Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

OPTIMIZATION TECHNIQUES FOR THE INTEL MIC ARCHITECTURE.
PART 2 OF 3: STRIP-MINING FOR VECTORIZATION

Andrey Vladimirov

Colfax International

June 26, 2015

Abstract

This is part 2 of a 3-part educational series
of publications introducing select topics on opti-
mization of applications for Intel’s multi-core and
manycore architectures (Intel Xeon processors and
Intel Xeon Phi coprocessors).

In this paper we discuss data parallelism. Our
focus is automatic vectorization and exposing vec-
torization opportunities to the compiler.

For a practical illustration, we construct and
optimize a micro-kernel for particle binning par-
ticles. Similar workloads occur applications in
Monte Carlo simulations, particle physics soft-
ware, and statistical analysis.

The optimization technique discussed in this
paper leads to code vectorization, which results in
an order of magnitude performance improvement
on an Intel Xeon processor. Performance on Xeon
Phi compared to that on a high-end Xeon is 1.4x
greater in single precision and 1.6x greater in dou-
ble precision.

Table of Contents

Introduction

Motivating Example: Particle Binning . . .

Vectorization
3.1 Automatic Vectorization
3.2 Vectorization Opportunity
Optimization
4.1 Loop Splitting
4.2 Strip-Mining
4.3 Note on Loop Remainder
4.4 Data Alignment.
4.5 Thread Affinity
Performance, ..
5.1 System Configuration
5.2 Performance Benchmarks
5.3 Performance Analysis
Discussion
6.1 WhatWelLearned
6.2 What'sNext

Colfax International (http://www.colfax-intl.com/) is a leading provider of innovative and ex-
pertly engineered workstations, servers, clusters, storage, and personal supercomputing solu-
tions. Colfax International is uniquely positioned to offer the broadest spectrum of high per-
formance computing solutions, all of them completely customizable to meet your needs - far
beyond anything you can get from any other name brand. Ready-to-go Colfax HPC solutions
deliver significant price/performance advantages, and increased IT agility, that accelerates your
business and research outcomes. Colfax International’s extensive customer base includes For-
tune 1000 companies, educational institutions, and government agencies. Founded in 1987,
Colfax International is based in Sunnyvale, Calllifornia and is privately held.

Colfax International, 2015 — http://research.colfaxinternational.com/

e — |
R EBlormwmm ek o w

12

i i e
FER B

http://www.colfax-intl.com
http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

2 MOTIVATING EXAMPLE: PARTICLE BINNING

1. INTRODUCTION

This paper continues our 3-part series of educational publications on performance optimization in
applications for Intel Xeon Phi coprocessors. First part [2] discussed thread parallelism. In this part, we
focus on some aspects of data parallelism and vectorization.

Optimization of vectorization on Intel Xeon processors and Intel Xeon Phi coprocessors requires ex-
posing the vectorization opportunities, data structures designed for contiguous memory access, data align-
ment, regularization of vectorization pattern, and compiler hints for pointer disambiguation, alignment
guarantees and loop count. An extensive discussion of these techniques is presented in our book, “Parallel
Programming and Optimization with Intel Xeon Phi Coprocessors, 2nd Edition” [3]. In this paper, we
demonstrate two techniques: exposing vectorization opportunities with strip-mining and data alignment.

2. MOTIVATING EXAMPLE: PARTICLE BINNING

For an illustration we will use
the same example as in [1]: binning.
Suppose that we have data coming
from a simulation or from an exper-
iment on particles moving in a cylin-

iY=
nBinsY-1

drical particle detector (see Figure 1). * Y
Particle positions are reported in po- o X
lar coordinates, and our interest is to =

bin these particles into bins defined 0

in Cartesian coordinates. Workloads >

like this occur in particle physics (for =

. iX=0 iX=1 iX=2 iX=
example, to detect particle tracks — nBinsX-1

see [4]), in Monte Carlo simulations Figure 1: Workload illustration: take polar particle coordinates and com-
and also in statistics where data trans- pute particle counts in bins on the Cartesian grid.
formation and binning takes place.

For our specific problem, assume that the raw particle data comes in the form of a structure containing
arrays r and phi. These arrays contain the radii and the polar angles, respectively, of each particle. Our
task is to compute the output data, which is a 2-dimensional array containing the counts of particles in the
respective bins on a 2-dimensional Cartesian grid. Listing 1 illustrates the data types.

1| // Input data structure: arrays of particle coordinates in polar system
2| struct InputDataType {
int numDataPoints; // Size of arrays r and phi. Using n=2"27

of ra

FTYPE+ r; // Array

5 FTYPE« phi; // Array of po gles

61}

7

8| // Output data structure: counts of parti s 1 tes
9| typedef int BinsType[nBinsX] [nBinsY]; // Using nBins

Listing 1: Data structures: counts of particles in bins on the Cartesian grid. FTYPE is real for single precision and double
for double precision implementation. 1

Colfax International, 2015 — http://research.colfaxinternational.com/ 2

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

2 MOTIVATING EXAMPLE: PARTICLE BINNING

A non-optimized scalar C code that performs such binning is shown in Listing 2.

void BinParticlesReference (InputDataType & inputData, BinsType & outputBins) ({
// Reference implementation: scalar, serial code without optimization

1
2
3
4 // Loop through all particle coordinates
5
6

for (int i = 0; i < inputData.numDataPoints; i++) {
// Transforming from cylindrical to Cartesian coordinates:

7 const FTYPE x = inputData.r[i]*COS (inputData.phi[i]);
8 const FTYPE y = inputData.r[i]+*SIN(inputData.phi[i]);
9
10 // Calculating the bin numbers for these coordinates:
11 const int iX = int((x - xMin) *binsPerUnitX);
12 const int 1Y = int ((y - yMin) «binsPerUnitY);
13
14 // Incrementing the appropriate bin in the counter:
15 outputBins [iX] [1Y]++;

16 }
17|}

Listing 2: Non-optimized binning code. FTYPE, SIN and COS are preprocessor macros set to either f1oat, sinf and cosf
for single precision, or double, sin and cos for double precision implementation.

In part 1 [2] we implemented multi-threading in this code and the result is shown in Listing 3.

1|void BinParticles_1 (const InputDataType & inputData, BinsType & outputBins) {
2 // Thread-parallel implementation. Race conditions are avoided by using
3 // parallel reduction with thread-private containers

1| #pragma omp parallel

5 {

6 // Declare thread-private containers for bins

7 BinsType threadPrivateBins;

8 for (int i = 0; i < nBinsX; i++)

9 for (int j = 0; j < nBinsY; j++)
10 threadPrivateBins[i] [j] = O;

11
12 // Loop through all bunches of particles
13| #pra > for
14 for (int i = 0; i < inputData.numDataPoints; i++) {
15 // Transforming from cylindrical to Cartesian coordinates:
16 const FTYPE x = inputData.r[i]*COS (inputData.phi[i]);
17 const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);

18
19 // Calculating the bin numbers for these coordinates:
20 const int iX = int ((x - xMin) *binsPerUnitX);
21 const int 1Y = int ((y - yMin) *binsPerUnitY);
22
23 // Incrementing the appropriate bin in the thread-private counter:
24 threadPrivateBins [iX] [iY]++;
25 }
26 // Reduction outside the parallel loop
27 for(int i = 0; i < nBinsX; i++)
28 for(int j = 0; j < nBinsY; J++) {
29| #pragma omp atomic

w

outputBins[i] [j] += threadPrivateBins[i][]];

w
N =
—

—

w W
@D W
—

Listing 3: Binning code. Parallel and correct implemgntation using reduction with thread-private containers.

Colfax International, 2015 — http://research.colfaxinternational.com/ 3

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

3 VECTORIZATION

3. VECTORIZATION

Parallel code in Listing 3 uses OpenMP to distribute the calculation across multiple cores of the pro-
cessor that it is running on. This level of parallelism is absolutely essential for extracting performance out
of multi- and manycore processors. Indeed, in our previous publication [2], we reported that going from
serial code in Listing 2 to parallel code in Listing 3 leads to speedups of 25x and 100x on an 24-core Intel
Xeon and a 61-core Intel Xeon Phi processor, respectively.

At the same time, the parallel code shown above does not handle another level of parallelism: vector-
ization inside of every core. Cores of our Intel Xeon E5-2697 v2 processor support 256-bit wide AVX?2
instructions, and cores of the Intel Xeon Phi 7120P coprocessor support 512-bit wide IMCI instructions.
These are SIMD instructions which can perform a Single Instruction on Multiple Data elements in one
operation. That is, each core of a Xeon processor can perform an addition, multiplication, sine or cosine
calculation, or type conversion on 8 single precision or 4 double precision numbers at a time. Each core
of a Xeon Phi can do the same on 16 single precision or 8 double precision numbers. However, the calls
to these short vector instructions are not automatic, i.e., if the software does not call for these instructions,
hardware will not automatically apply them.

3.1. AUTOMATIC VECTORIZATION

Intel compilers are able to automatically vectorize loops and certain other constructs. Automatic vec-
torization is enabled at the default optimization level —02. To see the result of automatic vectorization, we
can request an optimization report from the Intel compiler. For an example, see code in Listing 4.

3| void ComputeSine (doublex x, int n) {

y
>

1 for (int i = 0; i < n; i++) // ic vectorization
)

)

x[1] = sin(x[1i]); // The sine ction can b > vectors

|}

vega@lyra% icpc —gopt-report -c try-vector.cc # Compiling...

icpc: remark #10397: optimization reports are gene rY fil ir 1 ut t 1 ion
vega@lyra$% cat try-vector.optrpt # Viewing the optimization report
OP BEGIN at try-vector.cc (4, 3)
remark #15300: LOOP WAS VECTORIZED

Listing 4: Code with vectorizable loop and result of automatic vectorization by the Intel C++ compiler.

To have the loop automatically vectorized means that the compiler will represent the loop in i as a
loop with a stride of 4, 8, 16, or whatever is the vector width in the target architecture. Inside of every
iteration, data will be loaded from memory into the 4-, 8- or 16-wide vectors, the program of the loop will
be executed in each respective vector lane, and the result will be stored back in memory. The compiler will
automatically handle cases where the number of iterations is not a multiple of the vector width. In these
cases, a remainder loop will be implemented. Similarly, the compiler will handle architectural restrictions
on the alignment of data using a peel loop when necessary (see Section 4.4). For more details on automatic
vectorization, see our book [3]. 1

Colfax International, 2015 — http://research.colfaxinternational.com/ 4

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

3.2 Vectorization Opportunity 3 VECTORIZATION

3.2. VECTORIZATION OPPORTUNITY

The binning code has a single loop that goes over all particle coordinates (line 14 in Listing 3). We
found a way to parallelize this loop across cores, because different particles can be processed indepen-
dently as long as parallel reduction is implemented correctly (see Part 1). The same loop, in principle, can
be parallelized across vector lanes. This is the loop targeted for vectorization in the binning code:

10

for (int i = 0; i < inputData.numDataPoints; i++) {

// Transforming from cylindrical to Cartesian coordinates:
const FTYPE x = inputData.r[i]*COS (inputData.phi[i]);
const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);

// Calculating the bin numbers for these coordinates:
const int iX = int ((x - xMin) *binsPerUnitX);
const int iY = int ((y - yMin) «binsPerUnitY);

// Incrementing the appropriate bin in the thread-private counter:
threadPrivateBins [iX] [iY]++;

Listing 5: Binning code. Parallel and correct implementation using reduction with thread-private containers.

If this loop was vectorized, then the calculation of trigonometric functions, multiplication, addition
and type conversion can all be done with vectors as in shown in Figure 2.

Streaming Streaming
from memory from memory

Intermediate Intermediate Intermediate Intermediate Intermediate
result result Constant result Constant result result Stored

in reiisters in reiisters in reiisters inregisters inregisters in registers in registers in memory
B 0.5 0
5 33 = 3
3 5.0 5
2 R
$ it
@ 2.0 - 2
4.8 - 4
B 53 5
4
phi[i] r[i]

Figure 2: Vectorization opportunity in the binning code.

All calculation steps up until the increment of the bin counters (the ++ operation) can be vectorized by
processing a block of values phi [i] and r [1] in a vector. However, the increment cannot be vectorized
because it does not have SIMD semantics: 1Y can have scattered or colliding values in different vector
lanes, and the same is true of 1 X. 1

Colfax International, 2015 — http://research.colfaxinternational.com/ 5

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

3.2 Vectorization Opportunity 3 VECTORIZATION

It is obvious to us that after computing a vector of values 1X and 1Y the processor must switch from
vector instructions to scalar instructions to increment the bins. Let’s see what happens when the compiler
processes this loop. We can use ~gopt-report=>5 to increase the report verbosity.

vega@lyra% icpc -c main.cc —gopenmp -gopt-report=5
icpc: remark #10397: optimization reports are generated in x.optrpt files in the output location
vega@lyra% cat main.optrpt

LOOP BEGIN at ../c

remark #15344: tor depen) r 1 torization
remark #15346: 7] lependence between threadPrivate line 134
remark #15346: TI dependence between threadPrivateE line 134

Listing 6: Optimization report of the binning code.

It appears that the compiler is not able to automatically vectorize this loop. The optimization report
indicates FLOW and ANTI dependencies in the line of code that corresponds to line 11 in Listing 5. In
this case, the dependencies are due to the fact that values of 1X and 1Y have unpredictable dependence on
the loop counter i, and therefore SIMD semantics does not apply.

Even though the compiler refused to vectorize this loop, this is not the end of the story. Automatic
vectorization is still possible. We just need to expose the opportunity for vectorization. In the next section
we will use a ubiquitous programming technique called strip-mining to transform the code into a form
where the compiler can recognize safe paths for automatic vectorization.

Colfax International, 2015 — http://research.colfaxinternational.com/ 6

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

4 OPTIMIZATION

4. OPTIMIZATION

4.1. LOOP SPLITTING

The compiler refused to vectorize a loop because a non-vectorizable operation is present in it. How
about this idea: let’s split this loop into two loops, one of which will contain only vector operations and
the other will contain only scalar operations as in Listing 7.

for (int i1 = 0; i < inputData.numDataPoints; i++) { // This loop can be vectorized
2 const FTYPE x = inputData.r[i]*COS (inputData.phi[i]);

const FTYPE y = inputData.r[i]*SIN(inputData.phil[i]);

const int iX = int ((x - xMin) +*binsPerUnitX) ;

const int iY = int ((y - yMin) *binsPerUnitY);
}

O U = W

for (int i = 0; i < inputData.numDataPoints; i++) // Thi
threadPrivateBins [iX] [iY]++; // But of course, this

Listing 7: Optimization idea: split the loop to have one vector and one scalar loop.

Of course, this is not going to work in this exact form. In fact, it will not even compile because iX
and 1Y are not defined in the second loop. However, the compiler will have one clean vector loop that
it can vectorize. This will potentially speed up the processing of the arithmetic needed for coordinate
transformation and index calculation. Now let’s fix the code and implement loop splitting correctly. For
logical correctness, we will have to carry an array of indices 1 X and 1Y from one loop to another.

int iX[inputData.numDataPoints]; // T ner for iX

1
2lint iY[inputData.numDataPoints]; // Temporary storage container for 1Y

~

3
4| for (int 1 = 0; i < inputData.numDataPoints; i++) { // This loop can be vectorized
5 const FTYPE x = inputData.r[i]*COS (inputData.phil[i]);

6 const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);

7 iX[1i] = int ((x — xMin) *binsPerUnitX) ;

8 iY[i] = int ((y - yMin) xbinsPerUnitY);

9|}

T 7

This loop will remain scalar

11| for (int i = 0; 1 < inputData.numDataPoints; i++) //
12 threadPrivateBins [iX[1]] [1Y[1]]++;

Listing 8: Loop splitting refined: have a temporary storage container to carry indices from one loop into the other.

The implementation in Listing 8 is formally correct, but it, too, has problems. We know that
numDataPoints is of order 227, so arrays iX and iY combined have 1 GiB of data. This means that,
first, we need to increase the stack size limitation of our application to over 1 GiB, or use heap allocation
for X and 1Y. With a large stack, we may run out of memory because each thread has its own stack. Heap
allocation inside the function is inefficient, so we would have to move iX and 1Y to the scope of function
caller. Second, the amount of data in 1X and 1Y is comparable to that in r and phi. So now, in addition
to reading particle data, we need to read and write a comparable amount of data for indices, which may as
much as triple our memory traffic.

Looks like with loop splitting we are on the right track in terms of exposing vectorization, but we need
to do something to avoid unnecessary memory overhead.

Colfax International, 2015 — http://research.colfaxinternational.com/ 7

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

4.2 Strip-Mining 4 OPTIMIZATION

4.2. STRIP-MINING

We can resolve the memory overhead problem using strip-mining. This is a programming technique
that transforms a single loop into two nested loops. The outer loop strides through “strips” of the iteration
space, and the inner loop operates on the iterations inside the strip (“mining” it). Listing 9 demonstrates a
generic strip-mining transformation.

// Original loop:

1
2(for (int i = 0; 1 < n; i++)
3 { /* ... do work =/}
1
// Strip-mining converts the original loop into two nested loops:

Y Ut

const int STRIP_WIDTH=64;

for (int ii = 0; ii < n; 1ii += STRIP_WIDTH)
for (int i = ii; i < ii + STRIP_WIDTH; i++)

9 { /* ... do work =/ }

0o~

Listing 9: Illustration of the strip-mining loop transformation.

This transformation is useful in several cases:

1. Expose data parallelism to enable automatic vectorization;
2. Allow vectorization to co-exist with multi-threading;

3. As a basis for other techniques such as loop tiling (see, e.g., [3] or [3]).

Strip size must usually be chosen as a multiple of the vector length in order to facilitate the vectoriza-
tion of the inner loop. The optimal value for STRIP_WIDTH is a tuning parameter that must usually be
determined experimentally. Furthermore, if the iteration count n is not a multiple of the strip size, then the
programmer must implement a remainder loop for n$STRIP_WIDTH iterations at the end of the loop.

Strip-mining can help us to reduce the memory footprint of the loop-split code. Applying strip-mining
to the code in Listing 8, we get to the following:

1 for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP_WIDTH) {
2 int iX[STRIP_WIDTH], iY[STRIP_WIDTH]; // STRIP_WIDTH=16

3

1 const FTYPE* r = & (inputData.r[iil]); // Find the current strip

5 const FTYPE+« phi = & (inputData.phi[iil]);

7 for (int c c < STRIP_WIDTH; c++) { // Vector loop
8 // Transforming from cylindrical to Cartesian coordinates:
9 const FTYPE x = r[c]*COS(phifc]);

10 const FTYPE y = r[c]*SIN(phi[cl]);

11

12 // Calculating the bin numbers for these coordinates:

13 iX[c] = int ((x - xMin) *binsPerUnitX);

14 iY[c] = int ((y - yMin)*binsPerUnitY);

15 }

16

17 for (int ¢ = 0; c < STRIP_WIDTH; c++) // Scalar loop
18 threadPrivateBins[iX[c]] [iY[c]]++;

Listing 10: Loop splitting jcombined with strip-mining.

Colfax International, 2015 — http://research.colfaxinternational.com/ 8

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

4.3 Note on Loop Remainder 4 OPTIMIZATION

The code in Listing 10 is more efficient than the original code from Listing 3 because the arithmetically
intensive part of it is vectorized. It is also more efficient than Listing 8 because the memory footprint is
increased only marginally. Optimization report confirms that vectorization succeeded for the first of the
two split loops but failed for the second, as we intended.

Listing 11: Optimization report for the binning code with split loops and strip-mining.

The size of the value STRIP WIDTH was chosen empirically, and the most efficient value turned out
to be 16 for all cases: single precision and double precision, Intel Xeon processor and Intel Xeon Phi
coprocessor. It means that the loops in ¢ have either 1, or 2 or 4 vector iterations, depending on the
precision and platform. Importantly, STRIP_WIDTH had to be defined as a compile-time constant in the
code for the compiler to choose a good vectorization strategy.

4.3. NOTE ON LOOP REMAINDER

Our code assumes that n is a multiple of STRIP _WIDTH. If this is not the case, the most efficient way
to generalize the code is to insert a remainder loop to process n$STRIP_WIDTH operations:

for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP_WIDTH) {
VI V4
for (int ¢ = 0; ¢ < STRIP_WIDTH; c++) // Vector loop
{ /% ... *x/}

=W N =

ot

}
for (int i = inputData.numDataPoints$STRIP_WIDTH; i < inputData.numDataPoints; i++)
{ /* ... x/} // Remainder loop

=~

Listing 12: Efficient way to implement a remainder loop.

It is also possible to implement a “smart” dynamic upper bound in the loops to avoid redundant code
(see code below), however, the reader may verify that this approach dramatically reduces performance.

for (int ii = 0; ii <= inputData.numDataPoints; ii += STRIP_WIDTH) {

1
2 V2 Y4

3 // ‘‘Smart’’ loop bounds used when numDataPoints$STRIP_WIDTH != 0

A int cMax = (1i+STRIP_WIDTH < inputData.numDataPoints ? 1i+STRIP_WIDTH : inputData.numDataPoints);
5 for (int c = 0; c < cMax; c++) // Vector loop

6 { /* ... =/}

—

Listing 13: Elegant, but inefficient way to deal with loop remainder.

Despite our progress, optimization is not quite done because with vectorization enabled, we need to
worry about an architectural requirement of data alignment. This topic is discussed in the next section.

Colfax International, 2015 — http://research.colfaxinternational.com/ 9

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

4.4 Data Alignment 4 OPTIMIZATION

4.4. DATA ALIGNMENT

When the calculation reaches the loop in line 7 of Listing 10, the core will have to load a block of
values of r and phi into a vector register for subsequent manipulations. Intel Xeon Phi architecture has
a restriction: the memory address of this block of values must be a multiple of 64 bytes. In other words,
the block must be aligned on a 64-byte boundary. In Intel Xeon architectures, alignment requirements
are relaxed, however, having the block begin on a 16-byte boundary (for SSE instructions) or 32-byte
boundary (for AVX instructions) may be beneficial for performance.

What happens if at runtime the data address is not aligned? The way that Intel compilers implement
automatic vectorization, the code will still work and produce correct results. However, performance may
suffer if the data is misaligned, because the compiler will have to implement a peel loop to get to the first
aligned element (see Figure 3). Because our loops are short (STRIP_WIDTH=16), this peel loop together
with the possible remainder loop may take a relatively large amount of time.

for (i = 0; i < n; i++) A[i] = ...

Code Path 1:
data aligned from iteration 0,
n is multiple of vector length

: vector iteration :vector iteration :vector iteration:

¢ line boundary
¢ line boundary

¢ line boundary

Code Path 2: E E : E : i
data aligned from iteration 3, NN C T EEEET
n is not a multiple of vector length l vector iteration vector iteration vector iteration l
Peel Remainder
(scalar (masked
or masked vector iterations) vector iteration)

Figure 3: Alignment requirement may necessitate a peel loop.

To avoid situations of misaligned data, we have to allocate the containers r and phi on an aligned
boundary. Because STRIP_WIDTH is 16, we will have alignment not only for the first iteration in i1, but
for all subsequent iterations, because i i will always be a multiple of 16.

Aligned allocation can be done with the intrinsic _.mm_mal1loc supported by Intel compilers as shown
below. To free such data containers, .-mm_f ree must be used.

1 rawData.r = (FTYPE+) _mm_malloc (sizeof (FTYPE)*n, 64);
rawData.phi = (FTYPEx) _mm_malloc(sizeof (FTYPE)n, 64);
V2 V4

_mm_free (rawData.r);

_mm_free (rawData.phi);

N

Ut W

Listing 14: Aligned allocation of data on the heap.

When the data containers are allocated, peel loop is not necessary, so that already improves per-
formance. However, the compiler is not aware of the data alignment guarantee and will implement

a check for it anyway. To tell the compiler that data in a loop is aligned, the programmer can use
1

Colfax International, 2015 — http://research.colfaxinternational.com/ 10

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

4.5 Thread Affinity 4 OPTIMIZATION

#pragma vector aligned, which will allow the compiler to drop the check and just start pro-
cessing the loop with vector instructions. This pragma is illustrated in Listing 15 along with specifier
_attribute__((aligned(64))), which aligns a stack array on a 64-byte boundary.

1 for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP_WIDTH) {
2

3 int iX[STRIP_WIDTH] __attribute__((aligned(64))); // Align temporary containers
A4 int iY[STRIP_WIDTH] _ attribute_ ((aligned(64))); // on 64-byte boundary

5

6 const FTYPEx r = & (inputData.r[ii]); // Guaranteed to be aligned

7 const FTYPEx phi = & (inputData.phi[iil); // on 64-byte boundaries

9 // 1 iler to drop checks for alignment

10| #pragma vector ed

11 for (int ¢ = 0; ¢ < STRIP_WIDTH; c++) {

12 // Transforming from cylindrical to Cartesian coordinates:
13 const FTYPE x = r[c]*COS(phi[c]);

14 const FTYPE y = r[c]*SIN(phi[c]);

15

16 // Calculating the bin numbers for these coordinates:

17 iX[c] = int ((x - xMin) *binsPerUnitX) ;

0

b

—

0
[

= int ((y - yMin) *binsPerUnitY);
19 }

20
21 // Scalar loop; alignment does not matter
22 for (int c = 0; ¢ < STRIP_WIDTH; c++)

23 threadPrivateBins [iX[c]] [iY[c]]++;

24])}

Listing 15: Final optimized binning algorithm with loop splitting, strip-mining, data alignment and alignment hints.

4.5. THREAD AFFINITY

In Part 1 of this series [2], we implemented thread par-

allelism using OpenMP. In this paper we are using a multi- Threads: 0 1 2 3 4 5 6 7
threaded code which scales across all threads of either the l l l l l l l l
host CPU, or of the coprocessor. Here, Part 2, in addi-
Cores:

tion to using a multi-threaded code, we tuned parallel per- [[[[
formance by fixing the assignment of OpenMP threads to Socket0 Socket |

.] . . . _
Physw.al cores'. This asagnment 1s known as thread affin Figure 4: OpenMP thread affinity pattern effected
ity. With the Intel OpenMP library, it can be controlled by by setting the environment variable
the environment variable KMP_AFFINITY. KMP_AFFINITY=compact.

With affinity set, performance improves because
threads do not migrate across cores and the pattern of thread binding combined with the pattern of data
sharing may result in better locality of data access. See, e.g., [6] or [3] for more information about the
impact of thread affinity on performance.

Empirically we found that the optimal affinity pattern is compact, i.e., we place threads with nearby
numbers as close to each other as possible as shown in Figure 4. This results in marginal performance
improvement on the host CPU and up to 10% improvement on an Intel Xeon Phi coprocessors compared
to not stetting affinity.

'In hindsight, we should have discussed affinity settings in Part 1.

Colfax International, 2015 — http://research.colfaxinternational.com/ 11

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

5 PERFORMANCE

S. PERFORMANCE

5.1. SYSTEM CONFIGURATION

All of the benchmarks presented in this section were taken on a Colfax ProEdgeTM SXP8600 worksta-
tion based on a dual-socket Intel Xeon E5-2697 v2 processor (12 cores per socket, 24 physical cores with
two-way hyper-threading). The Intel Xeon Phi coprocessor benchmarks presented in this section were
taken using native execution on 7120P Xeon Phi coprocessor (61 physical cores with four-way hardware-
threading) installed in that system. The Xeon Phi benchmarks are taken using the coprocessor alone, i.e.,
the CPU was not computing in tandem with the coprocessor. For compilation we used the Intel C++
compiler version 15.0.3.187 on a CentOS 7.0 Linux OS with Inte]l MPSS 3.5.

5.2. PERFORMANCE BENCHMARKS

Figure 5 and 6 reports the performance benchmarks of the binning algorithms in single precision and
double precision. Variance in most cases was in less than 1%, so we report results without error bars with
two significant figures. The performance is measured in MP/s, where 1 MP/s is 10° particles binned per
second.

The three cases reported in the figure correspond to three versions of the code:

1. “Affinity control” is the parallel code without vectorization from Listing 3. This is where we left off
in Part 1 (plus affinity control which is not really a code optimization but an environment optimiza-
tion technique),

2. “Vectorization, alignment” is the code with vectorization Listing 10 in which data containers are
aligned as shown in Listing 14. This is the core result of the present tutorial: enabling vectorization.

3. “Vectorization, alignment, hints” is the case where in addition to aligning the containers, we gave
a compiler hint of data alignment (#pragma ivdep) as shown in Listing 15. This is the final
optimized version that tweaks the vectorized code to make vectorization more efficient.

For each benchmark the binning workload was repeated 10 times, and the average of the last 8 itera-
tion is reported. We exclude the first two iterations because they tend to be much slower due to various
initialization overheads on both Xeon CPUs and Xeon Phi Coprocessors. They do not represent sustained
performance that is achieved if the application has a long execution time.

For reference, we also present results from Part 1 (“Baseline code”, “Reduction with Atomics”, “Re-
duction with Private Variables”). Results of Part 2 build on top of the success reported in Part 1 and add
performance improvement by another large factor.

5.3. PERFORMANCE ANALYSIS

Figure 5 and 6 report on the entire story. We started with a simple application that produced correct
result, but was single-threaded and scalar (not vectorized). This application was quite miserable on Xeon
Phi, yielding only 10% of the performance that the Xeon processor could deliver. In Part 1, we imple-
mented multi-threading which gave the application a boost commensurate with the number of cores on
each respective platform. However, Xeon Phi wag still behind Xeon in total performance. Finally, in

Colfax International, 2015 — http://research.colfaxinternational.com/ 12

http://www.colfax-intl.com/nd/workstations/sxp8600.aspx
http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

5.3 Performance Analysis 5 PERFORMANCE

Part 2, we implemented vectorization, and the performance experienced significant acceleration. This 2x-
3x boost on Xeon illustrates how much performance can be “left on the table” even on CPUs if a parallel
application is not thoroughly optimized. Additionally, after optimization, Xeon Phi was able to perform
40 to 60 percent faster than a high-end Xeon of a comparable thermal design power.

10000, i i i : . :
EE& Intel Xeon Processor E5-2697 V2 Parallel+vectorized
[ITO Intel Xeon Phi Coprocessor 7120P (Part2 - ﬂlus work)
5 8000 T 11
2 7200
Z 6400
o
S 6000]
< 5200
=
=
$ 4000f _
g Thread-parallel, but not vectorized code 3300
g (see Part 1)
S I
S Before I 1
A~ 2000F optimization 1440 1600
400 700
58 54 50 45
Baseline Reduction with ~ Reduction with ~ Affinity Control ~ Strip-Mining, Alignment Hint
Code Atomics Private Variables Alignment
Figure 5: Benchmarks of the binning algorithm in single precision.
10000, i i :
& Intel Xeon Processor E5-2697 V2
[ITO Intel Xeon Phi Coprocessor 7120P
5 8000
E Parallel+vectorized
E (Part 2 - this work)
o
5 6000} | ' 1]
<
I~
= 4100
$ 4000 .
g Thread-parallel, but not vectorized code 3400
g (see Part 1)
B | 2500
S Before I 1
A~ 2000F optimization 1300 1400 1500
350 470
50 35 43 44
Baseline Reduction with Reduction with ~ Affinity Control ~ Strip-Mining, Alignment Hint
Code Atomics Private Variables Alignment

Figure 6: Benchmarks of the binning algorithm in double precision.

Colfax International, 2015 — http://research.colfaxinternational.com/ 13

http://research.colfaxinternational.com/

Prepared for Trent Nelson on February 23, 2018 at 20:47:04 UTC

REFERENCES

6. DISCUSSION

6.1. WHAT WE LEARNED

In this work we discussed vectorization, which is another level of parallelism in Intel Xeon processors
and Intel Xeon Phi coprocessors. We demonstrated a case (a particle binning application) where automatic
vectorization fails because performance-critical loops contain both vectorizable and non-vectorizable op-
erations. To improve application performance, we modified the code in a way that helps compiler in
the task of automatic vectorization. Code modifications involved loop splitting combined with the strip-
mining technique and data alignment hints. As a result, the data-parallel part of the application (particle
coordinate transformation and index calculation) was vectorized, while the sequential part (incrementing
bin counters) remained scalar.

The effect of vectorization in our example application was very significant. On an Intel Xeon processor,
vectorization increased performance of the parallel code by a factor of 3.3 in single precision and by a
factor or 1.8 in double precision. On an Intel Xeon Phi coprocessor, which has wider vectors, performance
increased by a factor of 10.3 and 8.7, respectively.

In the end, we can compare the performance of a single Intel Xeon Phi coprocessor 7120P with 61
cores to that of a two-way Intel Xeon CPU E5-2697 V2 with a total of 24 cores. Xeon Phi is is faster than
Xeon by 1.4x in single precision and 1.6x in double precision in our binning application.

6.2. WHAT’S NEXT

This paper is part 2 of a 3-part series of tutorials on selected performance optimization techniques. In
part 3 we will revisit thread parallelism and experience a close (and victorious) encounter with another
enemy of performance: false sharing. Stay tuned!

REFERENCES

[1] Andrey Vladimirov. Optimization Techniques for the Intel MIC Architecture. Part 2 of 3: Strip-Mining for Vectorization,
2015 (landing page for this paper).
http://colfaxresearch.com/?p=709.

[2] Ryo Asai and Andrey Vladimirov. Optimization Techniques for the Intel MIC Architecture. Part 1 of 3: Multi-Threading
and Parallel Reduction, 2015.
http://research.colfaxinternational.com/post/2015/05/29/Techniques- 1 of3.aspx.

[3] Andrey Vladimirov, Ryo Asai, and Vadim Karpusenko. Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors. Colfax International, 2nd edition, March 2015.
http://www.colfax-intl.com/nd/xeonphi/book.aspx.

[4] Parallel Computing in the Search for New Physics at LHC.
http://research.colfaxinternational.com/post/2013/12/02/LHC.aspx.

[5] Andrey Vladimirov. Multithreaded Transposition of Square Matrices with Common Code for Intel Xeon Processors and
Intel Xeon Phi Coprocessors.
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx.

[6] Rob Farber. Power Profiling Shows Simple Changes To Save Megawatts of Power On Leadership Supercomputers.
http://www.techenablement.com/power-profiling-shows-simple-changes-save-megawatts-power-leadership-
supercomputers/. |

Colfax International, 2015 — http://research.colfaxinternational.com/ 14

http://colfaxresearch.com/?p=709
http://research.colfaxinternational.com/post/2015/05/29/Techniques-1of3.aspx
http://www.colfax-intl.com/nd/xeonphi/book.aspx
http://research.colfaxinternational.com/post/2013/12/02/LHC.aspx
http://research.colfaxinternational.com/post/2013/08/12/Trans-7110.aspx
http://www.techenablement.com/power-profiling-shows-simple-changes-save-megawatts-power-leadership-supercomputers/
http://www.techenablement.com/power-profiling-shows-simple-changes-save-megawatts-power-leadership-supercomputers/
http://research.colfaxinternational.com/

	Introduction
	Motivating Example: Particle Binning
	Vectorization
	Automatic Vectorization
	Vectorization Opportunity

	Optimization
	Loop Splitting
	Strip-Mining
	Note on Loop Remainder
	Data Alignment
	Thread Affinity

	Performance
	System Configuration
	Performance Benchmarks
	Performance Analysis

	Discussion
	What We Learned
	What's Next

