

integers a and b in the set have no common divisor other than 1, in other words (a, 6) = 1 

where (a, b) is the greatest common divisor of a and b.

Example 2.2. The set {10,7,33,13} is pairwise relatively prime because any pair of 

numbers has greatest common divisor equal to 1.

(10,7) = (10,33) = (10,13) = (7, 33) = (7,13) = (33,13) = 1.

This concept of pairwise relatively prime is used commonly in the Chinese Re­

mainder Theorem. The property in the next theorem and those that follow are useful in 

dealing with greatest common divisors.

Theorem 2.3. The greatest common divisor of the integers a and b, not both 0, is the 

least positive integer that is a linear combination of a and b.

Proof: Let m be the least positive integer that is a linear combination of a. and 

b. Then we have m = ax + by for some integers x and y. By the Division Algorithm, 

there exists integers q and r such that a = mq + r, 0 < r < m. So r = a — mq. Substitute 

m by the linear combination above, we get r — a — {ax + by)q = (1 — xq)a — byq. Then 

r is a linear combination of a and b. Since 0 < r < m, and m is the least positive linear 

combination of a and b, we have r = 0. Therefore, m | a. Similarly m | b. Hence, m is a 

common divisor of a and b. Now let n be another divisor of a and b. For m = ax + by, if 

n | a and n | b then n | m, so n < m. Consequently, m is the greatest common divisor of 

a and b.

□ 

Proposition 2.4. For any integers a,b E Z, (a,b) = 1 if and only if ax + by = 1 for 

some integers x and y.

Proof: By Theorem 2.3, we have (a, b) = 1 leading to ax+by = 1 for any integers 

x and y. Conversely, suppose that ax + by = 1, and let m = {a, b) then m | a and m | b. 

So m | (ax + by). Hence m | 1. Thus m = 1.

□ 

Lemma 2.5. For any integers a,b,c E Z, [a, b] | c, where [a,b] is the least common 

multiple of a and b, if and only if a | c and b | c.
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Proof: Suppose [a, b] | c. Then c = [a, b]x for some integer x. Also a | [a, b], so 

[a, b] = ay for some integer y. So, we have c = axy. Hence, a | c. Similarly, we obtain 

b | c.

Conversely, if a | c and b | c, we try to prove that [a, 5] | c. Let [a, b] = m. By 

the Division Algorithm, there exists integers q and r such that c = mq + r, 0 < r < m. 

We will show r = 0. Since a | c, a | mq + r. However, [a, b] = m so a | m. Then a | r, 

so r = ax for some x. Similarly, r = by for some y. But, r < m and m = [a, b], hence, 

r = 0. Thus, c = mq, and m | c. Therefore [a, 6] | c.

□

Definition 2.6. Let m be a positive integer. If a and b are integers, we say that a is 

congruent to b modulo m if m | (a — b). We write a = b mod m.

Theorem 2.7. If a = b (mod mi), a = b (mod m2), ■■■, a = b mod (m^), where 

a, b, mi, m2, ■■■, m^ G Z and mi,m,2,..., m^ > 1, then a = b (mod [mi, m2,..., m^.]), where 

[mi, m2, m^] is the least common multiple of mi, m2, ...,mk.

Proof: Let a = b (mod mi), a, = b (mod m2),..., a = b (mod m^). Tthen 

mi | (a — b), m2 | (a — b), ..., m^ | (a — b). So, by Lemma 2.5, [mi, m2, ...,mA,] | (a — b). 

So a = b (mod [mi, m2, ...m/J).

□

Lemma 2.8. a. For any a,b,c G Z, (a, b) = (b, c) = 1, then (ac, b) = 1.

b. For any a\,a2,---,an G Z, if (ai,b) = (0,2, b) = ... = (an, b) = 1 then 

(aia2...an, b) = 1.

Proof:

a. Suppose (a, b) = 1. Then ax + by = 1 for some integers x, y. Similarly (b, c) = 1 implies 

bs+ct = 1 for some integers s, t. Then (ax+by'jlbs+ct) — 1, so abxs+acxt+b2ys+bcyt = 1 

and acxt + b(axs + bys + cyt) = 1. Hence (ac, b) = 1 by Proposition 2.4.

b. We are going to prove this part by induction.

For n = 1, we have (a, b) = 1 => (a, b) = 1.

Suppose (ai,b) = 1, (02,b) = 1,... (an+i,b) = 1. Then by the induction hyposthesis, 

(aia2-..an, b) = 1 and (an_|_i, b) = 1. Since ai, 02,..., an G Z, then let ai • a2 • • • an = c. So 

by part a, (c, b) = 1 and (an+i, b) = 1 implies (can+i, b) = 1. Thus, (aia2...anan+i, b) = 1.

□
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2.3 Chinese Remainder Theorem for Integers

Now that we have some basic concepts to help us in solving the Chinese Remain­

der puzzle given at the beginning of this chapter, we will start with our original theorem 

that gives the method to acquire the solution of the puzzle.

Theorem 2.9. Let mi, m2,..., mr be pairwise relatively prime positive integers. Then the 

system of congruences:

x = ai (mod mi)

x = a2 (mod m2)

x = ar (mod mr)

has a unique solution modulo M — mim2-..mr.

M
Proof: Let Mk = ----  = mpai ■ ■ ■ mk-imk+i ■ ■ ■ mT. By Lemma 2.8, we know

W
that = 1 because (mj,mk) = 1 whenever j / k. Then m^x + Mkyk = 1 for

some x,yk- So MkPk = 1 (mod mf). Hence, yk is the inverse of Mk (mod m^). We form 

the sum:

x = aiMiyi + a2M2y2 + + arMryr

where x would be the solution of the r congruences.

Since mk | Mj whenever j k, we have Mj = 0 (mod mf). So ajMjyj = 0 mod mk for 

j k. Hence, from the sum we get x = akMk'yk = o-fc (mod mk) since Mk'tjk = 1 (mod 

mk).

To prove that the solution is unique modulo M, we let xi and x2 be two solutions to the 

system of r congruences. Then xi = X2 = ak (mod mk) for each k. So mk | (x2 — a?i). 

By Theorem 2.7, M | (x2 — a?i). Hence, xi = x2 (mod M).

□

Now, we are going to use the construction of the solution in the proof of the 

Chinese Remainder Theorem to solve the problem first mentioned in section 1. Let x be 

the unknown number of objects. Then we have the system of congruences:

x = 2 (mod 3)

x = 3 (mod 5)

x = 2 (mod 7).
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So M = 3 • 5 • 7 = 105. Hence, Mx = — = 35, M2 = — = 21, and M3 = — = 15.
3 5 I

Then Miyi = 1 mod 3 becomes 35i;i = 1 mod 3. Simplifying this congruence and solving 

for yx we get 2yx = 1 mod 3 so that y\ = 2 mod 3. Similarly, M-ryz = 1 mod 5 becomes 

21y2 = 1 mod 5. We get y2 = 1 mod 5. Again, M3y3 = 1 mod 7 becomes 15t/3 = 1 mod 

7 and we get y3 = 1 mod 7.

So x = 2 • 35 • 2 + 3 • 21 • 1 + 2 ■ 15 • 1 = 140 + 63 + 30 = 233 = 23 (mod 105). To check 

this, note that 23 = 2 (mod 3), 23 = 3 (mod 5), 23 = 2 (mod 7).

The answer to this problem was explained in a verse in Chen Dawei’s book 

Suanfa Tongzong: “Three people walking together, it is rare that one be seventy. Five 

cherry blossom trees, twenty one branches bearing flowers, seven disciples reunite for the 

half-month. Taking away one hundred and five you shall know.” ([DPS96]) To understand 

this saying, let x be the unknown number. Divide x by three (people) and multiply the 

remainder by 70 = 35 • 2, divide x by five (cherry blossoms) and multiply that remainder 

by 21 = 21-1. Finally, divide x by seven (disciples) and multiply the remainder by 

15 = 15 • 1. Add all three results and subtract a suitable multiple of 105, i.e. find the 

remainder modulo 105, and you shall find x.

2.4 Chinese Remainder Algorithm for Integers

The Chinese Remainder Algorithm was generated based on Sun Zi’s method to 

solve the original problem. By the 13th century, Quin Jiushao gave a more general method 

which did not restrict the moduli mi to pairwise relatively prime numbers. His method, 

however, also converted the moduli into pairwise relatively prime numbers ([DPS96]). It 

is described as follows:

Let mx,m2,...,mfc be the moduli and I = lcm[mi,...,m/.], the least common 

multiple of mi,..., We are going to find a set of integers cvi, a2,..., a^ satisfying:

1. ai divides mi, i = 1,2,..., k-,

2. gcd aj) = 1 for all j j-

3. aiaz-.-.ak = lcm[mi,..., m^].

Then the system of congruences x = ai mod mi for i = 1,..., k is converted into x = ai 

mod ai for i = 1,..., k, where the moduli a, are pairwise relatively prime.

To find the set of integers ai for i = l,...,k, we need to complete the following 
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procedure. Consider the first case of k = 2:

a. Let (mi, m2) = d\. If (m\/d\,m2) = 1, then take 01 = mi/di and a2 — m2.

b. If (mi,m2/di) = 1, then take oi = mi and 02 = m2/c?2-

c. If (mi,m.2/di) = d2 > 1, then calculate ds = (mi/cU, m^cU/di) where c/2 

divides di and ds divides di/d2. If cfa = 1, then take ai = mi/c/2 and 02 = m2d2/di, 

otherwise calculate d^ = (mi/d2ds,m2d2ds/dD). Continue this process until there exists 

an integer s such that ds+i = 1. Such an s exists because di > c/2 > T 0. Then take
mi m2d2ds...ds

ai = 3-3---- 7- and a2 =-------3--------• So (01, a2) = 1.

For the case of k moduli, apply the above algorithm to m& and m^-i first to obtain a£\ 

o^-p Then we apply the same algorithm to o^ and m^_2 which will give us o^\ a'k-2- 

Continue this procedure and finally apply the algorithm to ak 7 and mi, obtaining 

a/;, cq. Then the integers aq, a2,..., o:k_1, satisfy (ofc, a?) = 1 for i = 1, 2,..., k — 1 and 

lcm [cui, a2, ctfc] = Icm^, a2, o/fc_1, o/.] = aklcm[a1, a2, •••, o^-J.

So we have reduced the case of k moduli into k — 1 moduli. If we repeat this procedure, 

we will obtain the required 01,..., a^.

Example 2.10. Let mi = 12 and m2 = 20 which are not pairwise relatively prime. Then 
12

lcm[12,20] = 60. So by the procedure of step (a), (12,20) = 4. Then (—,20) = 1. So 

let oi = 3, and 02 = 20. Thus (01,02) = 1 Therefore, we have 0102 = 3.20 = 60 = 

lcm[mim2]. If we have a system of congruences given by x = ai mod 12 and x = a2 mod 

20, then it will become x = eg mod 3 and x = a2 mod 20 where 3 and 20 are relatively 

prime.

Example 2.11. Let mi = 312 and m2 = 16 where mi and m2 are not pairwise relatively 
prime. Using the algorithm, let di = (mi, m2) = (312,16) = 8. Then d2 = (mi, ^^) = 

(312,2) = 2. So ds = = (156,4) = 4. Continuing, d4 = (y^-, m2<^d3.) =
a2 &1 a2a3 ai

(39,16) = 1. Since d4 = 1, we take 01 = 77 = 39 and a2 = m2d2ds = 16. Thus, aq 
d2ds ai

and a2 satisfy the three conditions:

1. ai divides mi and a2 divides m2,

2. (01,02) = 1,

3. 0102 = 39 • 16 = 624 = lcm [mi, m2].

Hence, the algorithm sets the moduli back to pairwise relatively prime.
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In the calculation of the calendars application mentioned in section 1 the algo­

rithm is used with 2 moduli.

Example 2.12. Suppose the number of days in a tropical year is 365 and the number 

of days in a lunar month is 30. Then x — 365 and y = 30. Let ri be the number of days 

that the Winter Solstice occurs after shangyuan and be the number of days that the 

Winter Solstice occurs after the new moon, then we have the system of congruences

365AI = n mod 60

3651V = T2 mod 30

which is converted into

51V = ri mod 60

51V = r2 mod 30

where N is the number of years after shangyuan. By the Chinese Remainder Algorithm, 

we get di = (60,30) = 30. Then dy = (60,1) = 1. So we take = 60 and O!2 = 1. So 

the new system of congruences will be

51V = ri mod 60

51V = r2 mod 1.

We will also use the above algorithm to illustrate the example of building walls 

in k moduli with k > 2.

Example 2.13. Let X be the base length of the wall and Y be the base width. We are 

going to use the algorithm to set all the moduli of X and Y into pairwise relatively prime 

integers. Since the moduli of X and Y are the same, we apply the agorithm to X and 

use the new pairwise relatively prime moduli for Y as well.

Recall that X = 60 mod 130

= 30 mod 120

= 20 mod 110

= 30 mod 100

= 30 mod 60

= 30 mod 50

= 5 mod 25
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= 10 mod 20.

We start from the bottom up. First of all, let mi, i = 1,2, ...,8 be as follow: 

mi = 130, m2 = 120, m3 = 110, m.4 = 100, ms = 60, = 50, my = 25, and ms = 20.
25

So we start with ms = 20 and my = 25. Then, dy — (20,25) = 5. So d2 = (20, —) = 5. 
0 20Consequently, c/3 = (—, —-—) = 1. Thus ctg1^ = — — 4 and c/7 = 25.

0 0 0
Now apply the algorithm to Og1/1 = 4 and m§ = 50. Similarly, we have di = (4, 50) = 2. 
Then d2 = (4, ^) = 1. So cig2^ = 4 and a'& = 25.

(2)Continuing this process, apply the algorithm to =4 and ms = 60. Then dy = 
(4,60) = 4. So d2 = (4, —) = (4,15) = 1. We have ag3^ = 4 and = 15.

Next, apply the procedure to ag3^ = 4 and m4 = 100. First, dy = (4,100) = 4. Then 
d2 = (4, ^^) = (4,25) = 1. So oig4) = 4 and c/4 = 25.

Again, the next pair is ctg4^ = 4 and m3 = 110. So dy = (4,110) = 2. Then d2 = 

(4, ~x~) = (4, 55) = 1. Hence, = 4 and ctg = 55.

Consequently, the next pair is Og5^ = 4 and m2 = 120. We get dy — (4,120) = 4. Then 
120 4 120•2

d2 = (4, -4-) = (4, 30) = 2. Hence, we continue to ds = (-, —-—) -= (2, 60) = 2. Thus, 
A 1 DP) O O

d4 = (^—^,----- ------- ) = (1> 120) = 1. Therefore, = 1 and a'2 = 120.

Lastly, the pair is — 1 and mi = 130. Obviously, the two numbers are relatively 

prime, so we obtain eng = 1 and a'4 = 130. Now that we have just reduced the 8 

moduli into 7 with the last one relatively prime to the rest, we have the 7 moduli in 

order: 130,120,55,25,15,25,25. Applying this procedure again we have di = (a?, c/6) = 
(25,25) = 25, then d2 = (25, ||) = 1 So take = 25 and (3g = 1.

1
Next, di = (25,15) = 5, so d2 = (25, —) = 1. Hence, /3?2) = 25 and /3'5 — 3.

0
Again, di = (25,25) = 25, then d2 = (25, ^|) = 1. Thus, take (3^ = 25 and /34 = 1.

Zu
55 fA\

Similarly, di = (25, 55) = 5, and d2 = (25, —) = 1. Take (3? = 25 and (3% = 11.
o

1 on
Now we have di = (25,120) = 5, so d2 = (25, —-) = 1. Then take (3^ = 25 and /32 = 24. 

130
Last, di = (25,130) = 5, then d2 = (25, ——) = 1. Therefore (3y = 25 and = 26.

5
The new list of moduli now has become 26,24,11,1, 3,1, 25. We can see that every ele­

ment is pairwise relatively prime with each other except the two moduli 26 and 24. So 

we will use the algorithm one more time to convert them to pairwise relatively prime.
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Let di = (26, 24) = 2, then d2 = (26, —) = 2, so c/3 = (—, —-—) = 1. Thus the two 

moduli 26 and 24 now become 13 and 12. This, however, creates another non-pairwise 

relatively primes which are 12 and 3. Once again, we apply the algorithm to these two 

moduli.

We have di = (12, 3) = 3, then d2 = (12,1) = 1. So the two new moduli are 12 and 1.

Now we have a new system of congruences with pairwise relatively prime integers:

X = 60 mod 13 = 8 mod 13

= 30 mod 12 = 6 mod 12

= 20 mod 11 = 9 mod 11

= 30 mod 1 = 0

= 30 mod 1 = 0

= 30 mod 1 = 0

= 5 mod 25

= 10 mod 1 = 0.

Using the Chinese Remainder Theorem,excluding all the mod 1 congruences, we obtain
42 900 42 900

M = 13 • 12 • 11 • 25 = 42,900. Therefore, Mi = = 3,300, M2 = = 3,575,

M3 = = 3,900, and M4 = = 1716.
11 25

Then 3, 300yi = 1 mod 13 becomes 1 lyi mod 13, so yi = 6 mod 13. Again, 3, 575t/2 = 1 

mod 12, so llj/2 = 1 mod 12, and 1/2 = U mod 12. Similarly, 3, 900t/3 = 1 mod 11 be­

comes 67/3 = 1 mod 11, so 2/3 = 2 mod 11. Finally, 1, 716y4 = 1 mod 25, so 16y4 = 1 mod 

25, and y4 = 11 mod 25. Hence, x = 8 • 3,300 • 6 + 6 • 3, 575 • 11 + 9 • 3,900 ■ 2 + 5 • 1,716 ■ 11 

= 558, 930 mod 42, 900 = 1, 230 mod 42, 900. So the base length of the wall is a multiple 

of 1,2300 mod 42,900.

To solve for the base width of the wall, we set up the system of congruences just 

as above with the moduli relatively prime.

Y = 60 mod 13 = 8 mod 13

= 10 mod 12 

= 30 mod 11 = 8 mod 11 

= 10 mod 1 = 0 

= 10 mod 1 = 0

= 10 mod 1 = 0
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= 10 mod 25

= 10 mod 1 = 0.

So we have Y = 8 • 3, 300 • 6 +10 • 3,575 • 11 + 8 • 3,900 • 2 + 10 ■ 1,716 • 11 = 802,220 mod 

49,000 = 18,220 mod 49,000. So the base width of the wall is a multiple of 18,220 mod 

42,900.

Lastly, we will solve the problem of counting the number of soldiers.

Example 2.14. As in section 1, we have a system of congruences for the number of 

soldiers going out to battle.

x = 8 mod 11,

x = 5 mod 17,

x = 16 mod 29,

x = 24 mod 31.

Since all the moduli are already relatively prime, we use the Chinese Remainder Theorem -t ZJ Q 1 1 Q
to solve for x. We have M = 11 • 17 • 29 • 31 = 168,113, so Mi = —L-— = 15,283, 

M2 = -168’113 = 9,889, M3 = -8l-113 = 5,797, and M4 = 168,113 = 5,423. We 
-L i o j.

determine yi by solving the congruence 15,283r/i = 1 mod 11, or equivalently, 4yi = 1 

mod 11. This yields j/i = 3 mod 11. By solving 9, 889?/2 = 1 mod 17, or equivalently, 

12?/2 = 1 mod 17, we find y2 = 7 mod 17. Similarly, 5, 7971/3 = 1 mod 29, which is equal 

to 26y3 = 1 mod 29. We get y3 = 10 mod 29. Finally, we solve 5,423y4 = 1 mod 31 or 

29y4 = 1 mod 31. This gives y4 = 16 mod 31.

Hence, we calculate the number of soldiers going out to battles by

x = 8 • 15,283 • 3 + 5 • 9, 889 • 7 + 16 • 5,797 -10 + 24-5,423 • 16 = 3,722.859 = 24,373 

mod 168,113.

So the number of soldiers would be 24,373 for that specific battle.
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Chapter 3

Various Formulations of the
Chinese Remainder Theorem

3.1 Rings, Ideals, and Homomorphisms

From the original theorem dealing with integers, the Chinese Remainder Theo­

rem is expanded into rings and domains. We now are looking at the Chinese Remainder 

Theorem that can be formulated for rings which have pairwise coprime ideals. Before 

introducing the expansion of Chinese Remainder Theorem for rings, we are going to get 

acquainted with a few definitions.

Definition 3.1. A ring R is a nonempty set with two binary operations, addition (de­

noted by a + b) and multiplication (denoted ab), such that for all a, b, c in R:

1. a + b = b + a.

2. (a T b) T c = a T (b T c).

3. There is an additive identity 0. That is, there is an element 0 in R such that a + 0 = a 

for all a in R.

4. There is an element —a in R such that a + (—a) = 0.

5. a(bc) = (ab)c.

6. a(b + c) = ab + ac and (b + c)a — ba + be.

A ring is commutative when multiplication is commutative.

A subset S of a ring R is a subring of R if S itself is a ring with the operations of R.

If R has a multiplicative identity, i.e. an element 1 G R such that x • 1 = 1 • x = x then 
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R is said to be a ring with unity.

Example 3.2. The set Z of integers under ordinary addition and multiplication is a 

commutative ring with unity.

Example 3.3. The set nZ of integers multiples of n G Z under ordinary addition and 

multiplication is a commutative ring without unity and also a subring of Z.

Example 3.4. The set R[®] of all polynomials in the variable x with real coefficients 

under polynomial addition and multiplication is a commutative ring.

Definition 3.5. A subring Z of a ring R is called an ideal of R if for every r G R and 

every i G I both ri and ir are in I.

Theorem 3.6. Ideal Test

A nonempty subset I of a ring R is an ideal of R if

1. a — b G I whenever a,b G I.

2. ra and ar are in I whenever a E I and r G R.

Proposition 3.7. Let R be a commutative ring with unity and let a G R. Then the set 

{a} = {ra|r G R} is an ideal of R called the principal ideal generated by a.

Proof: By the Ideal Test, let ra, sa G (a) where r,s G R. Then ra — sa = 

(r — s)a G (a) since r — s G R. Also, let x G R then xar = xra = (xr)a G (a) since R is a 

commuative ring. Therefore, {a) is an ideal.

□

Example 3.8. For any positive integer n, the set of multiples of n, nZ = {0, ±n, ±2n,...} 

= (ri) is an ideal of Z.

Example 3.9. Let R[rr] be the set of all polynomials with real coefficients and let I be 

the subset of all polynomials with constant term 0. Then I is an ideal of R[x] and I = (x).

Definition 3.10. An integral domain is a commutative ring R with unity and no zero 

divisors, i.e. if ab = 0 where a,b G R, then a = 0 or b = 0 for all a, b.

Example 3.11. The ring of integers Z is an integral domain.

Example 3.12. The ring Zp of integers modulo a prime p is an integral domain.
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Definition 3.13. A principal ideal domain is an integral domain R in which every ideal 

has the form (a) = {ra|r G R} for some a in R.

Definition 3.14. Let R be ring and let I be an ideal of R and s,t E R. The set of cosets 

{r + I\r E -R} denoted R/I is a ring under the operations (s + I) + (t + I) = s + t + I 

and (s + I)(t + /) = st + I. The ring R/I is called a factor ring.

Example 3.15. Let Z be the ring of integers. The ring Z/4Z = {0 + 4Z, 1 + 4Z, 2 + 

4Z, 3 + 4Z} is a factor ring. For example, we have

(2 + 4Z) + (3 + 4Z) = 5 + 4Z = 1 + 4 + 4Z = 1 + 4Z, and

(2 + 4Z)(3 + 4Z) = 6 + 4Z = 2 + 4 + 4Z = 2 + 4Z.

Example 3.16. Let R = R[x] and I = (x). We can see that (x) = {r(a?) • rr|r(a;) E R[rr]} 

so R[z]/(x) = {f(x) + (x)\f(x) E R[z]} = {a + (rr)|a G R} which is similar to the ring R 

as we will verify at the end of this section.

Example 3.17. Let R = R[x] and I = (a?2 + l) be the principal ideal generated by a:2 + l. 

Then R[a?]/(ar2 +1) is a factor ring. We have R[x]/(2:2 +1) = {y(a;) + (a;2 + l)|y(a;) G R[x]} 

= {ax + b + (x2 + 1) |a, b E R}.

Definition 3.18. Let R±, R2,..., Rn be rings and Ii,I2,..., In be ideals. Construct a new 

ring as follows. Let

Rl/Il ® R?./Ii ® ■ ■ ■ ® Rn/In = {(al + A, a2 + Ry •••, an + Ai)|ai + li G Ri/Ii}

and perform component-wise addition and mutiplication, that is

(ai + Ii, a2 + I2,..., an + In) + (bi + Ii, b2 + I2,..., bn + In) = (ai+bi+Ii,a2+b2+12, ...,an+ 

bn + In)

and

(ai + Ii,a2 + I2,..., an + In)(bi + Ii, b2 + I2,..., bn + In) = (o-i^i + A, 02^2 +^2; ■■■, a,nbn + In)- 

This ring is called the direct sum of Ri/I\, R2/I2,Rn/In-

Example 3.19. Let Z/(3)®Z/(5) be a direct sum. Then (l+(3),4+(5))+(2+(3),4+(5)) 

= (1 + 2 + (3),2 + 4 + (5)) = (0 + (3), 1 + (5)) and (1 + (3),4 + (5))(2 + (3),4 + (5)) 

= (1 • 2 + (3), 4 • 4 + (5)) = (2 + (3), 1 + (5)).

Definition 3.20. A ring homomorphism f> from a ring R to a ring S is a mapping from 

R to S that preserves the two ring operations; that is, for all a, b in R, 
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f)(a + b) = f)(a) + </>(b) and 0(ab) = </>(a)0(b).

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

Example 3.21. Let f) be the mapping from Z4 to ZXo with x —> x. Then f>(x + y) 

— 5(x + y) = 5x + 5y = f>(x) + f)(y). Also, f)(xy) = 5(xy) = 5.5(xy) since 5.5 = 5 in Zio- 

Then f>(xy) = 5x.5y = f)(x]f)(y). So </> is a homomorphism.

Theorem 3.22. Let f> be a homomorphism from a ring R to a ring S. Then kernel of 

f), ker f) = {r G #|</>(r) = 0} an ideal of R.

Proof: To prove this theorem, we are going to apply the ideal test.

1. Let r,s E kerf) then 0(r) = f)(s) = 0. Hence, f>(r) — </>(s) = 0 = f>(r — s) since f> is a 

ring homomorphism. Therefore, r — s € ker<f>.

2. Let t G R and r G kerf). Then f)(r) = 0. Since f> is a ring homomorphism f>(tr) = 

f)(t)f)(r') = f)(t] -0 = 0. Hence tr G kerf).

From (1) and (2), ker f> is an ideal.

□

Example 3.23. Let f> be the mapping from Z[ar] onto Z given by f>(f(xf) = /(0) and let 

f(x),g(x) G Z[x]. Then f> is a ring homomorphism since f>(f(x)+g(x)) = f>(ff + g)(0)) = 

(f + 9)(0) = /(0) + g(0) = 0(/O)) + f>(g(xf), and f)(f(x)g(xf) = f>(fg(O)) = (fg)(O) = 

7(0) • 9(0) = <Kf(x)) ■ f>(.g(x)\ Hence ker f> = {f(x) E Z[z]|/(0) = 0} = (x), i.e. the 

kernel of f> is the set of polynomial with 0 constant term.

Theorem 3.24. First Isomorphism Theorem for Rings

Let f> be a ring homomorphism from R to S. Then the mapping from R/kerf) to f>(R), 

given by r + kerf) —> f>(r) is an isomorphism. In symbols, R/kerf) « f>(R)-

Proof:

Let f) : R —> S be a ring homomorphism.

Let f) : R/kerf) f>(R) be the mapping defined by

f>(r + ker(f>f) = f)(r). We will show this mapping is one-to-one, onto, and that 

operations are preserved.

1. The mapping f> is well-defined.

Let r + kerf> = s + kerf). Then r — s G kerf). So f>(r — s) = 0. It follows that f>(r) = f)(s).
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Hence, 0(r + kerfy = 0(r) = 0(s) = <j>(s + kerfy.

2. The mapping 0 is one-to-one.

Let 0(r + kertf) = 0(s + ker<f>). Then 0(r) — </>(s) which implies 0(r) — 0(s) = 0 since <p 

is a ring homomorphism. So <f>(r — s) = 0, then r — s G kertp and r + kerf> = s + ker<p.

3. The mapping <f is onto.

Let x G 0(7?). Then x = 0(r) = 0(r + ker<f>) for some r G R.

4. The mapping 0 preserves addition and multiplication.

We have 0((r + kertp) + (s + ker<f>)) = 0((r + s) + ker<f>) — 0(r + s) = 0(r) + 0(s) 

= 0(r + kercf} + 0(s + kertf).

Also 0((r + A;er0)(s + A:er0)) = 0((rs) + ker<f>) = <f>(rs) = <j>(r}<!>(s) — 0(r + ker</>)^(s + 

ker<f\

Then by 1-4, 0 is an isomorphism. Therefore, R/ker(f 0(7?).

□

Example 3.25. Let 0 be the mapping from Z to Zn given by 0(x) = Ox mod n. Then 

ker 0 = (n) so Z/(n) ~ Zn.

Example 3.26. Let 0 be the mapping from R[x] to R given by 0(/(a;)) = /(0) then ker 

0 = (x). So R[a:]/(a:) ~ R where (x) is the ideal of polynomials with zero constant term.

3.2 Chinese Remainder Theorem for Rings and Domains

We now extend the notion of relatively prime integers to coprime ideals in a ring 

7?. This will allow us to extend the Chinese Remainder Theorem to rings and integral 

domains.

Definition 3.27. In a commutative ring 7?, two ideals A and B are called coprime if 

A + B = 7?.

Note that two principal ideals (a) and (6) are coprime in the ring of integers Z 

if and only if a and b are relatively prime. Therefore, coprime ideals are analogous to 

relatively prime integers.

Proposition 3.28. Let R be a commutative ring with unity

1.I/I + J = R, then IJ = InJ

2. If Ii,l2, In are coprime in pairs, then I1I2 ■ ■ • In = AiLi h-
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Proof:

1. Let r 6 I J. Then r = ij where i G I and j G J. So r G J, and r G I since I and J are 

ideals. Hence r G I A J. Therefore, IJQIOJ.

Now we have (I + J)(I A J) = 1(1 A J) + J(I A J) = II A IJ + JI A J J C I J. Since 

I+J = R then (I + J)(I A J) = (I A J) CIJ.D

2. We proceed by induction on n. The case for n = 2 is proven by part (1). Assume

I\h ■ ■ ■ In-1 = 0?=? k- Suppose n > 2 and Ii = 0?=? k- Let J = [7?=^ Ii = 

A/Tj1 Ii. Since Ii + In = R for 1 < i < n — 1, then Xj + yi = 1 for some Xi G Ii 

and yi G In- Thus nS.1 _ Vi) = 1 m°d In- So In + J = R. Therefore,

rii=l Ii = I In = J Fl In = Ai=l Ii-

□

Now it is time to use the First Isomorphism Theorem for Rings to prove the 

Chinese Remainder Theorem for rings with two ideals.

Theorem 3.29. The Chinese Remainder Theorem for Two Ideals

If R is a commutative ring and I and J are proper ideals with I + J = R, then R/ (I A J) 

is isomorphic to R/I ffi R/ J.

Proof: We are going to use the First Isomorphism Theorem to prove this theo­

rem. Let <p : R —> R/1 © R/ J be the mapping defined by

0(r) = (r + I,r + J).

1. <p is a well-defined map.

Suppose there exist r, s G R and r = s. Then </>(r) = (r+I, r+J) and p(s') = (s+I, s + J). 

Since r — s, we have r+I = s+I andr+J = s+J. Therefore, (r+I, r+J) = (s+I, s+J). 

Hence, cf>(r) = p(s).

2. <p is a homomorphism.

Suppose there exist a, b G R. Then <fr(a + b) = (a + b +I,a + b +J) = (a + I + b + 

I,a + J + b + J) = (a + I, a + J) + (b + I, b + J) = 0(a) + </>(b). We also have </>(ab) = 

(ab +1, ab + J) = ((a + I)(b +I), (a + J)(b + J)) = (a +1, a + J)(b +1, b + J) = 0(a) 0(b).

3. 0 is surjective.

Let (a, b) G R/I © R/ J■ Then (a, b) = (a + I, b + J) for some a, b G R. Since R — I + J, 

we have a = x + y and b = s + t for some x,s G I and y,t G J. Consider y + s. We 

obtain 0(y + s) = (y + s + I,y + s + J) — (y + I,s + J) since s G I,y G J. However, 
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(a,b) = (a + I,b + J) = (x + y + I,s + t + J) = (y + I,s + J) since x G I and t G J. So 

f>(y + s) = (a, b). Therefore <f> is onto.

By the First Isomorphism Theorem, we now have R/kercp « </>(!?). We know that 

= R/I ffi R/ J, so R/kerf> « R/I ffi R/ J.

4. Kercf = I A J.

Let r G I A J. So r E I and r G J. Then </>(r) = (r + I, r + J) = (I, J)- So 

r G ker<f) => I A J C ker<f).

Suppose b G kerf>. Then (6 + I, b + J) = </>(&) = (Z, J). So b G I and b G J. Hence 

b G I A J => ker(j) C (Z A J).

From 1-4, we have R/(I A J) « R/I ffi R/ J.

□

We have to make sure that the ideals I and J are coprime, in other words, 

I ® J = R so that <p wiU be surjective. If d> is not onto, then the mapping will not 

necessarily be an isomorphism. The following example illustrates how the condition of 

pairwise coprime is necessary.

Example 3.30. If R = Z, Ay = (6) and A2 = (4) then the mapping <j> : R/(Ay A A2) —> 

R/Ay ffi R/Az is not surjective.

Proof: Since the gcd(6, 4) = 2, 6 and 4 are not relatively prime. So the ideals (6 and 

(4) are not coprime. Since (6) + (4) = (2) so Ay + A2 R since 1 (2). Also, 

Z/((6) A (4)) « Z/(2) « Z2; but, Z2 Z4 ffi Zg. There are only 2 elements in Z2 but 

there are 24 elements in Z4 ffi Zg. Hence, </> cannot be surjective.

□

Now, we are going to generalize the above theorem to n ideals.

Theorem 3.31. The Chinese Remainder Theorem for n Ideals

If R is a ring and Iy, ...,In are ideals of R which are pairwise coprime, i.e. I{ + Ij = R 

whenever i 7= j, and I = Q”=1 Ii, then R/I is isomorphic to R/Iy ffi R/I2 ffi ffi R/In-

Proof: By induction, for n = 1, we have R/I « R/I.

Assume that Iy,..., In, In+y are ideals of R which are pairwise coprime (Zj + Ij = R 

whenever i =4 j) and R/I is isomorphic to R/Iy ffi R/I2 ffi ffi R/In where I — C^yli- 
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Then by letting J = Zn+i and using Theorem 3.29 and Theorem 3.30, we have R/(I D 

J) Ri R/I © R/J « R/Ii ffi R/Ii © ••• © R/In © R/ J- Therefore R/I is isomorphic to 

R/Ii © R/h © •••© R/In+i where I = D^Ii-

□ 

Corollary 3.32. Ifm 6 Z has the prime decomposition m = p^.-.p^ by the Fundamental 

Theorem of Arithmetic, (ki > 0, pi distinct primes), then there is an isomorphism of rings 

Zm ~ Z fcx x ... x Z fcj.
Pi Pi

Proof: Since all the pfs are distinct primes, they are pairwise coprime and 

Zm ps Z/(m). Therefore, by Theorem 3.32 and Proposition 3.29, we can see that Zm ~ 

Z fc, x ... x Z l
Pi Pi

□

Now that we have looked at the Chinese Remainder Theorem for rings through 

the mapping of isomorphism, we are going to reformulate theorem to be analogous to the 

theorem for integers.

Theorem 3.33. General Chinese Remainder Theorem for Rings 

Let Ii,..., In be ideals in a ring R such that I{ + Ij = R for all i j. If bi,..., bn G R, 

there there exists b G R such that b = b{ (mod Ii) for i = 1,2, ...,n. Furthermore, b is 

uniquely determined up to congruence modulo the ideal Zj A Z2 Cl... A Zn.

Just as Theorem 3.32, the ideals are pairwise coprime; however, instead of having 

the factor ring R/I isomorphic to the direct sum of all factor rings, we have the case of 

the intersection of all ideals which also combines several moduli to a new, larger modulo.

Proof:

Since Zj + Z2 = R and Zi + Z3 = R, then

R= R2 — (Zi+Z2)(Zi+Z3) = zf+ZxZs+ZaA+Z.Zg C I1+I2I3 C Zi+(Z2AZ3) C R. 

Therefore, R = Ii + (Z2 l~l Z3). Assume inductively that

z? = z1 + (z2nz3n...nzfc_1).

Then

R = R2 = (Zi + (z2 a... az&_i))(Zi + z&) c Zi + (z2 aZ3 a... az&) c r 

Therefore, R = Ii + (Z2 Pl... A Ik)- Consequently, Z? = Zi + (Ai/iZj). Similarly, for each
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k = 1, 2,n, R = I/. + Consequently, for each k there exist elements a,k G Ik

and rk G Cgtkli such that bk = fflfc + rfc. Furthermore rk = bk (mod Ik) and rk = 0 (mod 

Ii) for i k.

Let b = ri + r2 + ... + rn. Then b = ri mod fi and hence b = bi (mod ZJ for every i. 

Finally, if c G R is such that c = bi (mod ZJ for every i, then b = c (mod ZJ for each i, 

where b — c E Ii for all i. Therefore, b — c & Ci=1Ii and b = c(mod Z$).

□

Example 3.34. Let (2) and (3) be ideals in the ring Z. Then we can see that (2)+ 

(3) = Z For any ai and a2 € Z, there exists an a G Z such that a = ai mod 2 and a = a2 

mod 3. Then a = m mod (2) C (3), or a = m mod (6) which takes us back to the general 

theorem for integers, Theorem 2.9.

3.3 Chinese Remainder Theorem for Polynomial Rings

Now let’s look at how the Chinese Remainder Theorem is applied to polynomial 

rings. There are a few terms we need to be familiar with.

Definition 3.35. A unit in a ring R is an invertible element of R, i.e., an element b such 

that there is an a in R with ab = ba = 1^.

Definition 3.36. A field is a commutative ring with unity in which every nonzero 

element is a unit.

Example 3.37. For every prime p, the ring of integersmodulo p, denoted Zp is a field.

Definition 3.38. Let D be an integral domain. A polynomial f(x) from Z?[m] that is 

neither the zero polynomial nor a unit in D[x] is said to be irreducible over D if, whenever 

f(x) is expressed as a product f(x) = g(x)h(x), with g(x) and h(x) from Z?[z], then g(x) 

or h(x) is a unit in Z)[x].

Note: Elements a and b of an integral domain D are called associates if a = ub 

where u is a unit of D.

Theorem 3.39. Let f(x) and g(x) be irreducible polynomials over a field F. If f(x) and 

g(x) are not associates, then F[x\/(f(x)g(x)} is isomorphic to F[x]/{f(x)) ®F[x]/{g(x)).
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Proof: By Theorem 3.29, and the First Isomorphism Theorem, to show that

F[x]/(/(a:)^(a;)) is isomorphic to F[x]/{f(x)) ®F[a;]/(^(a;)), 2e only need to check that 

if f(x) and g(x) are not associates, then {f(x)g(xf) — {f (x)}{g(x)} = (/(»)) A {g(x)).

Let r(x) G (f(x)g(x)), so r(x) = f(x')g(x')h(x) for some h(x) G F[x]. Then 

r(x) — [f(x)h(x)]g(x) since F is a field. Hence, r(x) G (J(x)} Pl (g(x)) => (f(x)g(x)) C 

A {g(xf).

Conversely, let s(x) G {f(xf) A {g(xf), so .fix') G {f(xf) and s(x) G {g(xf). Then, 

s(z) = and s(x) = g(x)r(x) for some h(x),r(x) G F[a;]. Consequently, we

have f(x)h(x) = g(x)r(x). Because f(x),g(x) are irreducible, (f(x)} + {g(x)} = F[x], so 

f(x')u(x) + glx)v(x) = 1. So s(x)f(x)u(x) + s(x)g(x)v(x) = s(x).

s(x) G (f(x)g(x)}, and hence {f(xf) A (g(xf) C {f(x)g(x)).

□

Example 3.40. For every prime p, the ring of integers modulo p, denoted Zp is a field.

Definition 3.41. A monic polynomial is a polynomial whose leading coefficient is 1.

Definition 3.42. Let a(x) and b(x) be polynomials not both zero with coefficients in a 

field F. The greatest common divisor of a(x) and b(x) is the monic polynomial d(x) of 

highest degree such that d(x) is a divisor of a(x) and b(x).

Example 3.43. Let a(x) — x2 + 7x + 6 and fix') = x2 — 5z — 6. Then a(x) = (s+l)(x-+6) 

and b(x) = (x + l)(z — 6). Hence the gcd(a(x), b(xf) = z + 1.

Theorem 3.44. General Chinese Remainder Theorem for Polynomial Rings.

Let F be afield and let bi(x), ...,bn(x) be arbitrary polynomials o/F[x], mi(z),..., mn(x) 

and afix), ...,an(x) be polynomials of F[x] such that

gcd (mfixfimj{x')') = 1 , i / j-

gcd (afix), mfixfif) = 1, i = 1, 2,..., n.

Then the system of congruences

afix)u(x) = bfix) mod mfix), i — 1, 2,..., n

has exactly one solution modulo m(x) = nfifipfix) ■ • -mn(x).



26

Proof: Follow the proof of Theorem 3.32 and the Chinese Remainder Algorithm,

we have gcd(aj(x), mi(xf) = 1 for 1 < i < n. We can compute a polynomial ci(x) E F[x] 

such that Ci(x)ai(x) = 1 mod m-i/x) for all i. Therefore, a,i(x')u(x') = bi(x) mod mi(x), 

i = 1,2, ...,n becomes u(x) = Ci(x)bi(x) mod mfa) for 1 < i < n. Using the Chinese
(.t)

Remainder Algorithm, we can find M(x) = 117=1 ■mi(.x)’ then Mi(x) =--- —r, Mz(x) =
1711 ( X j

Mix') „ . Mix') _ , , . , , .....
■---- ..., Mn(x) — ■—jrnr. Then proceeding as the algorithm, the solution is given by:
m2(x) mn(x)• • •)

u(x) = bi^ci^Mi^y^x) + b2(x)c2(x)M2(x')y2(x') + ... + bn(x)cn(x)Mn(x)yn(x) mod 

where yt(x) is the inverse of Mi(x) mod mi(x) for i = 1,2,

Example 3.45. Let mi(j) = x3 + x + 1 and m2(x) = x3 + x2 + 1 in Z/(2). Also, let 

a± = x2 + x + 1 and a2 = x + 1. Since mi and a-i cannot be factored, they are relatively 

prime for each i. By the Euclidean Algorithm we have (x + l)mi(a;) + o;2ai(o;) = 1 and 

7712(0;) + x2a,2(x) — 1. So the inverses Ci(x) of a.i(x) are ci(o;) = x2 and c2(o:) = x2. Since 

17711(2:) + (x + l)-m,2(:z;) = 1 we have a system of congruences

a\(x)u(x) = bi(x) mod 7711(0;)

a2{x)u(x) = b2{x) mod 7702(0;).

The solution is given by u(x) = (x+ I)x2m2(x)ri(x') + x ■ x2mi(x)r2(x) mod 771(0;), where 

m(x) = mi(x)m2(x).



27

Chapter 4

Applications of the Chinese 
Remainder Theorem

4.1 Finite Sequence of Integers

As mentioned in Chapter 1, the first indication of the power of the Chinese 

Remainder Theorem applies to finite sequences of integers. For any finite sequence of 

integers, we can find another two integers to represent it. Let first look at the theorem 

and its proof.

Theorem 4.1. Let ai, 0 < i < t, be a finite sequence of nonnegative integers. Then there 

are integers u and v such that (u mod (1 + (i + l)u)) = Oi, for every £ = 0,1,..., t.

Proof: Let a be the largest integer of the sequence ai, 0 < i < t, and define 

v = 2a • t! and mi = 1 + v(i + 1), 0 < i < t. We claim that the integers m,, 0 < i < t are 

relatively prime in pairs. By contradiction, let p be a prime number that divides both mi 

and mj, for some i > j. Then p divides the difference (i + l)mj — (j + l)mj = i — j <t. 

Since p let divides my and v is divisible by all integers less than or equal to t, we obtain 

that p = 1, which is not a prime. So the integers mi qualify as moduli for the Chinese 

Remainder Theorem. Hence, there is a number u such that

u = ai mod mi, i = 0,1,... t.

Then, u mod mi = ai mod mi for all 0 < i < t. However, since ai < v < m,. we can 

conclude that mod mi = ai for 0 < i < t. Therefore, u mod mi = ai for 0 < i < t.
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□

Below is an example using a small finite sequence of integers. For this sequence, 

we find two integers representing each term. If we apply this theorem to larger sequence, 

we should still be able to find two integers representing each term in the sequence.

Example 4.2. Let {2,3,5,6} be a finite sequence with ao = 2, ai = 3, a2 = 5 and a3 = 6. 

Then by the theorem, there are integers u and v such that u mod (1 + (i + l)v) = a;. We 

will show how to find u and v. The largest integer is 6, so by the proof of the theorem we 

have v = 2 • 6 • 3! = 72, and: mo = 1 + 72 = 73, mi = 1 + 144 = 145, m2 = 1 + 216 = 217, 

m3 = 1 + 288 = 289. Then we obtain a system of congruences:

u = 2 mod 73,

u = 3 mod 145, 

u = 5 mod 217, 

u = 6 mod 289.

This system of congruence has a solution. Using the Chinese Remainder Theorem, we 

obtain M = 663,817,105, MQ = 9,093, 385, Mx = 4,578,049, M2 = 3,059,065, and 

M3 = 2,296, 945. Next, we get 9,093,385yo = 1 mod 73 which yields yo = 12 mod 73; 

4, 578,049yi = 1 mod 145 which yields yi = 4 mod 145, next 3, 059,065^2 = 1 mod 217 

giving y2 = 95 mod 217, finally 2, 296, 945y3 = 1 mod 289 giving y3 = 107 mod 289. 

Therefore, u = 2 • 9,093, 385 • 12 + 3 • 4, 578,049-4 + 5-3, 059, 065 • 95 + 6 • 2, 296, 945 • 107 

= 545,603,973 mod 663,817,105. Hence, we can represent the terms of the sequence 

using the two integers 72 and 545, 603, 973:

2 = 545,603,973 mod (1 + 72 • 1),

3 = 545,603,973 mod (1 + 72 ■ 2),

5 = 545,603,973 mod (1 + 72-3),

6 = 545,603,973 mod (1 + 72-4).

4.2 A Characterization of Dedekind Domains

In number theory, the Fundamental Theorey of Arithmetic states that every 

natural number greater that 1 can be written as unique product of prime numbers. In 

abstract algebra, a Dedekind domain has a similar set up.
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Definition 4.3. A Dedekind domain is an integral domain in which each ideal can be 

written as a product of a finite number of prime ideals.

Definition 4.4. Let R be a ring and I is its ideal. If there exists an inverse ideal 

I-1 = {r G /C\xi G I?} where K is the quotient field of R then II~^ = R.

Proposition 4.5. In a Dedekind domain, every nonzero prime ideal is a maximal ideal.

Proof: Let R be a Dedekind domain and p is nonzero prime ideal and p is not 

maximal. Let a be another ideal of R such that p C. a. Then C a-1 a = R so

a_1p is an ideal of R. Since a(a_1p) — p then a C p or a_1p C p. If C p then 

a-1 C = R which implies that R C a so a = R. On the other hand, if a C p and by 

assumption, p C a then p = a. Therefore p is maximal.

□

Example 4.6. The ring of integers Z is an example of Dedekind domain. The principal 

ideals of Z are all generated by each integer such as (2) = {0, ±2, ±4, ±6,... }. If a G Z, 

it has a unique prime decomposition; therefore (a) can be written as a product of a finite 

number of ideals. That is, if a = p^f ■ ■ -Pnn, then (a) = (p^1) ■ ■ ■ (Pnn)-

A principal ideal domain is always a Dedekind domain; however, a Dedekind 

domain may not be a principal ideal domain. The following proposition will state the 

condition in which a Dedekind domain is a principal domain.

Proposition 4.7. If a Dedekind domain R has only a finite number of nonzero prime 

ideals Pi, ...,Pn, then R is a principal ideal domain.

Proof: For each i, choose bi E Pi—Pf. We are going to prove that (bf) = Pi which 

implies that every prime ideal is principal, hence, A is a principal ideal domain. Since R is 

a Dedekind domain and it has only a finite number of nonzero prime ideals Pj, 1 < i < n, 

then these prime ideals are also maximal ideals, and so Pj + Pj = R, i j. Because R is 

a Dedekind domain, bi = Iip-.-Im, where It = Pj. By the Chinese Remainder Theorem 

3.32, we have bi = ij mod Pj and bi = 1 mod Pj. Then since bj G Pi, (bj) C Pj. So 

Iih-.-Im Q Pi- Then Ij = Pi for some j. Then we can rearrange the ideals so that 

(bj) = PjZi...Im_i. If Ir = Pi for some r, then (bj) = P/fi...Im-2, but this contradicts 

bi Pj2. So continuing this process, we have (bj) = PiIy...Im-i = PjnZiD...r)/m_i where 
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Ii,..., Im-i are distinct primes. Then b{ G Ii and since bi = 1 (mod Ii), bi — 1 G Ii- So 

1 G Ii and hence Ii = R. Therefore, (bi) = P,.

□

4.3 Cryptography Schemes

The Chinese Remainder Theorem is applied in secret sharing, which is an im­

portant topic of cryptography. The Chinese Remainder Theorem itself is a secret sharing 

scheme without any modification. Let mi, m2, ■ •■,mt be t pairwise relatively prime posi­

tive integers. Also let m = JlLu mi- Suppose that we have a secret which is an integer s 

such that 0 < s < m. Let Pi, P2,..., Pt be the t parties who are going to share the secret. 

Then Pi has the residue Sj = s mod mi as the secret that is only known to Pi. By the 

Chinese Remainder Theorem, the t pieces of information s, are sufficient to determine 

the original s.

For the t parties, if we give out k shares, then the secret can be computed; 

otherwise, k — 1 shares will give a possible range of the secret. A (k, t) secret-sharing 

scheme is defined as follows. The t parties Pi share a secret s with the following conditions:

1. Each party has a share Sj about the secret s which is not known to other parties.

2. The secret s can be computed from any k shares Sj.

3. No k — 1 shares Sj give any information about the secret s.

We are going to look at the two secret sharing schemes; one involves the integers and the 

other is for polynomials.

Scheme 1

Let mt, i = 1, 2,..., t, be t pairwise relatively prime integers no less than 2. We 

define

m,in(k) = min(m.i1mi2 ■ ■ -m^jl < ii < ... < < t},

max(k — 1) = ■ ■ ■ mik_ _J1 < ?1 < < ■ • • < ik-i < t},

where 1 < k < t. In other words, min(k) is the smallest product of k of the integers mt 

and max(k — 1) is the greatest product of k — 1 of the integers mt. Choose w to be the 

largest positive integer such that
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min(k)
max(k — 1)

• gcd (w, m,i) = 1, i = 1,2,..., t.

Let m = min(k).

The secret is the integer s such that 0 < s < w. Therefore, we assume that the secret is 

equally likely to be any integer between 0 and w — 1.

We compute the shares for t parties as follows.

Let a G Z such that 0 < s + aw < m, and let s = s + aw. The shares are then 

given by $$ = s mod mi , i = 1,2,..., t, where Si is the share of party Pi- We are going to 

prove that k — 1 or fewer shares give no information about the secret; but any k or more 

shares determine the secret.

Without loss of generality, suppose sy,S2, ■■■,Sh are known and 1 < h < t. Let

M = HiLi mi and Mj = for j = 1,2, ...,h. Then (Mj,mj) = 1. By Euclidean 

algorithm, there exist Uj, Vj G Z such that MjUj + mjVj — 1. This can be done by solving 

MjUj = 1 mod mj and rrijVj = 1 mod Mj. Then by the Chinese Remainder Algorithm, 

the system of congruences x = Si mod mi for 1 < i < h has a unique solution modulo M 

given by x = s-yMyu-y + s^M^uq, + ... + shMhuh.

Let s" = ^ju3sj m°d M where 0 < s" < M, then s" = Sj mod mi. We have two 

cases:

Case 1:

If h > k then M > min(k) = m > w. By the Chinese Remainder Theorem s" = s' since 

s' = Si mod m,i, s' < m < M and solutions to the system x = Si mod mi are unique 

modulo M. Now s' mod w — (s + aw) mod w = s so the secret is given by s = s" mod 

w.

Case 2:

w max[k — 1]
If h = k, — 1 then M < max[k — 1] < —. This follows since w < -------j-- implies

for some b where 0 < s' < m since the solutions to the system x = Si mod mi are unique 

modulo M. Then 0 < s' < m implies 0 < s" + bM < m, so —s'1 < bM < m — s" which
. j , —s . , m — s . m — s" . . , m — s m — M
leads to —— < b < ———. Therefore, 0 < b < ——— . Also,   — > —   
_ M ~ M L M J M M m m
— — 1 > w — 1 since w < —. So s = s' mod w = ($" + bm) mod w and since b ranges
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771 — s” 777 — s"
from 0 to [———J and w — 1 < [———J, s takes on 0,1,w — 1 equally likely.

Thus any k — 1 or fewer shares give no information about secret s.

Now let’s see an example to see how the secret-sharing scheme works.

Example 4.8. Let k = 3, t = 4, my = 5, m2 = 7, m3 = 11, and 7714 = 13. Then m =

min(k) = 5 • 7 • 11 = 385, and
, , min(k)

such that w < -------—------ - =
max(k — 1)

an integer where 0 < s < w.

max (k — 1) = 11 • 13 = 143. So there exists an integer w 
385
■^3 and gcd (w,™,) — 1. We get w = 2. The secret s is

So s is either 0 or 1. Since t = 4, we need to compute 4 

shares. We choose an a where 0 < s + aw < m. Hence 0 < aw < m — s which implies

0 < a < -------- =------- ---- = 192. Choose a = 30, for example. Let s' = s + aw = s + 60.
w 2

The four shares are given by s; = s' mod m{. Then si = (s + 60) mod 5, s2 = (s + 60) 

mod 7, S3 = (s + 60) mod 11, and s4 = (s + 60) mod 13. As the secret keeper, we let 

s = 1 then si = 1 and s2 = 5. Then M = miffl2 = 35, Mi = 7, and M2 = 5. By the 

Euclidean Algorithm, we get 7 • (—2) + 5-3 = 1. Therefore, u = 2 and v = 3. Then by 

the Chinese Remainder Algorithm, we have s" = M1U1S1 + M2u2s2 since h = 2. Then

s" = (7 • (—2) • si + 5 • 3 • s2) mod 35 = (—14 + 75) mod 35 = 61 mod 35 = 26 mod 35. Q Q K QZJ
Since 6. = 3 — 1 = 2 we have s' = s" + bM = 26 + 356 where 0 < b <---- —---- = 10. It

35
follows that s = s' mod 2 = 6 mod 2. Since 6 G [0,10], s takes on 1 and 0 equally likely. 

Therefore, the two shares give no information about the secret.

If we have three shares, we can calculate the secret s. So for the example above, suppose 

we have three shares sx = 1, s2 = 5, and s3 = 6. Then M = mim2rri3 = 5 • 7 • 11 = 385, 

so Mi = 77, M2 = 55, and M3 = 35. Therefore, by Euclidean Algorithm we can find u.j 

and Vj, for j = 1, 2, 3 such that:

77ui + 5vi = 1;

55u2 + 7v2 = 1,

35h3 + lli>3 = 1

Solving the three equations, we get:

77- (-2)+ 5-31 = 1,

55-(-1)+ 7-8 = 1,

35-6 +11-(-19) = 1.

Hence, s" = 77 • (—2) • sx + 55 • (—1) • s2 + 35 • 6 • s3 = 831 mod 385 = 61 mod 385. 

Consequently, the secret s would be s = 61 mod 2 = 1 mod 2. So the secret s is 1.
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Scheme 2

This secret-sharing scheme is almost similar to scheme 1, but it deals with 

polynomials.

Let F be a finite field and mfix), i — 1, ...,t be t pairwise relatively prime polynomials 

of FR] with degree greater of equal to 1. Then

min[k] = min^deg^mgm^ ■ ■ ■ mik)|1 < ii < • • • < < t},

max[k — 1] = max{deg(mi1mi2 ■ ■ ■mjfc_1)|l < ii < • • • < ifc-1 < i}>

where 1 < k < t. Let w be the largest positive integer such that

• there is a polynomial IV(z;) of degree w over F with (W(a;), mfix)) = 1 for i =

1,2,...,  t; and

min(k]
• w < -------7-—-.

max[k — 1]

The secret is a polynomial s(x) in Ffrr] of degree less than w. The shares for t parties 

are computed as follows.

Choose a(x) G F[x] such that deg(s(a;) + a(x)W(x)) < min[k]. Let s'(x) = 

s(x) + a(x)w(x). The shares are then given by sfix) = s'(x) mod mi, i = 1,2, 

Therefore, (k, t) is a threshold scheme.

Suppose k shares si(x), s2(x),Sk(x) are given. Let M(x) = 

and Mj(x) = for j — 1, Then Mj(x) and mj(x) are relatively prime. By

Euclidean Algorithm, there exist two polynomials Uj(x) and Vj(x) in F[rr] such that 

Mj(x)uj(x) + mj(x)vj(x) = 1. By the Chinese Remainder Algorithm, we have s'(x) = 

Mj(x)uj(x)sj(x) mod M(x). Then the secret is given by s(x) = s'(x) mod W(z).
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Chapter 5

Conclusion

In this short manuscript, we have shown some expansion and powerful applica­

tions of the Chinese Remainder Theorem. It is amazing to see how the theorem evolved 

from the three basic problems of calendar, wall-building, and soldier-counting. Even 

though the theorem, first generated as a problem, is taken credit from the Chinese schol­

ars, it was quite well-known in other parts of the world. Many other mathematicians 

were also trying to solve similar problem

Here we discuss the applications of the theorem to finite sequence of integers, 

Dedekind domains, and briefly crytography. However, the Chinese Remainder Theorem 

is widely applied in other areas such as computing, and codes. We hope readers find this 

topic interesting enough to pursue further research on those areas.
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