
Compiler Design:
Theory, Tools, and Examples

C/C++ Edition

Seth D. Bergmann

Rowan University

2010

iiiContents

Table of Contents

Preface .. i

Table of Contents.. iii

Chapter 1 Introduction ... 1
1.1 What is a Compiler? ... 1
1.2 The Phases of a Compiler .. 9
1.3 Implementation Techniques ... 19
1.4 Case Study: MiniC ... 26
1.5 Chapter Summary ... 29

Chapter 2 Lexical Analysis ... 30
2.0 Formal Languages .. 30
2.1 Lexical Tokens .. 40
2.2 Implementation with Finite State Machines .. 44
2.3 Lexical Tables ... 50
2.4 Lex ... 54
2.5 Case Study: Lexical Analysis for MiniC .. 62
2.6 Chapter Summary ... 67

Chapter 3 Syntax Analysis .. 68
3.0 Grammars, Languages, and Pushdown Machines .. 69
3.1 Ambiguities in Programming Languages ... 87
3.2 The Parsing Problem .. 92
3.3 Chapter Summary ... 93

Contentsiv

Chapter 4 Top Down Parsing .. 94
4.0 Relations and Closure .. 95
4.1 Simple Grammars ... 98
4.2 Quasi-Simple Grammars .. 106
4.3 LL(1) Grammars ... 113
4.4 Parsing Arithmetic Expressions Top Down .. 123
4.5 Syntax-Directed Translation .. 133
4.6 Attributed Grammars ... 140
4.7 An Attributed Translation Grammar for Expressions .. 145
4.8 MiniC Expressions ... 149
4.9 Translating Control Structures ... 153
4.10 Case Study: A Top Down Parser for MiniC .. 159
4.11 Chapter Summary .. 163

Chapter 5 Bottom Up Parsing 164
5.1 Shift Reduce Parsing .. 164
5.2 LR Parsing With Tables ... 171
5.3 Yacc ... 176
5.4 Arrays .. 191
5.5 Case Study: Syntax Analysis for MiniC .. 197
5.6 Chapter Summary .. 203

Chapter 6 Code Generation .. 204
6.1 Introduction to Code Generation .. 204
6.2 Converting Atoms to Instructions ... 210
6.3 Single Pass vs. Multiple Passes .. 214
6.4 Register Allocation ... 221
6.5 Case Study: A MiniC Code Generator for the Mini Architecture 226
6.6 Chapter Summary ... 232

Chapter 7 Optimization ... 233
7.1 Introduction and View of Optimization .. 233
7.2 Global Optimization ... 237
7.3 Local Optimization ... 251

vContents

7.4 Chapter Summary ... 256

Glossary ... 257

Appendix A MiniC Grammar 270

Appendix B MiniC Compiler 273
B.1 Software Files .. 273
B.2 Lexicall Phase .. 275
B.3 Syntax Analysis .. 279
B.4 Code Generator .. 284

Appendix C Mini Simulator.. 290

Bibliography .. 298

Index... 301

Preface
Compiler design is a subject which many believe to be fundamental and vital to computer
science. It is a subject which has been studied intensively since the early 1950's and
continues to be an important research field today. Compiler design is an important part
of the undergraduate curriculum for many reasons: (1) It provides students with a better
understanding of and appreciation for programming languages. (2) The techniques used
in compilers can be used in other applications with command languages. (3) It provides
motivation for the study of theoretic topics. (4) It is a good vehicle for an extended
programming project.

There are several compiler design textbooks available today, but most have been
written for graduate students. Here at Rowan University (formerly Glassboro State
College), our students have had difficulty reading these books. However, I felt it was not
the subject matter that was the problem, but the way it was presented. I was sure that if
concepts were presented at a slower pace, with sample problems and diagrams to
illustrate the concepts, that our students would be able to master the concepts. This is
what I have attempted to do in writing this book.

This book is a revision of an earlier edition that was written for a Pascal based
curriculum. As many computer science departments have moved to C++ as the primary
language in the undergraduate curriculum, I have produced this edition to accommodate
those departments. This book is not intended to be strictly an object-oriented approach to
compiler design.

The most essential prerequisites for this book are courses in C or C++ program-
ming, Data Structures, Assembly Language or Computer Architecture, and possibly
Programming Languages. If the student has not studied formal languages and automata,
this book includes introductory sections on these theoretic topics, but in this case it is not
likely that all seven chapters will be covered in a one semester course. Students who
have studied the theory will be able to skip the preliminary sections (2.0, 3.0, 4.0)
without loss of continuity.

The concepts of compiler design are applied to a case study which is an imple-
mentation of a subset of C which I call MiniC. Chapters 2, 4, 5, and 6 include a section
devoted to explaining how the relevant part of the MiniC compiler is designed. This
public domain software is presented in full in the appendices and is available on the
Internet. Students can benefit by enhancing or changing the MiniC compiler provided.

Chapters 6 and 7 focus on the back end of the compiler (code generation and
optimization). Here I rely on a fictitious computer, called Mini, as the target machine. I
use a fictitious machine for three reasons: (1) I can design it for simplicity so that the
compiler design concepts are not obscured by architectural requirements, (2) It is
available to anyone who has a C compiler (the Mini simulator, written in C, is available
also), and (3) the teacher or student can modify the Mini machine to suit his/her tastes.

Chapter 7 includes only a brief description of optimization techniques since
there is not enough time in a one semester course to delve into these topics, and because
these are typically studied in more detail at the graduate level.

To use the software that accompanies this book, you will need access to the
world wide web. The source files can be accessed at
http://www.rowan.edu/~bergmann/books/miniC

Once you have stored the programs on your computer, the programs can be generated
with the makefile on unix/linux:

> make

Additional description of these files can be found in Appendix B.

I wish to acknowledge the people who participated in the design of this book.
The reviewers of the original Pascal version – James E. Miller of Transylvania Univer-
sity, Jeffrey C. Chang of Garner-Webb University, Stephen J. Allan of Utah State
University, Karsten Henckell of the New College of USF, and Keith Olson of Montana
Technical College – all took the time to read through various versions of the manuscript
and provided many helpful suggestions. My students in the Compiler Design course here
at Rowan University also played an important role in testing the original version and
subsequent versions of this book. Support in the form of time and equipment was
provided by the administration of Rowan University.

The pages of this book were composed entirely by me using Adobe Pagemaker,
and diagrams were drawn with Microsoft Excel and Powerpoint.

Finally, I am most grateful to Sue, Aaron, and Sarah, for being so understanding
during the time that I spent working on this project.

Seth D. Bergmann
bergmann@rowan.edu

ii

Recently the phrase user interface has received much attention in the computer industry.
A user interface is the mechanism through which the user of a device communicates with
the device. Since digital computers are programmed using a complex system of binary
codes and memory addresses, we have developed sophisticated user interfaces, called
programming languages, which enable us to specify computations in ways that seem more
natural. This book will describe the implementation of this kind of interface, the rationale
being that even if you never need to design or implement a programming language, the
lessons learned here will still be valuable to you. You will be a better programmer as a
result of understanding how programming languages are implemented, and you will have
a greater appreciation for programming languages. In addition, the techniques which are
presented here can be used in the construction of other user interfaces, such as the query
language for a database management system.

1.1 What is a Compiler?

Recall from your study of assembly language or computer organization the kinds of
instructions that the computer’s CPU is capable of executing. In general, they are very
simple, primitive operations. For example, there are often instructions which do the
following kinds of operations: (1) add two numbers stored in memory, (2) move numbers
from one location in memory to another, (3) move information between the CPU and
memory. But there is certainly no single instruction capable of computing an arbitrary
expression such as ((x-x

0
)2 + (x-x

1
)2)1/2, and there is no way to do the following

with a single instruction:

if (array6[loc]<MAX) sum = 0; else array6[loc] = 0;

Chapter 1

Introduction

Chapter 1 Introduction2

These capabilities are implemented with a software translator, known as a
compiler. The function of the compiler is to accept statements such as those above and
translate them into sequences of machine language operations which, if loaded into
memory and executed, would carry out the intended computation. It is important to bear
in mind that when processing a statement such as x = x ∗ 9; the compiler does not perform
the multiplication. The compiler generates, as output, a sequence of instructions, includ-
ing a "multiply" instruction.

Languages which permit complex operations, such as the ones above, are called
high-level languages, or programming languages. A compiler accepts as input a
program written in a particular high-level language and produces as output an equivalent
program in machine language for a particular machine called the target machine. We say
that two programs are equivalent if they always produce the same output when given the
same input. The input program is known as the source program, and its language is the
source language. The output program is known as the object program, and its language
is the object language. A compiler translates source language programs into equivalent
object language programs. Some examples of compilers are:

A Java compiler for the Apple Macintosh
A COBOL compiler for the SUN
A C++ compiler for the Apple Macintosh

If a portion of the input to a C++ compiler looked like this:

A = B + C ∗ D;

the output corresponding to this input might look something like this:

 LOD R1,C // Load the value of C into reg 1
 MUL R1,D // Multiply the value of D by reg 1
 STO R1,TEMP1 // Store the result in TEMP1
 LOD R1,B // Load the value of B into reg 1
 ADD R1,TEMP1 // Add value of Temp1 to register 1
 STO R1,TEMP2 // Store the result in TEMP2
 MOV A,TEMP2 // Move TEMP2 to A, the final result

The compiler must be smart enough to know that the multiplication should be
done before the addition even though the addition is read first when scanning the input.
The compiler must also be smart enough to know whether the input is a correctly formed
program (this is called checking for proper syntax), and to issue helpful error messages if
there are syntax errors.

Note the somewhat convoluted logic after the Test instruction in Sample
Problem 1.1(a) (see p. 3). Why didn’t it simply branch to L3 if the condition code
indicated that the first operand (X) was greater than or equal to the second operand
(Temp1), thus eliminating an unnecessary branch instruction and label? Some compilers
might actually do this, but the point is that even if the architecture of the target machine

3Section 1.1 What is a Compiler?

permits it, many compilers will not generate optimal code. In designing a compiler, the
primary concern is that the object program be semantically equivalent to the source
program (i.e. that they mean the same thing, or produce the same output for a given
input). Object program efficiency is important, but not as important as correct code
generation.

What are the advantages of a high-level language over machine or assembly
language? (1) Machine language (and even assembly language) is difficult to work with
and difficult to maintain. (2) With a high-level language you have a much greater degree
of machine independence and portability from one kind of computer to another (as long as
the other machine has a compiler for that language). (3) You don’t have to retrain
application programmers every time a new machine (with a new instruction set) is
introduced. (4) High-level languages may support data abstraction (through data struc-
tures) and program abstraction (procedures and functions).

What are the disadvantages of high-level languages? (1) The programmer
doesn’t have complete control of the machine’s resources (registers, interrupts, I/O
buffers). (2) The compiler may generate inefficient machine language programs. (3)
Additional software – the compiler – is needed in order to use a high-level language. As
compiler development and hardware have improved over the years, these disadvantages
have become less problematic. Consequently, most programming today is done with
high-level languages.

An interpreter is software which serves a purpose very similar to that of a
compiler. The input to an interpreter is a program written in a high-level language, but

Sample Problem 1.1 (a)

Show the output of a C/C++ compiler, in any typical assembly language, for the
following C/C++ input string:

while (x<a+b) x = 2*x;

Solution:
L1: LOD R1,A // Load A into reg. 1

ADD R1,B // Add B to reg. 1
STO R1,Temp1 // Temp1 = A + B
CMP X,Temp1 // Test for while condition
BL L2 // Continue with loop if X<Temp1
B L3 // Terminate loop

L2: LOD R1,=’2'
MUL R1,X
STO R1,X // X = 2*X
B L1 // Repeat loop

L3:

Chapter 1 Introduction4

Figure 1.1 A Compiler and Interpreter Producing Very Different Output for the Same
Input

rather than generating a machine language program, the interpreter actually carries out the
computations specified in the source program. In other words, the output of a compiler is
a program, whereas the output of an interpreter is the source program’s output. Figure 1.1
shows that although the input may be identical, compilers and interpreters produce very
different output. Nevertheless, many of the techniques used in designing compilers are
also applicable to interpreters.

Students are often confused about the difference between a compiler and an
interpreter. Many commercial compilers come packaged with a built-in edit-compile-run
front end. In effect, the student is not aware that after compilation is finished, the object
program must be loaded into memory and executed, because this all happens automati-
cally. As larger programs are needed to solve more complex problems, programs are
divided into manageable source modules, each of which is compiled separately to an
object module. The object modules can then be linked to form a single, complete,
machine language program. In this mode, it is more clear that there is a distinction
between compile time, the time at which a source program is compiled, and run time, the
time at which the resulting object program is loaded and executed. Syntax errors are
reported by the compiler at compile time and are shown at the left, below, as compile-
time errors. Other kinds of errors not generally detected by the compiler are called run-
time errors and are shown at the right below:

Compile-Time Errors Run-Time Errors

a = ((b+c)∗d; x = a-a;
y = 100/x; // division by 0

if x<b fn1(); ptr = NULL;
 else fn2(); data = ptr->info;

// use of null pointer

Input

a = 3;
b = 4;
cout << a*b;

Compiler

Output

Mov a,=‘3’
Mov b,=‘4’
Lod 1,a
Mul 1,b
Sto 1,Tmp
Push Tmp
Call Write

a = 3;
b = 4;
cout << a*b;

Interpreter

Mov a,=‘3’
Mov b,=‘4’
Lod 1,a
Mul 1,b
Sto 1,Tmp
Push Tmp
Call Write

5Section 1.1 What is a Compiler?

Sample Problem 1.1 (b)

Show the compiler output and the interpreter output for the following C++ source code:

for (i=1; i<=4; i++) cout << i*3;

Solution:
Compiler Interpreter

LOD R1,='4' 3 6 9 12
STO R1,Temp1
MOV i,='1'

L1:CMP i,Temp1
BH L2 {Branch if i>Temp1}
LOD R1,i
MUL R1,='3'
STO R1,Temp2
PUSH Temp2
CALL Write
ADD i,='1' {Add 1 to i}
B L1

L2:

It is important to remember that a compiler is a program, and it must be written in
some language (machine, assembly, high-level). In describing this program, we are
dealing with three languages: (1) the source language, i.e. the input to the compiler, (2)
the object language, i.e. the output of the compiler, and (3) the language in which the
compiler is written, or the language in which it exists, since it might have been translated
into a language foreign to the one in which it was originally written. For example, it is
possible to have a compiler that translates Java programs into Macintosh machine
language. That compiler could have been written in the C language, and translated into
Macintosh (or some other) machine language. Note that if the language in which the
compiler is written is a machine language, it need not be the same as the object language.
For example, a compiler that produces Macintosh machine language could run on a Sun
computer. Also, the object language need not be a machine or assembly language, but
could be a high-level language. A concise notation describing compilers is given by
Aho[1986] and is shown in Figure 1.2 (see p. 6). In these diagrams, the large C stands for
Compiler (not the C programming language), the superscript describes the intended
translation of the compiler, and the subscript shows the language in which the compiler
exists. Figure 1.2 (a) shows a Java compiler for the Macintosh. Figure 1.2 (b) shows a
compiler which translates Java programs into equivalent Macintosh machine language,
but it exists in Sun machine language, and consequently it will run only on a Sun. Figure
1.2 (c) shows a compiler which translates PC machine language programs into equivalent
Java programs. It is written in Ada and will not run in that form on any machine.

Chapter 1 Introduction6

Sample Problem 1.1 (c)

Using the big C notation of Figure 1.2, show each of the following compilers:

(a) An Ada compiler which runs on the PC and compiles to the PC machine language.

(b) An Ada compiler which compiles to the PC machine language, but which is written
in Ada.

(c) An Ada compiler which compiles to the PC machine language, but runs on a Sun.

Solution:

Figure 1.2 Big C notation for compilers: (a) A Java compiler that runs on the Mac (b) A
Java compiler that generates Mac programs and runs on a Sun computer (c) A compiler
that translates PC programs into Java and is written in Ada.

In this notation the name of a machine represents the machine language for that
machine; i.e. Sun represents Sun machine language, and PC represents PC machine
language (i.e. Intel Pentium).

(a) (b) (c)

 (a) (b) (c)

CMac

Java z Mac
CSun

Java z Mac
CAda

PC z Java

CPC CAda CSun

Ada z PCAda z PC Ada z PC

7Section 1.1 What is a Compiler?

Exercises 1.1

1. Show assembly language for a machine of your choice, corresponding to each of
the following C/C++ statements:

(a) A = B + C;
(b) A = (B+C) ∗ (C-D);
(c) for (I=1; I<=10; I++) A = A+I;

2. Show the difference between compiler output and interpreter output for each of
the following source inputs:

(a) A = 12; (b) A = 12;
B = 6; B = 6;
C = A+B; if (A<B) cout << A;
cout <<C<<A<<B; else cout << B;

(c) A = 12;
B = 6;
while (B<A)

{ A = A-1;
 cout << A << B << endl;
}

3. Which of the following C/C++ source errors would be detected at compile time,
and which would be detected at run time?

(a) A = B+C = 3;

(b) if (X<3) then A = 2;
 else A = X;

(c) if (A>0) X = 20;
else if (A<0) X = 10;

else X = X/A;

Chapter 1 Introduction8

(d) while ((p->info>0) && (p!=0))
p = p->next;

/* assume p points to a struct
 named node with
 these field definitions:
 int info;
 node * next; */

4. Using the big C notation, show the symbol for each of the following:

(a) A compiler which translates COBOL source programs to PC machine lan-
guage and runs on a PC.
(b) A compiler, written in Java, which translates FORTRAN source programs to Mac
machine language.
(c) A compiler, written in Java, which translates Sun machine language programs to
Java.

9

1.2 The Phases of a Compiler

The student is reminded that the input to a compiler is simply a string of characters.
Students often assume that a particular interpretation is automatically “understood” by the
computer (sum = sum + 1; is obviously an assignment statement, but the computer
must be programmed to determine that this is the case).

In order to simplify the compiler design and construction process, the compiler is
implemented in phases. In general, a compiler consists of at least three phases: (1)
lexical analysis, (2) syntax analysis, and (3) code generation. In addition, there could be
other optimization phases employed to produce efficient object programs.

1.2.1 Lexical Analysis (Scanner) – Finding the Word Boundaries

The first phase of a compiler is called lexical analysis (and is also known as a lexical
scanner). As implied by its name, lexical analysis attempts to isolate the “words” in an
input string. We use the word “word” in a technical sense. A word, also known as a
lexeme, a lexical item, or a lexical token, is a string of input characters which is taken as a
unit and passed on to the next phase of compilation. Examples of words are:

(1) key words - while, void, if, for, ...
(2) identifiers - declared by the programmer
(3) operators - +, -, ∗, /, =, ==, ...
(4) numeric constants - numbers such as 124, 12.35, 0.09E-23, etc.
(5) character constants - single characters or strings of characters enclosed in quotes.
(6) special characters - characters used as delimiters such as . () , ; :
(7) comments - ignored by subsequent phases. These must be identified by the scanner,
but are not included in the output.

The output of the lexical phase is a stream of tokens corresponding to the words
described above. In addition, this phase builds tables which are used by subsequent
phases of the compiler. One such table, called the symbol table, stores all identifiers used
in the source program, including relevant information and attributes of the identifiers. In
block-structured languages it may be preferable to construct the symbol table during the
syntax analysis phase because program blocks (and identifier scopes) may be nested.

1.2.2 Syntax Analysis Phase

The syntax analysis phase is often called the parser. This term is critical to understand-
ing both this phase and the study of languages in general. The parser will check for
proper syntax, issue appropriate error messages, and determine the underlying structure of
the source program. The output of this phase may be a stream of atoms or a collection of
syntax trees. An atom is an atomic operation, or one that is generally available with one
(or just a few) machine language instruction(s) on most target machines. For example,
MULT, ADD, and MOVE could represent atomic operations for multiplication, addition,

Section 1.2 The Phases of a Compiler

Chapter 1 Introduction10

Sample Problem 1.2 (a)

Show the token classes, or “words”, put out by the lexical analysis phase corresponding to
this C++ source input:

sum = sum + unit ∗ /∗ accumulate sum ∗/ 1.2e-12 ;

Solution:

identifier (sum)
assignment (=)
identifier (sum)
operator (+)
identifier (unit)
operator (∗)
numeric constant (1.2e-12)

and moving data in memory. Each operation could have 0 or more operands also listed in
the atom: (operation, operand1, operand2, operand3). The meaning of the following atom
would be to add A and B, and store the result into C:

(ADD, A, B, C)

In Sample Problem 1.2 (b), below, each atom consists of three or four parts: an
operation, one or two operands, and a result. Note that the compiler must put out the
MULT atom before the ADD atom, despite the fact that the addition is encountered first
in the source statement.

To implement transfer of control, we could use label atoms, which serve only to
mark a spot in the object program to which we might wish to branch in implementing a
control structure such as if or while. A label atom with the name L1 would be
(LBL,L1). We could use a jump atom for an unconditional branch, and a test atom for
a conditional branch: The atom (JMP, L1) would be an unconditional branch to the

Sample Problem 1.2 (b)

Show atoms corresponding to the following C/C++ statement:

A = B + C ∗ D ;

 Solution:

 (MULT,C,D,TEMP1)
 (ADD,B,TEMP1,TEMP2)
 (MOVE,TEMP2,A)

11

 =

A

B

C D

+

*

Sample Problem 1.2 (c)

Show atoms corresponding to the C/C++ statement:

while (A<=B) A = A + 1;

Solution:

(LBL, L1)
(TEST, A, <=, B, L2)
(JMP, L3)
(LBL, L2)
(ADD, A, 1, A)
(JMP, L1)
(LBL, L3)

of children, one for each statement in the
compound statement. The other way would
be to treat the semicolon like a statement
concatenation operator, yielding a binary
tree.

Once a syntax tree has been
created, it is not difficult to generate code
from the syntax tree; a postfix traversal of
the tree is all that is needed. In a postfix
traversal, for each node, N, the algorithm
visits all the subtrees of N, and visits the
node N last, at which point the instruction(s)
corresponding to node N can be generated.

label L1. The atom (TEST, A, <=, B, L2) would be a conditional branch to the
label L2, if A<=B is true.

Some parsers put out syntax trees as an intermediate data structure, rather than
atom strings. A syntax tree indicates the structure of the source statement, and object
code can be generated directly from the syntax tree. A syntax tree for the expression
A = B + C ∗ D is shown in Figure 1.3, below.
 In syntax trees, each interior node represents an operation or control structure
and each leaf node represents an operand. A statement such as if (Expr) Stmt1
else Stmt2 could be implemented as a node having three children – one for the
conditional expression, one for the true part (Stmt1), and one for the else statement
(Stmt2). The while control structure would have two children – one for the loop
condition, and one for the statement to be repeated. The compound statement could be
treated a few different ways. The compound statement could have an unlimited number

Section 1.2 The Phases of a Compiler

Figure 1.3 A Syntax Tree for
A = B + C ∗ D

Chapter 1 Introduction12

Many compilers also include a phase for semantic analysis. In this phase the
data types are checked, and type conversions are performed when necessary. The
compiler may also be able to detect some semantic errors, such as division by zero, or the
use of a null pointer.

1.2.3 Global Optimization

The global optimization phase is optional. Its purpose is simply to make the object
program more efficient in space and/or time. It involves examining the sequence of atoms
put out by the parser to find redundant or unnecessary instructions or inefficient code.
Since it is invoked before the code generator, this phase is often called machine-indepen-
dent optimization. For example, in the following program segment:

stmt1
go to label1
stmt2
stmt3

label2: stmt4

Sample Problem 1.2 (d)

Show a syntax tree for the C/C++ statement

if (A+3<400) A = 0; else B = A∗A;

Assume that an if statement consists of three subtrees, one for the condition, one for the
consequent statement, and one for the else statement, if necessary.

Solution:
 if

 < = =

 + 400 A 0 B *

A 3 A A

13

stmt2 and stmt3 can never be executed. They are unreachable and can be eliminated
from the object program. A second example of global optimization is shown below:

for (i=1; i<=100000; i++)
{ x = sqrt (y); // square root function

cout << x+i << endl;
}

In this case, the assignment to x need not be inside the loop since y doesn’t change as the
loop repeats (it is a loop invariant). In the global optimization phase, the compiler would
move the assignment to x out of the loop in the object program:

x = sqrt (y); // loop invariant
for (i=1; i<=100000; i++)

cout << x+i << endl;

This would eliminate 99,999 unnecessary calls to the sqrt function at run time.
The reader is cautioned that global optimization can have a serious impact on

run-time debugging. For example, if the value of y in the above example was negative,
causing a run-time error in the sqrt function, the user would be unaware of the actual
location of that portion of code which called the sqrt function, because the compiler
would have moved the offending statement (usually without informing the programmer).
Most compilers that perform global optimization also have a switch with which the user
can turn optimization on or off. When debugging the program, the switch would be off.
When the program is correct, the switch would be turned on to generate an optimized
version for the user. One of the most difficult problems for the compiler writer is making
sure that the compiler generates optimized and unoptimized object modules, from the
same source module, which are equivalent.

1.2.4 Code Generation

It is assumed that the student has had some experience with assembly language and
machine language, and is aware that the computer is capable of executing only a limited
number of primitive operations on operands with numeric memory addresses, all encoded
as binary values. In the code generation phase, atoms or syntax trees are translated to
machine language (binary) instructions, or to assembly language, in which case the
assembler is invoked to produce the object program. Symbolic addresses (statement
labels) are translated to relocatable memory addresses at this time.

For target machines with several CPU registers, the code generator is responsible
for register allocation. This means that the compiler must be aware of which registers are
being used for particular purposes in the generated program, and which become available
as code is generated.

For example, an ADD atom might be translated to three machine language
instructions: (1) load the first operand into a register, (2) add the second operand to that

Section 1.2 The Phases of a Compiler

Chapter 1 Introduction14

register, and (3) store the result, as shown for the atom (ADD, A, B, Temp):

LOD R1,A // Load A into reg. 1
ADD R1,B // Add B to reg. 1
STO R1,Temp // Store reg. 1 in Temp

In Sample Problem 1.2 (e), below, the destination for the MOV instruction is the first
operand, and the source is the second operand, which is the reverse of the operand
positions in the MOVE atom.

It is not uncommon for the object language to be another high-level language.
This is done in order to improve portablility of the language being implemented.

1.2.5 Local Optimization

The local optimization phase is also optional and is needed only to make the object
program more efficient. It involves examining sequences of instructions put out by the
code generator to find unnecessary or redundant instructions. For this reason, local
optimization is often called machine-dependent optimization. An addition operation in
the source program might result in three instructions in the object program: (1) Load one
operand into a register, (2) add the other operand to the register, and (3) store the result.
Consequently, the expression A + B + C in the source program might result in the
following instructions as code generator output:

Sample Problem 1.2 (e)

Show assembly language instructions corresponding to the following atom string:

(ADD, A, B, Temp1)
(TEST, A, ==, B, L1)
(MOVE, Temp1, A)
(LBL, L1)
(MOVE, Temp1, B)

Solution:

LOD R1,A
ADD R1,B
STO R1,Temp1 // ADD, A, B, Temp1
CMP A,B
BE L1 // TEST, A, ==, B, L1
MOV A,Temp1 // MOVE, Temp1, A

L1: MOV B,Temp1 // MOVE, Temp1, B

15

LOD R1,A // Load A into register 1
ADD R1,B // Add B to register 1
STO R1,TEMP1 // Store the result in TEMP1*
LOD R1,TEMP1 // Load result into reg 1*
ADD R1,C // Add C to register 1
STO R1,TEMP2 // Store the result in TEMP2

Note that some of these instructions (those marked with * in the comment) can
be eliminated without changing the effect of the program, making the object program both
smaller and faster:

LOD R1,A // Load A into register 1
ADD R1,B // Add B to register 1
ADD R1,C // Add C to register 1
STO R1,TEMP // Store the result in TEMP

Section 1.2 The Phases of a Compiler

Global
Optimization

Local
Optimization

Lexical
Analysis

Syntax
Analysis

Code
Generator

Tokens

Atoms

Atoms

Instructions

Instructions

Source Program
A diagram showing the phases of compilation and

the output of each phase is shown in Figure 1.4, at right. Note
that the optimization phases may be omitted (i.e. the atoms
may be passed directly from the Syntax phase to the Code
Generator, and the instructions may be passed directly from
the Code Generator to the compiler output file.)

A word needs to be said about the flow of control
between phases. One way to handle this is for each phase to
run from start to finish separately, writing output to a disk file.
For example, lexical analysis is started and creates a file of
tokens. Then, after the entire source program has been
scanned, the syntax analysis phase is started, reads the entire
file of tokens, and creates a file of atoms. The other phases
continue in this manner; this would be a multiple pass
compiler since the input is scanned several times.

Another way for flow of control to proceed would be
to start up the syntax analysis phase first. Each time it needs a
token it calls the lexical analysis phase as a subroutine, which
reads enough source characters to produce one token, and
returns it to the parser. Whenever the parser has scanned
enough source code to produce an atom, the atom is converted
to object code by calling the code generator as a subroutine;
this would be a single pass compiler.

Figure 1.4 The Phases of a
Compiler

Chapter 1 Introduction16

Exercises 1.2

1. Show the lexical tokens corresponding to each of the following C/C++ source
inputs:

(a) for (I=1; I<5.1e3; I++) func1(X);
(b) if (Sum!=133) /* Sum = 133 */
(c)) while (1.3e-2 if &&
(d) if 1.2.3 < 6

2. Show the sequence of atoms put out by the parser, and show the syntax tree
corresponding to each of the following C/C++ source inputs:

(a) A = (B+C) ∗ D;
(b) if (A<B) A = A + 1;
(c) while (X>1)

 { X = X/2;
 I = I+1;
 }

(d) A = B - C - D/A + D ∗ A;

3. Show an example of a C/C++ statement which indicates that the order in which
the two operands of an ADD are evaluated can cause different results:

operand1 + operand2

4. Show how each of the following C/C++ source inputs can be optimized using
global optimization techniques:

(a) for (i=1; i<=10; i++)
 { x = i + x;
 a[i] = a[i-1];
 y = b ∗ 4;
 }

17

(b) for (i=1; i<=10; i++)
 { x = i;

y = x/2;
a[i] = x;

 }

(c) if (x>0) {x = 2; y = 3;}
 else {y = 4; x = 2;}

(d) x = 2;
goto L99;
x = 3;

L99: cout << x;

5. Show, in assembly language for a machine of your choice, the output of the code
generator for the following atom string:

(ADD,A,B,Temp1)
(SUB,C,D,Temp2)
(TEST,Temp1,<,Temp2,L1)
(JUMP,L2)
(LBL,L1)
(MOVE,A,B)
(JUMP,L3)
(LBL,L2)
(MOVE,B,A)
(LBL,L3)

6. Show a C/C++ source statement which might have produced the atom string in
Problem 5, above.

Section 1.2 The Phases of a Compiler

Chapter 1 Introduction18

7. Show how each of the following object code segments could be optimized using
local optimization techniques:

(a) LD R1,A
MULT R1,B
ST R1,Temp1
LD R1,Temp1
ADD R1,C
ST R1,Temp2

(b) LD R1,A
ADD R1,B
ST R1,Temp1
MOV C,Temp1

(c) CMP A,B
BH L1
B L2

L1: MOV A,B
B L3

L2: MOV B,A
L3:

19

1.3 Implementation Techniques

By this point it should be clear that a compiler is not a trivial program. A new compiler,
with all optimizations, could take over a person-year to implement. For this reason, we
are always looking for techniques or shortcuts which will speed up the development
process. This often involves making use of compilers, or portions of compilers, which
have been developed previously. It also may involve special compiler generating tools,
such as lex and yacc , which are part of the Unix environment.

In order to describe these implementation techniques graphically, we use the
method shown below, in Figure 1.5, in which the computer is designated with a rectangle,
and its name is in a smaller rectangle sitting on top of the computer. In all of our
examples the program loaded into the computer’s memory will be a compiler. It is
important to remember that a computer is capable of running only programs written in the
machine language of that computer. The input and output (also compilers in our ex-
amples) to the program in the computer are shown to the left and right, respectively.

Figure 1.5 Notation for a Program Running on a Computer

Since a compiler does not change the purpose of the source program, the
superscript on the output is the same as the superscript on the input (X z Y), as shown in
Figure 1.6, below. The subscript language (the language in which it exists) of the
executing compiler (the one inside the computer), M, must be the machine language of the
computer on which it is running. The subscript language of the input, S, must be the same
as the source language of the executing compiler. The subscript language of the output,
O, must be the same as the object language of the executing compiler.

Section 1.3 Implementation Techniques

Figure 1.6 Notation for a compiler being translated to a different language

Program loaded in
Computer’s RAM

Name of
Computer

OutputInput

CS → O

M

MS
CX → Y

O
CX → Y

Chapter 1 Introduction20

1.3.1 Bootstrapping

The term bootstrapping is derived from the phrase “pull yourself up by your bootstraps”
and generally involves the use of a program as input to itself (the student may be familiar
with bootstrapping loaders which are used to initialize a computer just after it has been
switched on, hence the expression “to boot” a computer).

In this case, we are talking about bootstrapping a compiler, as shown in Figure
1.7 (see p. 21). We wish to implement a Java compiler for the Sun computer. Rather than
writing the whole thing in machine (or assembly) language, we instead choose to write
two easier programs. The first is a compiler for a subset of Java, written in machine
(assembly) language. The second is a compiler for the full Java language written in the
Java subset language. In Figure 1.7 the subset language of Java is designated “Sub”, and
it is simply Java, without several of the superfluous features, such as enumerated types,
unions, switch statements, etc. The first compiler is loaded into the computer’s memory
and the second is used as input. The output is the compiler we want – i.e. a compiler for

Sample Problem 1.3

Show the output of the following compilation using the big C notation.

Solution:

In the following sections it is important to remember that a compiler does not
change the purpose of the source program; a compiler translates the source program into
an equivalent program in another language (the object program). The source program
could, itself, be a compiler. If the source program is a compiler which translates language
A into language B, then the object program will also be a compiler which translates
language A into language B.

C Sun

Ada z Sun

Sun

C Ada

Ada z PC
?

C Sun

Ada z PC

21

We want this compiler We write this compiler
We already have this
compiler

Step 1

Step 2

Section 1.3 Implementation Techniques

We want this compiler We write these two small compilers

Figure 1.7 Bootstrapping Java onto a Sun Computer

Figure 1.8 Cross compiling Java from a Sun to a Mac computer

C Sun

Java z Sun
C Sun

Sub z Sun
C Sub

Java z Sun

C Sun

Sub z Sun

Sun

C Sub

Java z Sun
C Sun

Java z Sun

C Mac

Java z Mac
C Java

Java z Mac
C Sun

Java z Sun

C Sun

Java z Sun

Sun

C Sun

Java z Mac C Java

Java z Mac

C Sun

Java z Mac

Sun

C Mac

Java z Mac C Java

Java z Mac

Chapter 1 Introduction22

the full Java language, which runs on a Sun and produces object code in Sun machine
language.

In actual practice this is an iterative process, beginning with a small subset of
Java, and producing, as output, a slightly larger subset. This is repeated, using larger and
larger subsets, until we eventually have a compiler for the complete Java language.

1.3.2 Cross Compiling

New computers with enhanced (and sometimes reduced) instruction sets are constantly
being produced in the computer industry. The developers face the problem of producing
a new compiler for each existing programming language each time a new computer is
designed. This problem is simplified by a process called cross compiling.

Cross compiling is a two-step process and is shown in Figure 1.8 (see p. 21).
Suppose that we have a Java compiler for the Sun, and we develop a new machine called a
Mac. We now wish to produce a Java compiler for the Mac without writing it entirely in
machine (assembly) language; instead, we write the compiler in Java. Step one is to use
this compiler as input to the Java compiler on the Sun. The output is a compiler that
translates Java into Mac machine language, and which runs on a Sun. Step two is to load
this compiler into the Sun and use the compiler we wrote in Java as input once again. This
time the output is a Java compiler for the Mac which runs on the Mac, i.e. the compiler we
wanted to produce.

Note that this entire process can be completed before a single Mac has been
built. All we need to know is the architecture (the instruction set, instruction formats,
addressing modes, ...) of the Mac.

1.3.3 Compiling To Intermediate Form

As we mentioned in our discussion of interpreters above, it is possible to compile to an
intermediate form, which is a language somewhere between the source high-level
language and machine language. The stream of atoms put out by the parser is a possible
example of an intermediate form. The primary advantage of this method is that one needs
only one translator for each high-level language to the intermediate form (each of these is
called a front end) and only one translator (or interpreter) for the intermediate form on
each computer (each of these is called a back end). As depicted in Figure 1.9 (see p. 23),
for three high-level languages and two computers we would need three translators to
intermediate form and two code generators (or interpreters) – one for each computer.
Had we not used the intermediate form, we would have needed a total of six different
compilers. In general, given n high-level languages and m computers, we would need n x
m compilers. Assuming that each front end and each back end is half of a compiler, we
would need (n+m)/2 compilers using intermediate form.

A very popular intermediate form for the PDP-8 and Apple II series of computers,
among others, called p-code, was developed several years ago at the University of
California at San Diego. Today, high-level languages such as C are commonly used as an

23

Figure 1.9 (a) Six compilers needed for three languages on two machines (b) Fewer than
three compilers using intermediate form needed for the same languages and machines

intermediate form. The Java Virtual Machine (i.e. Java byte code) is another intermediate
form which has been used extensively on the Intenet.

1.3.4 Compiler-Compilers

Much of compiler design is understood so well at this time that the process can be
automated. It is possible for the compiler writer to write specifications of the source
language and of the target machine so that the compiler can be generated automatically.
This is done by a compiler-compiler. We will introduce this topic in Chapters 2 and 5
when we study the lex and yacc utilities of the Unix programming environment.

Section 1.3 Implementation Techniques

PC

Mac

PC

Mac

Java

C++

Ada

Java

C++

Ada

(a)

(b)

Chapter 1 Introduction24

Exercises 1.3

1. Fill in the missing information in the compilations indicated below:

(c)

(d)

(b)

(a)
C PC

Java z PC

PC

C Java

Java z Mac

C Sun

Ada z Sun

Sun

C Sun

Ada z Sun
?

?

C PC

Java z Mac

PC

C Java

Java z Mac
?

?

Mac

C Java

Mac z Java

C Sun

Mac z Java

25

2. How could the compiler generated in part (d) of Question 1 be used?

3. If the only computer you have is a PC (for which you already have a FORTRAN
compiler), show how you can produce a FORTRRAN compiler for the Mac computer,
without writing any assembly or machine language.

4. Show how Ada can be bootstrapped in two steps on a Sun, using first a small subset of
Ada, Sub1, and then a larger subset, Sub2. First use Sub1 to implement Sub2 (by
bootstrapping), then use Sub2 to implement Ada (again by bootstrapping). Sub1 is a
subset of Sub2.

5. You have 3 computers: a PC, a Mac, and a Sun. Show how to generate automatically
a Java to FORT translator which will run on a Sun if you also have the four compilers
shown below:

6. In Figure 1.8 (see p. 21) suppose we also have . When we write

 , which of the phases of

can be reused as is?

7. Using the big C notation, show the 11 translators which are represented in figure 1.9.
Use "Int" to represent the intermediate form.

Section 1.3 Implementation Techniques

C Mac

Java z FORT
C

Sun

FORT z Java
C Mac

Java z Sun
C Java

Java z FORT

C Java

Java z Sun

C Java

Java z SunC Java

Java z Mac

Chapter 1 Introduction26

1.4 Case Study: MiniC

As we study the various phases of compilation and techniques used to implement those
phases, we will show how the concepts can be applied to an actual compiler. For this
purpose we will define a language called MiniC as a relatively simple subset of the C
language. The implementation of MiniC will then be used as a case study, or extended
project, throughout the textbook. The last section of each chapter will show how some of
the concepts of that chapter can be used in the design of an actual compiler for MiniC.

MiniC is a "bare bones" version of C. Its only data types are int and float,
and it does not permit arrays, structures, enumerated types, or subprograms. However, it
does include while, for, and if control structures, and it is possible to write some
useful programs in MiniC. The example that we will use for the case study is the
following MiniC program, to compute the cosine function:

void cosine()
{ float cos, x, n, term, eps, alt;
/* compute the cosine of x to within tolerance eps */
/* use an alternating series */

x = 3.14159;
eps = 0.0001;
n = 1;
cos = 1;
term = 1;
alt = -1;
while (term>eps)

{ term = term ∗ x ∗ x / n / (n+1);
 cos = cos + alt ∗ term;
 alt = -alt;
 n = n + 2;
}

}

This program computes the cosine of the value x (in radians) using an alternating series
which terminates when a term becomes smaller than a given tolerance (eps). This series
is described in most calculus textbooks and can be written as:

cos(x) = 1 - x2/2 + x4/24 - x6/720 + ...

Note that in the statement term = term * x * x / n / (n+1) the multiplica-
tion and division operations associate to the left, so that n and (n+1) are both in the
denominator.

27

Exercises 1.4

1. Which of the following are valid program segments in MiniC? Like C, MiniC
programs are free-format (Refer to Appendix A).

(a) for (x = 1; x<10;)
y = 13;

(b) if (a<b) { x =
2; y = 3 ;}

(c) while (a+b==c) if (a!=c)
a = a + 1;

(d) {
a = 4 ;
b = 2; ;

}

A precise specification of MiniC, similar to a BNF description, is given in
Appendix A. The lexical specifications (free format, white space taken as delimiters,
numeric constants, comments, etc.) of MiniC are the same as standard C.

When we discuss the back end of the compiler (code generation and optimiza-
tion) we will need to be concerned with a target machine for which the compiler generates
instructions. Rather than using an actual computer as the target machine, we have
designed a fictitious computer called Mini as the target machine. This was done for two
reasons: (1) We can simplify the architecture of the machine so that the compiler is not
unnecessarily complicated by complex addressing modes, complex instruction formats,
operating system constraints, etc., and (2) we provide the source code for a simulator for
Mini so that the student can compile and execute Mini programs (as long as he/she has a
C compiler on his/her computer). The student will be able to follow all the steps in the
compilation of the above cosine program, understand its implementation in Mini machine
language, and observe its execution on the Mini machine.

The complete source code for the MiniC compiler and the Mini simulator is
provided in the appendix and is available through the Internet, as described in the
appendix. With this software, the student will be able to make his/her own modifications
to the MiniC language, the compiler, or the Mini machine architecture. Some of the
exercises in later chapters are designed with this intent.

Section 1.4 Case Study: MiniC

Chapter 1 Introduction28

(e) for (i==22; i++; i=3) ;

2. Modify the MiniC description given in Appendix A to include a switch state-
ment as defined in standard C.

3. Modify the MiniC description given in Appendix A to include a do while statement
as defined in standard C.

29

1.5 Chapter Summary

This chapter reviewed the concepts of high-level language and machine language and
introduced the purpose of the compiler. The compiler serves as a translator from any
program in a given high-level language (the source program) to an equivalent program in
a given machine language (the object program). We stressed the fact that the output of a
compiler is a program, and contrasted compilers with interpreters, which carry out the
computations specified by the source program.

We introduced the phases of a compiler: (1) The lexical scanner finds word
boundaries and produces a token corresponding to each word in the source program. (2)
The syntax phase, or parser, checks for proper syntax and, if correct, puts out a stream of
atoms or syntax trees which are similar to the primitive operations found in a typical
target machine. (3) The global optimization phase is optional, eliminates unnecessary
atoms or syntax tree elements, and improves efficiency of loops if possible. (4) The code
generator converts the atoms or syntax trees to instructions for the target machine. (5)
The local optimization phase is also optional, eliminates unnecessary instructions, and
uses other techniques to improve the efficiency of the object program.

We discussed some compiler implementation techniques. The first implementa-
tion technique was bootstrapping, in which a small subset of the source language is
implemented and used to compile a compiler for the full source language, written in the
source language itself. We also discussed cross compiling, in which an existing compiler
can be used to implement a compiler for a new computer. We showed how the use of an
intermediate form can reduce the workload of the compiler writer.

Finally, we examined a language called MiniC, a small subset of the C language,
which will be used for a case study compiler throughout the textbook.

Section 1.5 Chapter Summary

Chapter 2

Lexical Analysis
In this chapter we study the implementation of lexical analysis for compilers. As defined
in Chapter 1, lexical analysis is the identification of words in the source program. These
words are then passed as tokens to subsequent phases of the compiler, with each token
consisting of a class and value. The lexical analysis phase can also begin the construction
of tables to be used later in the compilation; a table of identifiers (symbol table) and a
table of numeric constants are two examples of tables which can be constructed in this
phase of compilation.

However, before getting into lexical analysis we need to be sure that the student
understands those concepts of formal language and automata theory which are critical to
the design of the lexical analyser. The student who is familiar with regular expressions
and finite automata may wish to skip or skim Section 2.0 and move on to lexical analysis
in Section 2.1.

2.0 Formal Languages

This section introduces the subject of formal languages, which is critical to the study of
programming languages and compilers. A formal language is one that can be specified
precisely and is amenable for use with computers, whereas a natural language is one
which is normally spoken by people. The syntax of Pascal is an example of a formal
language, but it is also possible for a formal language to have no apparent meaning or
purpose, as discussed in the following sections.

2.0.1 Language Elements

Before we can define a language, we need to make sure the student understands some
fundamental definitions from discrete mathematics. A set is a collection of unique

31

objects. In listing the elements of a set, we normally list each element only once (though
it is not incorrect to list an element more than once), and the elements may be listed in any
order. For example, {boy, girl, animal} is a set of words, but it represents the
same set as {girl, boy, animal, girl}. A set may contain an infinite number
of objects. The set which contains no elements is still a set, and we call it the empty set
and designate it either by {} or by φ .

A string is a list of characters from a given alphabet. The elements of a string
need not be unique, and the order in which they are listed is important. For example,
“abc” and “cba” are different strings, as are “abb” and “ab”. The string which
consists of no characters is still a string (of characters from the given alphabet), and we
call it the null string and designate it by ε. It is important to remember that if, for
example, we are speaking of strings of zeros and ones (i.e. strings from the alphabet
{0,1}), then ε is a string of zeros and ones.

In this and following chapters, we will be discussing languages. A (formal)
language is a set of strings from a given alphabet. In order to understand this, it is critical
that the student understand the difference between a set and a string and, in particular, the
difference between the empty set and the null string. The following are examples of
languages from the alphabet {0,1}:

1. {0,10,1011}
2. {}
3. {ε,0,00,000,0000,00000,...}
4. The set of all strings of zeroes and ones having an even number of ones.

The first two examples are finite sets while the last two examples are infinite. The first
two examples do not contain the null string, while the last two examples do. The follow-
ing are four examples of languages from the alphabet of characters available on a com-
puter keyboard:

1. {0,10,1011}
2. {ε}
3. Pascal syntax
4. Italian syntax

The third example is the syntax of a programming language (in which each string in the
language is a Pascal program without syntax errors), and the fourth example is a natural
language (in which each string in the language is a grammatically correct Italian sen-
tence). The second example is not the empty set.

2.0.2 Finite State Machines

We now encounter a problem in specifying, precisely, the strings in an infinite (or very
large) language. If we describe the language in English, we lack the precision necessary
to make it clear exactly which strings are in the language and which are not in the lan-

Section 2.0 Formal Languages

Chapter 2 Lexical Analysis32

A B C

D

1

0

1

0

1

0

0,1

guage. One solution to this problem is to use a mathematical or hypothetical machine
called a finite state machine. This is a machine which we will describe in mathematical
terms and whose operation should be perfectly clear, though we will not actually construct
such a machine. The study of theoretical machines such as the finite state machine is
called automata theory because “automaton” is just another word for “machine”. A
finite state machine consists of:

1. A finite set of states, one of which is designated the starting state, and zero or more of
which are designated accepting states. The starting state may also be an accepting state.

2. A state transition function which has two arguments – a state and an input symbol
(from a given input alphabet) – and returns as result a state.

Here is how the machine works. The input is a string of symbols from the input alphabet.
The machine is initially in the starting state. As each symbol is read from the input string,
the machine proceeds to a new state as indicated by the transition function, which is a
function of the input symbol and the current state of the machine. When the entire input
string has been read, the machine is either in an accepting state or in a non-accepting
state. If it is in an accepting state, then we say the input string has been accepted. Other-
wise the input string has not been accepted, i.e. it has been rejected. The set of all input
strings which would be accepted by the machine form a language, and in this way the
finite state machine provides a precise specification of a language.

Finite state machines can be represented in many ways, one of which is a state
diagram. An example of a finite state machine is shown in Figure 2.1. Each state of the
machine is represented by a circle, and the transition function is represented by arcs
labeled by input symbols leading from one state to another. The accepting states are
double circles, and the starting state is indicated by an arc with no state at its source (tail)
end.

For example, in Figure 2.1, if the machine is in state B and the input is a 0, the
machine enters state C. If the machine is in state B and the input is a 1, the machine
stays in state B. State A is the starting state, and state C is the only accepting state. This
machine accepts any string of zeroes and ones which begins with a one and ends with a
zero, because these strings (and only these) will cause the machine to be in an accepting

Figure 2.1 Example of a Finite State Machine

33

dictions in the state transitions. This means that for each state there is exactly one arc
leaving that state labeled by each possible input symbol. For this reason, these machines
are called deterministic. We will be working only with deterministic finite state ma-
chines.

Another representation of the finite state machine is the table, in which we assign
names to the states (A, B, C, ...) and these label the rows of the table. The columns are
labeled by the input symbols. Each entry in the table shows the next state of the machine
for a given input and current state. The machines of Figure 2.1 and Figure 2.2 are shown
in table form in Figure 2.3. Accepting states are designated with an asterisk, and the
starting state is the first one listed in the table.

With the table representation it is easier to ensure that the machine is completely
specified and deterministic (there should be exactly one entry in every cell of the table).
However, many students find it easier to work with the state diagram representation when
designing or analyzing finite state machines.

Figure 2.2 Even Parity Checker

Figure 2.3 Finite State Machines in Table Form for the Machines of (a) Figure 2.1 and
(b) Figure 2.2.

0 1 0 1

A D B * A A B

B C B B B A

* C C B

D D D

(a) (b)

Sample Problem 2.0 (a)

Show a finite state machine in either state graph or table form for each of the following
languages (in each case the input alphabet is {0,1}):

1. Strings containing an odd number of zeros

Section 2.0 Formal Languages

state when the entire input string has been read.
Another finite state machine is shown in Figure
2.2. This machine accepts any string of zeroes
and ones which contains an even number of
ones (which includes the null string). Such a
machine is called a parity checker. For both of
these machines, the input alphabet is {0,1}.

Notice that both of these machines are
completely specified, and there are no contra-

1

1

0

0A B

Chapter 2 Lexical Analysis34

Solution:

2. Strings containing three consecutive ones

Solution:

3. Strings containing exactly three zeros

Solution:

4. Strings containing an odd number of zeros and an even number of ones

Solution:

0 1

A B A

*B A B

0 1

A A B

B A C

C A D

*D D D

0 1

A B A

B C B

C D C

*D E D

E E E

0 1

A B C

*B A D

C D A

D C B

0

0

1 1

A B

1

0

0
1

0

1

0,1

BA C D

01
0

1 1
0

1

0

0,1

A B C D

E

0

0

0

0

1 111

A B

C D

35

2.0.3 Regular Expressions

Another method for specifying languages is regular expressions. These are formulas or
expressions consisting of three possible operations on languages – union, concatenation,
and Kleene star:

(1) Union – since a language is a set, this operation is the union operation as defined in
set theory. The union of two sets is that set which contains all the elements in each of the
two sets and nothing else. The union operation on languages is designated with a ‘+’.
For example,

{abc, ab, ba} + {ba, bb} = {abc, ab, ba, bb}

Note that the union of any language with the empty set is that language:

L + {} = L

(2) Concatenation – In order to define concatenation of languages, we must first define
concatenation of strings. This operation will be designated by a raised dot (whether
operating on strings or languages), which may be omitted. This is simply the juxtaposi-
tion of two strings forming a new string. For example,

abc . ba = abcba

Note that any string concatenated with the null string is that string itself: s . ε = s.
In what follows, we will omit the quote marks around strings to avoid cluttering the page
needlessly. The concatenation of two languages is that language formed by concatenating
each string in one language with each string in the other language. For example,

{ab, a, c} . {b, ε} = {ab.b, ab.ε, a.b, a.ε, c.b, c.ε}
 = {abb, ab, a, cb, c}

In this example, the string ab need not be listed twice. Note that if L
1
 and L

2
 are two

languages, then L
1
 . L

2
 is not necessarily equal to L

2
 . L

1
. Also, L . {ε} = L, but

L . φ = φ.

(3) Kleene * - This operation is a unary operation (designated by a postfix asterisk) and is
often called closure. If L is a language, we define:

L0 = {ε}
L1 = L
L2 = L . L

Section 2.0 Formal Languages

Chapter 2 Lexical Analysis36

Ln = L . Ln-1

L* = L0 + L1 + L2 + L3 + L4 + L5 + ...

Note that φ* = {ε}. Intuitively, Kleene * generates zero or more concatenations of
strings from the language to which it is applied. We will use a shorthand notation in
regular expressions – if x is a character in the input alphabet, then x = {“x”}; i.e., the
character x represents the set consisting of one string of length 1 consisting of the
character x. This simplifies some of the regular expressions we will write:

0+1 = {0}+{1} = {0,1}
0+ε = {0,ε}

A regular expression is an expression involving the above three operations and languages.
Note that Kleene * is unary (postfix) and the other two operations are binary. Precedence
may be specified with parentheses, but if parentheses are omitted, concatenation takes
precedence over union, and Kleene * takes precedence over concatenation. If L1 , L2 and
L3 are languages, then:

L
1
+ L

2
 . L

3
 = L

1
 + (L

2
.L

3
)

L
1
.L

2
* = L

1
.(L

2
*)

An example of a regular expression is: (0+1)*
To understand what strings are in this language, let L = {0,1}. We need to find L*:

L0 = {ε}
L1 = {0,1}
L2 = L.L1 = {00,01,10,11}
L3 = L.L2 = {000,001,010,011,100,101,110,111}

L* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101,
110, 111, 0000, ...}

= the set of all strings of zeros and ones.

Another example:

1.(0+1)*.0= 1(0+1)*0
= {10, 100, 110, 1000, 1010, 1100, 1110, ...}
= the set of all strings of zeros and ones which begin with a 1 and end with a 0.

Note that we do not need to be concerned with the order of evaluation of several concat-
enations in one regular expression, since it is an associative operation. The same is true
of union:

37

L.(L.L) = (L.L).L
L+(L+L) = (L+L)+L

A word of explanation on nested Kleene *’s is in order. When a * operation
occurs within another * operation, the two are independent. That is, in generating a
sample string, each * generates 0 or more occurrences independently. For example, the
regular expression (0*1)* could generate the string 0001101. The outer * repeats
three times; the first time the inner * repeats three times, the second time the inner *
repeats zero times, and the third time the inner * repeats once.

Sample Problem 2.0 (b)

For each of the following regular expressions, list six strings which are in its language.

Solution:

1. (a(b+c)*)*d d ad abd acd aad abbcbd

2. (a+b)*.(c+d) c d ac abd babc bad

3. (a*b*)* ε a b ab ba aa
Note that (a*b*)* = (a+b)*

Exercises 2.0

1. Suppose L1 represents the set of all strings from the alphabet {0,1} which
contain an even number of ones (even parity). Which of the following strings
belong to L1?

(a) 0101 (b) 110211 (c) 000
(d) 010011 (e) ε

2. Suppose L2 represents the set of all strings from the alphabet {a,b,c} which
contain an equal number of a’s, b’s, and c’s. Which of the following strings
belong to L2?

Section 2.0 Formal Languages

Chapter 2 Lexical Analysis38

(a) bca (b) accbab (c) ε
(d) aaa (e) aabbcc

3. Which of the following are examples of languages?

(a) L1 from Problem 1 above. (b) L2 from Problem 2 above.
(c) Pascal (d) The set of all programming languages
(e) Swahili

4. Which of the following strings are in the language specified by this finite state
machine?

(a) abab
(b) bbb
(c) aaab
(d) aaa
(e) ε

5. Show a finite state machine with input alphabet {0,1} which accepts any string
having an odd number of 1’s and an odd number of 0’s.

Sample Problem 2.0 (c)

Give a regular expression for each of the languages described in Sample Problem 2.0 (a)

Solutions:

1. 1*01*(01*01*)*

2. (0+1)*111(0+1)*

3. 1*01*01*01*

4. (00+11)*(01+10)(1(0(11)*0)*1+0(1(00)*1)*0)*1(0(11)*0)* +
(00+11)*0

An algorithm for converting a finite state machine to an equivalent regular expression is
beyond the scope of this text, but may be found in Hopcroft & Ullman [1979].

a

b
a

a

b

b

39

6. Describe, in you own words, the language specified by each of the following finite state
machines with alphabet {a,b}.

(a) a b (b) a b
 A B A A B A
 B B C B B C
 C B D C B D

 *D B A *D D D

(c) a b (d) a b
*A A B A B A
*B C B B A B
 C C C *C C B

(e) a b
 A B B
 *B B B

7. Which of the following strings belong to the language specified by this regular
expression: (a+bb)*a

(a) ε (b) aaa (c) ba
(d) bba (e) abba

8. Write regular expressions to specify each of the languages specified by the finite
state machines given in Problem 6.

9. Construct finite state machines which specify the same language as each of the
following regular expressions.

(a) (a+b)*c (b) (aa)*(bb)*c
(c) (a*b*)* (d) (a+bb+c)a*
(e) ((a+b)(c+d))*

10. Show a string of zeros and ones which is not in the language of the regular expres-
sion (0*1)*.

11. Show a finite state machine which accepts multiples of 3, expressed in binary.

Section 2.0 Formal Languages

Chapter 2 Lexical Analysis40

2.1 Lexical Tokens

The first phase of a compiler is called lexical analysis. Because this phase scans the
input string without backtracking (i.e. by reading each symbol once, and processing it
correctly), it is often called a lexical scanner. As implied by its name, lexical analysis
attempts to isolate the “words” in an input string. We use the word “word” in a technical
sense. A word, also known as a lexeme, a lexical item, or a lexical token, is a string of
input characters which is taken as a unit and passed on to the next phase of compilation.
Examples of words are:

(1) keywords - while, if, else, for, ... These are words which may have a
particular predefined meaning to the compiler, as opposed to identifiers which have no
particular meaning. Reserved words are keywords which are not available to the pro-
grammer for use as identifiers. In most programming languages, such as Java and C, all
keywords are reserved. PL/1 is an example of a language which has no reserved words.

(2) identifiers - words that the programmer constructs to attach a name to a construct,
usually having some indication as to the purpose or intent of the construct. Identifiers
may be used to identify variables, classes, constants, functions, etc.

(3) operators - symbols used for arithmetic, character, or logical operations, such as +,-
,=,!=, etc. Notice that operators may consist of more than one character.

(4) numeric constants - numbers such as 124, 12.35, 0.09E-23, etc. These must
be converted to a numeric format so that they can be used in arithmetic operations,
because the compiler initially sees all input as a string of characters. Numeric constants
may be stored in a table.

(5) character constants - single characters or strings of characters enclosed in quotes.

(6) special characters - characters used as delimiters such as .,(,),{,},;. These
are generally single-character words.

(7) comments - Though comments must be detected in the lexical analysis phase, they are
not put out as tokens to the next phase of compilation.

(8) white space - Spaces and tabs are generally ignored by the compiler, except to serve
as delimiters in most languages, and are not put out as tokens.

(9) newline - In languages with free format, newline characters should also be ignored,
otherwise a newline token should be put out by the lexical scanner.

41

An example of C++ source input, showing the word boundaries and types is
given below:

 while (x33 <= 2.5e+33 - total) calc (x33) ; //!

 1 6 2 3 4 3 2 6 2 6 2 6 6

 During lexical analysis, a symbol table is constructed as identifiers are encountered.
This is a data structure which stores each identifier once, regardless of the number of
times it occurs in the source program. It also stores information about the identifier, such
as the kind of identifier and where associated run-time information (such as the value
assigned to a variable) is stored. This data structure is often organized as a binary search
tree, or hash table, for efficiency in searching.

When compiling block structured languages such as Java, C, or Algol, the
symbol table processing is more involved. Since the same identifier can have different
declarations in different blocks or procedures, both instances of the identifier must be
recorded. This can be done by setting up a separate symbol table for each block, or by
specifying block scopes in a single symbol table. This would be done during the parse or
syntax analysis phase of the compiler; the scanner could simply store the identifier in a
string space array and return a pointer to its first character.

Numeric constants must be converted to an appropriate internal form. For
example, the constant “3.4e+6” should be thought of as a string of six characters which
needs to be translated to floating point (or fixed point integer) format so that the computer
can perform appropriate arithmetic operations with it. As we will see, this is not a trivial
problem, and most compiler writers make use of library routines to handle this.
 The output of this phase is a stream of tokens, one token for each word encountered in
the input program. Each token consists of two parts: (1) a class indicating which kind of
token and (2) a value indicating which member of the class. The above example might
produce the following stream of tokens:

Token Token
Class Value

1 [code for while]
6 [code for (]
2 [ptr to symbol table entry for x33]
3 [code for <=]
4 [ptr to constant table entry for 2.5e+33]
3 [code for -]
2 [ptr to symbol table entry for total]
6 [code for)]
2 [ptr to symbol table entry for calc]
6 [code for (]
2 [ptr to symbol table entry for x33]

Section 2.1 Lexical Tokens

Chapter 2 Lexical Analysis42

6 [code for)]
6 [code for ;]

Note that the comment is not put out. Also, some token classes might not have a value
part. For example, a left parenthesis might be a token class, with no need to specify a
value.

Some variations on this scheme are certainly possible, allowing greater effi-
ciency. For example, when an identifier is followed by an assignment operator, a single
assignment token could be put out. The value part of the token would be a symbol table
pointer for the identifier. Thus the input string "x =", would be put out as a single token,
rather than two tokens. Also, each keyword could be a distinct token class, which would
increase the number of classes significantly, but might simplify the syntax analysis phase.

Note that the lexical analysis phase does not check for proper syntax. The input
could be
 } while if ({
and the lexical phase would put out five tokens corresponding to the five words in the
input. (Presumably the errors will be detected in the syntax analysis phase.)

If the source language is not case sensitive, the scanner must accommodate this
feature. For example, the following would all represent the same keyword: then,
tHeN, Then, THEN. A preprocessor could be used to translate all alphabetic
characters to upper (or lower) case.

Exercises 2.1

1. For each of the following C/C++ input strings show the word boundaries and
token classes selected from the list in Section 2.1.

(a) for (i=start; i<=fin+3.5e6; i=i*3) ac=ac+/*incr*/
1;

(b) { ax=33;bx=/*if*/31.4 } // ax + 3;

(c) if/*if*/a)}+whiles

2. Since C/C++ are free format, newline characters are ignored during lexical analy-
sis (except to serve as white space delimiters and to count lines for diagnostic
purposes). Name at least two high-level programming languages for which
newline characters would not be ignored for syntax analysis.

43Section 2.1 Lexical Tokens

3. Which of the following will cause an error message from your C++ compiler?

(a) A comment inside a quoted string:
"this is /*not*/ a comment"

(b) A quoted string inside a comment
/*this is "not" a string*/

(c) A comment inside a comment
/*this is /*not*/ a comment*/

(d) A quoted string inside a quoted string
"this is "not" a string"

Chapter 2 Lexical Analysis44

2.2 Implementation with Finite State Machines

Finite state machines can be used to simplify lexical analysis. We will begin by looking
at some examples of problems which can be solved easily with finite state machines.
Then we will show how actions can be included to process the input, build a symbol table,
and provide output.

A finite state machine can be implemented very simply by an array in which
there is a row for each state of the machine and a column for each possible input symbol.
This array will look very much like the table form of the finite state machine shown in
Figure 2.3. It may be necessary or desirable to code the states and/or input symbols as
integers, depending on the implementation programming language. Once the array has
been initialized, the operation of the machine can be easily simulated, as shown below:

bool accept[STATES];
{
int fsm[STATES] [INPUTS]; // state transition table
char inp; // input symbol (8-bit int)
int state = 0; // starting state;

while (cin >> inp)
state = fsm[state] [inp];

}

if (accept[state]) cout << "Accepted";
else cout << "Rejected";

When the loop terminates, the program would simply check to see whether the state is one
of the accepting states to determine whether the input is accepted. This implementation
assumes that all input characters are represented by small integers, to be used as sub-
scripts of the array of states.

2.2.1 Examples of Finite State Machines for Lexical Analysis

An example of a finite state machine which accepts any identifier beginning with a letter
and followed by any number of letters and digits is shown in Figure 2.4. The letter “L”
represents any letter (a-z), and the letter “D” represents any numeric digit (0-9).
This implies that a preprocessor would be needed to convert input characters to tokens
suitable for input to the finite state machine.

A finite state machine which accepts numeric constants is shown in Figure 2.5.
Note that these constants must begin with a digit, and numbers such as .099 are not
acceptable. This is the case in some languages, such as Pascal, whereas C++ does permit
constants which do not begin with a digit. We could have included constants which begin
with a decimal point, but this would have required additional states.

45Section 2.2 Implementation with Finite State Machines

L

D

L,D

L,D

Figure 2.4 Finite State Machine to Accept
Identifiers

D

D D

D
D

D

. + -

E

E

deadAll unspecified transistions
are to the "dead" state

Figure 2.5 A Finite State Machine to Accept Numeric Constants

.

Figure 2.6 Keyword Recognizer

A third example of the use of
state machines in lexical analysis is
shown in Figure 2.6. This machine
accepts keywords if, int, inline, for,
float . This machine is not completely
specified, because in order for it to be
used in a compiler it would have to
accommodate identifiers as well as
keywords. In particular, identifiers
such as i, wh, fo , which are prefixes of
keywords, and identifiers such as fork,
which contain keywords as prefixes,
would have to be handled. This
problem will be discussed below when
we include actions in the finite state
machine.

o

t

i l
f

i n e

f

o

rl

n

a t

Chapter 2 Lexical Analysis46

2.2.2 Actions for Finite State Machines

At this point, we have seen how finite state machines are capable of specifying a language
and how they can be used in lexical analysis. But lexical analysis involves more than
simply recognizing words. It may involve building a symbol table, converting numeric
constants to the appropriate data type, and putting out tokens. For this reason, we wish to
associate an action, or function to be invoked, with each state transition in the finite state
machine.

This can be implemented with another array of the same dimension as the state
transition array, which would be an arrray of functions to be called as each state transition
is made. For example, suppose we wish to put out keyword tokens corresponding to each
of the keywords recognized by the machine of Figure 2.6. We could associate an action
with each state transition in the finite state machine. Moreover, we could recognize
identifiers and call a function to store them in a symbol table.

In Figure 2.7, below, we show an example of a finite state machine with actions.
The purpose of the machine is to generate a parity bit so that the input string and parity bit
will always have an even number of ones. The parity bit, parity, is initialized to 0 and
is complemented by the function P().

Sample Problem 2.2

Design a finite state machine, with actions, to read numeric strings and convert them to an
appropriate internal numeric format, such as floating point.

Solution:

In the state diagram shown below, we have included function calls designated P1(),
P2(), P3(), ... which are to be invoked as the corresponding transition occurs. In
other words, a transition marked i/P() means that if the input is i, invoke function

Figure 2.7 Parity Bit Generator

0

1 / P ()

0

1 / P ()

void P()
{ if (parity==0) parity = 1;

else parity = 0;
}

47Section 2.2 Implementation with Finite State Machines

int Places, N, D, Exp, Sign; // global variables

void P1()
{

Places = 0; //Places after decimal point
N = D; // Input symbol is a numeric digit
Exp = 0; // Default exponent of 10 is 0
Sign = +1; // Default sign of exponent is

// positive
}
void P2()
{

N = N*10 + D; // Input symbol is a numeric digit
}

void P3()
{

N = N*10 + D; // Input symbol is a numeric digit
// after a decimal point

Places = Places + 1; // Count decimal places
}

void P4()
{

if (input=='-') then sign = -1; // sign of exponent
}

D/P1

D/P2

.

D/P3

E

+ -/P4

D/P6

D/P5

All unspecified transitions are to the

"dead" state.

dead

E

D/P5

P() before changing state and reading the next input symbol. The functions referred to
in the state diagram are shown below:

Chapter 2 Lexical Analysis48

void P5()
{

Exp = D; // Input symbol is a numeric digit in the
// exponent

void P6()
{

Exp = Exp*10 + D; // Input symbol is a numeric
// digit in the Exponent

}

The value of the numeric constant may then be computed as follows:

Result = N * Power (10, Sign*Exp - Places);

where Power (x,y) = xy

Exercises 2.2

1. Show a finite state machine which will recognize the words RENT, RENEW, RED,
RAID, RAG, and SENT. Use a different accepting state for each of these words.

2. Modify the finite state machine of Figure 2.5 (see p. 45) to include numeric
constants which begin with a decimal point and have digits after the decimal
point, such as .25, without excluding any constants accepted by that machine.

3. Show a finite state machine that will accept C-style comments /* as shown
here */. Use the symbol A to represent any character other than * or /; thus the
input alphabet will be {/,*,A}.

4. Add actions to your solution to Problem 2 so that numeric constants will be
computed as in Sample Problem 2.2.

5. What is the output of the finite state machine, below, for each of the following inputs (L
represents any letter, and D represents any numeric digit; also, assume that each input is
terminated with a period):

49

L/P1

L/P2

D/P3

L,D

./P4

(a) ab3.
(b) xyz.
(c) a49.

6. Show the values that will be asigned to the variable N in Sample Problem 2.2 (see
p. 46) as the input string 46.73e-21 is read.

Section 2.2 Implementation with Finite State Machines

int sum;

void P1() Void P2()
{ {

sum = L; sum += L;
} }

Void P3() int Hash (int n)
{ {

sum += D; return n % 10;
} }

Void P4()
{

cout << Hash (sum);
}

All unspecified
transitions are
to state d.

d

Chapter 2 Lexical Analysis50

2.3 Lexical Tables

One of the most important functions of the lexical analysis phase is the creation of tables
which are used later in the compiler. Such tables could include a symbol table for
identifiers, a table of numeric constants, string constants, statement labels, and line
numbers for languages such as Basic. The implementation techniques discussed below
could apply to any of these tables.

2.3.1 Sequential Search

The table could be organized as an array or linked list. Each time a word is encountered,
the list is scanned and if the word is not already in the list, it is added at the end. As we
learned in our data structures course, the time required to build a table of n words is
O(n2). This sequential search technique is easy to implement but not very efficient,
particularly as the number of words becomes large. This method is generally not used for
symbol tables, or tables of line numbers, but could be used for tables of statement labels,
or constants.

2.3.2 Binary Search Tree

The table could be organized as a binary tree having the property that all of the words in
the left subtree of any word precede that word (according to a sort sequence), and all of
the words in the right subtree follow that word. Such a tree is called a binary search tree.
Since the tree is initially empty, the first word encountered is placed at the root. Each
time a word, w, is encountered the search begins at the root; w is compared with the word
at the root. If w is smaller, it must be in the left subtree; if it is greater, it must be in the
right subtree; and if it is equal, it is already in the tree. This is repeated until w has been
found in the tree, or we arrive at a leaf node not equal to w, in which case w must be
inserted at that point. Note that the structure of the tree depends on the sequence in which
the words were encountered as depicted in Figure 2.8, which shows binary search trees for
(a) frog, tree, hill, bird, bat, cat and for (b) bat, bird, cat,
frog, hill, tree. As you can see, it is possible for the tree to take the form of a
linked list (in which case the tree is said not to be balanced). The time required to build
such a table of n words is O(n log

2
n) in the best case (the tree is balanced), but could

be O(n2) in the worst case (the tree is not balanced).
The student should bear in mind that each word should appear in the table only

once, regardless how many times it may appear in the source program. Later in the course
we will see how the symbol table is used and what additional information is stored in it.

2.3.3 Hash Table

A hash table can also be used to implement a symbol table, a table of constants, line
numbers, etc. It can be organized as an array, or as an array of linked lists, which is the
method used here. We start with an array of null pointers, each of which is to become the

51

tree hill bird cat

frog

bat

hash (frog) = (4+102) % 6 = 4
hash (tree) = (4+116) % 6 = 0
hash (hill) = (4+104) % 6 = 0
hash (bird) = (4+98) % 6 = 0
hash (bat) = (3+98) % 6 = 5
hash (cat) = (3+99) % 6 = 0

0

1

2

3

4

5

(b)
(a)

frog

bird tree

bat hillcat

bat

bird

cat

frog

hill

tree

head of a linked list. A word to be stored in the table is added to one of the lists. A hash
function is used to determine which list the word is to be stored in. This is a function
which takes as argument the word itself and returns an integer value which is a valid
subscript to the array of pointers. The corresponding list is then searched sequentially,
until the word is found already in the table, or the end of the list is encountered, in which
case the word is appended to that list.

The selection of a good hash function is critical to the efficiency of this method.
Generally, we will use some arithmetic combination of the letters of the word, followed
by dividing by the size of the hash table and taking the remainder. An example of a hash
function would be to add the length of the word to the ascii code of the first letter and take
the remainder on division by the array size, so that hash(bird) = (4+98) %
HASHMAX where HASHMAX is the size of the array of pointers. The resulting value will
always be in the range 0..HASHMAX-1 and can be used as a subscript to the array.
Figure 2.9, below, depicts the hash table corresponding to the words entered for Figure
2.8 (a), where the value of HASHMAX is 6. Note that the structure of the table does not

Figure 2.8 (a) A Balanced Binary Search Tree (b) A Binary Search Tree Which is Not
Balanced

Figure 2.9 Hash Table Corresponding to the Words Entered for Figure 2.8(a)

Section 2.3 Lexical Tables

Chapter 2 Lexical Analysis52

depend on the sequence in which the words are encountered (though the sequence of
words in a particular list could vary).

Exercises 2.3

1. Show the binary search tree which would be constructed to store each of the
following lists of identifiers:

(a) minsky, babbage, turing, ada, boole, pascal,
vonneuman

(b) ada, babbage, boole, minsky, pascal, turing,
vonneuman

(c) sum, x3, count, x210, x, x33

2. Show how many string comparisons would be needed to store a new identifier in a
symbol table organized as a binary search tree containing:

(a) 2047 identifiers, and perfectly balanced
(b) 2047 identifiers which had been entered in alphabetic order (worst case)
(c) 2n-1 identifiers, perfectly balanced
(d) n identifers, and perfectly balanced

3. Write a program in C or C++ which will read a list of words (with no more than sixteen
characters in a word) from the keyboard, one word per line. If the word has been
entered previously, the output should be OLD WORD. Otherwise the output should
be NEW WORD. Use the following declaration to implement a binary search tree to
store the words.

struct node { struct node * left;
char data[16];
struct node * right;

 } * bst;

53

4. Many textbooks on data structures implement a hash table as an array of words to be
stored, whereas we suggest implementing with an array of linked lists. What is the main
advantage of our method? What is the main disadvantage of our method?

5. Show the hash table which would result for the following identifiers using the example
hash function of Section 2.3.3 (see p. 51): bog, cab, bc, cb, h33,
h22, cater.

6. Show a single hash function for a hash table consisting of ten linked lists such that
none of the word sequences shown below causes a single collision.

(a) ab, ac, ad, ae
(b) ae, bd, cc, db
(c) aa, ba, ca, da

7. Show a sequence of four identifiers which would cause your hash function in
Problem 6 to generate a collision for each identifier after the first.

Section 2.3 Lexical Tables

Chapter 2 Lexical Analysis54

2.4 Lex

The Unix programming environment includes several utility programs which are intended
to improve the programmer’s productivity. One such utility, called lex, is used to
generate a lexical analyzer. The programmer specifies the words to be put out as tokens,
using an extension of regular expressions. Lex then generates a C function, yylex(),
which, when compiled, will be the lexical analysis phase of a compiler.

Lex is designed to be used with another Unix utility called yacc. Yacc is a
parser generator which generates a C function, yyparse(), which contains calls to
yylex() when it wants to read a token. However, it is also possible to use lex indepen-
dently of yacc and yacc independently of lex. We will discuss yacc in greater detail in
Section 5.3.

Lex may be useful for any software development project that requires lexical
analysis, not just compilers. For example, a database query language that permits
statements such as Retrieve All Records For Salary >= $100,000
would require lexical analysis and could be implemented with lex.

2.4.1 Lex Source

The input to lex is stored in a file with a .l suffix (such as fortran.l). The structure
of this file, consisting of three sections, is shown below:

C declarations and #includes
lex definitions
%%
lex patterns and actions
%%
C functions called by the above actions

The “%%” symbols are used as delimiters for the three sections of a lex program. The
first and third sections are optional.

2.4.1.1 Section 1 of a Lex Program

The first section of the lex source file is for lex definitions and C declarations. The lex
definitions are generally macro definitions which may be substituted in patterns in the
second section. A macro definition consists of a name (preceded by no white space),
followed by a lex pattern (see Section 2.4.1.2) to be substituted for that name. When the
macro is used in a pattern, it must be enclosed in curly braces {}. For example,

MAC ab*c

is a macro named MAC, and its value is ab*c. It could be used in a pattern:

55

hello{MAC}

which is equivalent to

helloab*c

Note that this is a simple and direct substitution! Be careful that you do not make
assumptions about operator precedence in a pattern which uses macros.

The C declarations in the first section of the lex source file are those declarations
which are to be global to the yylex() function. They should be inside lex curly braces.
For example:

%{
#include “header.h”
#define MAX 1000
char c;
%}

2.4.1.2 Section 2 of the Lex Program

The second section of the lex program, containing lex patterns and actions, is the most
important part. This is sometimes called the rules section because these rules define the
lexical tokens. Each line in this section consists of a pattern and an action. Each time the
yylex() function is able to find input which matches one of the patterns, the associated
action is executed. This pattern language is just an extension of regular expressions and is
described below. In the following, x and y represent any pattern.

Pattern Meaning
c The char “c”
“c” The char “c” even if it is a special char in this table
\c Same as “c”, used to quote a single char
[cd] The char c or the char d
[a-z] Any single char in the range a through z
[^c] Any char but c
. Any char but newline
^x The pattern x if it occurs at the beginning of a line
x$ The pattern x at the end of a line
x? An optional x
x* Zero or more occurrences of the pattern x
x+ One or more occurrences of the pattern x
xy The pattern x concatenated with the pattern y
x|y An x or a y
(x) An x
x/y An x only if followed by y

Section 2.4 Lex

Chapter 2 Lexical Analysis56

<S>x The pattern x when lex is in start condition S
{name} The value of a macro from definitions section
x{m} m occurrences of the pattern x
x{m,n} m through n occurrences of x (takes precedence over concatentation)

The start condition is used to specify left context for a pattern. For example, to
match a number only when it follows a $:

/* Enter start condition DOLLAR */
“$” BEGIN DOLLAR;

/* matches number preceded by $ */
<DOLLAR>[0-9]+ BEGIN 0;

/* Return to default start condition */

In this example, the BEGIN DOLLAR statement puts lex into a start condition (DOLLAR
is the name of the start condition). The pattern <DOLLAR>[0-9]+ can be matched only
when lex is in this start condition. The BEGIN 0 statement returns lex to the original,
default, start condition. Note that patterns written without any start condition specified
can be matched regardless of the start condition state of lex. Lex must be informed of all
start conditions in section 1 of the lex program with a %start declaration:

%start DOLLAR

This example should become more clear after the student has completed this section.
Right context can be specified by the / operation, in which x/y matches the

pattern x when it occurs in right context y. For example the pattern [a-z]*/[0-9]
matches the first three characters of the input string abc3, but does not match the first
three characters of the string abc@.

The action associated with each pattern is simply a C statement (it could be a
compound statement) to be executed when the corresponding pattern is matched. The
second section of the lex source file will then consist of one rule on each line, each of
which is a pattern followed by an action:

%%
pattern action
pattern action
pattern action
.
.
.
%%

Each time yylex() is called it reads characters from stdin, the Unix standard
input file (by default, stdin is pointing to the user’s keyboard). It then attempts to
match input characters with your patterns. If it cannot find a pattern which matches the

57

input beginning with the first character, it prints that character to stdout, the Unix standard
output file (by default, stdout is pointing to the user’s display) and moves on to the
next character. We generally wish to write our patterns so that this does not happen; we
do not want the input characters to be put out with the tokens. If there are several patterns
which match the current input, yylex() chooses one of them according to these rules:

(1) The pattern that matches the longest possible string of characters starting at the current
input is chosen.

(2) If there is more than one such pattern – all matching input strings of the same length –
the pattern listed first in the lex source file is chosen.

After the pattern is chosen, the corresponding action is executed, and yylex()
moves the current input pointer to the character following the matched input string. No
pattern may match input on more than one line, though it is possible to have a pattern
which matches a newline character - \n. An example of a lex source file is shown
below:

%%
[a-z]+ printf (“alpha\n”); /* pattern 1 */
[0-9]+ printf (“numeric\n”); /* pattern 2 */
[a-z0-9]+ printf (“alphanumeric\n”); /* pattern 3 */
[\t]+ printf (“white space\n”); /* pattern 4 */
. printf (“special char\n”); /* pattern 5 */
\n ; /* pattern 6 */
%%

The above lex source could be used to classify input strings as alphabetic, numeric,
alphanumeric, or special, using white space as delimiters. Note that the action executed
when a newline character is read is a null statement.

Lex declares global variables char * yytext and int yyleng for your
use. yytext is a character string which always contains the input characters matched
by the pattern, and yyleng is the length of that string. You may refer to these in your
actions and C functions.

2.4.1.3 Section 3 of the Lex Program

Section 3 consists merely of C functions which are called by the actions in section 2.
These functions are copied to the lex output file as is, with no changes. The user may also
need to include a main() function in this section, depending on whether lex is being
used in conjunction with yacc.

Section 2.4 Lex

Chapter 2 Lexical Analysis58

Sample Problem 2.4 (a)
Show the output if the input to yylex() generated by the lex program above is

abc123 abc 123?x

Solution:

alphanumeric
white space
alpha
white space
numeric
special char
alpha

The characters abc are matched by Pattern 1, and the characters abc123 are matched
by Pattern 3. Since abc123 is longer than abc, Pattern 3 is selected. The input
pointer is then advanced to the next character following abc123, which is a space.
Pattern 4 matches the space. yylex() continues in that way until the entire input file
has been read.

2.4.1.4 An Example of a Lex Source File

In this section we present an example of a lex source file. It converts numeric constants to
internal floating-point form, and prints out a token called Int or Float, depending on
the type of the number. It makes use of a standard C function called sscanf() which
has the arguments:

sscanf (char * str, char * fmt, int * ptr_list)

This function is similar to the function scanf(), but differs in that the first argument is a
string of characters. The function reads from this string of characters, rather than from the
standard input file, stdin. In our example it reads from the string yytext, which
always contains the characters matched by the lex pattern. The other arguments to
sscanf() are a format string and one or more pointers to allocated storage. As with
scanf(), the characters are converted to another form, as specified by the format string,
and stored in the allocated storage areas pointed to by the pointers. The use of
sscanf() eliminates the need to convert numeric constants to internal formats as we
did in Sample Problem 2.2. The example of a lex source file is shown below:

INT [0-9]+
EXP ([eE][+-]?{INT})
%{

59

int i;
float f;
%}
%%
{INT} {sscanf (yytext, “%d”, &i);

 cout << "Int" << endl;}
{INT}\.{INT}?{EXP}? {sscanf (yytext, “%lf”,&f);

 cout << "Float" << endl;}
. ; /* gobble up anything else */
%%
main ()
{ yylex(); }
yywrap ()
{ }

Note that the parentheses around the definition of EXP in this example are necessary
because this macro is called below and followed by a ‘?’ in the pattern which matches
real numbers (numbers containing decimal points). A macro call is implemented with a
simple substitution of the macro definition. Consequently, if the macro definition had not
been in parentheses, the substitution would have produced:

{INT}\.{INT}?[eE][+-]?{INT}?

in which the last ‘?’ is operating only on the last {INT} and not on the entire exponent.

Section 2.4 Lex

Sample Problem 2.4 (b)

Improve the lex program shown above to recognize identifiers, assignment operator (=),
arithmetic operators, comparison operators, and the keywords if, while, else
for a language such as C++.

Solution:

INT [0-9]+
EXP ([eE][+-]?{INT})
IDENT [a-zA-Z][a-zA-Z0-9]*
%{
int i;
float f;
%}

Chapter 2 Lexical Analysis60

2.4.2 Running Lex

There is now a two-step process to generate your program:
(1) Use lex to generate the C function. It is placed in a file called lex.yy.c
(2) Use the C compiler to compile that file. If you have used C++ constructs which are not
C compatible in your actions or functions, you must compile with a C++ compiler.
It may be necessary to link the lex library with the output of the C compiler. This is done
with the -ll option, but for our examples it won’t be necessary.

Assuming your lex source file is language.l, these two steps are shown below:

 $ lex language.l
 $ cc lex.yy.c -o language

Some versions of lex may include a call to a function named yywrap(). This
call always takes place when the entire input file has been scanned and yylex() is
ready to terminate. The purpose of yywrap() is to give you the opportunity to do
additional processing in order to “wrap” things up before terminating. In most cases you
can make this a null function if necessary and include it in section 3 of your lex source
file.

%%
if printf ("keyword - if\n");
while printf ("keyword - while\n");
else printf ("keyword - else\n");
{IDENT} printf ("identifier\n");
\+|\-|*|\/ printf ("arithmetic operator\n");
"=" printf ("assignment\n");
"=="|\<|\>|"<="|">="|"!=" printf ("comparison operator\n");
{INT} {sscanf (yytext, "%d", &i);

 printf ("Int\n");}
{INT}\.{INT}?{EXP}? {sscanf (yytext, "%lf",&f);

 printf ("Float\n");}
. ; /* gobble up anything else */
%%
main ()
{ yylex(); }
yywrap()
{ }

Note that the keywords are all reserved words – i.e., they are reserved by the compiler
for a specific purpose and may not be used as identifiers. That is why they must precede
the pattern for identifiers in the lex source file.

61

In Chapter 5 we will use the yylex() function as a subprogram rather than as
a main program. The yylex() function will be called repeatedly, scan the input file,
and return an integer code each time it finds a complete token. In general it will not print
to stdout unless it detects a lexical error.

Exercises 2.4

1. Write a lex “program” to print out the following token class numbers for C++
source input:
(1) Identifier (begins with letter, followed by letters, digits, _)
(2) Numeric constant (float or int)
(3) = (assignment)
(4) Comparison operator (== < > <= >= !=)
(5) Arithmetic operator (+ - ∗ /)
(6) String constant
(7) Keyword (if else while do for const)

Comments /* using this method */
// or this method, but don't print a token number

2. Show the output of the following lex program for each of the given input strings:

CHAR [a-z][0-9]
%%
{CHAR}* printf (“pattern 1\n”);
{CHAR}x printf (“pattern 2\n”);
({CHAR})* printf (“pattern 3\n”);
. printf (“pattern 4\n”);
\n ;
%%

(a) a1b2c3
(b) abc3+a123
(c) a4x+ab22+a22

Section 2.4 Lex

Chapter 2 Lexical Analysis62

2.5 Case Study: Lexical Analysis for MiniC

In this section we present a description of the lexical analysis phase for the subset of C++
we call MiniC. This represents the first phase in our case study – a complete MiniC
compiler. The lexical analysis phase is implemented with the lex utility, and the lex
source file is shown in its entirety in Appendix B.2 (refer to the files MiniC.l and
MiniC.h).

The MiniC case study is implemented as a two-pass compiler. The syntax and
lexical phases combine for the first pass, producing a file of atoms, and the code generator
forms the second pass. This means that control is initially given to the syntax phase,
which calls yylex() each time it needs a token. Consequently, our lex program (which
is used to generate the yylex() function) returns a token class to the calling program in
the action associated with each pattern.

The lex source file is divided into three sections, separated by the %% symbol as
described above in Section 2.4. We now describe the content of each of these sections in
MiniC.l.

The first three lines, shown below, are lex macro definitions:

INT [0-9]+
EXP ([eE][+-]?{INT})
NUM {INT}\.?{INT}?{EXP}?

An INT is defined to be a string of one or more digits; an EXP is the exponent part of a
number (the sign is optional), and a NUM is any numeric constant (in MiniC we constrain
numeric constants to begin with a digit, but the decimal point, fractional part, and
exponent part are all independently optional).

Also in the first section, the macro definitions are followed by global C declara-
tions to be copied verbatim into the output file. The stdlib.h header file allows for
ANSI C compatibility, and the three function declarations specify that the functions return
a type ADDRESS, representing a run-time address on the target machine. The type
definition for ADDRESS is in the header file MiniC.h, and is explained further in
Chapter 6.

The second section of the lex source file contains the patterns and actions which
define the tokens to be returned to the calling program. Single character tokens, such as
parentheses, semicolon, arithmetic operations, etc., can be returned as the token class (the
ascii code of the character is the token class). Other token classes are defined in the yacc
file, MiniC.y, with %token declarations. They are assigned integer values over 255 by
yacc, but we need not be concerned with those values.

The MiniC keywords each constitute a distinct token class, e.g. the keyword for
is returned as a FOR token, the keyword while is returned as a WHILE token, etc.
Since MiniC is case sensitive, all keywords must be lower case. In languages which are
not case sensitive, such as Pascal, we would have to accept keywords with mixed case,
such as wHiLE. This could be done with a pattern like [wW][hH][iI][lL][eE] for
the WHILE token. Alternatively, we could use a filter on the source program to convert

63

all upper-case letters (excepting those in string constants) to lower case before
proceessing by the compiler.

The six keywords are found in the MiniC definition in Appendix A, where they
are the symbols beginning with lower-case letters. Each keyword forms its own token
class, with no value part, except for the type declarations int and float, which have
value parts 2 and 3, respectively. These values are stored in the global variable
yylval.code (the .code qualifier will be explained in the case study for Chapter 5),
and are used to indicate the type of an identifier in the symbol table.

The keywords are followed by the six comparison operators, forming the token
class COMPARISON. Again, the value part, stored in yylval.code, indicates which of
the six comparison operators has been matched.

The pattern for identifiers is [a-zA-Z][a-zA-Z0-9_]*, which indicates
that an identifier is a string of letters, numeric digits, and underscores which begins with a
letter (either lower or upper case). In addition to returning the token class IDENTIFIER,
the action also calls the searchIdent() function, which installs the identifier in the
symbol table (implemented as a hash table) and returns a run-time address for the identi-
fier.

The pattern for numeric constants is simply the macro {NUM} as defined in the
first section. In this case the action calls the function searchNums() to install the
constant in a table of numeric constants (implemented as a binary search tree, just to
expose a different technique to the student).

White space (spaces, tabs, and newline characters) may serve as delimiters for
tokens, but white space does not, itself, constitute a token, since MiniC, like C++, is free
format. Both kinds of comments, C style and C++ style , are recognized. C style com-
ments are enclosed in /* and */, while C++ style comments begin with // and continue to
the end of the line. Start conditions are used to recognize the fact that the scanner is
inside a comment, and that no tokens are to be returned until the end of the comment is
found. When processing comments, it is important that we not use a pattern such as "/
"."*/". This would be incorrect since

/* comment1 */ x = 2; /* comment2 */

would be taken as one long comment.
The final pattern, a single period, matches any single character not matched by

any of the preceding patterns. This character is itself returned as a token class (its ascii
code is the class). For characters such as parentheses, semicolons, arithmetic operations,
etc., this is fine. Other, unexpected characters, such as $%# etc., will also be returned as
tokens and ultimately will cause the syntax phase to generate a syntax error message.

The third section of the lex source file (after the second %% delimiter) contains
supporting functions called either from the actions in the second section or from the main
program. The first such supporting function, yywrap(), is called from the main
program when the entire MiniC program has been read. It’s purpose is to permit house-
keeping such as releasing unneeded storage, closing files, etc. In our case, we do not need
to do any of these, so we just return with a successful return code.

Section 2.5 Case Study: Lexical Analysis for MiniC

Chapter 2 Lexical Analysis64

3 01 3

0

1

2

3

4

5
cad b

char * name;

struct Ident * link;

int type;

ADDRESS memloc;

Target machine memory at
run time

Run time value of b
Run time value of cad

0
1
2
3
4

The next supporting function, searchIdent(), is called from the action for
IDENTIFIER tokens and is used to install the identifier in the symbol table. The symbol
table is implemented as a hash table of HashMax linked lists, as described in Section
2.3.3. The hash function simply sums the characters in the identifier (stored in yytext)
and returns a subscript in the range 0 to HashMax-1. The function then searches the
appropriate linked list. If the identifier is not found, it installs the identifier in the hash
table by allocating space (with the standard malloc() function) for a node and the
identifier, as shown in Figure 2.10. The function returns the run-time address of the
identifier, provided by the alloc() function. The global variable dcl is TRUE if the
compiler is scanning a declaration. In this case we expect identifiers not to be in the
symbol table. If dcl is FALSE, the compiler is not scanning a declaration, and we expect
identifiers to be in the symbol table, since they should have been declared previously.
This enables us to detect undeclared, and multiply declared, identifiers.

In Figure 2.10, below, we show a diagram of what the symbol table would look
like after two identifiers, b and cad, have been scanned. Each symbol table entry
consists of four parts: 1) a pointer to the identifier, 2) a pointer to the next entry in the
linked list, 3) a code for the type of the identifier, and 4) a run-time address for the value
of this identifier. The run-time value of b will be stored at location 0 and the run-time
value of cad will be stored at location 1.

Figure 2.10 A Hash Table Storing the Identifiers cad and b, with Target Machine
Memory

65

The searchNums() supporting function is very similar to search-
Ident(). It installs numeric constants in a binary search tree, in which each constant
found in the MiniC program is stored once, as shown, above, in Figure 2.11. A pointer to
the root node of the tree is in the variable numsBST. The constant, stored as characters
in the string, yytext, must be converted to a numeric data format. This is done with the
sscanf() function, which is similar to scanf(), but reads from a string – yytext in
this case – rather than from the stdin file. The searchNums() function also returns
the run-time address of the numeric constant, and the constant is stored in an array,
memory, which will become part of the output file when code is generated. This will be
described in the case study section for Chapter 6.

Exercises 2.5

1. Use lex to write a filter which converts all alphabetic characters to lower case,
unless they are inside double quote marks. The quote mark may be included in a
quoted string by using the backslash to quote a single character. Backslashes also
may be included in a string. Assume that quoted strings may not contain newline
characters. Your filter should read from stdin and write to stdout. Some
examples are:

Figure 2.11 Binary Search Tree Storing the Constants 12.5, 2.4e7, 3, and 199, With
Target Machine Memory

Section 2.5 Case Study: Lexical Analysis for MiniC

ADDRESS memloc;

Struct nums * left;

Struct nums * right;

0

3 2

5

0 12.5

2.4e7

3

199

Run-time memory

2

3

1

5

4

6

Chapter 2 Lexical Analysis66

Input Output
"A String\"s Life" Is Good "A String\"s Life" is good
OPEN "C:\\dir\\File.Ext" open "C:\\dir\\File.Ext"

2. Revise the lex source file MiniC.l shown in Appendix B.2 to permit a switch
statement and a do while statement in MiniC:

SwitchStmt z switch (Expr) { CaseList }
CaseList z case NUM : StmtList
CaseList z case default: StmtList
CaseList z case NUM : StmtList CaseList
Stmt z break ;

DoStmt z do Stmt while (Expr)

You will not be able to run lex on MiniC.l since it is designed to be used with
the yacc utility, which we will discuss in Chapter 5.

3. Revise the macro definitions in the lex source file MiniC.l shown in Appendix
B.2 to exclude numeric constants which do not begin with a digit, such as .25
and .03e-4. You will not be able to run lex on MiniC.l since it is designed to
be used with the yacc utility, which we will discuss in chapter 5.

4. Rather than having a separate token class for each MiniC keyword, the scanner
could have a single class for all keywords, and the value part could indicate which
keyword has been scanned (e.g. int = 1, float = 2, for = 3, ...). Show the
changes needed in the file MiniC.l to do this.

67

2.6 Chapter Summary

Chapter 2, on Lexical Analysis, began with some introductory theory of formal languages
and automata. A language, defined as set of strings, is a vital concept in the study of
programming languages and compilers. An automaton is a theoretic machine, introduced
in this chapter with finite state machines. It was shown how these theoretic machines can
be used to specify programming language elements such as identifiers, constants, and
keywords. We also introduced the concept of regular expressions, which can be used to
specify the same language elements. Regular expressions are useful not only in lexical
analysis, but also in utility programs and editors such as awk, ed, and grep, in which it is
necessary to specify search patterns.

We then discussed the problem of lexical analysis in more detail, and showed
how finite state machine theory can be used to implement a lexical scanner. The lexical
scanner must determine the word boundaries in the input string. The scanner accepts as
input the source program, which is seen as one long string of characters. Its output is a
stream of tokens, where each token consists of a class and possibly a value. Each token
represents a lexical entity, or word, such as an identifier, keyword, constant, operator, or
special character.

A lexical scanner can be organized to write all the tokens to a file, at which point
the syntax phase is invoked and reads from the beginning of the file. Alternatively, the
scanner can be called as a subroutine to the syntax phase. Each time the syntax phase
needs a token it calls the scanner, which reads just enough input characters to produce a
single token to be returned to the syntax phase.

We also showed how a lexical scanner can create tables of information, such as a
symbol table, to be used by subsequent phases of the compiler.

We introduced a lexical scanner generator, lex, which makes use of regular
expressions in specifying patterns to match lexical tokens in the source language. The lex
source file consists of three sections: (1) lex macros and C declarations; (2) rules, each
rule consisting of a pattern and action; and (3) supporting functions. We concluded the
chapter with a look at a lex program which implements the lexical scanner for our case
study – MiniC.

Section 2.6 Chapter Summary

Chapter 3

Syntax Analysis
The second phase of a compiler is called syntax analysis. The input to this phase consists
of a stream of tokens put out by the lexical analysis phase. They are then checked for
proper syntax, i.e. the compiler checks to make sure the statements and expressions are
correctly formed. Some examples of syntax errors in C++ are:

x = (2+3) ∗ 9); // mismatched parentheses

if x>y x = 2; // missing parentheses

while (x==3) do f1(); // invalid keyword do

When the compiler encounters such an error, it should put out an informative message for
the user. At this point, it is not necessary for the compiler to generate an object program.
A compiler is not expected to guess the intended purpose of a program with syntax errors.
A good compiler, however, will continue scanning the input for additional syntax errors.

The output of the syntax analysis phase (if there are no syntax errors) could be a
stream of atoms or syntax trees. An atom is a primitive operation which is found in most
computer architectures, or which can be implemented using only a few machine language
instructions. Each atom also includes operands, which are ultimately converted to
memory addresses on the target machine. A syntax tree is a data structure in which the
interior nodes represent operations, and the leaves represent operands, as discussed in
Section 1.2.2. We will see that the parser can be used not only to check for proper syntax,
but to produce output as well. This process is called syntax directed translation.

Just as we used formal methods to specify and construct the lexical scanner, we
will do the same with syntax analysis. In this case however, the formal methods are far
more sophisticated. Most of the early work in the theory of compiler design focused on

69

syntax analysis. We will introduce the concept of a formal grammar as a means of not
only specifying the programming language, but also as a means of implementing the
syntax analysis phase of the compiler.

3.0 Grammars, Languages, and Pushdown Machines

Before we discuss the syntax analysis phase of a compiler, there are some concepts of
formal language theory which the student must understand. These concepts play a vital
role in the design of the compiler. They are also important for the understanding of
programming language design and programming in general.

3.0.1 Grammars

Recall our definition of language from Chapter 2 as a set of strings. We have already
seen two ways of formally specifying a language – regular expressions and finite state
machines. We will now define a third way of specifying languages, i.e. by using a
grammar. A grammar is a list of rules which can be used to produce or generate all the
strings of a language, and which does not generate any strings which are not in the
language. More formally a grammar consists of:

1. A finite set of characters, called the input alphabet, the input symbols, or terminal
symbols.

2. A finite set of symbols, distinct from the terminal symbols, called nonterminal
symbols, exactly one of which is designated the starting nonterminal.

3. A finite list of rewriting rules, also called productions, which define how strings in the
language may be generated. Each of these rewriting rules is of the form α z β, where
α and β are arbitrary strings of terminals and nonterminals, and α is not null.

The grammar specifies a language in the following way: beginning with the starting
nonterminal, any of the rewriting rules are applied repeatedly to produce a sentential
form, which may contain a mix of terminals and nonterminals. If at any point, the
sentential form contains no nonterminal symbols, then it is in the language of this gram-
mar. If G is a grammar, then we designate the language specified by this grammar as
L(G).

A derivation is a sequence of rewriting rules, applied to the starting nonterminal,
ending with a string of terminals. A derivation thus serves to demonstrate that a particular
string is a member of the language. Assuming that the starting nonterminal is S, we will
write derivations in the following form:

S ⇒ α ⇒ β ⇒ γ ⇒ ... ⇒ x

Section 3.0 Grammars, Languages, and Pushdown Machines

Chapter 3 Syntax Analysis70

where α, β, γ are strings of terminals and/or nonterminals, and x is a string of terminals.
In the following examples, we observe the convention that all lower case letters

and numbers are terminal symbols, and all upper case letters (or words which begin with
an upper case letter) are nonterminal symbols. The starting nonterminal is always S
unless otherwise specified. Each of the grammars shown in this chapter will be numbered
(G1, G2, G3, ...) for reference purposes. The first example is grammar G1, which
consists of four rules, the terminal symbols {0,1}, and the starting nonterminal, S.

G1:

1. S z 0S0
2. S z 1S1
3. S z 0
4. S z 1

An example of a derivation using this grammar is:

S ⇒ 0S0 ⇒ 00S00 ⇒ 001S100 ⇒ 0010100

Thus, 0010100 is in L(G1), i.e. it is one of the strings in the language of grammar G1.
The student should find other derivations using G1 and verify that G1 specifies the
language of palindromes of odd length over the alphabet {0,1}. A palindrome is a
string which reads the same from left to right as it does from right to left.

L(G1) = {0, 1, 000, 010, 101, 111, 00000, ... }

In our next example, the terminal symbols are {a,b} (ε represents the null string and is
not a terminal symbol).

G2:

1. S z ASB
2. S z ε
3. A z a
4. B z b

S ⇒ ASB ⇒ AASBB ⇒ AaSBB ⇒ AaBB ⇒ AaBb ⇒ Aabb ⇒ aabb

Thus, aabb is in L(G2). G2 specifies the set of all strings of a’s and b’s which contain
the same number of a’s as b’s and in which all the a’s precede all the b’s. Note that the
null string is permitted in a rewriting rule.

L(G2) = { ε, ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, ...}
= {anbn} such that n≥0

71

This language is the set of all strings of a’s and b’s which consist of zero or more a’s
followed by exactly the same number of b’s.

Two grammars, g1 and g2, are said to be equivalent if L(g1) = L(g2) – i.e., they
specify the same language. In this example (grammar G2) there can be several different
derivations for a particular string – i.e., the rewriting rules could have been applied in a
different sequence to arrive at the same result.

3.0.2 Classes of Grammars

In 1959 Noam Chomsky, a linguist, suggested a way of classifying grammars
according to complexity. The convention used below, and in the remaining chapters, is
that the term “string” includes the null string and that, in referring to grammars, the
following symbols will have particular meanings:

A,B,C,... A single nonterminal
a,b,c,... A single terminal
...,X,Y,Z A single terminal or nonterminal
...,x,y,z A string of terminals
α, β, γ, ... A string of terminals and nonterminals

Section 3.0 Grammars, Languages, and Pushdown Machines

Sample Problem 3.0 (a)

Show three different derivations using the grammar shown below:

1. S z a S A
2. S z B A
3. A z a b
4. B z b A

Solution

S ⇒ a S A ⇒ a B A A ⇒ a B a b A ⇒ a B a b a b
⇒ a b A a b a b ⇒ a b a b a b a b

S ⇒ a S A ⇒ a S a b ⇒ a B A a b ⇒ a b A A a b
⇒ a b a b A a b ⇒ a b a b a b a b

S ⇒ B A ⇒ b A A ⇒ b a b A ⇒ b a b a b

Note that in the solution to this problem we have shown that it is possible to have more
than one derivation for the same string: abababab.

Chapter 3 Syntax Analysis72

Here is Chomsky’s classification of grammars:

0. Unrestricted – An unrestricted grammar is one in which there are no restrictions on
the rewriting rules. Each rule may consist of an arbitrary string of terminals and
nonterminals on both sides of the arrow (though ε is permitted on the right side of the
arrow only). An example of an unrestricted rule would be:

SaB z cS

1. Context-Sensitive – A context-sensitive grammar is one in which each rule must be of
the form:

αAγ z αβγ

where α,β and γ are any string of terminals and nonterminals (including ε), and A
represents a single nonterminal. In this type of grammar, it is the nonterminal on the left
side of the rule (A) which is being rewritten, but only if it appears in a particular context,
α on its left and γ on its right. An example of a context-sensitive rule is shown below:

SaB z caB

which is another way of saying that an S may be rewritten as a c, but only if the S is
followed by aB (i.e. when S appears in that context). In the above example, the left
context is null.

2. Context-Free – A context-free grammar is one in which each rule must be of the form:

A z α

where A represents a single nonterminal and α is any string of terminals and nonterminals.
Most programming languages are defined by grammars of this type; consequently, we will
focus on context-free grammars. Note that both grammars G1 and G2, above, are
context-free. An example of a context-free rule is shown below:

A z aABb

3. Right Linear – A right linear grammar is one in which each rule is of the form:

A z aB
or
A z a

where A and B represent nonterminals, and a represents a terminal. Right linear gram-
mars can be used to define lexical items such as identifiers, constants, and keywords.

73

Unrestricted

Context-Sensitive

Context-Free

Right Linear

Note that every context-sensitive grammar is also in the unrestricted class. Every
context-free grammar is also in the context-sensitive and unrestricted classes. Every right
linear grammar is also in the context-free, context-sensitive, and unrestricted classes.
This is represented by the diagram of Figure 3.1, above, which depicts the classes of
grammars as circles. All points in a circle belong to the class of that circle.

A context-sensitive language is one for which there exists a context-sensitive
grammar. A context-free language is one for which there exists a context-free grammar.
A right linear language is one for which there exists a right linear grammar. These
classes of languages form the same hierarchy as the corresponding classes of grammars.

We conclude this section with an example of a context-sensitive grammar which
is not context-free.

G3:

1. S z aSBC
2. S z ε
3. aB z ab
4. bB z bb
5. C z c
6. CB z CX
7. CX z BX
8. BX z BC

S ⇒ aSBC ⇒ aaSBCBC ⇒ aaBCBC ⇒ aaBCXC ⇒ aaBBXC ⇒ aaBBCC
⇒ aabBCC ⇒ aabbCC ⇒ aabbCc ⇒ aabbcc

The student should perform other derivations to understand that

L(G3) = {ε, abc, aabbcc, aaabbbccc, ...}
 = {anbncn} where n≥0

Figure 3.1 Classes of Grammars

Section 3.0 Grammars, Languages, and Pushdown Machines

Chapter 3 Syntax Analysis74

3.0.3 Context-Free Grammars

Since programming languages are typically specified with context-free grammars, we are
particularly interested in this class of grammars. Although there are some aspects of
programming languages that cannot be specified with a context-free grammar, it is
generally felt that using more complex grammars would only serve to confuse rather than
clarify. In addition, context-sensitive grammars could not be used in a practical way to
construct the compiler.

Context-free grammars can be represented in a form called Backus-Naur Form
(BNF) in which nonterminals are enclosed in angle brackets <>, and the arrow is replaced
by a ::=, as shown in the following example:

<S> ::= a <S> b

which is the BNF version of the grammar rule:

S z a S b

This form also permits multiple definitions of one nonterminal on one line, using the
alternation vertical bar (|).

i.e., the language of grammar G3 is the set of all strings consisting of a’s followed by
exactly the same number of b’s followed by exactly the same number of c’s. This is an
example of a context-sensitive language which is not also context-free; i.e., there is no
context-free grammar for this language. An intuitive understanding of why this is true is
beyond the scope of this text.

Sample Problem 3.0 (b):

Classify each of the following grammar rules according to Chomsky’s classification of
grammars (in each case give the largest – i.e., most restricted – classification type that
applies):

Solution:

1. aSb z aAcBb Type 1, Context-Sensitive
2. B z aA Type 3, Right Linear
3. a z ABC Type 0, Unrestricted
4. S z aBc Type 2, Context-Free
5. Ab z b Type 1, Context-Sensitive
6. AB z BA Type 0, Unrestricted

75

<S> ::= a <S> b | ε

which is the BNF version of two grammar rules:

S z a S b
S z ε

BNF and context-free grammars are equivalent forms, and we choose to use context-free
grammars only for the sake of appearance.

We now present some definitions which apply only to context-free grammars. A
derivation tree is a tree in which each interior node corresponds to a nonterminal in a
sentential form and each leaf node corresponds to a terminal symbol in the derived string.
An example of a derivation tree for the string aaabbb, using grammar G2, is shown in
Figure 3.2.

A context-free grammar is said to be ambiguous if there is more than one
derivation tree for a particular string. In natural languages, ambiguous phrases are those
which may have more than one interpretation. Thus, the derivation tree does more than
show that a particular string is in the language of the grammar – it shows the structure of
the string, which may affect the meaning or semantics of the string. For example,
consider the following grammar for simple arithmetic expressions:

G4:

1. Expr z Expr + Expr
2. Expr z Expr ∗ Expr
3. Expr z (Expr)

S

A S B

A S B

BA S

a b

b

b

a

a ε

Figure 3.2 A Derivation Tree for aaabbb Using Grammar G2

Section 3.0 Grammars, Languages, and Pushdown Machines

Chapter 3 Syntax Analysis76

4. Expr z var
5. Expr z const

Figure 3.3 shows two different derivation trees for the string var+var∗var,
consequently this grammar is ambiguous. It should be clear that the second derivation
tree in Figure 3.3 represents a preferable interpretation because it correctly shows the
structure of the expression as defined in most programming languages (since multiplica-
tion takes precedence over addition). In other words, all subtrees in the derivation tree
correspond to subexpressions in the derived expression. A nonambiguous grammar for
expressions will be given in Section 3.1.

A left-most derivation is one in which the left-most nonterminal is always the
one to which a rule is applied. An example of a left-most derivation for grammar G2
above is:

S ⇒ ASB ⇒ aSB ⇒ aASBB ⇒ aaSBB ⇒ aaBB ⇒ aabB ⇒ aabb

We have a similar definition for right-most derivation. A left-most (or right-most)
derivation is a normal form for derivations; i.e., if two different derivations can be
written in the same normal form, they are equivalent in that they correspond to the same
derivation tree. Consequently, there is a one-to-one correspondence between derivation
trees and left-most (or right-most) derivations for a grammar.

3.0.4 Pushdown Machines

Like the finite state machine, the pushdown machine is another example of an abstract or
theoretic machine. Pushdown machines can be used for syntax analysis, just as finite state
machines are used for lexical analysis. A pushdown machine consists of:

1. A finite set of states, one of which is designated the starting state.

Figure 3.3 Two Different Derivation Trees for the String var + var ∗ var

 Expr Expr

 Expr * Expr Expr + Expr

 Expr + Expr var var Expr * Expr

 var var var var

77

Sample Problem 3.0 (c)

Determine whether the following grammar is ambiguous. If so, show two different
derivation trees for the same string of terminals, and show a left-most derivation corre-
sponding to each tree.

1. S z a S b S
2. S z a S
3. S z c

Solution: S S

 a S b S a S

 a S c a S b S

 c c c

S ⇒⇒⇒⇒⇒ a S b S ⇒⇒⇒⇒⇒ a a S b S ⇒⇒⇒⇒⇒ a a c b S ⇒⇒⇒⇒⇒ a a c b c
S ⇒⇒⇒⇒⇒ a S ⇒⇒⇒⇒⇒ a a S b S ⇒⇒⇒⇒⇒ a a c b S ⇒⇒⇒⇒⇒ a a c b c

We note that the two derviation trees correspond to two different left-most derivations,
and the grammar is ambiguous.

2. A finite set of input symbols, the input alphabet.

3. An infinite stack and a finite set of stack symbols which may be pushed on top or
removed from the top of the stack in a last-in first-out manner. The stack symbols
need not be distinct from the input symbols. The stack must be initialized to contain
at least one stack symbol before the first input symbol is read.

4. A state transition function which takes as arguments the current state, the current input
symbol, and the symbol currently on top of the stack; its result is the new state of the
machine.

5. On each state transition the machine may advance to the next input symbol or retain
the input pointer (i.e., not advance to the next input symbol).

6. On each state transition the machine may perform one of the stack operations, push(X)
or pop, where X is one of the stack symbols.

Section 3.0 Grammars, Languages, and Pushdown Machines

Chapter 3 Syntax Analysis78

7. A state transition may include an exit from the machine labeled either Accept or Reject.
This determines whether or not the input string is in the specified language.

Note that without the infinite stack, the pushdown machine is nothing more than a finite
state machine as defined in Chapter 2. Also, the pushdown machine halts by taking an
exit from the machine, whereas the finite state machine halts when all input symbols have
been read.

An example of a pushdown machine is shown, above, in Figure 3.4, in which the
rows are labeled by stack symbols and the columns are labeled by input symbols. The N
character is used as an endmarker, indicating the end of the input string, and the ,
symbol is a stack symbol which we are using to mark the bottom of the stack so that we
can test for the empty stack condition. The states of the machine are S1 (in our examples
S1 will always be the starting state) and S2, and there is a separate transition table for
each state. Each cell of those tables shows a stack operation (push() or pop), an input
pointer function (advance or retain), and the next state. “Accept” and “Reject” are exits

Figure 3.4 A Pushdown Machine to Accept the Language of Grammar G2

Figure 3.5 Sequence of Stacks as Pushdown Machine of Figure 3.4 Accepts the Input
String aabb

a a X b b
z X z X z X z X

, , , , ,

S1 S1 S1 S2 S2 Ac

S1 a b N

Push (X) Pop
X Advance Advance Reject

S1 S2
Push (X)

, Advance Reject Accept ,

Initial
S2 a b N Stack

 Pop
X Reject Advance Reject

S2

, Reject Reject Accept

79

from the machine. The language of strings accepted by this machine is anbn where n•0 –
i.e., the same language specified by grammar G2, above. To see this, the student should
trace the operation of the machine for a particular input string. A trace showing the
sequence of stack configurations and states of the machine for the input string aabb is
shown in Figure 3.5. Note that while in state S1 the machine is pushing X's on the stack
as each a is read, and while in state S2 the machine is popping an X off the stack as each
b is read.

An example of a pushdown machine which accepts any string of correctly
balanced parentheses is shown in Figure 3.6. In this machine, the input symbols are left
and right parentheses, and the stack symbols are X and ,. Note that this language could
not be accepted by a finite state machine because there could be an unlimited number of
left parentheses before the first right parenthesis. The student should compare the
language accepted by this machine with the language of grammar G2.

The pushdown machines, as we have described them, are purely deterministic
machines. A deterministic machine is one in which all operations are uniquely and
completely specified regardless of the input (computers are deterministic), whereas a
nondeterministic machine may be able to choose from zero or more operations in an
unpredictable way. With nondeterministic pushdown machines it is possible to specify a
larger class of languages. In this text we will not be concerned with nondeterministic
machines.

We define a pushdown translator to be a machine which has an output function
in addition to all the features of the pushdown machine described above. We may include
this output function in any of the cells of the state transition table to indicate that the
machine produces a particular output (e.g. Out(x)) before changing to the new state.

We now introduce an extension to pushdown machines which will make them
easier to work with, but will not make them any more powerful. This extension is the
Replace operation designated Rep(X,Y,Z,...), where X, Y, and Z are any stack
symbols. The replace function replaces the top stack symbol with all the symbols in its
argument list. The Replace function is equivalent to a pop operation followed by a push
operation for each symbol in the argument list of the replace function. For example, the
function Rep (Term,+,Expr) would pop the top stack symbol and push the symbols
Term, +, and Expr in that order, as shown on the stack in Figure 3.7 (see p. 80). (In
this case, the stack symbols are separated by commas). Note that the symbols to be
pushed on the stack are pushed in the order listed, left to right, in the Replace function.

Figure 3.6 Pushdown Machine to Accept
Any String of Well-Balanced Parentheses

Section 3.0 Grammars, Languages, and Pushdown Machines

S1 () N

Push (X) Pop
X Advance Advance Reject

S1 S1
Push (X)

, Advance Reject Accept ,

S1
Initial
Stack

Chapter 3 Syntax Analysis80

Figure 3.7 Effect on Stack of
Rep (Term, +, Expr)

An extended pushdown machine is one which
can use a Replace operation in addition to push
and pop.

An extended pushdown machine is not
capable of specifying any languages that cannot
be specified with an ordinary pushdown machine
– it is simply included here as a convenience to
simplify some problem solutions. An extended
pushdown translator is a pushdown translator
which has a replace operation as defined above.

An example of an extended pushdown translator, which translates simple infix
expressions involving addition and multiplication to postfix is shown in Figure 3.8, in
which the input symbol a represents any variable or constant. An infix expression is one
in which the operation is placed between the two operands, and a postfix expression is
one in which the two operands precede the operation:

Infix Postfix
2 + 3 2 3 +
2 + 3 ∗ 5 2 3 5 ∗ +
2 ∗ 3 + 5 2 3 ∗ 5 +
(2 + 3) ∗ 5 2 3 + 5 ∗

Note that parentheses are never used in postfix notation. In Figure 3.8 (see p. 81) the
default state transition is to stay in the same state, and the default input pointer operation
is advance. States S2 and S3 show only a few input symbols and stack symbols in their
transition tables, because those are the only configurations which are possible in those
states. The stack symbol E represents an expression, and the stack symbol L represents a
left parenthesis. Similarly, the stack symbols Ep and Lp represent an expression and a
left parenthesis on top of a plus symbol, respectively.

3.0.5 Correspondence Between Machines and Classes of Languages

We now examine the class of languages which can be specified by a particular machine.
A language can be accepted by a finite state machine if, and only if, it can be specified
with a right linear grammar (and if, and only if, it can be specified with a regular expres-
sion). This means that if we are given a right linear grammar, we can construct a finite
state machine which accepts exactly the language of that grammar. It also means that if
we are given a finite state machine, we can write a right linear grammar which specifies
the same language accepted by the finite state machine.

There are algorithms which can be used to produce any of these three forms
(finite state machines, right linear grammars, and regular expressions), given one of the
other two (see, for example, Hopcroft and Ullman [1979]). However, here we rely on the
student's ingenuity to solve these problems.

We have a similar correspondence between machines and context-free lan-
guages. Any language which can be accepted by a deterministic pushdown machine can

Expr
+

Term Term
(z (
, ,

81

S1 a + * () N

pop pop
E Reject push(+) push(*) Reject retain retain

S3
pop pop pop

Ep Reject out(+) push(*) Reject retain retain
S2 S2

push(E)
L out(a) Reject Reject push(L) Reject Reject

push(E)

Lp out(a) Reject Reject push(L) Reject Reject

push(E)

Ls out(a) Reject Reject push(L) Reject Reject

push(Ep)

+ out(a) Reject Reject push(Lp) Reject Reject

pop

* out(a*) Reject Reject push(Ls) Reject Reject

push(E)

, out(a) Reject Reject push(L) Reject Accept

S2) N S3)
pop pop Rep(E)

+ out(+) out(+) L S1
retain,S3 retain,S1

pop Rep(E)

* out(*) Reject Lp S1

S1 ,

pop
E retain Initial

Stack
pop

Ls retain
S2

, Reject

Section 3.0 Grammars, Languages, and Pushdown Machines

Figure 3.8 Pushdown Translator for
Infix to Postfix Expressions

be specified by a context-free grammar. However, there are context-free languages which
cannot be accepted by a deterministic pushdown machine. First consider the language,
P
c
, of palindromes over the alphabet {0,1} with centermarker, c. P

c
 = wcwr, where

w is any string of 0's and 1's, and wr is w reversed. A grammar for P
c
 is shown below:

Chapter 3 Syntax Analysis82

Sample Problem 3.0 (d)

Show the sequence of stacks and states which the pushdown machine of Figure 3.8
would go through if the input were: a+(a∗a)

Solution:

Sample Problem3.0 (e)

Give a right linear grammar for each of the languages specified in Sample Problem
2.0 (a) (see p. 33).

Solution:

(1) Strings over {0,1} containing
an odd number of 0's.

1. S z 0
2. S z 1S
3. S z 0A
4. A z 1
5. A z 1A
6. A z 0S

(2) Strings over {0,1} which
contain three consecutive 1's.

1. S z 1S
2. S z 0S
3. S z 1A
4. A z 1B
5. B z 1C
6. B z 1
7. C z 1C
8. C z 0C
9. C z 1
10. C z 0

*
E E E

Lp Lp Lp Lp Lp Ep
a + + (+ a + * + a +) + + N
z E z E z E z E z E z E z E z E z

, Out(a) , , , Out(a) , , Out(a*) , , ,

S1 S1 S1 S1 S1 S1 S1 S3 S1

+
E z E z Output: aaa*+
, Out(+) , ,

S2 S1 S1 Accept

83

(3) Strings over {0,1} which
contain exactly three 0's.

1. S z 1S
2. S z 0A
3. A z 1A
4. A z 0B
5. B z 1B
6. B z 0C
7. B z 0
8. C z 1C
9. C z 1

(4) Strings over {0,1} which
contain an odd number of zeros
and an even number of 1's.

1. S z 0A
2. S z 1B
3. S z 0
4. A z 0S
5. A z 1C
6. B z 0C
7. B z 1S
8. C z 0B
9. C z 1A
10. C z 1

S z 0S0
S z 1S1
S z c

Some examples of strings in this language are: c, 0c0, 110c011, 111c111.
The student should verify that there is a deterministic pushdown machine which

will accept P
c
. However, the language, P, of palindromes over the alphabet {0,1}

without centermarker cannot be accepted by a deterministic pushdown machine. Such a
machine would push symbols on the stack as they are input, but would never know when
to start popping those symbols off the stack; i.e., without a centermarker it never knows
for sure when it is processing the mirror image of the initial portion of the input string.
For this language a nondeterministic pushdown machine, which is one that can pursue
several different courses of action, would be needed. Nondeterministic machines are
beyond the scope of this text. A grammar for P is shown below:

S z 0S0
S z 1S1
S z 0
S z 1
S z ε

The subclass of context-free languages which can be accepted by a deterministic push-
down machine are called deterministic context-free languages.

Section 3.0 Grammars, Languages, and Pushdown Machines

Chapter 3 Syntax Analysis84

(a) S z a S
S z b A
A z b S
A z c

(c) S z a S B c
a S A z a S b b
B c z A c
S b z b
A z a

2. Classify the grammars of Problem 1 according to Chomsky’s definitions (give the most
restricted classification applicable).

3. Show an example of a grammar rule which is:

(a) Right Linear
(b) Context-Free, but not Right Linear
(c) Context-Sensitive, but not Context-Free
(d) Unrestricted, but not Context-Sensitive

4. For each of the given input strings show a derivation tree using the following
grammar.

1. S z S a A
2. S z A
3. A z A b B
4. A z B
5. B z c S d
6. B z e
7. B z f

Exercises 3.0

1. Show three different derivations using each of the following grammars, with
starting nonterminal S.

(b) S z a B c
B z A B
A z B A
A z a
B z ε

(d) S z a b
a z a A b B
A b B z ε

85

(a) eae (b) ebe (c) eaebe
(d) ceaedbe (e) cebedaceaed

5. Show a left-most derivation for each of the following strings, using grammar G4
of Section 3.0.3.

(a) var + const (b) var + var ∗ var
(c) (var) (d) (var + var) ∗ var

6. Show derivation trees which correspond to each of your solutions to Problem 5.

7. Some of the following grammars may be ambiguous; for each ambiguous gram-
mar, show two different derivation trees for the same input string:

8. Show a pushdown machine that will accept each of the following languages:

(a) {anbm} m>n>0 (b) a∗(a+b)c∗

(c) {anbncmdm} m,n >= 0 (d) {anbmcmdn} m,n > 0
(e) {Nic(Ni+1)r}

– where Ni is the binary representation of the integer i, and (Ni)r is
Ni written right to left (reversed). Example for, i=19:
10011c00101
Hint: Use the first state to push N

i
 onto the stack until the c is read. Then use

another state to pop the stack as long as the input is the complement of the
stack symbol, until the top stack symbol and the input symbol are equal. Then

Section 3.0 Grammars, Languages, and Pushdown Machines

(b) 1. S z A a A
2. S z A b A
3. A z c
4. A z S

(d) 1. S z a S b c
2. S z A B
3. A z a
4. B z b

(a) 1. S z a S b
2. S z A A
3. A z c
4. A z S

(c) 1. S z a S b S
2. S z a S
3. S z c

Chapter 3 Syntax Analysis86

use a third state to ensure that the remaining input symbols match the symbols
on the stack.

9. Show the output and the sequence of stacks for the machine of Figure 3.8 for each
of the following input strings:

(a) a+a∗aN (b) (a+a)∗aN
(c) (a)N (d) ((a))N

10. Show a grammar and pushdown machine for the language of prefix expressions
involving addition and multiplication. Use the terminal symbol a to represent a
variable or constant. Example: ∗+aa∗aa

11. Show a pushdown machine to accept palindromes over {0,1} with
centermarker c. This is the language, Pc, referred to in Section 3.0.5.

12. Show a grammar for the language of valid regular expressions over the alphabet
{0,1}. Hint: Think about grammars for arithmetic expressions.

87

3.1 Ambiguities in Programming Languages

Ambiguities in grammars for programming languages should be avoided. One way to
resolve an ambiguity is to rewrite the grammar of the language so as to be unambiguous.
For example, the grammar G4 in Section 3.0.3 (see p. 75) is a grammar for simple
arithmetic expressions involving only addition and multiplication. As we observed, it is
an ambiguous grammar because there exists an input string for which we can find more
than one derivation tree. This ambiguity can be eliminated by writing an equivalent
grammar which is not ambiguous:

G5:

1. Expr z Expr + Term
2. Expr z Term
3. Term z Term ∗ Factor
4. Term z Factor
5. Factor z (Expr)
6. Factor z var
7. Factor z const

A derivation tree for the input string var + var ∗ var is shown, below, in Figure
3.9. The student should verify that there is no other derivation tree for this input string,
and that the grammar is not ambiguous. Also note that in any derivation tree using this
grammar, subtrees correspond to subexpressions, according to the usual precedence rules.
The derivation tree in Figure 3.9 indicates that the multiplication takes precedence over
the addition. The left associativity rule would also be observed in a derivation tree for
var + var + var.

Another example of ambiguity in programming languages is the conditional
statement as defined by grammar G6:

Figure 3.9 A Derivation Tree for var + var ∗ var Using Grammar G5

 Expr

 Expr + Term

 Term Term * Factor

 Factor Factor var

 var var

Chapter 3 Syntax Analysis88

G6:

1. Stmt z IfStmt
2. IfStmt z if (Expr) Stmt
3. IfStmt z if (Expr) Stmt else Stmt

Think of grammar G6 as part of a larger grammar in which the nonterminal Stmt is
completely defined. For the present example we will show derivation trees in which some
of the leaves are left as nonterminals. Two different derivation trees for the input string
if (Expr) if (Expr) Stmt else Stmt are shown, above, in Figure 3.10. In
this grammar, an Expr is interpreted as False (0) or True (non-zero), and a Stmt is

Figure 3.10 Two Different Derivation Trees for: if (Expr) if (Expr)
Stmt else Stmt

 Stmt

 IfStmt

if (Expr) Stmt else Stmt

 IfStmt

 if (Expr) Stmt

 Stmt

 IfStmt

 if (Expr) Stmt

 IfStmt

 if (Expr) Stmt else Stmt

89

any statement, including if statements. This ambiguity is normally resolved by inform-
ing the programmer that elses always are associated with the closest previous unmatched
ifs. Thus, the second derivation tree in Figure 3.10 corresponds to the correct interpreta-
tion. The grammar G6 can be rewritten with an equivalent grammar which is not
ambiguous:

G7:

1. Stmt z IfStmt
2. IfStmt z Matched
3. IfStmt z Unmatched
4. Matched z if (Expr) Matched else Matched
5. Matched z OtherStmt
6. Unmatched z if (Expr) Stmt
7. Unmatched z if (Expr) Matched else Unmatched

This grammar differentiates between the two different kinds of if statements, those
with a matching else (Matched) and those without a matching else (Un-
matched). The nonterminal OtherStmt would be defined with rules for statements

Figure 3.11 A Derivation Tree for if (Expr) if (Expr) OtherStmt
else OtherStmt using Grammar G7

Section 3.1 Ambiguities in Programming Languages

 Stmt

 IfStmt

 Unmatched

if (Expr) Stmt

 IfStmt

 Matched

 if (Expr) Matched else Matched

 OtherStmt OtherStmt

Chapter 3 Syntax Analysis90

other than if statements (while, expression, for, ...). A derivation tree for the
string if (Expr) if (Expr) OtherStmt else OtherStmt is shown
in Figure 3.11 (see p. 89).

Exercises 3.1

1. Show derivation trees for each of the following input strings using grammar G5.

(a) var ∗ var (b) (var ∗ var) + var
(c) (var) (d) var ∗ var ∗ var

2. Extend grammar G5 to include subtraction and division so that subtrees of any
derivation tree correspond to subexpressions.

3. Rewrite your grammar from Problem 2 to include an exponentiation operator, ̂ ,
such that x^y is xy. Again, make sure that subtrees in a derivation tree correspond to
subexpressions. Be careful, as exponentiation is usually defined to take precedence
over multiplication and associate to the right: 2∗3^2 = 18 and 2^2^3 =
256.

4. Two grammars are said to be isomorphic if there is a one-to-one correspondence
between the two grammars for every symbol of every rule. For example, the
following two grammars are seen to be isomorphic, simply by making the follow-
ing substitutions: substitute B for A, x for a, and y for b.

S z a A b S z x B y
A z b A a B z y B x
A z a B z x

Which grammar in Section 3.1 is isomorphic to the grammar of Problem 4 in
Section 3.0?

91

5. How many different derivation trees are there for each of the following if statements
using grammar G6?

(a) if (Expr) OtherStmt
(b) if (Expr) OtherStmt else if (Expr) OtherStmt
(c) if (Expr) if (Expr) OtherStmt else Stmt else

OtherStmt
(d) if (Expr) if (Expr) if (Expr) Stmt else

OtherStmt

6. In the original C language it is possible to use assignment operators: var =+
expr means var = var + expr and var =- expr means var =
var - expr. In later versions of C, the operator is placed before the equal
sign:

var += expr and var -= expr.

Why was this change made?

Section 3.1 Ambiguities in Programming Languages

Chapter 3 Syntax Analysis92

The boy hugged the dog of a close neighbor

Article Noun Article Noun Article Adjective Noun

NounPhrase Preposition NounPhrase

Subject NounPhrase PrepositionalPhrase

 Verb DirectObject

 Predicate

3.2 The Parsing Problem

The student may recall, from high school days, the problem of diagramming English
sentences. You would put words together into groups and assign syntactic types to them,
such as noun phrase, predicate, and prepositional phrase. An example of a diagrammed
English sentence is shown, below, in Figure 3.12. The process of diagramming an
English sentence corresponds to the problem a compiler must solve in the syntax analysis
phase of compilation.

The syntax analysis phase of a compiler must be able to solve the parsing
problem for the programming language being compiled: Given a grammar, G, and a
string of input symbols, decide whether the string is in L(G); also, determine the structure
of the input string. The solution to the parsing problem will be “yes” or “no”, and, if
“yes”, some description of the input string’s structure, such as a derivation tree.

A parsing algorithm is one which solves the parsing problem for a particular
class of grammars. A good parsing algorithm will be applicable to a large class of
grammars and will accommodate the kinds of rewriting rules normally found in grammars
for programming languages. For context-free grammars, there are two kinds of parsing
algorithms – bottom up and top down. These terms refer to the sequence in which the
derivation tree of a correct input string is built. A parsing algorithm is needed in the
syntax analysis phase of a compiler.

There are parsing algorithms which can be applied to any context-free grammar,
employing a complete search strategy to find a parse of the input string. These algorithms
are generally considered unacceptable since they are too slow; they cannot run in “poly-
nomial time” (see Aho and Ullman [1972], for example).

Figure 3.12 Diagram of an English sentence

93

3.3 Chapter Summary

Chapter 3, on syntax analysis, serves as an introduction to the chapters on parsing
(chapters 4 and 5). In order to understand what is meant by parsing and how to use
parsing algorithms, we first introduce some theoretic and linguistic concepts and defini-
tions.

We define grammar as a finite list of rewriting rules involving terminal and
nonterminal symbols, and we classify grammars in a hierarchy according to complexity.
As we impose more restrictions on the rewriting rules of a grammar, we arrive at gram-
mars for less complex languages. The four classifications of grammars (and languages)
are (0) unrestricted, (1) context-sensitive, (2) context-free, and (3) right linear. The
context-free grammars will be most useful in the syntax analysis phase of the compiler,
since they are used to specify programming languages.

We define derivations and derivation trees for context-free grammars, which
show the structure of a derived string. We also define ambiguous grammars as those
which permit two different derivation trees for the same input string.

Pushdown machines are defined as machines having an infinite stack and are
shown to be the class of machines which corresponds to a subclass of context-free
languages. We also define pushdown translators as pushdown machines with an output
function, as this capability will be needed in compilers.

We take a careful look at ambiguities in programming languages, and see ways
in which these ambiguities can be resolved. In particular, we look at grammars for simple
arithmetic expressions and if-else statements.

Finally, we define the parsing problem: given a grammar and a string of input
symbols, determine whether the string belongs to the language of the grammar, and, if so,
determine its structure. We show that this problem corresponds exactly to the problem of
diagramming an English sentence. The two major classifications of parsing algorithms
are top-down, and bottom-up, corresponding to the sequence in which a derivation tree is
built or traversed.

Section 3.3 Chapter Summary

The parsing problem was defined in Section 3.2 (see p. 92) as follows: given a grammar
and an input string, determine whether the string is in the language of the grammar, and, if
so, determine its structure. Parsing algorithms are usually classified as either top down or
bottom up, which refers to the sequence in which a derivation tree is built or traversed; in
this chapter we consider only top down algorithms.

Chapter 4

Top Down Parsing

Figure 4.1 A Derivation
Tree for abbbaccb

In a top down parsing algorithm, grammar rules are
applied in a sequence which corresponds to a general top
down direction in the derivation tree. For example, consider
the grammar G8:

G8:

1. S z a S b
2. S z b A c
3. A z b S
4. A z a

We show a derivation tree for the input string
abbbaccb in Figure 4.1. A parsing algorithm will read one
input symbol at a time and try to decide, using the grammar,
whether the input string can be derived. A top down algorithm will begin with the starting
nonterminal and try to decide which rule of the grammar should be applied. In the example
of Figure 4.1, the algorithm is able to make this decision by examining a single input
symbol and comparing it with the first symbol on the right side of the rules. Figure 4.2
(see p. 95) shows the sequence of events, as input symbols are read, in which the
numbers in circles indicate which grammar rules are being applied, and the underscored

 S

 a S b

 b A c

 b S

 b A c

 a

95

Figure 4.2 Sequence of Events in a Top Down Parse

symbols are the ones which have been read by the parser. Careful study of Figures 4.1
(see p. 94) and 4.2, above, reveals that this sequence of events corresponds to a top down
construction of the derivation tree.

In this chapter, we describe some top down parsing algorithms and, in addition,
we show how they can be used to generate output in the form of atoms or syntax trees.
This is known as syntax directed translation. However, we need to begin by describing
the subclass of context-free grammars which can be parsed top down. In order to do this
we begin with some preliminary definitions from discrete mathematics.

4.0 Relations and Closure

Whether working with top down or bottom up parsing algorithms, we will always be
looking for ways to automate the process of producing a parser from the grammar for the
source language. This will require, in most cases, the use of mathematics involving sets
and relations. A relation is a set of ordered pairs. Each pair may be listed in parentheses
and separated by commas, as in the following example:

R1

(a,b)
(c,d)
(b,a)
(b,c)
(c,c)

Note that (a,b) and (b,a) are not the same. Sometimes the name of a relation is used
to list the elements of the relation:

4<9
5<22
2<3
-3<0

If R is a relation, then the reflexive transitive closure of R is designated R*; it is
a relation made up of the same elements of R with the following properties:

1. All pairs of R are also in R*.
2. If (a,b) and (b,c) are in R*, then (a,c) is in R* (Transitive).

Section 4.0 Relations and Closure

S ⇒ aSb ⇒ abAcb ⇒ abbScb ⇒ abbbAccb ⇒ abbbaccb

 1 2 3 2 4

Chapter 4 Top Down Parsing96

a b c

a

Transitive

Reflexive

3. If a is in one of the pairs of R, then (a,a) is in R* (Reflexive).

A diagram using an arrow to represent the relation can be used to show what we mean by
transitive and reflexive properties and is shown, above, in Figure 4.3. In rule 2 for
transitivity note that we are searching the pairs of R*, not R. This means that as addi-
tional pairs are added to the closure for transitivity, those new pairs must also be checked
to see whether they generate new pairs.

Figure 4.3 Reflexive and Transitive Elements of a Relation

Sample Problem 4.0

Show R1* the reflexive transitive closure of R1.

Solution:

R1*:

(a,b)
(c,d)
(b,a) (from R1)
(b,c)
(c,c)

(a,c)
(b,d) (transitive)
(a,d)

(a,a)
(b,b) (reflexive)
(d,d)

97

Note in Sample Problem 4.0 that we computed the transitive entries before the reflexive
entries. The pairs can be listed in any order, but reflexive entries can never be used to
derive new transitive pairs, consequently the reflexive pairs were listed last.

Exercises 4.0

1. Show the reflexive transitive closure of each of the following relations:

(a) (a,b) (b) (a,a) (c) (a,b)
(a,d) (a,b) (c,d)
(b,c) (b,b) (b,c)

(d,a)

2. The mathematical relation “less than” is denoted by the symbol <. Some of the elements
of this relation are: (4,5) (0,16) (-4,1) (1.001,1.002). What
do we normally call the relation which is the reflexive transitive closure of “less than”?

3. Write a program in Pascal or C++ to read in from the keyboard, ordered pairs (of
strings, with a maximum of eight characters per string) representing a relation, and print
out the reflexive transitive closure of that relation in the form of ordered pairs. You
may assume that there will be, at most, 100 ordered pairs in the given relation, involving,
at most, 100 different symbols. (Hint: Form a boolean matrix which indicates whether
each symbol is related to each symbol).

Section 4.0 Relations and Closure

Chapter 4 Top Down Parsing98

4.1 Simple Grammars

At this point, we wish to show how top down parsers can be constructed for a given
grammar. We begin by restricting the form of context-free grammar rules so that it will be
very easy to construct a parser for the grammar. These gammars will not be very useful,
but will serve as an appropriate introduction to top down parsing.

A grammar is a simple grammar if every rule is of the form:

A z aα

(where A represents any nonterminal, a represents any terminal, and α represents any
string of terminals and nonterminals), and every pair of rules defining the same nontermi-
nal begin with different terminals on the right side of the arrow. For example, the grammar
G9 below is simple, but the grammar G10 is not simple because it contains an epsilon rule
and the grammar G11 is not simple because two rules defining S begin with the same
terminal.

G9: G10: G11:

S z aSb S z aSb S z aSb
S z b S z ε S z a

A language which can be specified by a simple grammar is said to be a simple
language. Simple languages will not be very useful in compiler design, but they serve as
a good way of introducing the class of languages which can be parsed top down. The
parsing algorithm must decide which rule of the grammar is to be applied as a string is
parsed. The set of input symbols (i.e. terminal symbols) which imply the application of a
grammar rule is called the selection set of that rule. For simple grammars, the selection set
of each rule always contains exactly one terminal symbol – the one beginning the right
hand side. In grammar G9, the selection set of the first rule is {a} and the selection set of
the second rule is {b}. In top down parsing in general, rules defining the same
nonterminal must have disjoint (non-intersecting) selection sets, so that it is always
possible to decide which grammar rule is to be applied.

For example, consider grammar G12 below:

G12:

1. S z a b S d
2. S z b a S d
3. S z d

Figure 4.4 (see p. 99) illustrates the construction of a derivation tree for the input string
abbaddd, using grammar G12. The parser must decide which of the three rules to apply
as input symbols are read. In Figure 4.4 the underscored input symbol is the one which

99

determines which of the three rules is to be applied, and is thus used to guide the parser
as it attempts to build a derivation tree. The input symbols which direct the parser to use
a particular rule are the members of the selection set for that rule. In the case of simple
grammars, there is exactly one symbol in the selection set for each rule, but for other
context-free grammars, there could be several input symbols in the selection set.

4.1.1 Parsing Simple Languages with Pushdown Machines

In this section, we show that it is always possible to construct a one-state pushdown
machine to parse the language of a simple grammar. Moreover, the construction of the
machine follows directly from the grammar; i.e., it can be done mechanically. Consider the
simple grammar G13 below:

G13:

1. S z aSB
2. S z b
3. B z a
4. B z bBa

Figure 4.4 Using the Input Symbol to Guide the Parsing of the String abbaddd

Section 4.1 Simple Grammars

 rule 1
a ⇒ S

 a b S d

 rule 2
abb ⇒ S

 a b S d

 b a S d

 rule 3
abbad ⇒ S

 a b S d

 b a S d

 d

Chapter 4 Top Down Parsing100

We now wish to construct an extended pushdown machine to parse input strings
consisting of a’s and b’s, according to the rules of this grammar. The strategy we use is
to begin with a stack containing a bottom marker (,) and the starting nonterminal, S. As
the input string is being parsed, the stack will always correspond to the portion of the
input string which has not been read. As each input symbol is read, the machine will
attempt to apply one of the four rules in the grammar. If the top stack symbol is S, the
machine will apply either rule 1 or 2 (since they define an S); whereas if the top stack
symbol is B, the machine will apply either rule 3 or rule 4 (since they define a B). The
current input symbol is used to determine which of the two rules to apply by comparing it
with the selection sets (this is why we impose the restriction that rules defining the same
nonterminal have disjoint selection sets).

Once we have decided which rule is to be entered in each cell of the pushdown
machine table, it is applied by replacing the top stack symbol with the symbols on the
right side of the rule in reverse order, and retaining the input pointer. This means that we
will be pushing terminal symbols onto the stack in addition to nonterminals. When the
top stack symbol is a terminal, all we need to do is ascertain that the current input symbol
matches that stack symbol. If this is the case, simply pop the stack and advance the input
pointer. Otherwise, the input string is to be rejected. When the end of the input string is
encountered, the stack should be empty (except for ,) in order for the string to be
accepted. The extended pushdown machine for grammar G13 is shown in Figure 4.5,
below. The sequence of stack configurations produced by this machine for the input aba
is shown in Figure 4.6 (see p. 101).

In general, given a simple grammar, we can always construct a one state
extended pushdown machine which will parse any input string. The construction of the
machine could be done automatically:

1. Build a table with each column labeled by a terminal symbol (and endmarker N) and
each row labeled by a nonterminal or terminal symbol (and bottom marker ,).

Figure 4.5 Pushdown Machine for Grammar G13

a b N

Rep (Bsa) Rep (b) Reject
S Retain Retain

Rep (a) Rep (aBb) Reject
B Retain Retain

pop Reject Reject
a Advance S

Reject pop Reject ,

b Advance
, Reject Reject Accept Initial

Stack

101

2. For each grammar rule of the form A z aα, fill in the cell in row A and column a with:
REP(αra), retain, where αr represents α reversed (here, a represents a terminal,
and α represents a string of terminals and nonterminals).

3. Fill in the cell in row a and column a with pop, advance, for each terminal symbol
a.

4. Fill in the cell in row , and column N with Accept.

5. Fill in all other cells with Reject.

6. Initialize the stack with , and the starting nonterminal..

This means that we could write a program which would accept, as input, any simple
grammar and produce, as output, a pushdown machine which will accept any string in the
language of that grammar and reject any string not in the language of that grammar. There
is software which is able to do this for a grammar for a high level programming language –
i.e., which is able to generate a parser for a compiler. Software which generates a compiler
automatically from specifications of a programming language is called a compiler-
compiler. We will study a popular compiler-compiler called yacc in the section on bottom
up parsing.

4.1.2 Recursive Descent Parsers for Simple Grammars

A second method for implementing a parser for simple grammars is to use a method known
as recursive descent. In this method, the parser is written using a procedure oriented
language, such as Pascal or C. A function is written for each nonterminal in the grammar.
The purpose of this function is to scan a portion of the input string until an example of
that nonterminal has been read. By an example of a nontermninal, we mean a string of
terminals or input symbols which can be derived from that nonterminal. This is done by
using the first terminal symbol in each rule to decide which rule to apply. The function
then handles each succeeding symbol in the rule; it handles nonterminals by calling the
corresponding functions, and it handles terminals by reading another input symbol. For
example, a recursive descent parser for grammar G13 is shown on the next page:

char inp;

Figure 4.6 Sequence of Stacks for Machine of Figure 4.5 for Input aba

Section 4.1 Simple Grammars

a
a S S b b a N

S z B z B z B z B z a z

, , , , , , , Accept

Chapter 4 Top Down Parsing102

void parse ()
{ cin >> inp;
 S ();
 if (inp=='N') accept();
 else reject();
}

void S ()
{ if (inp=='a') // apply rule 1
 { cin >> inp;

S ();
B ();

 } // end rule 1
 else if (inp=='b') cin >> inp; // apply rule 2
 else reject();
}

void B ()
{ if (inp=='a') cin >> inp; // apply rule 3

else if (inp=='b') // apply rule 4
{ cin >> inp;

B ();
if (inp=='a') cin >> inp;
else reject();

} // end rule 4
else reject();

}

Note that the main function (parse) reads the first input character before calling the
function for nonterminal S (the starting nonterminal). Each function assumes that the
initial input symbol in the example it is looking for has been read before that function has
been called. It then uses the selection set to determine which of the grammar rules
defining that nonterminal should be applied. The function S calls itself (because the
nonterminal S is defined in terms of itself), hence the name recursive descent. When
control is returned to the main program, it must ensure that the entire input string has
been read before accepting it. The functions accept() and reject(), which have
been omitted from the above program, simply indicate whether or not the input string is in
the language of the grammar. The student should perform careful hand simulations of this
program for various input strings, to understand it fully.

Exercises 4.1

103

Sample Problem 4.1

Show a one state pushdown machine and a recursive descent parser (show functions S()
and A() only) for the following grammar:

1. S z 0 S 1 A
2. S z 1 0 A
3. A z 0 S 0
4. A z 1

Solution:

This grammar is simple because all rules begin with a terminal – rules 1 and 2 which define
S, begin with different terminals, and rules 3 and 4 which define A, begin with different
terminals. The pushdown machine is shown below:

The recursive descent parser is shown below:

void S()
{ if (inp=='0') // apply rule 1

{ cin >> inp;
S ();
if (inp=='1') cin >> inp;
else reject;
A ();

} // end rule 1
else if (inp=='1') // apply rule 2

{ cin >> inp;

Section 4.1 Simple Grammars

0 1 N

Rep (A1S0) Rep (A01) Reject
S Retain Retain

Rep (0S0) Rep (1) Reject
A Retain Retain

pop Reject Reject
0 Advance S

Reject pop Reject ,

1 Advance
, Reject Reject Accept Initial

Stack

Chapter 4 Top Down Parsing104

if (inp=='0') cin >> inp;
else reject();
A ();

} // end rule 2
else reject();

}

void A ()
{ if (inp=='0') // apply rule 3

{ cin >> inp;
S ();
if (inp=='0') cin >> inp;
else reject();

} // end rule 3
else if (inp=='1') cin >> inp; // apply rule 4
else reject();

}

1. Determine which of the following grammars are simple. For those which are simple,
show an extended one-state pushdown machine to accept the language of that
grammar.

(a) 1. S z a S b
2. S z b

(b) 1. Expr z Expr + Term
2. Expr z Term
3. Term z var
4. Term z (Expr)

(c) 1. S z a A b B
2. A z b A
3. A z a
4. B z b A

(d) 1. S z a A b B

105Section 4.1 Simple Grammars

2. A z b A
3. A z b
4. B z b A

(e) 1. S z a A b B
2. A z b A
3. A z ε
4. B z b A

2. Show the sequence of stacks for the pushdown machine of Figure 4.5 (see p. 100) for
each of the following input strings:

(a) abaN (b) abbaaN (c) aababaaN

3. Show a recursive descent parser for each simple grammar of Problem 1, above.

Chapter 4 Top Down Parsing106

4.2 Quasi-Simple Grammars

We now extend the class of grammars which can be parsed top down by permitting ε rules
in the grammar. A quasi-simple grammar is a grammar which obeys the restriction of
simple grammars, but which may also contain rules of the form:

A z ε

(where A represents any nonterminal) as long as all rules defining the same nonterminal
have disjoint selection sets.

For example, the following is a quasi-simple grammar:

G14:

1. S z a A S
2. S z b
3. A z c A S
4. A z ε

In order to do a top down parse for this grammar, we will again have to find the selection
set for each rule. In order to find the selection set for ε rules (such as rule 4) we first need
to define some terms. The follow set of a nonterminal A, designated Fol(A), is the set of
all terminals (or endmarker N) which can immediately follow an A in an intermediate form
derived from SN, where S is the starting nonterminal. For grammar G14, above, the follow
set of S is {a,b,N} and the follow set of A is {a,b}, as shown by the following
derivations:

SN ⇒ aASN ⇒ acASSN ⇒ acASaASN

 ⇒ acASbN Fol(S) = {a,b,N}

SN ⇒ aASN ⇒ aAaASN

 ⇒ aAbN Fol(A) = {a,b}

For the present, we rely on the student’s ingenuity to find all elements of the
follow set. In a later section, we will present an algorithm for finding follow sets. The
selection set for an ε rule is simply the follow set of the nonterminal on the left side of the
arrow. For example, in grammar G14, above, the selection set of rule 4 is Sel(4) =
Fol(A) = {a,b}. We use the follow set because these are the terminals which could
be the current input symbol when, for instance, an example of an A in recursive descent is
being sought.

To understand selection sets for quasi-simple grammars, consider the case where
the parser for grammar G14 is attempting to build a derivation tree for the input string
acbb. Once again, it is the selection set of each rule that guides the parser to apply that
rule, as illustrated in Figure 4.7. If the parser is trying to decide how to rewrite an A, it will

107

choose rule 3 if the input symbol is a c, but it will choose rule 4 if the input symbol is
either an a or a b.

4.2.1 Pushdown Machines for Quasi-Simple Grammars

To build a pushdown machine for a quasi-simple grammar, we need to add only one step
to the algorithm given in Section 4.1.1 (see p. 99). We need to apply an ε rule by simply
popping the nonterminal off the stack and retaining the input pointer. We do this only
when the input symbol is in the follow set of the nonterminal defined in the ε rule. We
would add the following step to the algorithm between steps 4 and 5:

Section 4.2 Quasi-Simple Grammars

Figure 4.7 Construction of a Parse Tree for acbb Using Selection Sets

 rule 1 rule 3
a ⇒ S ac ⇒ S

 a A S a A S

 c A S

 rule 4 rule 2
acb ⇒ S acb ⇒ S

 a A S a A S

 c A S c A S

 ε ε b

 rule 2
 acbb ⇒ S

 a A S

 c A S b

 ε b

Chapter 4 Top Down Parsing108

4.5 For each ε rule in the grammar, fill in cells of the row corresponding to the nonterminal
on the left side of the arrow, but only in those columns corresponding to elements of the
follow set of the nonterminal. Fill in these cells with Pop, Retain.

This will cause the machine to apply an ε rule by popping the nonterminal off the stack
without reading any input symbols.

For example, the pushdown machine for grammar G14 is shown in Figure 4.8,
above. Note, in particular, that the entries in columns a and b for row A (Pop, Re-
tain) correspond to the ε rule (rule 4).

Figure 4.8 A Pushdown Machine for Grammar G14

4.2.2 Recursive Descent for Quasi-Simple Grammars

Recursive descent parsers for quasi-simple grammars are similar to those for simple
grammars. The only difference is that we need to check for all the input symbols in the
selection set of an ε rule. If any of these are the current input symbol, we simply return to
the calling function without reading any input. By doing so, we are indicating that ε is an
example of the nonterminal for which we are trying to find an example. A recursive
descent parser for grammar G14 is shown below:

char inp;
void parse ()

{ cin >> inp;
S ();
if (inp=='N') accept();
else reject();

}

a b c N

Rep (SAa) Rep (b) Reject Reject
S Retain Retain

Pop Pop Rep (SAc) Reject
A Retain Retain Retain

Pop Reject Reject Reject
a Advance S

Reject Pop Reject Reject ,

b Advance
Reject Reject Pop Initial

c Advance Stack
, Reject Reject Reject Accept

109

void S ()
{ if (inp=='a') // apply rule 1

{ cin >> inp;
A();
S();

} // end rule 1
else if (inp=='b') cin >> inp; // apply rule 2

 else reject();
}

void A ()
{ if (inp=='c') // apply rule 3

{ cin >> inp;
A ();
S ();

} // end rule 3
else if (inp=='a' || inp=='b') ; // apply rule 4

 else reject();
}

Note that rule 4 is applied in function A() when the input symbol is a or b. Rule 4 is
applied by returning to the calling function without reading any input characters. This is
done by making use of the fact that C++ permits null statements (at the comment //
apply rule 4). It is not surprising that a null statement is used to process the null
string.

4.2.3 A Final Remark on εεεεε Rules

It is not strictly necessary to compute the selection set for ε rules in quasi-simple gram-
mars. In other words, there is no need to distinguish between Reject entries and Pop,
Retain entries in the row of the pushdown machine for an ε rule; they can all be marked
Pop, Retain. If the machine does a Pop, Retain when it should Reject (i.e., it
applies an ε rule when it really has no rule to apply), the syntax error will always be
detected subsequently in the parse. However, this is often undesirable in compilers,
because it is generally a good idea to detect syntax errors as soon as possible so that a
meaningful error message can be put out.

For example, in the pushdown machine of Figure 4.8 (see p. 108), for the row
labeled A, we have filled in Pop, Retain under the input symbols a and b, but Reject
under the input symbol N; the reason is that the selection set for the ε rule is {a,b}. If
we had not computed the selection set, we could have filled in all three of these cells with
Pop, Retain, and the machine would have produced the same end result for any
input.

Section 4.2 Quasi-Simple Grammars

Chapter 4 Top Down Parsing110

Sample Problem 4.2

Find the selection sets for the following grammar. Is the grammar quasi-simple? If so,
show a pushdown machine and a recursive descent parser (show functions S() and A()
only) corresponding to this grammar.

1. S z b A b
2. S z a
3. A z ε
4. A z a S a

Solution:

In order to find the selection set for rule 3, we need to find the follow set of the
nonterminal A. This is the set of terminals (including N) which could follow an A in a
derivation from SN.

SN ⇒ bAbN

We cannot find any other terminals that can follow an A in a derivation from SN. There-
fore, FOL(A) = {b}. The selection sets can now be listed:

Sel(1) = {b}
Sel(2) = {a}
Sel(3) = FOL(A) = {b}
Sel(4) = {a}

The grammar is quasi-simple because the rules defining an S have disjoint selection sets
and the rules defining an A have disjoint selection sets. The pushdown machine is shown
below:

a b N

Rep (a) Rep (bAb) Reject
S Retain Retain

Rep (aSa) Pop Reject
A Retain Retain

Pop Reject Reject
a Advance S

Reject Pop Reject ,

b Advance
, Reject Reject Accept Initial

Stack

111

The recursive descent parser is shown below:

void S ()
{ if (inp=='b') // apply rule 1

{ cin >> inp;
A ();
if (inp=='b') cin >> inp;
else reject();

} // end rule 1
else if (inp=='a') cin >> inp; // apply rule 2

 else reject();
}

void A ()
{ if (inp=='b') ; // apply rule 3

else if (inp=='a') // apply rule 4
{ cin >> inp;

S ();
if (inp=='a') cin >> inp;
else reject();

} // end rule 4
else reject();

}

Note that rule 3 is implemented with a null statement. This should not be surprising
since rule 3 defines A as the null string.

Exercises 4.2

1. Show the sequence of stacks for the pushdown machine of Figure 4.8 (see p. 108) for
each of the following input strings:

(a) abN (b) acbbN (c) aabN

2. Show a derivation tree for each of the input strings in Problem 1, using grammar G14.
Number the nodes of the tree to indicate the sequence in which they were applied by
the pushdown machine.

Section 4.2 Quasi-Simple Grammars

Chapter 4 Top Down Parsing112

3. Given the following grammar:

1. S z a A b S
2. S z ε
3. A z a S b
4. A z ε

(a) Find the follow set for each nonterminal.
(b) Show an extended pushdown machine for the language of this grammar.
(c) Show a recursive descent parser for this grammar.

113

4.3 LL(1) Grammars

We now generalize the class of grammars that can be parsed top down by allowing rules
of the form A z α where α is any string of terminals and nonterminals. However, the
grammar must be such that any two rules defining the same nonterminal must have
disjoint selection sets. If it meets this condition, the grammar is said to be LL(1), and we
can construct a one-state pushdown machine parser or a recursive descent parser for it.
The name LL(1) is derived from the fact that the parser finds a left-most derivation when
scanning the input from left to right if it can look ahead no more than one input symbol.
In this section we present an algorithm to find selection sets for an arbitrary context-free
grammar.

The algorithm for finding selection sets of any context-free grammar consists of
twelve steps and is shown below. Intuitively, the selection set for each rule in the
grammar is the set of terminals which the parser can expect to encounter when applying
that grammar rule. For example, in grammar G15, below, we would expect the terminal
symbol b to be in the selection set for rule 1, since:

S ⇒ ABc ⇒ bABc

In this discussion, the phrase “any string” always includes the null string, unless
otherwise stated. As each step is explained, we present the result of that step when
applied to the example, grammar G15.

G15:

1. S z ABc
2. A z bA
3. A z ε
4. B z c

Step 1. Find all nullable rules and nullable nonterminals:

 Remove, temporarily, all rules containing a terminal. All ε rules are nullable rules. The
nonterminal defined in a nullable rule is a nullable nonterminal. In addition, all rules in
the form

AzB C D ...

where B,C,D,... are all nullable non-terminals are nullable rules, and they define
nullable nonterminals. In other words, a nonterminal is nullable if ε can be derived from it,
and a rule is nullable if ε can be derived from its right side.

For grammar G15 –
Nullable rules: rule 3

Section 4.3 LL(1) Grammars

Chapter 4 Top Down Parsing114

Nullable nonterminals: A

Step 2. Compute the relation “Begins Directly With” for each nonterminal:

A BDW X if there is a rule A z α X β such that α is a nullable string (a string of
nullable non-terminals). A represents a nonterminal and X represents a terminal or
nonterminal. β represents any string of terminals and nonterminals.

For G15 –

S BDW A (from rule 1)
S BDW B (also from rule 1, because A is nullable)
A BDW b (from rule 2)
B BDW c (from rule 4)

Step 3. Compute the relation “Begins With”:

X BW Y if there is a string beginning with Y that can be derived from X. BW is the
reflexive transitive closure of BDW. In addition, BW should contain pairs of the form a
BW a for each terminal a in the grammar.

For G15 –

S BW A
S BW B (from BDW)
A BW b
B BW c

S BW b (transitive)
S BW c

S BW S
A BW A
B BW B (reflexive)
b BW b
c BW c

Step 4. Compute the set of terminals "First(x)" for each symbol x in the grammar.

At this point, we can find the set of all terminals which can begin a sentential form when
starting with a given symbol of the grammar.

First(A) = set of all terminals b, such that A BW b for each nonterminal A.
First(t) = {t} for each terminal.

115

For G15 –

First(S) = {b,c}
First(A) = {b}
First(B) = {c}
First(b) = {b}
First(c) = {c}

Step 5. Compute "First" of right side of each rule:

We now compute the set of terminals which can begin a sentential form derivable from the
right side of each rule.

First (XYZ...) = {First(X)}
 U {First(Y)} if X is nullable
 U {First(Z)} if Y is also nullable
 .
 .
 .
In other words, find the union of the First(x) sets for each symbol on the right side of
a rule, but stop when reaching a non-nullable symbol.

For G15 –

1. First(ABc) = First(A) U First(B) = {b,c} (because A is
nullable)

2. First(bA) = {b}
3. First(ε) = {}
4. First(c) = {c}

 If the grammar contains no nullable rules, you may skip to step 12 at this point.

Step 6. Compute the relation “Is Followed Directly By”:

B FDB X if there is a rule of the form
A z α B β X γ
where β is a string of nullable nonterminals, α, γ are strings of symbols, X is any symbol,
and A and B are nonterminals.

For G15 –

A FDB B (from rule 1)
B FDB c (from rule 1)

Section 4.3 LL(1) Grammars

Chapter 4 Top Down Parsing116

Note that if B were a nullable nonterminal we would also have A FDB c.

Step 7. Compute the relation “Is Direct End Of”:

X DEO A if there is a rule of the form:

A z α X β
where β is a string of nullable nonterminals, α is a string of symbols, and X is a single
grammar symbol.

For G15 –

c DEO S (from rule 1)
A DEO A (from rule 2)
b DEO A (from rule 2, since A is nullable)
c DEO B (from rule 4)

Step 8. Compute the relation “Is End Of”:

X EO Y if there is a string derived from Y that ends with X. EO is the reflexive
transitive closure of DEO. In additon, EO should contain pairs of the form N EO N for
each nullable nonterminal, N, in the grammar.

For G15 –

c EO S
A EO A (from DEO)
b EO A
c EO B

(no transitive entries)
c EO c
S EO S (reflexive)
b EO b
B EO B

Step 9. Compute the relation “Is Followed By”:

W FB Z if there is a string derived from SN in which W is immediately followed by Z.

If there are symbols X and Y such that

W EO X
X FDB Y
Y BW Z

117

 then W FB Z

For G15 –

A EO A A FDB B B BW B A FB B
B BW c A FB c

b EO A B BW B b FB B
B BW c b FB c

B EO B B FDB c c BW c B FB c
c EO B c BW c c FB c

Step 10. Extend the FB relation to include endmarker:

A FB N if A EO S where A represents any nonterminal and S represents the
starting nonterminal.

For G15 –

S FB N because S EO S

There are now seven pairs in the FB relation for grammar G15.

Step 11. Compute the Follow Set for each nullable nonterminal:

The follow set of any nonterminal A is the set of all terminals, t, for which A FB t.

Fol(A) = {t | A FB t}

To find selection sets, we need find follow sets for nullable nonterminals only.
For G15 –

Fol(A) = {c} since A is the only nullable nonterminal and A FB c.

Step 12. Compute the selection set for each rule:

i. A z α

if rule i is not a nullable rule, then Sel(i) = First(α)
if rule i is a nullable rule, then Sel(i) = First(α) U Fol(A)

For G15 –

Sel(1) = First(ABc) = {b,c}
Sel(2) = First(bA) = {b}
Sel(3) = First(ε) U Fol(A) = {} U {c} = {c}

Section 4.3 LL(1) Grammars

Chapter 4 Top Down Parsing118

Sel(4) = First(c) = {c}

Notice that since we are looking for the follow set of a nullable nonterminal in step 12, we
have actually done much more than necessary in step 9. In step 9 we need produce only
those pairs of the form A FB t, where A is a nullable nonterminal and t is a terminal.

The algorithm is summarized, below, in Figure 4.9 A context-free grammar is
LL(1) if rules defining the same nonterminal always have disjoint selection sets. Grammer
G15 is LL(1) because rules 2 and 3 (defining the nonterminal A) have disjoint selection sets
(the selection sets for those rules have no terminal symbols in common). Note that if
there are no nullable rules in the grammar, we can get the selection sets directly from step
5 – i.e., we can skip steps 6-11. A graph showing the dependence of any step in this
algorithm on the results of other steps is shown in Figure 4.10 (see p. 119). For example,
this graph shows that the results of steps 3,6, and 8 are needed for step 9.

1. Find nullable rules and nullable nonterminals.

2. Find “Begins Directly With” relation (BDW).

3. Find “Begins With” relation (BW).

4. Find “First(x)” for each symbol, x.

5. Find “First(n)” for the right side of each rule,
n.

6. Find “Followed Directly By” relation (FDB).

7. Find “Is Direct End Of” relation (DEO).

8. Find “Is End Of” relation (EO).

9. Find “Is Followed By” relation (FB).

10. Extend FB to include endmarker.

11. Find Follow Set, Fol(A), for each nullable
nonterminal, A.

12. Find Selection Set, Sel(n), for each rule, n.

Figure 4.9 Summary of Algorithm to Find Selection Sets of any Context-Free Grammar.

4.3.1 Pushdown Machines for LL(1) Grammars

119

1

2 6 7

3 9 8

4 10

5 11

12

Once the selection sets have been found, the construction of the pushdown machine is
exactly as for quasi-simple grammars. For a rule in the grammar, A z α, fill in the cells in
the row for nonterminal A and in the columns for the selection set of that rule with
Rep(αr), Retain, where αr represents the right side of the rule reversed. For ε
rules, fill in Pop, Retain in the columns for the selection set. For each terminal symbol,
enter Pop, Advance in the cell in the row and column labeled with that terminal. The
cell in the row labeled , and the column labeled N should contain Accept. All other
cells are Reject. The pushdown machine for grammar G15 is shown in Figure 4.11 (see
p. 120).

4.3.2 Recursive Descent for LL(1) Grammars

Once the selection sets have been found, the construction of the recursive descent parser
is exactly as for quasi-simple grammars. When implementing each rule of the grammar,
check for the input symbols in the selection set for that grammar. A recursive descent
parser for grammar G15 is shown below (beginning on page 120):

void parse ()
{ cin >> inp;

Figure 4.10 Dependency Graph for the Steps in the Algorithm for Finding Selection
Sets.

Section 4.3 LL(1) Grammars

Chapter 4 Top Down Parsing120

S ();
if (inp=='N') accept; else reject();

}

void S ()
{ if (inp=='b' || inp=='c') // apply rule 1

{ A ();
B ();
if (inp=='c') cin >> inp;
else reject();

} // end rule 1
else reject();

}

void A ()
{ if (inp=='b') // apply rule 2

{ cin >> inp;
A ();

} // end rule 2
else if (inp=='c') ; // apply rule 3
else reject();

}

void B ()
{ if (inp=='c') cin >> inp; // apply rule 4

Figure 4.11 A Pushdown Machine for Grammar G15

b c N

Rep (cBA) Rep (cBA) Reject
S Retain Retain

Rep (Ab) Pop Reject
A Retain Retain

Reject Rep (c) Reject
B Retain S

Pop Reject Reject ,

b Advance
Reject Pop Reject Initial

c Advance Stack
, Reject Reject Accept

121

else reject();
}

Note that when processing rule 1, an input symbol is not read until a teminal is encoun-
tered in the grammar rule (after checking for a or b, an input symbol should not be read
before calling procedure A).

Exercises 4.3

Sample Problem 4.3

Show the sequence of stacks that occurs when the pushdown machine of Figure 4.11
(see p. 120) parses the string bccN.

Solution:

1. Given the following information, find the Followed By relation (FB) as described in
step 9 of the algorithm for finding selection sets:

A EO A A FDB D D BW b
A EO B B FDB a b BW b
B EO B a BW a

2. Find the selection sets of the following grammar and determine whether it is LL(1).

1. S z ABD

Section 4.3 LL(1) Grammars

b
A A A

b B B B c B c
S z c z c z c z c z c z

, , , , , ,

c N

c z z Accept
, ,

Chapter 4 Top Down Parsing122

2. A z aA
3. A z ε
4. B z bB
5. B z ε
6. D z dD
7. D z ε

3. Show a pushdown machine for the grammar of Problem 2.

4. Show a recursive descent parser for the grammar of Problem 2.

5. Step 3 of the algorithm for finding selection sets is to find the “Begins With” relation by
forming the reflexive transitive closure of the “Begins Directly With” relation. Then add
“pairs of the form a BW a for each terminal a in the grammar”; i.e., there could be
terminals in the grammar which do not appear in the BDW relation. Find an example of
a grammar in which the selection sets will not be found correctly if you don’t add these
pairs to the BW relation (hint: see step 9).

123

4.4 Parsing Arithmetic Expressions Top Down

Now that we understand how to determine whether a grammar can be parsed down, and
how to construct a top down parser, we can begin to address the problem of building top
down parsers for actual programming languages. One of the most heavily studied aspects
of parsing programming languages deals with arithmetic expressions. Recall grammar G5
for arithmetic expressions involving only addition and multiplication, from Section 3.1.
We wish to determine whether this grammar is LL(1).

G5:

1. Expr z Expr + Term
2. Expr z Term
3. Term z Term ∗ Factor
4. Term z Factor
5. Factor z (Expr)
6. Factor z var

In order to determine whether this grammar is LL(1), we must first find the selection set for
each rule in the grammar. We do this by using the twelve step algorithm given in Section
4.3 (see p. 118).

1. Nullable rules: none
Nullable nonterminals: none

2. Expr BDW Expr
Expr BDW Term
Term BDW Term
Term BDW Factor
Factor BDW (
Factor BDW var

3. Expr BW Expr
Expr BW Term
Term BW Term
Term BW Factor
Factor BW (
Factor BW var

 Factor BW Factor
 (BW (
 var BW var

 Expr BW Factor

Section 4.4 Parsing Arithmetic Expressions Top Down

Chapter 4 Top Down Parsing124

 Expr BW (
 Expr BW var
 Term BW (
 Term BW var
 ∗ BW ∗
 + BW +

4. First(Expr) = {(,var}
First(Term) = {(,var}
First(Factor) = {(,var}

5. (1) First(Expr + Term) = {(,var}
(2) First(Term) = {(,var}
(3) First(Term ∗ Factor) = {(,var}
(4) First(Factor) = {(,var}
(5) First((Expr)) = {(}
(6) First (var) = {var}

12. Sel(1) = {(,var}
Sel(2) = {(,var}
Sel(3) = {(,var}
Sel(4) = {(,var}
Sel(5) = {(}
Sel(6) = {var}

Since there are no nullable rules in the grammar, we can obtain the selection sets
directly from step 5. This grammar is not LL(1) because rules 1 and 2 define the same
nonterminal, Expr, and their selection sets intersect. This is also true for rules 3 and 4.

Incidentally, the fact that grammar G5 is not suitable for top down parsing can be
determined much more easily by inspection of the grammar. Rules 1 and 3 both have a
property known as left recursion :

1. Expr z Expr + Term
3. Term z Term ∗ Factor

They are in the form:

A z Aα

Note that any rule in this form cannot be parsed top down. To see this, consider the
function for the nonterminal A in a recursive descent parser. The first thing it would do
would be to call itself, thus producing infinite recursion with no “escape hatch”. Any
grammar with left recursion cannot be LL(1).

125

The left recursion can be eliminated by rewriting the grammar with an equivalent
grammar that does not have left recursion. In general, the offending rule might be in the
form:

A z Aα
A z β

in which we assume that β is a string of terminals and nonterminals that does not begin
with an A. We can eliminate the left recursion by introducing a new nonterminal, R, and
rewriting the rules as:

A z β R
R z α R
R z ε

A more detailed and complete explanation of left recursion elimination can be found in
Parsons [1992].

This method is used to rewrite the grammar for simple arithmetic expressions in
which the new nonterminals introduced are Elist and Tlist. An equivalent grammar
for arithmetic expressions involving only addition and multiplication, G16, is shown
below. A derivation tree for the expression var+var*var is shown in Figure 4.12 (see
p. 126).

G16:

1. Expr z Term Elist
2. Elist z + Term Elist
3. Elist z ε
4. Term z Factor Tlist
5. Tlist z ∗ Factor Tlist
6. Tlist z ε
7. Factor z (Expr)
8. Factor z var

Note in grammar G16 that an Expr is still the sum of one or more Terms and a
Term is still the product of one or more Factors, but the left recursion has been
eliminated from the grammar. We will see, later, that this grammar also defines the
precedence of operators as desired. The student should construct several derivation
trees using grammar G16 in order to be convinced that it is not ambiguous.

We now wish to determine whether this grammar is LL(1), using the algorithm to
find selection sets:

1. Nullable rules: 3,6
Nullable nonterminals: Elist, Tlist

Section 4.4 Parsing Arithmetic Expressions Top Down

Chapter 4 Top Down Parsing126

2. Expr BDW Term
Elist BDW +
Term BDW Factor
Tlist BDW ∗
Factor BDW (
Factor BDW var

3. Expr BW Term
Elist BW +
Term BW Factor (from BDW)
Tlist BW ∗
Factor BW (
Factor BW var

Expr BW Factor
Term BW (
Term BW var (transitive)
Expr BW (
Expr BW var

Expr BW Expr
Term BW Term
Factor BW Factor
Elist BW Elist
Tlist BW Tlist (reflexive)
Factor BW Factor
+ BW +
∗ BW ∗
(BW (

Figure 4.12 A derivation tree for the expression
var+var*var using grammar G16

 Expr

 Term Elist

 Factor Tlist + Term Elist

 var ε Factor Tlist ε

 var * Factor Tlist

 var ε

127

var BW var
) BW)

4. First (Expr) = {(,var}
First (Elist) = {+}
First (Term) = {(,var}
First (Tlist) = {∗}
First (Factor) = {(,var}

5. 1. First(Term Elist) = {(,var}
2. First(+ Term Elist) = {+}
3. First(ε) = {}
4. First(Factor Tlist) = {(,var}
5. First(∗ Factor Tlist) = {∗}
6. First(ε) = {}
7. First((Expr)) = {(}
8. First(var) = {var}

6. Term FDB Elist
Factor FDB Tlist
Expr FDB)

7. Elist DEO Expr
Term DEO Expr
Elist DEO Elist
Term DEO Elist
Tlist DEO Term
Factor DEO Term
Tlist DEO Tlist
Factor DEO Tlist
) DEO Factor
var DEO Factor

8. Elist EO Expr
Term EO Expr
Elist EO Elist
Term EO Elist
Tlist EO Term
Factor EO Term (from DEO)
Tlist EO Tlist
Factor EO Tlist
) EO Factor
var EO Factor
Tlist EO Expr

Section 4.4 Parsing Arithmetic Expressions Top Down

Chapter 4 Top Down Parsing128

Tlist EO Elist
Factor EO Expr
Factor EO Elist
) EO Term
) EO Tlist
) EO Expr (transitive)
) EO Elist
var EO Term
var EO Tlist
var EO Expr
var EO Elist

Expr EO Expr
Term EO Term
Factor EO Factor
) EO)
var EO var (reflexive)
+ EO +
∗ EO ∗
(EO (
Elist EO Elist
Tlist EO Tlist

9. Tlist EO Term FDB Elist BW + Tlist FB +

BW Elist
Factor EO BW +

BW Elist
var EO BW +

BW Elist
Term EO BW +

BW Elist
) EO BW +

BW Elist
) EO Factor FDB Tlist BW ∗

BW Tlist
var EO BW ∗

BW Tlist
Factor EO BW ∗

BW Tlist
Elist EO Expr FDB) BW) Elist FB)
Tlist EO Expr Tlist FB)

10. Elist FB N
Term FB N

129

Expr FB N
Tlist FB N
Factor FB N

11. Fol (Elist) = {),N}
Fol (Tlist) = {+,),N}

12. Sel(1) = First(Term Elist) = {(,var}
Sel(2) = First(+ Term Elist) = {+}
Sel(3) = Fol(Elist) = {),N}
Sel(4) = First(Factor Tlist) = {(,var}
Sel(5) = First(∗ Factor Tlist) = {∗}
Sel(6) = Fol(Tlist) = {+,),N}
Sel(7) = First((Expr)) = {(}
Sel(8) = First(var) = {var}

Since all rules defining the same nonterminal (rules 2 and 3, rules 5 and 6, rules 7 and 8)
have disjoint selection sets, the grammar G16 is LL(1).

In step 9 we could have listed several more entries in the FB relation. For example,
we could have listed pairs such as var FB + and Tlist FB Elist. These were not
necessary, however; this is clear if one looks ahead to step 11, where we construct the
follow sets for nullable nonterminals. This means we need to use only those pairs from
step 9 which have a nullable nonterminal on the left and a terminal on the right. Thus, we
will not need var FB + because the left member is not a nullable nonterminal, and we
will not need Tlist FB Elist because the right member is not a terminal.

Section 4.4 Parsing Arithmetic Expressions Top Down

Sample Problem 4.4

Show a pushdown machine and a recursive descent translator for arithmetic expressions
involving addition and multiplication using grammar G16.

Solution:

To build the pushdown machine we make use of the selection sets shown above.
These tell us which columns of the machine are to be filled in for each row. For example,
since the selection set for rule 4 is {(,var}, we fill the cells in the row labeled Term
and columns labeled (and var with information from rule 4: Rep (Tlist Fac-
tor). The solution is shown on the next page.

We make use of the selection sets again in the recursive descent processor. In
each procedure, the input symbols in the selection set tell us which rule of the grammar
to apply. Assume that a var is represented by the integer 256.

Chapter 4 Top Down Parsing130

int inp; const int var = 256;
void Expr ()

{ if (inp=='(' || inp==var) // apply rule 1
{ Term ();

Elist ();
} // end rule 1

else reject();
}

+ * () var N

Rep(Elist Rep(Elist
Expr Reject Reject Term) Reject Term) Reject

Retain Retain
Rep(Elist

Elist Term +) Reject Reject Pop Reject Pop
Retain Retain Retain

Rep(Tlist Rep(Tlist
Term Reject Reject Factor) Reject Factor) Reject

Retain Retain
Rep(Tlist

Tlist Pop Factor *) Reject Pop Reject Pop
Retain Retain Retain Retain

Rep(Rep(var)
Factor Reject Reject)Expr() Reject Reject

Retain Retain

+ Pop Reject Reject Reject Reject Reject
Advance

* Reject Pop Reject Reject Reject Reject
Advance

(Reject Reject Pop Reject Reject Reject
Advance

Expr

) Reject Reject Reject Pop Reject Reject ,

Advance
Initial

var Reject Reject Reject Reject Pop Reject Stack
Advance

, Reject Reject Reject Reject Reject Accept

131Section 4.4 Parsing Arithmetic Expressions Top Down

void Elist ()
{ if (inp=='+') // apply rule 2

{ cin >> inp;
Term ();
Elist ();

} // end rule 2
else if (inp==')' || inp=='N') ; // apply rule 3
else reject ();

}

void Term ()
{ if (inp=='(' || inp==var) // apply rule 4

{ Factor ();
Tlist ();

} // end rule 4
else reject();

}

void Tlist ()
{ if (inp=='*') // apply rule 5

{ cin >> inp;
Factor ();
Tlist ();

} // end rule 5
else if (inp=='+' || inp==')' || inp=='N')

; // apply rule 6
else reject();

void Factor ()
{ if (inp=='(') // apply rule 7

{ cin >> inp;
Expr ();
if (inp==')') cin >> inp;
else reject();

} // end rule 7
else if (inp==var) cin >> inp; // apply rule 8
else reject();

}

Chapter 4 Top Down Parsing132

Exercises 4.4

1. Show derivation trees for each of the following input strings, using grammar G16.

(a) var + var (b) var + var ∗ var
(c) (var + var) ∗ var (d) ((var))
(e) var ∗ var ∗ var

2. We have shown that grammar G16 for simple arithmetic expressions is LL(1), but
grammar G5 is not LL(1). What are the advantages, if any, of grammar G5 over
grammar G16?

3. Suppose we permitted our parser to “peek ahead” n characters in the input stream to
determine which rule to apply. Would we then be able to use grammar G5 to parse
simple arithmetic expressions top down? In other words, is grammar G5 LL(n)?

4. Find two null statements in the recursive descent parser of the sample problem in this
section. Which functions are they in and which grammar rules do they represent?

5. Construct part of a recursive descent parser for the following portion of a program-
ming language:

1. Stmt z if (Expr) Stmt
2. Stmt z while (Expr) Stmt
3. Stmt z { StmtList }
4. Stmt z Expr ;

Write the procedure for the nonterminal Stmt. Assume the selection set for rule 4 is
{(, identifier, number}.

6. Show an LL(1) grammar for the language of regular expressions over the alphabet
{0,1}, and show a recursive descent parser corresponding to the grammar.

133

7. Show how to eliminate the left recursion from each of the grammars shown below:

(a) 1. A z A b c
2. A z a b

(b) 1. ParmList z ParmList , Parm
2. ParmList z Parm

8. A parameter list is a list of 0 or more parameters separated by commas; a parameter list
neither begins nor ends with a comma. Show an LL(1) grammar for a parameter list.
Assume that parameter has already been defined.

Section 4.4 Parsing Arithmetic Expressions Top Down

The implementation of parsing algorithms for LL(1) grammars , as shown in Chapter 4, is
relatively straightforward. However, there are many situations in which it is not easy, or
possible, to use an LL(1) grammar. In these cases, the designer may have to use a bottom
up algorithm.

Parsing algorithms which proceed from the bottom of the derivation tree and
apply grammar rules (in reverse) are called bottom up parsing algorithms. These
algorithms will begin with an empy stack. One or more input symbols are moved onto the
stack, which are then replaced by nonterminals according to the grammar rules. When all
the input symbols have been read, the algorithm terminates with the starting nonterminal,
alone on the stack, if the input string is acceptable. The student may think of a bottom up
parse as being similar to a derivation in reverse. Each time a grammar rule is applied to a
sentential form, the rewriting rule is applied backwards. Consequently, derivation trees
are constructed, or traversed, from bottom to top.

5.1 Shift Reduce Parsing

Bottom up parsing involves two fundamental operations. The process of moving an input
symbol to the stack is called a shift operation, and the process of replacing symbols on the
top of the stack with a nonterminal is called a reduce operation (it is a derivation step in
reverse). Most bottom up parsers are called shift reduce parsers because they use these
two operations. The following grammar will be used to show how a shift reduce parser
works:

G19:

1. S z S a B

Chapter 5

Bottom Up Parsing

165

2. S z c
3. B z a b

A derivation tree for the string caabaab is shown in Figure 5.1. The shift
reduce parser will proceed as follows: each step will be either a shift (shift an input
symbol to the stack) or reduce (reduce symbols on the stack to a nonterminal), in which
case we indicate which rule of the grammar is being applied. The sequence of stack
frames and input is shown in Figure 5.2, in which the stack frames are pictured horizon-
tally to show, more clearly, the shifting of input characters onto the stack and the senten-
tial forms corresponding to this parse. The algorithm accepts the input if the stack can be
reduced to the starting nonterminal when all of the input string has been read.

Note in Figure 5.2 that whenever a reduce operation is performed, the symbols
being reduced are always on top of the stack. The string of symbols being reduced is
called a handle, and it is imperative in bottom up parsing that the algorithm be able to
find a handle whenever possible. The bottom up parse shown in Figure 5.2 corresponds
to the derivation shown below:

S ⇒ S a B ⇒ S a a b ⇒ S a B a a b ⇒
S a a b a a b ⇒ c a a b a a b

Note that this is a right-most derivation; shift reduce parsing will always correspond to a
right-most derivation. In this derivation we have underlined the handle in each sentential
form. Read this derivation from right to left and compare it with Figure 5.2.

If the parser for a particular grammar can be implemented with a shift reduce
algorithm, we say the grammar is LR (the L indicates we are reading input from the left,
and the R indicates we are finding a right-most derivation). The shift reduce parsing
algorithm always performs a reduce operation when the top of the stack corresponds to
the right side of a rule. However, if the grammar is not LR, there may be instances where
this is not the correct operation, or there may be instances where it is not clear which
reduce operation should be performed. For example, consider grammar G20:

 S

 S a B

 S a B a b

 c a b

Figure 5.1 A Derivation Tree for the String caabaab, Using Grammar G19

Section 5.1 Shift Reduce Parsing

Chapter 5 Bottom Up Parsing166

Figure 5.2 Sequence of Stack Frames Parsing caabaab Using Grammar G19

Figure 5.3 An Example of a Shift/Reduce Conflict Leading to an Incorrect Parse Using
Grammar G20

, caabaab N

shift
,c aabaab N

reduce using rule 2
,S aabaab N

shift
,Sa abaab N

shift
,Saa baab N

shift
,Saab aab N

reduce using rule 3
,SaB aab N

reduce using rule 1
,S aab N

shift
,Sa ab N

shift
,Saa b N

shift
,Saab N

reduce using rule 3
,SaB N

reduce using rule 1
,S N

Accept

, aaab N
shift

,a aab N
reduce using rule 2

,S aab N
shift

,Sa ab N
shift/reduce conflict
reduce using rule 2 (incorrect)

,SS ab N
shift

,SSa b N
shift

,SSab N
reduce using rule 3

,SSb N
Syntax error (incorrect)

167

G20: G21:

1. S z S a B 1. S z S A
2. S z a 2. S z a
3. B z a b 3. A z a

When parsing the input string aaab, we reach a point where it appears that we
have a handle on top of the stack (the terminal a), but reducing that handle, as shown in
Figure 5.3, does not lead to a correct bottom up parse. This is called a shift/reduce
conflict because the parser does not know whether to shift an input symbol or reduce the
handle on the stack. This means that the grammar is not LR, and we must either rewrite
the grammar or use a different parsing algorithm.

Another problem in shift reduce parsing occurs when it is clear that a reduce
operation should be performed, but there is more than one grammar rule whose right hand
side matches the top of the stack, and it is not clear which rule should be used. This is
called a reduce/reduce conflict. Grammar G21 is an example of a grammar with a
reduce/reduce conflict.

Figure 5.4 shows an attempt to parse the input string aa with the shift reduce
algorithm, using grammar G21. Note that we encounter a reduce/reduce conflict when the
handle a is on the stack because we don't know whether to reduce using rule 2 or rule 3.
If we reduce using rule 2, we will get a correct parse, but if we reduce using rule 3 we will
get an incorrect parse.

It is often possible to resolve these conflicts simply by making an assumption.
For example, all shift/reduce conflicts could be resolved by shifting rather than reducing.
If this assumption always yields a correct parse, there is no need to rewrite the grammar.

In examples like the two just presented, it is possible that the conflict can be
resolved by looking ahead at additional input characters. An LR algorithm that looks
ahead k input symbols is called LR(k). When implementing programming languages
bottom up, we generally try to define the language with an LR(1) grammar, in which case
the algorithm will not need to look ahead beyond the current input symbol. An ambigu-

Figure 5.4 A Reduce/Reduce Conflict

Section 5.1 Shift Reduce Parsing

, aa N
shift

,a a N
reducde/reduce conflict (rules 2 and 3)
reduce using rule 3 (incorrect)

,A a N
shift

,Aa N
shift/reduce conflict (rules 2 and 3)
reduce using rule 2 (rule 3 will also yield a syntax error)

,AS N
Syntax error

Chapter 5 Bottom Up Parsing168

ous grammar is not LR(k) for any value of k – i.e. an ambiguous grammar will always
produce conflicts when parsing bottom up with the shift reduce algorithm. For example,
the following grammar for if statements is ambiguous:

1. Stmt z if (Expr) Stmt else Stmt
2. Stmt z if (Expr) Stmt

The Expr in parentheses represents a true (non-zero) or false (zero) condition. Figure 5.5,
above, shows two different derivation trees for the statement if (Expr) if (Expr)
Stmt else Stmt. The second tree shown is the interpretation preferred by most
programming languages (each else is matched with the closest preceding unmatched
if). The parser will encounter a shift/reduce conflict when reading the else. The
reason for the conflict is that the parser will be configured as shown, below, in Figure 5.6.

In this case, the parser will not know whether to treat if (Expr) Stmt as a
handle and reduce it to Stmt according to rule 2, or to shift the else, which should be
followed by a Stmt, thus reducing according to rule 1. However, if the parser can
somehow be told to resolve this conflict in favor of the shift, then it will always find the
correct interpretation. Alternatively, the ambiguity may be removed by rewriting the
grammar, as shown in Section 3.1.

Figure 5.5 Two Derivation Trees for if (Expr) if (Expr) Stmt else Stmt

Figure 5.6 Parser Configuration Before Reading the else Part of an if Statement

Stack Input

 , ... if (Expr) Stmt else ... N

 Stmt

if (Expr) Stmt

if (Expr) Stmt else Stmt

 Stmt

if (Expr) Stmt else Stmt

 if (Expr) Stmt

169

Exercises 5.1

1. For each of the following stack configurations, identify the handle using the
grammar shown below:

1. S z S A b
2. S z a c b
3. A z b B c
4. A z b c
5. B z b a
6. B z A c

Sample Problem 5.1

Show the sequence of stack and input configurations as the string caab is parsed with a
shift reduce parser, using grammar G19.

Solution:

Section 5.1 Shift Reduce Parsing

,SSAb ,SSbbc

,SbBc ,Sbbc

(a) (b)

(c) (d)

, caab N
shift

,c aab N
reduce using rule 2

,S aab N
shift

,Sa ab N
shift

,Saa b N
shift

,Saab N
reduce using rule 3

,SaB N
reduce using rule 1

,S N
Accept

Chapter 5 Bottom Up Parsing170

2. Using the grammar of Problem 1, show the sequence of stack and input configu-
rations as each of the following strings is parsed with shift reduce parsing:

(a) acb (b) acbbcb
(c) acbbbacb (d) acbbbcccb
(e) acbbcbbcb

3. For each of the following input strings, indicate whether it will encounter a shift/
reduce conflict, a reduce/reduce conflict, or no conflict when parsing, using the
grammar below:

1. S z S a b
2. S z b A
3. A z b b
4. A z b A
5. A z b b c
6. A z c

(a) b c
(b) b b c a b
(c) b a c b

4. Assume that a shift/reduce parser always chooses the lower numbered rule (i.e.,
the one listed first in the grammar) whenever a reduce/reduce conflict occurs
during parsing, and it chooses a shift whenever a shift/reduce conflict occurs.
Show a derivation tree corresponding to the parse for the sentential form if
(Expr) if (Expr) Stmt else Stmt , using the following ambiguous
grammar. Since the grammar is not complete, you may have nonterminal symbols
at the leaves of the derivation tree.

1. Stmt z if (Expr) Stmt else Stmt
2. Stmt z if (Expr) Stmt

171

5.2 LR Parsing With Tables

One way to implement shift reduce parsing is with tables that determine whether to shift
or reduce, and which grammar rule to reduce. This method makes use of two tables to
control the parser. The first table, called the action table, determines whether a shift or
reduce is to be invoked. If it specifies a reduce, it also indicates which grammar rule is to
be reduced. The second table, called a goto table, indicates which stack symbol is to be
pushed on the stack after a reduction. A shift action is implemented by a push operation
followed by an advance input operation. A reduce action must always specify the
grammar rule to be reduced. The reduce action is implemented by a Replace operation in
which stack symbols on the right side of the specified grammar rule are replaced by a
stack symbol from the goto table (the input pointer is retained). The symbol pushed is not
necessarily the nonterminal being reduced, as shown below. In practice, there will be one
or more stack symbols corresponding to each nonterminal.

The columns of the goto table are labeled by nonterminals, and the the rows are
labeled by stack symbols. A cell of the goto table is selected by choosing the column of
the nonterminal being reduced and the row of the stack symbol just beneath the handle.

For example, suppose we have the following stack and input configuration:

Stack Input

,S abN

in which the bottom of the stack is to the left. The action shift will result in the
following configuration:

Stack Input
,Sa bN

The a has been shifted from the input to the stack. Suppose, then, that in the grammar,
rule 7 is:

7. B z Sa

Select the row of the goto table labeled ,, and the column labeled B. If the entry in this
cell is push X, then the action reduce 7 would result in the following configuration:

Stack Input
,X bN

Figure 5.7 shows the LR parsing tables for grammar G5 for arithmetic expres-
sions involving only addition and multiplication (see Section 3.1). As in previous
pushdown machines, the stack symbols label the rows, and the input symbols label the
columns of the action table. The columns of the goto table are labeled by the nonterminal

Section 5.2 LR Parsing With Tables

Chapter 5 Bottom Up Parsing172

being reduced. The stack is initialized with a , symbol, and blank cells in the action table
indicate syntax errors in the input string. Figure 5.8 shows the sequence of configurations
which would result when these tables are used to parse the input string
(var+var)∗var.

Figure 5.7 Action and Goto Tables to Parse Simple Arithmetic Expressions

 A c t i o n T a b l e

+ * () var N

, shift (shift var

Expr1 shift + Accept

Term1 reduce 1 shift * reduce 1 reduce 1

Factor3 reduce 3 reduce 3 reduce 3 reduce 3

(shift (shift var

Expr5 shift + shift)

) reduce 5 reduce 5 reduce 5 reduce 5

+ shift (shift var

Term2 reduce 2 shift * reduce 2 reduce 2

* shift (shift var

Factor4 reduce 4 reduce 4 reduce 4 reduce 4

var reduce 6 reduce 6 reduce 6 reduce 6

G o T o T a b l e

Expr Term Factor

, push Expr1 push Term2 push Factor4

Expr1

Term1

Factor3

(push Expr5 push Term2 push Factor4

Expr5 ,

)

+ push Term1 push Factor4 Initial
Term2 Stack

* push Factor3
Factor4

var

173

Figure 5.8 Sequence of Configurations when Parsing (var+var)∗var

G5

Expr z Expr + Term
Expr z Term
Term z Term * Factor
Term z Factor
Factor z (Expr)
Factor z var

Section 5.2 LR Parsing With Tables

Stack Input Action Goto

, (var+var)*var N
shift (

,(var+var)*var N
shift var

,(var +var)*var N
reduce 6 push Factor4

,(Factor4 +var)*var N
reduce 4 push Term2

,(Term2 +var)*var N
reduce 2 push Expr5

,(Expr5 +var)*var N
shift +

,(Expr5+ var)*var N
shift var

,(Expr5+var)*var N
reduce 6 push Factor4

,(Expr5+Factor4)*var N
reduce 4 push Term1

,(Expr5+Term1)*var N
reduce 1 push Expr5

,(Expr5)*var N
shift)

,(Expr5) *var N
reduce 5 push Factor4

,Factor4 *var N
reduce 4 push Term2

,Term2 *var N

shift *
,Term2* var N

shift var
,Term2*var N

reduce 6 push Factor3
,Term2*Factor3 N

reduce 3 push Term2
,Term2 N

reduce 2 push Expr1
,Expr1 N

Accept

Chapter 5 Bottom Up Parsing174

The operation of the LR parser can be described as follows:

1. Find the action corresponding to the current input and the top stack symbol.
2. If that action is a shift action:

a. Push the input symbol onto the stack.
b. Advance the input pointer.

3. If that action is a reduce action:
a. Find the grammar rule specified by the reduce action.
b. The symbols on the right side of the rule should also be on the top of the stack
– pop them all off the stack.
c. Use the nonterminal on the left side of the grammar rule to indicate a column
of the goto table, and use the top stack symbol to indicate a row of the goto table.
Push the indicated stack symbol onto the stack.
d. Retain the input pointer.

4. If that action is blank, a syntax error has been detected.
5. If that action is Accept, terminate.
6. Repeat from step 1.

Sample Problem 5.2

Show the sequence of stack, input, action, and goto configurations for the input var∗var
using the parsing tables of Figure 5.7.

Solution
Stack Input Action Goto

, var*var N
shift var

,var *var N
reduce 6 push Factor4

,Factor4 *var N
reduce 4 push Term2

,Term2 *var N
shift *

,Term2* var N
shift var

,Term2*var N
reduce 6 push Factor3

,Term2*Factor3 N
reduce 3 push Term2

,Term2 N
reduce 2 push Expr1

,Expr1 N
Accept

175

There are three principle methods for constructing the LR parsing tables. In
order from simplest to most complex or general, they are called: Simple LR (SLR), Look
Ahead LR (LALR), and Canonical LR (LR). SLR is the easiest method to implement, but
works for a small class of grammars. LALR is more difficult and works on a slightly
larger class of grammars. LR is the most general, but still does not work for all unam-
biguous context free grammars. In all cases, they find a rightmost derivation when
scanning from the left (hence LR). These methods are beyond the scope of this text, but
are described in Parsons[1992] and Aho [1986].

Exercises 5.2

1. Show the sequence of stack and input configurations and the reduce and goto
operations for each of the following expressions, using the action and goto tables
of Figure 5.7.

(a) var
(b) (var)
(c) var + var ∗ var
(d) (var∗var) + var
(e) (var ∗ var

Section 5.2 LR Parsing With Tables

Chapter 5 Bottom Up Parsing176

5.3 Yacc

For many grammars, the LR parsing tables can be generated automatically from the
grammar. One of the most popular software systems that does this is available in the Unix
programming environment; it is called yacc (Yet Another Compiler-Compiler). Recall
from Section 1.3.4 that a compiler-compiler is a program which takes as input the
specification of a programming language (in the form of a grammar), and produces as
output a compiler for that language. By itself, yacc is really just a parser generator
yielding a program which checks for syntax, but since it is possible for the user to
augment it with additional features, it can be used to generate a complete compiler. An
available public domain version of yacc is called bison. There are also personal computer
versions of yacc which use Turbo Pascal as a base language instead of C.

5.3.1 Overview of Yacc

Yacc generates a C function named yyparse(), which is stored in a file named
y.tab.c. This function calls a function named yylex() whenever it needs an input
token. The yylex() function may be written by the user and included as part of the
yacc specification, or it may be generated by the lex utility, as described in Section 2.4. A
diagram showing the flow of data needed to generate and compile software is shown in
Figure 5.9. It assumes that yylex() is being generated by lex and that there is a
statement in the yacc source file to include the yylex() function:

#include "lex.yy.c"

Figure 5.9 Generation and Compilation of Software Using Lex and Yacc

yacc source lex source

y.tab.c lex.yy.c
#include "lex.yy.c"

yacc lex

cc

a.out

177

5.3.2 Structure of the Yacc Source File

The input to yacc is called the yacc source file. It consists of three parts, which are
separated by the %% delimiter:

Declarations
%%
Rules
%%
Support Routines

The Declarations section contains declarations of token names, stack type, and
precedence information which may be needed by yacc. It also may contain preprocessor
statements (#include or #define) and declarations to be included in the output file,
y.tab.c.

The Rules section is the grammar for the language being specified, such as
Pascal. This is the most important part of the yacc source file. Each rule is of the form:

nonterminal: α {action}
| β {action}
| γ {action}
.
.
.
;

where α, β, and γ are definitions of the nonterminal. The vertical bar designates alterna-
tive definitions for a non-terminal, as in BNF. An action may be associated with each of
the alternatives. This action is simply a C statement which is invoked during the parsing
of an input string when the corresponding grammar rule is reduced. The rules may be
written in free format, and each rule is terminated with a semicolon.

The third section of the yacc source file contains support routines, i.e., C
functions which could be called from the actions in the Rules section. For example, when
processing an assignment statement, it may be necessary to check that the type of the
expression matches the type of the variable to which it is being assigned. This could be
done with a call to a type-checking function in the third section of the yacc source file.

5.3.3 An Example Using Yacc

The purpose of this example is to translate infix expressions involving addition, subtrac-
tion, multiplication, division, and unary minus into atoms which represent the primitive
operations available on most CPUs. Each atom will consist of up to four parts:

(Operation, Left operand, Right Operand, Result)

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing178

 For example, if the input is (a+b)∗c, the output would be:

(ADD, a, b, T1)
(MULT, T1, c, T2)

Whereas if the input is -a+b*c, the output would be:

(NEG, a, 0, T1)
(MUL, b, c, T2)
(ADD, T1, T2, T3)

Note that the unary minus operation produces a NEG atom which has only one operand, so
the second field is ignored.

In this example, we implement the operands in an atom as character strings. In a
real compiler the identifier operands would be implemented as pointers to the symbol
table entry for the identifier, and the temporary results (T1, T2, etc.) would be imple-
mented as offsets from the top of the run-time stack.

The entire yacc and lex programs for this example are shown below. The
essence of the program is in the grammar, which follows the first %%. We define the input
to be a List of Exprs, each of which appears on a separate line and may be null. The
Expr is then defined as we defined it in Section 3.0.3, with grammar G4, only extended
to include subtraction, division, and unary operations. This grammar is clearly ambigu-
ous, but yacc permits us to use ambiguous grammars and provides a way of resolving the
ambiguity. The actions can refer to the values of the elements of the nonterminal being
defined with positional notation. For example, in the following yacc definition:

S: a S b C

the value of a is referred to as $1, S is $2, b is $3, and C is $4. The nonterminal
being defined may be assigned a value; if so, it is referred to as $$. The value of a
terminal, or token, is taken from the global variable yylval.

Some aspects of this yacc program need to be explained. Beginning with the
first Section, the %{ and %} delimiters are used to include C code in the output. They are
usually used for macros (#define), #include statements, and C declarations. The
macro #define YYSTYPE string is used to declare the type of values to be pushed
onto the parse stack. In this case we wish to push strings (actually pointers to char) onto
the parse stack, since we are implementing the operations and operands as simple strings.
We could not have used #define YYSTYPE char ∗, however, because YYSTYPE is
used in the resulting C program to declare several variables:

YYSTYPE yylval, yyval;

The macro substitution would yield:

179

char ∗ yylval, yyval;

which declares yylval to be a pointer to char, but yyval to be a char, which is
incorrect. The use of typedef to define a string type circumvents this problem. The
remainder of the inline C code, as far as the %}, is used by the alloc() function,
described below. We then have some yacc declarations, the first of which, %token, is
used to declare tokens returned by the yylex() function. Tokens are implemented in
yacc as integers. Each character corresponds to a one byte integer token. Named tokens,
such as OPERAND in our example, are then equated to values beginning with 256. The
yacc directives %left and %right are used to declare the precedence of operations
(this is how the ambiguity in the grammar is resolved). The directive %left '+',
'-' means that these operations associate to the left (they are executed from left to right).
The fact that the precedence of addition and subtraction is given before the precedence of
multiplication and division, indicates that multiplication and division take precedence
over addition and subtraction.

The second section of the yacc program includes the grammar for infix expres-
sions. Each time a subexpression generates an intermediate result, we need to allocate a
new temporary variable (T1, T2, T3, ...). For this purpose we call the alloc()
function, which returns the next available temporary location in the form of a string (a
commercial compiler would return pointers to the locations, or offsets to a stack). Once
we know where the result of the operation will be stored we can call the atom() function
to put out an atom with the appropriate operation and operands. Each time an entire
expression has been translated, we need to call the clear() function to return allocated
storage to the system and to reset counters for the next expression.

The third section of the yacc program includes the main program, with a call to
yyparse() to start up the translation. This section also includes functions called from
our action statements in the second section. In the third section, we also include the
output of lex, which is stored in the file lex.yy.c. This contains the yylex()
function which scans the input and returns a lexical token each time it is called. The
yyerror() function is called when a syntax error is encountered, and it prints the line
number which caused the error. Though yacc has the capability of recovering from syntax
errors (to scan for more errors), this example does not do so and merely terminates. The
alloc() function can be called from a lex action as well as from a yacc action. It
returns a pointer to an array of three characters which stores the operand in string form,
whether it be an identifier (a,b,c,...) or a temporary result (T1,T2,T3...). These
strings are stored in a linked list. The clear() function is called when an entire
expression has been translated. It frees all nodes in the linked list and resets the counter
for temporary locations back to 0. The atom() function puts out an atom to stdout,
using the operation and operands as arguments.

The lex program is shown below:

%%
[a-zA-Z] {yylval = alloc(TOKEN); return OPERAND;}
[\t] ;

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing180

. return yytext[0];
\n {lineno++; return yytext[0];}
%%

The yacc program is shown below:

%{
#include <stdio.h>
#include <alloc.h>
typedef char ∗ string;
#define YYSTYPE string /∗ type for parse stack ∗/
#define TOKEN 1
#define TEMP 0
int temp = 0;
struct node {

char name[3]; /∗ "Tn" or a,b,c,...∗/
struct node ∗ next; /∗ linked list ∗/

 };
struct node ∗ tlist = NULL; /∗ list head ∗/
char ∗ alloc (int type);
%}
%token OPERAND
%left '+' '-'
%left '∗' '/'
%left UMINUS UPLUS
%%
List: /∗ empty list ∗/

| List '\n'
| List Expr '\n' {clear ();}
;

Expr: '+' Expr %prec UPLUS {$$ = $2;}
| '-' Expr %prec UMINUS {$$ = alloc(TEMP);

 atom ("NEG", $2, 0, $$); }
| Expr '+' Expr {$$ = alloc(TEMP);

 atom ("ADD", $1, $3, $$); }
| Expr '-' Expr {$$ = alloc(TEMP);

 atom ("SUB", $1, $3, $$); }
| Expr '∗' Expr {$$ = alloc(TEMP);

 atom ("MUL", $1, $3, $$); }
| Expr '/' Expr {$$ = alloc(TEMP);

 atom ("DIV", $1, $3, $$); }
| '(' Expr ')' {$$ = $2;}
| OPERAND {$$ = $1;}
;

%%

181

char ∗progname;
int lineno = 1;
#include "lex.yy.c"

main (int argc, char ∗argv[])
{
 progname = argv[0];
 yyparse();
}

yyerror (char ∗s)
{
 fprintf(stderr, "%s[%d]: %s\n", progname, lineno, s);
}

char ∗ alloc (int type)
{ static struct node ∗ last = NULL;
 struct node ∗ ptr;
 static char t[3] = " ";

 ptr = (struct node ∗) malloc (sizeof (struct node));
 ptr -> next = NULL;
 if (last!=NULL) {last->next = ptr; last = ptr;}
 else tlist = last = ptr;
 if (type==TEMP)
 {
 t[0] = 'T';
 t[1] = '0' + temp++;
 strcpy (last->name, t);
 }
 else strcpy (last->name, yytext);
 return (char ∗) last;
}

clear ()
/∗ free up allocated memory, reset counters for next Expr ∗/
{ struct node ∗ ptr;
 while (tlist)
 { ptr = tlist->next;
 free (tlist);
 tlist = ptr;
 }
 temp = 0;
}

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing182

atom (char ∗ operation, char ∗ operand1,
char ∗ operand2, char ∗ result)

/∗ put out an atom. ∗/
{
 if (operand2) /∗ NEG has only one operand and result ∗/
 printf ("\t%s %s %s %s\n", operation, operand1,

operand2, result);
 else printf ("\t%s %s %s\n", operation, operand1,

result);
}

In sample Problem 5.3 we attempt to use yacc to build simple expression trees.
In this case there are two types which can be pushed on the stack — operators and
pointers to nodes in the expression tree. Therefore we need to tell yacc, with a %union
declaration, that either type may be pushed on the stack:
%union {

struct node ∗ ptr;
char op;
}

It is then possible to declare a nonterminal to be one of these types, as in the declaration
%type <ptr> Expr which shows that each Expr is a pointer to the subtree which
defines that Expr. When referring to yylval, either in lex or yacc, we now have to
specify its type, as yylval.op, indicating that it is a single character.

Sample Problem 5.3

Write a yacc program to build simple expression trees. Assume that the operands may be
only single letters or single digits and that the operations are addition, multiplication,
subraction, and division, with the usual precedence rules. The yylex() function may be
generated by lex or written directly in C. The input should be a single infix expression
on each line. After the expression tree is built, dump it to stdout in prefix order. Ex-
ample:

(4+a) ∗ b
∗ + 4 a b

4 + a ∗ b
+ 4 ∗ a b

Solution:

The lex program is:

%%
[a-zA-Z0-9] {yylval.op = yytext[0]; return OPERAND;}
[\t] ;

183

. return yytext[0];
\n {lineno++; return yytext[0];}
%%

The yacc program is:

/∗ this builds simple expr trees. ∗/
%{
#include <stdio.h>
struct node {

struct node ∗ left;
char op;
struct node ∗ right;
};

%}
%union {

struct node ∗ ptr;
char op;
}

%token OPERAND
%type <ptr> Expr
%left '+' '-'
%left '∗' '/'
%%
List: /∗ empty list ∗/

| List '\n'
| List Expr '\n' {printf ("\t");

 prefix ($2); /∗ dump expr
tree ∗/

 printf ("\n");}
;

Expr: Expr '+' Expr {$$ = alloc ($1,'+', $3);}
| Expr '-' Expr {$$ = alloc($1, '-', $3);}
| Expr '∗' Expr {$$ = alloc($1, '∗', $3);}
| Expr '/' Expr {$$ = alloc($1, '/', $3);}
| '(' Expr ')' {$$ = $2;}
| OPERAND {$$ = alloc(NULL, yylval.op,

NULL);}
;

%%
char ∗progname;
int lineno = 0;
#include "lex.yy.c"

main (int argc, char ∗argv[])

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing184

{
 progname = argv[0];
 yyparse(); /∗ call the parser ∗/
}

yyerror (char ∗s)
{
 fprintf(stderr, "%s[%d]: %s\n", progname, lineno, s);
}

struct node ∗ alloc (struct node ∗ left, char op,
struct node ∗ right)

/∗ allocate a node in the expression tree. Return a pointer
to the new node ∗/

{ struct node ∗ ptr;

 ptr = (struct node ∗) malloc (sizeof (struct node));
 ptr->left = left;
 ptr->right = right;
 ptr->op = op;

 return ptr;
}

prefix (struct node ∗ root)
/* print out the exptree in prefix order */
{
 printf ("%c ", root->op);
 if (root->left!=NULL)

{ prefix (root->left); /∗ dump left subtree ∗/
 free (root->left); } /∗ release memory ∗/

 if (root->right!=NULL)
{ prefix (root->right); /∗ dump right subtree ∗/
 free (root->right); } /∗ release memory ∗/

 free (root);
}

5.3.4 Other Yacc Constructs

We have demonstrated most of the important features of yacc, and the student may find
them sufficient to implement parsers for fairly interesting languages, such as the language
of arithmetic expressions. However, there are some more advanced constructs which will
be needed to generate the parser for MiniC.

The first such advanced feature of yacc has to do with the way yacc handles
embedded actions. An embedded action is one which is not at the end of a grammar rule:

185

Nt: a b {action 1} c d {action 2} ;

As we discussed in Section 5.3.3, action 1 is the embedded action and is counted as
one of the items in the rule ($3 in the above example), but we will now need to understand
how yacc handles embedded actions. The above rule is actually transformed by yacc into
two rules, as Yacc makes up a "fake" nonterminal (which is defined as the null string) for
the embedded action. The example, above, would be converted to something like the
following:

Nt: a b Fake c d {action 2} ;
Fake: /∗ null definition ∗/ {action 1} ;

Normally, the user need not be aware of this transformation, and everything
works fine. However, consider the following example, in which the non-embedded action
makes use of a value computed in the embedded action:

Nt: a b { $$ = value;} c d {printf ("%d", $$);} ;

In this example we wish to print the value assigned to $$ in the embedded action. Yacc
would convert this rule to two rules:

Nt: a b Fake c d {printf ("%d", $$);} ;
Fake: {$$ = value;} ;

This will not work, since the $$ referred to in the definition of Nt is not the same as the
$$ referred to in the definition of Fake. However, we can fix the problem by referring to
the value of the embedded action itself:

Nt: a b { $$ = value;} c d {$$ = $3; printf ("%d", $$);} ;

which works because yacc transforms it into the following two rules:

Nt: a b Fake c d {$$ = $3; printf ("%d", $$);} ;
Fake: {$$ = value;} ;

The fake nonterminals are assigned numbers by yacc, so if you should see error messages
referring to nonterminals, such as $$23, for example, it is probably a nonterminal that
yacc made up to represent an embedded action.

If the parser stack has been declared to be a union of several types, the type of
the embedded action can be specified by placing the type between the $ and the item
number. For example, if the type of the embedded action in the above action were labels,
we would refer to it as $<labels>3.

The other advanced feature of yacc, which may be needed in constructing
compilers, has to do with inherited attributes. Up to this point, all values that have been

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing186

passed from one rule to another (via an assignment to $$) have been passed in a direction
corresponding to an upward direction in the derivation tree. As we saw in Section 4.6,
these values are called synthesized attributes. We now wish to consider the problem of
passing values between rules in a direction which corresponds to a downward direction in
the derivation tree; i.e., we wish to use inherited attributes in our yacc grammar.

Suppose, for example, that the source language includes a simplified Switch
statement, defined as follows:

SwitchStmt: switch (Expr) { CaseList }
;

CaseList: case NUM : StmtList
| CaseList case NUM : StmtList

We will need to put out TST atoms which compare the Expr in the SwitchStmt with
each of the NUMs in the CaseList, so an attribute representing the runtime location of
the Expr must be passed (down the tree) from SwitchStmt to the CaseLists, hence
the need for inherited attributes. When writing actions in the definition of CaseList,
we can assume that the preceding items in the SwitchStmt are on the parser stack, and
they can be referred to with negative item numbers as follows:

SWITCH (Expr) { CaseList }
$-4 $-3 $-2 $-1 $0

Thus the action for CaseList might be:

CaseList: case NUM ':' {TST atom which compares $-2 with
$2} StmtList

| CaseList case NUM ':' {TST atom which compares $-2
 with $3} StmtList

– in which $-2 represents the location of the result of the Expr which is to be compared
with a NUM in the CaseList. These and other advanced features of yacc are explained
in fine detail in Levine [1992].

Exercises 5.3

1. Which of the following input strings would cause this yacc and lex program to
produce a syntax error message?

/* yacc program */
%%
line: s '\n'

;

187

s: 'a' s 'b'
| 'b' a 'c'
;

a: 'b' a 'b'
| 'a' 'c'
;

%%
#include "lex.yy.c"
main ()
{ yyparse();}

/* lex program */
%%
. return yytext[0];
\n return yytext[0];

(a) bacc (b) ab (c) abbacbcb
(d) bbacbc (e) bbacbb

2 . Show the output produced by each of the input strings given in Problem 1, using
the yacc and lex programs shown below.

/* yacc program */
%%
line: s '\n'

;
s: 'a' s 'b' {printf ("rule 1\n");}

| 'b' a 'c' {printf ("rule 2\n");}
;

a: 'b' a 'b' {printf ("rule 3\n");}
| 'a' 'c' {printf ("rule 4\n");}
;

%%
#include "lex.yy.c"
main ()
{ yyparse();}

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing188

/* lex program */
%%
. return yytext[0];
\n return yytext[0];
%%

3. A Sexpr is an atom or a pair of Sexprs enclosed in parentheses and separated with
a period. For example, if A, B, C, and NIL are all atoms, then the follow-
ing are examples of Sexprs:

A
(A.B)
((A.B).(B.C))
(A.(B.(C.NIL)))

A List is a special kind of Sexpr. A List is the atom NIL or a List is a dotted pair
of Sexprs in which the first part is an atom or a List and the second part is a List.
The following are examples of lists:

NIL
(A.NIL)
((A.NIL).NIL)
((A.NIL).(B.NIL))
(A.(B.(C.NIL)))

(a) Show a yacc grammar (not a complete yacc program, but just the part after
the first %%) that defines a Sexpr. Assume that the yylex() function
returns either ATOM, (,), or ., where ATOM represents any atom.

(b) Show a yacc grammar (again, not a complete yacc program) that defines a
List. Assume that the yylex() function returns either ATOM, NIL,
(,), or ., where ATOM represents any atom other than NIL.

(c) Add actions to your answer to part (b) so that it will print out the total
number of atoms in a List. For example:

((A.NIL).(B.(C.NIL)))
5 atoms

189

4. Use yacc and lex to implement a syntax checker for a typical database command
language. Your syntax checker should handle at least the following kinds of
commands:

RETRIEVE employee_file
PRINT
DISPLAY FOR salary >= 1000000
PRINT FOR "SMITH" = lastname

5. The following lex and yacc programs are designed to implement a simple desk
calculator with the standard four arithmetic functions (it uses floating-point
arithmetic only). When compiled and run, the program will evaluate a list of
arithmetic expressions, one per line, and print the results. For example:

2+3.2e-2
2.032000

2+3∗5/2
9.500000

(2+3)∗5/2
12.500000

16/(2∗3 - 6∗1.0)
division by zero

Unfortunately, the program as shown below does not work. It contains four
mistakes, some of which are syntactic lex or yacc errors; some of which are
syntactic C language errors; some of which cause run-time errors; and some of
which don't produce any error messages, but do produce incorrect output. Find
and correct all four mistakes. If possible, use a computer to help debug these
programs.

/∗ lex program ∗/
%%
[0-9]+\.?[0-9]∗[eE][+-]?[0-9]+? {sscanf

(yytext,"%f",&yylval);
return NUM; }

[] ;

Section 5.3 Yacc

Chapter 5 Bottom Up Parsing190

"\n" return yytext[0];
. return yytext[0];
%%

/∗ yacc program ∗/
%token NUM
%{
#define YYSTYPE float
%}
%left "+" "-"
%left "∗" "/"
list:

| list expr '\n' {printf ("%f\n",
$2);}

;
expr: expr '+' expr {$$ = $1 +

$3;}
| expr '-' expr {$$ = $1 -

$3;}
| expr '∗' expr {$$ = $1 ∗

$3;}
| expr '/' expr {if ($3=0)

yyerror ("division by zero\n");
else $$ = $1 / $3;}

| '(' expr ')' {$$ = $1;}
| NUM {$$ = $1;}
;

%%
#include "lex.yy.c"

yyerror (char ∗s)
{ printf ("%s: %s\n", s, yytext); }

6. Show lex and yacc programs which will check for proper syntax of regular expressions
over the alphabet {0,1}. Examples:

(0 + 1)* . (0 + 1*) Syntax is ok
((0 + 1)* Syntax is not ok

191

5.4 Arrays

Although arrays are not included in our definition of MiniC, they are of such great
importance to programming languages and computing in general, that we would be
remiss not to mention them at all in a compiler text. We will give a brief description of
how multi-dimensional array references can be implemented and converted to atoms, but
for a more complete and efficient implementation the student is referred to Parsons
[1992] or Aho [1986].

The main problem that we need to solve when referencing an array element is
that we need to compute an offset from the first element of the array. Though the
programmer may be thinking of multi-dimensional arrays as existing in two, three, or
more dimensions, they must be physically mapped to the computer's memory, which has
one dimension. For example, an array declared as int N[2][3][4]; might be envi-
sioned by the programmer as a structure having three rows and four columns in each of
two planes as shown in Figure 5.10 (a). In reality, this array is mapped into a sequence
of twenty-four (2*3*4) contiguous memory locations as shown in Figure 5.10 (b). The
problem which the compiler must solve is to convert an array reference such as
N[1][1][0] to an offset from the beginning of the storage area allocated for N. For this
example, the offset would be sixteen memory cells (assuming that each element of the
array occupies one memory cell).

To see how this is done, we will begin with a simple one-dimensional array and
then proceed to two and three dimensions. For a vector, or one-dimensional array, the
offset is simply the subscripting value, since subscripts begin at 0 in C++. For example,
if V were declared to contain twenty elements, char V[20];, then the offset for the fifth
element, V[4], would be 4, and in general the offset for a reference V[i] would be i. A
vector maps directly to the computer's memory.

Now we introduce a second dimension; suppose M is declared as a matrix, or
two-dimensional array, char M[10][15];. A reference to an element of this array will
compute an offset of fifteen elements for each row after the first. Also, we must add to

(a)

(b)

Figure 5.10 A Three-Dimensional Array
N[2][3][4] (a) Mapped into a One-
Dimensional Memory (b).

† † † † †
N[0][0][0] N[0][1][0] N[0][2][0] N[1][0][1] N[1][2][3]

Section 5.4 Arrays

4 columns

3 rows

2 planes

Chapter 5 Bottom Up Parsing192

this offset the number of columns in the selected row. For example, a reference to
M[4][7] would require an offset of 4*15 + 7 = 67. The reference M[R][C] would
require an offset of R*15 + C. In general, for a matrix declared as char M[Rows][
Cols], the formula for the offset of M[R][C] is R*Cols + C.

For a three-dimensional array, char A[5][6][7];, we must sum an offset for
each plane (6*7 elements), an offset for each row (7 elements), and an offset for the
elements in the selected row. For example, the offset for the reference A[2][3][4] is
found by the formula 2*6*7 + 3*7 + 4. The reference A[P][R][C] would result in an
offset computed by the formula P*6*7 + R*7 + C. In general, for a three-dimensional
array, A[Planes][Rows][Cols], the reference A[P][R][C] would require an offset
computed by the formula P*Rows*Cols + R*Cols + C.

We now generalize what we have done to an array that has any number of
dimensions. Each subscript is multiplied by the total number of elements in all higher
dimensions. If an n dimensional array is declared as A[D

1
][D

2
][D

3
]...[D

n
], then a

reference to A[S
1
][S

2
][S

3
]...[S

n
] will require an offset computed by the following

formula:

 S
1
*D

2
*D

3
*D

4
*...*D

n
 + S

2
*D

3
*D

4
*...*D

n
 + S

3
*D

4
*...*D

n
+ ...

+ S
n-1
*D

n
 + S

n
.

In this formula, D
i
 represents the number of elements in the ith dimension and S

i
 repre-

sents the ith subscript in a reference to the array. Note that in some languages, such as C,
all the subscripts are not required. For example, the array of three dimensions
A[2][3][4], may be referenced with two, one, or even zero subscripts. A[1] refers to
the address of the first element in the second plane; i.e. all missing subscripts are as-
sumed to be zero.

Notice that some parts of the formula shown above can be computed at compile
time. For example, assuming that arrays must be dimensioned with constants, the
product of dimensions D2*D3*D4 can be computed at compile time. However, since
subscripts can be arbitrary expressions, the complete offset may have to be computed at
run time.

The atoms which result from an array reference must compute the offset as
described above. Specifically, for each dimension, i, we will need a MUL atom to
multiply Si by the product of dimensions from D

i+1
 through D

n
, and we will need an ADD

atom to add the term for this dimension to the sum of the previous terms. Before
showing a translation grammar for this purpose, however, we will first show a grammar
without action symbols or attributes, which defines array references. Grammar G22 is an
extension to the grammar for simple arithmetic expressions, G5, given in Section 3.1.
Here we have added rules 8-10.

G22

1. Expr z Expr + Term
2. Expr z Term
3. Term z Term * Factor

193

4. Term z Factor
5. Factor z (Expr)
6. Factor z const
7. Factor z var Subs
8. Subs z [Expr] Subs
9. Subs z ε

This extension merely states that a variable may be followed by a list of subscripting
expressions, each in square brackets (the nonterminal Subs represents a list of sub-
scripts).

Grammar G23 shows rules 7-9 of grammar G23, with attributes and action
symbols. Our goal is to come up with a correct offset for a subscripted variable in
grammar rule 8, and provide its address for the attribute of the Factor in that rule.

Grammar G23:

7. Factor
e
 z var

v
 {MOV}

0,,sum
 Subs

v,sum,i

e y v[sum]
i y 1
sum y Alloc

8. Subs
v,sum,i1

 z [Expr
e
] {MUL}

e,=D,T
 {ADD}

sum,T,sum
 Subs

v,sum,i2

D y Prod(v,i1)
i2 y i1 + 1
T y Alloc

9. Subs
v,sum,i

 z {check}
i,v

The nonterminal Subs has three attributes: v (inherited) represents a pointer to
the symbol table for the array being referenced, sum (synthesized) represents the
location storing the sum of the terms which compute the offset, and i (inherited) is the
dimension being processed. In the attribute computation rules for grammar rule 8, there
is a call to a function Prod(v,i). This function computes the product of the dimensions
of the array v, above dimension i. As noted above, this product can be computed at
compile time. Its value is then stored as a constant, D, and referred to in the grammar as
=D .

The first attribute rule for grammar rule 7 specifies e y v[sum]. This means
that the value of sum is used as an offset to the address of the variable v, which then
becomes the attribute of the Factor defined in rule 7.

The compiler should ensure that the number of subscripts in the array reference
is equal to the number of subscripts in the array declaration. If they are not equal, an
error message should be put out. This is done by a procedure named check(i,v) which is
specified by the action symbol {check}

i,v
 in rule 9. This action symbol represents a

Section 5.4 Arrays

Chapter 5 Bottom Up Parsing194

procedure call, not an atom. The purpose of the procedure is to compare the number of
dimensions of the variable, v, as stored in the symbol table, with the value of i, the
number of subscripts plus one. The check(i,v) procedure simply puts out an error
message if the umber of subscripts does not equal the number of dimensions, and the
parse continues.

To see how this translation grammar works, we take an example of a three-
dimensional array declared as int A[3][5][7]. An attributed derivation tree for the
reference A[p][r][c] is shown, above, in Figure 5.11 (for simplicity we show only the
part of the tree involving the subscripted variable, not an entire expression). To build
this derivation tree, we first build the tree without atttributes and then fill in attribute
values where possible. Note that the first and third attributes of Subs are inherited and
derive values from higher nodes or nodes on the same level in the tree. The final result is
the offset stored in the attribute sum, which is added to the attribute of the variable being
subscripted to obtain the offset address. This is then the attribute of the Factor which is
passed up the tree.

Sample Problem 5.4

Assume the array M has been declared to have two planes, four rows, and five columns
(int M[2][4][5]). Show the attributed derivation tree generated by grammar G23 for the
array reference M[x][y][z]. Use Factor as the starting nonterminal, and show the
subscripting expressions as Expr, as done in Figure 5.11. Also show the sequence of
atoms which would be put out as a result of this array reference.

Figure 5.11 A Derivation Tree for the Array Reference A[p][r,][c],
Which is Declared as int A[3][5][7].

 Factor A[T1]

var
A
 {MOV}

0,,T1
 Subs

A,T1,1

 [Expr
p
] {MUL}

p,=35,T2
 {ADD}

T1,T2,T1
 Subs

A,T1,2

 [Expr
r
] {MUL}

r,=7,T3
 {ADD}

T1,T3,T1
 Subs

A,T1,3

 [Expr
c
] {MUL}

c,=1,T4
 {ADD}

T1,T4,T1
 Subs

A,T1,4

 {check}
4,A

195

Solution:

Exercises 5.4

1. Assume the following array declarations:

int V[13];
int M[12][17];
int A3[15][7][5];
int Z[4][7][2][3];

Show the attributed derivation tree resulting from grammar G23 for each of the
following array references. Use Factor as the starting nonterminal, and show
each subscript expression as Expr, as done in Figure 5.11. Also show the se-
quence of atoms that would be put out.

(a) V[7] (b) M[q][2] (c) A3[11][b][4]
(d) Z[2][c][d][2] (e) M[1][1]

 Factor M[T1]

var
M
 {MOV}

0,,T1
 Subs

M,T1,1

 [Expr
x
] {MUL}

x,=20,T2
 {ADD}

T1,T2,T1
 Subs

M,T1,2

 [Expr
y
] {MUL}

y,=5,T3
 {ADD}

T1,T3,T1
 Subs

M,T1,3

 [Expr
z
] {MUL}

z,=1,T4
 {ADD}

T1,T4,T1
 Subs

M,T1,4

{check}

4,M

{MOV}
0,,T1

 {MUL}
x,=20,T2

 {ADD}
T1,T2,T1

 {MUL}
y,=5,T3

{ADD}
T1,T4,T1

 {MUL}
z,=1,T4

 {ADD}
T1,T4,T1

 {check}
4,M

Section 5.4 Arrays

Chapter 5 Bottom Up Parsing196

2. The discussion in this section assumed that each array element occupied one memory
cell. If each array element occupies Size memory cells, what changes would have to
be made to the general formula given in this section for the offset? How would this
affect grammar G23?

3. You are given two vectors: the first, D, contains the dimensions of a declared
array, and the second, S, contains the subscripting values in a reference to that
array.

(a) Write a C++ function –

int offSet (int D[max], int S[max]);

that computes the offset for an array reference A[S
0
][S

1
] ...[S

max-1
] where

the array has been declared as char A[D
0
][D

1
] ... [D

max-1
].

(b) Improve your C++ function, if possible, to minimize the number of run-time
multiplications.

197

5.5 Case Study: Syntax Analysis for MiniC

In this section we continue the development of a compiler for MiniC, a small subset of
the C++ programming language. We do this by implementing the syntax analysis phase
of the compiler using the yacc utility as described in Section 5.3, above. The parser
generated by yacc will obtain input tokens by calling yylex() (the function generated by
lex as described in Section 2.5). The parser will then check the tokens for correct syntax.

In addition, we provide supporting functions which enable our parser to put out
atoms corresponding to the run-time operations to be performed. This aspect of compila-
tion is often called semantic analysis. For more complex languages, semantic analysis
would also involve type checking, type conversions, identifier scopes, array references,
and symbol table management. Since these will not be necessary for the MiniC com-
piler, syntax analysis and semantic analysis have been combined into one program.

The complete yacc source file is shown in Appendix B.2 and is explained in the
following sections. The input to yacc is the file MiniC.y (divided into three sections by
%% delimiters), and the output, stored in the file y.tab.c, is the yyparse() function.
The MiniC.y file contains the main program (in the third section) which receives control
when the compiler is invoked. It calls the yyparse() function, which in turn calls the
yylex() function when it needs a token. As output, it produces a file of atoms. It then
invokes the code generator code_gen() if no errors have been detected. Consequently,
the program generated by yacc will ultimately contain all three phases of the compiler
(the lexical phase and the code generator are brought in with include directives).

5.5.1 Header Files Included

Our yacc source file begins with three include statements enclosed in %{ and %}
braces, indicating that these directives are to be copied verbatim to the output file:

#include <stdio.h>
#include "mini.h"
#include "MiniC.h"

The first include is to support the necessary input/output function calls. The mini.h
header file contains declarations which are needed for the back end of the compiler (code
generation), but not the front end (lexical and syntax analysis).

The third header file included, MiniC.h, contains declarations which are needed
by the front end of the compiler. It specifies constants determining the maximum size of
the symbol table and the table of address labels. It also defines a type ADDRESS, which
is intended to be a run-time address on the target machine. This header file also defines
structures for the lexical tables, as described in Section 2.5.

The parser produces a file of atoms, the structure of which is defined in the
MiniC.h header file. This record structure is shown in Figure 5.12. The remainder of
the MiniC.h header file defines the atom classes which are not also used as machine op

Section 5.5 Case Study: Syntax Analysis for MiniC

Chapter 5 Bottom Up Parsing198

codes (these are defined in the mini.h header file because they are needed to compile the
Mini machine simulator).

5.5.2 Other Declarations in the First Section

The parser stack needs to store three kinds of data: target machine addresses (address),
integer codes for comparisons and type declarations (code), and label numbers (labels).
We tell this to yacc with a %union statement:

%union {
ADDRESS address;
int code; /* comparison code 1-6 */
struct {int L1;

 int L2;
 int L3; } labels;

}

This is similar in meaning to the union declaration in C; in effect, it allows the
user to bind different interpretations (types) to the same storage location. When assign-
ing a value to a syntactic type in the rules section, we can refer to any of these fields to
indicate the type of the value pushed on the parser stack. For example, in the following
rule:

Type: terminal {$$.code = $1.L1;}
;

the value assigned to the Type being defined ($$) is the type of code, whereas the type
of the terminal ($1) is the type of L1. Notice that we did not need to give the structure
name, labels, in the reference to $1.L1. The reason is that yacc fills in the structure
name for us.

The lexical tokens are declared with %token statements. We must declare a
type for those tokens which have a value part (as one of the types listed in the %union
statement) so the parser will know which type is being pushed on the stack. For ex-

op Operation of Atom
left Left Operand Location
right Right Operand Location
result Result Location
cmp Comparison Code, for TST Atoms
dest Destination, for JMP, LBL, and TST atoms

Figure 5.12 Record Structure of the File of Atoms

199

ample, since an identifier’s value part is it’s target machine address, the declaration is
%token <address> IDENTIFIER.

Action statements in the grammar can also push values onto the parser stack for
nonterminals. In this case, we must again inform yacc of the type to be associated with
these nonterminals, using the %type statement. For example, the nonterminal Type
receives the value 1 if the type is INTEGER, and 2 if the type is REAL. We use the
code stack type for this purpose, and consequently declare the Type nonterminal:
%type <code> Type.

The first section then concludes with precedence information for the parsing of
arithmetic expressions. The %right '=' directive indicates that the assignment operator
associates to the right (e.g. a = b = 0 should assign 0 to b, and then 0 to a). The
%left COMPARISON directive, %left '+' '-' directive, and the %left '*' '/' directives
all indicate that these operations associate to the left. The fact they are listed in separate
statements specify that '*' and '/' take precedence over '+' and '-', which take precedence
over COMPARISON operators, which take precedence over the assignment operator.
Finally, the %left UMINUS UPLUS directive indicates that those unary operations are
also left associative and take precedence over multiplication and division.

5.5.3 The Rules Section

The second section of the yacc source file contains the grammar for MiniC, together with
action statements that generate the appropriate atoms. Each call to the atom() function
writes an atom to the file of atoms. The most difficult part of this section has to do with
the processing of labels for the various control structures. To see why it is necessary to
use the parser stack for these labels, consider a nested while statement:

while (x>y) while (a!=0) Stmt

This shows that it is not possible to generate a label (L2) after the key word while is
seen, and refer to it as L2 after the Stmt is seen. Because these control structures can be
nested, it is necessary to use the parser stack so that JMP atoms can be associated with
the proper destination LBL atoms. The definition of a while statement, with actions, is
shown below:

WhileStmt: WHILE {$$.L1 = newlabel();
 atom (LBL,NULL,NULL,NULL,0,$$.L1);}

'(' Expr ')' {$$.L2 = newlabel();
 atom (TST,$4, zero, NULL,1,$$.L2);}

 Stmt {atom (JMP,NULL,NULL,NULL,0,
 $<labels>2.L1);
 atom (LBL,NULL,NULL,NULL,0,
 $<labels>6.L2);}

;

Section 5.5 Case Study: Syntax Analysis for MiniC

Chapter 5 Bottom Up Parsing200

In order to understand these actions the reader should refer back to Figure
4.17(a) in which the control structure of a while statement is diagrammed. The first
atom put out is a LBL atom in which the destination field is a new label (L2). We can
then refer to this in another action, but must be careful to refer to the correct grammar
item (recall that actions are included when numbering the items in a grammar statement:
$1, $2, $3, ...). The assignment to $$.L2 is done in the second item, so we refer to it
below as $2.L2. Since $2 is an embedded action, we need to specify its type as
$<labels>2.L1. After the ')' is seen, a TST atom is put out, which compares the value
of the Expr with 0 (false). If the Expr is 0, it jumps out of the loop (to label L2). After
the Stmt, which is the body of the loop, we put out a JMP atom to label L1, which is at
the beginning of the loop.

The other control structures are handled in a similar fashion, and should be
compared with Figure 4.17. If the student attempts to generate the parser for MiniC,
there will be an error message from yacc: shift/reduce conflict. This error results from
the ambiguous if else statement in the MiniC grammar. Fortunately, yacc resolves the
ambiguity with a shift whenever possible, which means that all else clauses are matched
with the closest previous unmatched if. In other words, the user need not be concerned
about this shift/reduce error message.

Arithmetic expressions are handled with a grammar similar to grammar G4,
which is ambiguous. Fortunately the ambiguity is resolved with the %left precedence
directives described in Section 5.5.2, above.

In the processing of arithmetic expressions, each operation invokes alloc(1) to
reserve temporary storage for the result of the operation. These temporary storage
locations are never released or reused for other purposes, simply to keep the compiler
short and simple. The student is encouraged to write a release() function which would
return unused temporaries. One approach would be to locate these items after the
program instructions, rather than in low memory locations, using high memory as a run-
time stack. Each time a complete expression is evaluated, its result could be moved to
the lowest stack location no longer needed.

5.5.4 Supporting Functions

The third section of the yacc program contains the main program as well as supporting
functions. The main program opens the output file atoms and then installs the constants
1.0 and 0.0(which are used as logical values True and False) in the table of constants
before invoking the parser yyparse().

The yyerror() function is called by yyparse() when there is a syntax error, and
processing terminates. Yacc does have the capability of recovering from syntax errors,
but that is beyond our scope. The yyerror() function is also called from yylex() when
undeclared identifiers or multiply-declared identifiers are encountered. In this case, the
program continues to look for additional errors, but no code is generated.

The most important supporting function is the atom() function, which
generates an atom as a record in the file atoms, given the operation, the left and right
operands, the result, the comparison code (for TST atoms), and the destination label

201

number (for TST and JMP atoms). The complete source input to yacc, in the file
miniC.y, is shown in appendix B.

Exercises 5.5

1. Extend the MiniC language to include a do statement defined as:

DoStmt z do Stmt while '(' Expr ')' ';'

Modify the files MiniC.l and MiniC.y, shown in Appendix B so that the compiler
puts out the correct atom sequence implementing this control structure, in which
the test for termmination is made after the body of the loop is executed. The
nonterminals Stmt and Expr are already defined. The tokens do and while need
to be defined. For purposes of this assignment you may alter the atom() function
so that it prints out its arguments to stdout rather than building a file of atoms,
and remove the call to the code generator.

2. Extend the MiniC language to include a switch statement defined as:

SwitchStmt z switch '(' Expr ')' CaseList
CaseList z case number ':' Stmt CaseList
CaseList z case number ':' Stmt

Modify the files MiniC.l and MiniC.y, shown in Appendix B, so that the com-
piler puts out the correct atom sequence implementing this control structure. The
nonterminals Expr and Stmt are already defined, as are the tokens number and
end. The token switch needs to be defined. Also define a break statement
which will be used to transfer control out of the switch statement. For purposes
of this assignment, you may alter the atom() function so that it prints out its
arguments to stdout rather than building a file of atoms, and remove the call to
the code generator.

Section 5.5 Case Study: Syntax Analysis for MiniC

Chapter 5 Bottom Up Parsing202

3. Extend the MiniC language to include initializations in decalarations, such as:

int x=3, y, z=0;

Modify the files MiniC.l and MiniC.y, shown in Appendix B, so that the com-
piler puts out the correct atom sequence implementing this feature. You will need
to put out a MOV atom to assign the value of the constant to the variable.

203

5.6 Chapter Summary

This chapter describes some bottom up parsing algorithms. These algorithms recognize
a sequence of grammar rules in a derivation, corresponding to an upward direction in the
derivation tree. In general, these algorithms begin with an empty stack, read input
symbols, and apply grammar rules, until left with the starting nonterminal alone on the
stack when all input symbols have been read.

The most general class of bottom up parsing algorithms is called shift reduce
parsing. These parsers have two basic operations: (1) a shift operation pushes the
current input symbol onto the stack, and (2) a reduce operation replaces zero or more
top-most stack symbols with a single stack symbol. A reduction can be done only if a
handle can be identified on the stack. A handle is a string of symbols occurring on the
right side of a grammar rule, and matching the symbols on top of the stack, as shown
below:

 ,... HANDLE Nt z HANDLE

The reduce operation applies the rewriting rule in reverse, by replacing the handle on the
stack with the nonterminal defined in the corresponding rule, as shown below

 ,... Nt

When writing the grammar for a shift reduce parser, one must take care to avoid shift/
reduce conflicts (in which it is possible to do a reduce operation when a shift is needed
for a correct parse) and reduce/reduce conflicts (in which more than one grammar rule
matches a handle).

A special case of shift reduce parsing, called LR parsing, is implemented with a
pair of tables: an action table and a goto table. The action table specifies whether a shift
or reduce operation is to be applied. The goto table specifies the stack symbol to be
pushed when the operation is a reduce.

We studied a Unix utility, yacc, which generates an LR parser from a specifica-
tion grammar. It is also possible to include actions in the grammar which are to be
applied as the input is parsed. Lex, the utility for generating lexical scanners (Section
2.4), and yacc are designed to work together.

Finally we looked at an implementation of MiniC, our case study language
which is a subset of C++, using yacc. This compiler works with the lexical phase
discussed in Section 2.4 and is shown in Appendix B.3.

Section 5.6 Chapter Summary

Chapter 6

Code Generation
6.1 Introduction to Code Generation

Up to this point we have ignored the architecture of the machine for which we are
building the compiler, i.e. the target machine. By architecture, we mean the definition of
the computer’s central processing unit as seen by a machine language programmer.
Specifications of instruction-set operations, instruction formats, addressing modes, data
formats, CPU registers, input/output instructions, etc. all make up what is sometime
called the conventional machine language architecture (to distinguish it from the
microprogramming level architecture which many computers have; see, for example,
Tanenbaum [1990]). Once these are all clearly and precisely defined, we can complete
the compiler by implementing the code generation phase. This is the phase which
accepts as input the syntax trees or stream of atoms as put out by the syntax phase, and
produces, as output, the object language program in binary coded instructions in the
proper format.

The primary objective of the code generator is to convert atoms or syntax trees
to instructions. In the process, it is also necessary to handle register allocation for
machines that have several general purpose CPU registers. Label atoms must be con-
verted to memory addresses. For some languages, the compiler has to check data types
and call the appropriate type conversion routines if the programmer has mixed data types
in an expression or assignment.

Note that if we are developing a new computer, we don’t need a working model
of that computer in order to complete the compiler; all we need are the specifications, or
architecture, of that computer. Many designers view the construction of compilers as
made up of two logical parts – the front end and the back end. The front end consists of
lexical and syntax analysis and is machine-independent. The back end consists of code
generation and optimization and is very machine-dependent, consequently this chapter

205

commences our discussion of the back end, or machine-dependendent, phases of the
compiler.

This separation into front and back ends simplifies things in two ways when
constructing compilers for new machines or new languages. First, if we are implement-
ing a compiler for a new machine, and we already have compilers for our old machine,
all we need to do is write the back end, since the front end is not machine dependent. For
example, if we have a Pascal compiler for an IBM PS/2, and we wish to implement
Pascal on a new RISC (Reduced Intruction Set Computer) machine, we can use the front
end of the existing Pascal compiler (it would have to be recompiled to run on the RISC
machine). This means that we need to write only the back end of the new compiler (refer
to Figure 1.9, p. 23).

Our life is also simplified when constructing a compiler for a new programming
language on an existing computer. In this case, we can make use of the back end already
written for our existing compiler. All we need to do is rewrite the front end for the new
language, compile it, and link it together with the existing back end to form a complete
compiler. Alternatively, we could use an editor to combine the source code of our new
front end with the source code of the back end of the existing compiler, and compile it all
at once.

For example, suppose we have a Pascal compiler for the Macintosh, and we
wish to construct an Ada compiler for the Macintosh. First, we understand that the front
end of each compiler translates source code to a string of atoms (call this language
Atoms), and the back end translates Atoms to Mac machine language (Motorola 680x0
instructions).
The compilers we have are and , the compiler we want is

 , and each is composed of two parts, as shown in Figure 6.1. We write

 which is the front end of an Ada compiler and is also shown in Figure

6.1.
We then compile the front end of our Ada compiler as shown in Figure 6.2 (a)

and link it with the back end of our Pascal compiler to form a complete Ada compiler for
the Mac, as shown in Figure 6.2 (b).

The back end of the compiler consists of the code generation phase, which we
will discuss in this chapter, and the optimization phases, which will be discussed in
Chapter 7. Code generation is probably the least intensively studied phase of the
compiler. Much of it is straightforward and simple; there is no need for extensive
research in this area. Most of the research that has been done is concerned with methods
for specifying target machine architectures, so that this phase of the compiler can be
produced automatically, as in a compiler-compiler.

Section 6.1 Introduction to Code Generation

C Pas z Mac

Pas
C Pas z Mac

Mac

C Ada z Mac

Mac

C Ada z Atoms

Pas

Chapter 6 Code Generation206

Figure 6.2 (b) Link the Front End of the Ada Compiler with the Back End of the Pascal
Compiler to Produce a Complete Ada Compiler.

Figure 6.2 (a) Compile the Front End of the Ada Compiler on the Mac

Figure 6.1 Using a Pascal Compiler to Construct an Ada Compiler

We have the source code for a Pascal Compiler:

We have the Pascal compiler which runs on the Mac:

We want an Ada Compiler which runs on the Mac:

We write the front end of the Ada compiler in Pascal:

C Pas z Mac
 = +Pas C Pas z Atoms

Pas C Atoms z Mac

Pas

C Pas z Mac
 = +Mac C Pas z Atoms

Mac C Atoms z Mac

Mac

C Ada z Mac
 = +Mac C Ada z Atoms

Mac C Atoms z Mac

Mac

C Ada z Atoms

Pas

C Ada z Atoms

Pas C Pas z Mac

Mac C Ada z Atoms

Mac

Mac

z z

C Ada z Atoms
+ =Mac C Atoms z Mac

Mac C Ada z Mac

Mac

207

Sample Problem 6.1

Assume we have a Pascal compiler for a Mac (both source and executable
code) as shown in Figure 6.1. We are constructing a completely new machine called a
RISC, for which we wish to construct a Pascal compiler. Show how this can be done
without writing the entire compiler and without writing any machine or assembly
language.

Solution:

We want C Ada z RISC

Write (in Pascal) the back end of a compiler for the RISC machine:

C Atoms z RISC

We now have

which needs to be compiled on the Mac:

But this is still not what we want, so we load the output into the Mac’s memory and
compile again:

and the output is the compiler that we wanted to generate.

Section 6.1 Introduction to Code Generation

RISC

Pas

C Pas z RISC
 = +Pas C Pas z Atoms

Pas C Atoms z RISC

Pas

C Pas z RISC

Pas C Pas z Mac

Mac C Pas z RISC

Mac

Mac

z z

C Pas z RISC

Pas C Pas z RISC

Mac C Pas z RISC

RISC

Mac

zz

Chapter 6 Code Generation208

Exercises 6.1

1. Show the big C notation for each of the following compilers (assume that each
uses an intermediate form called “Atoms”):

(a) The back end of a compiler for the Vax.

(b) The source code, in Pascal, for a COBOL compiler whose target machine
is the PC.

(c) The souce code, in Pascal, for the back end of a FORTRAN compiler for
the Vax.

2. Show how to generate

without writing any more programs, given a PC machine and each of the follow-
ing collections of compilers:

(a)

(b)

(c)

C Lisp z PC

PC

C Lisp z PC

Pas C Pas z PC

PC

C Lisp z Atoms

Pas
C Pas z Atoms

Pas

C Atoms z PC

Pas
C Pas z PC

PC

C Lisp z Atoms

PC C Atoms z PC

PC

209

3. Given a NeXT computer and the following compilers, show how to generate a
Pascal (Pas) compiler for the MIPS machine without doing any more program-
ming. (Unfortunately, you can’t afford to buy a MIPS computer.)

Section 6.1 Introduction to Code Generation

C Pas z NeXT
= +Pas C Pas z Atoms

Pas C Atoms z NeXT

Pas

C Pas z NeXT
= +NeXT C Pas z Atoms

NeXT C Atoms z NeXT

NeXT

C Atoms z MIPS

Pas

Chapter 6 Code Generation210

6.2 Converting Atoms to Instructions

If we temporarily ignore the problem of forward references (of Jump or Branch instruc-
tions), the process of converting atoms to instructions is relatively simple. For the most
part all we need is some sort of case, switch, or multiple destination branch based on the
class of the atom being translated. Each atom class would result in a different instruction
or sequence of instructions. If the CPU of the target machine requires that all arithmetic
be done in registers, then an example of a translation of an ADD atom would be as
shown, below, in Figure 6.3; i.e., an ADD atom is translated into a LOD (Load Into
Register) instruction, followed by an ADD instruction, followed by a STO (Store
Register To Memory) instruction.

(ADD, A, B, T1) z LOD R1,A
ADD R1,B
STO R1,T1

Figure 6.3 Translation of an ADD Atom to Instructions

Most of the atom classes would be implemented in a similar way. Conditional
Branch atoms (called TST atoms in our examples) would normally be implemented as a
Load, Compare, and Branch, depending on the architecture of the target machine. The
MOV (move data from one memory location to another) atom could be implemented as a
MOV (Move) instruction, if permitted by the target machine architecture; otherwise it
would be implemented as a Load followed by a Store.

Operand addresses which appear in atoms must be appropriately coded in the
target machine’s instruction format. For example, many target machines require oper-
ands to be addressed with a base register and an offset from the contents of the base
register. If this is the case, the code generator must be aware of the presumed contents of
the base register, and compute the offset so as to produce the desired operand address.
For example, if we know that a particular operand is at memory location 1E (hex), and
the contents of the base register is 10 (hex), then the offset would be 0E, because 10 +
0E = 1E. In other words, the contents of the base register, when added to the offset,
must equal the operand address.

Sample Problem 6.2

The C++ statement If (A>B) A = B * C might result in the following
sequence of atoms:

(MOV, 1,,T1) // Move True into T1
(TST, A, B,, 3, L1) // Branch to L1 if A>B
(MOV 0,, T1) // Move False into T1
(LBL, L1)

211

(TST, T1, 0, 1, L2) // Branch to L2 if T1==0
(MUL, B, C, A)
(JMP, L3)
(LBL, L2)
(LBL, L3)

Translate these atoms to instructions for a Load/Store architecture. Assume that the
operations are LOD (Load), STO (Store), ADD, SUB, MUL, DIV, CMP (Compare), and
JMP (Conditional Branch). The Compare instruction will set a flag for the Jump
instruction, and a comparison code of 0 always sets the flag to True, which results in an
Unconditional Branch. Assume that variables and labels may be represented by
symbolic addresses.

Solution:

LOD R1,='1' // Load 1 into Reg. R1
STO R1,T1 // Store it in T1
LOD R1,A
CMP R1,B,3 // Compare A > B ?
JMP L1 // Branch if true
LOD R1,='0' // Load 0 into Reg. R1
STO R1,T1 // Store it in T1

L1:
LOD R1,T1
CMP R1,='0',1 // Compare T1==0?
JMP L2 // Branch if true
LOD R1,B
MUL R1,C // B * C
STO R1,A // A = B * C
CMP 0,0,0
JMP L3 // Unconditional Branch

L2:
L3:

Exercises 6.2

1. For each of the following C++ statements we show the atom string produced by
the parser. Translate each atom string to instructions, as in the sample problem
for this section. You may assume that variables and labels are represented by
symbolic addresses.

Section 6.2 Converting Atoms to Instructions

Chapter 6 Code Generation212

(a) { a = b + c * (d - e) ;
b = a;

}

(SUB, d, e, T1)
(MUL, c, T1, T2)
(ADD, b, T2, T3)
(MOV, T3,, a)
(MOV, a,, b)

(b) for (i=1; i<=10; i++) j = j/3 ;

(MOV, 1,, i)
(LBL, L1)
(MOV, 1,, T1)
(TST, i, 10,, 4, L2) // Is i<=10 ?
(MOV, 0,, T1) // No, result is false
(LBL, L2)
(TST, T1, 0,, 6, L3) // Branch if not false
(JMP, L4)
(LBL, L5)
(ADD, 1, i, i) // i++
(JMP, L1) // Repeat the loop
(LBL, L3)
(DIV, j, 3, T2) // T2 = j / 3;
(MOV, T2,, j) // j = T2;
(JMP, L5)
(LBL, L4) // End of loop

(c) if (a!=b+3) a = 0; else b = b+3;

(ADD, b, 3, T1)
(MOV, 1, T2)
(TST, a, T1,, 6, L1) // Is a!=T1 ?
(MOV, 0, T2)
(LBL, L1)
(TST, T2, 0, , 1, L2) // Is T2 false ?

213

(MOV, 0, a) // a = 0
(JMP, L3)
(LBL, L2)
(ADD, b, 3, T2) // T2 = b + 3
(MOV, T2,, b) // b = T2
(LBL, L3)

2. How many instructions correspond to each of the following atom classes on a
Load/Store architecture, as in the sample problem of this section?

(a) ADD (b) DIV (c) MOV
(d) TST (e) JMP (f) LBL

3. Why is it important for the code generator to know how many instructions corre-
spond to each atom class?

4. How many machine language instructions would correspond to an ADD atom on
each of the following architectures?

(a) Zero address architecture (a stack machine)

(b) One address architecture

(c) Two address architecture

(d) Three address architecture

Section 6.2 Converting Atoms to Instructions

Chapter 6 Code Generation214

6.3 Single Pass vs. Multiple Passes

There are several different ways of approaching the design of the code generation phase.
The difference between these approaches is generally characterized by the number of
passes which are made over the input file. For simplicity, we will assume that the input
file is a file of atoms, as specified in Chapters 4 and 5. A code generator which scans
this file of atoms once is called a single pass code generator, and a code generator which
scans it more than once is called a multiple pass code generator.

The most significant problem relevant to deciding whether to use a single or
multiple pass code generator has to do with forward jumps. As atoms are encountered,
instructions can be generated, and the code generator maintains a memory address
counter, or program counter. When a Label atom is encountered, a memory address
value can be assigned to that Label atom (a table of labels is maintained, with a memory
address assigned to each label as it is defined). If a Jump atom is encountered with a
destination that is a higher memory address than the Jump instruction (i.e. a forward
jump), the label to which it is jumping has not yet been encountered, and it will not be
possible to generate the Jump instruction completely at this time. An example of this
situation is shown, below, in Figure 6.4 in which the jump to Label L1 cannot be
generated because at the time the JMP atom is encountered the code generator has not
encountered the definition of the Label L1, which will have the value 9.

Atom Location Instruction
(ADD, A, B, T1) 4 LOD R1,A

5 ADD R1,B
6 STO R1,T1

(JMP,L1) 7 CMP 0,0,0
8 JMP ?

(LBL, L1) (L1 = 9)

Figure 6.4 Problem in Generating a Jump to a Forward Destination

A JMP atom results in a CMP (Compare instruction) followed by a JMP (Jump instruc-
tion), to be consistent with the sample architecture presented in Section 6.5, below.

There are two fundamental ways to resolve the problem of forward jumps.
Single pass compilers resolve it by keeping a table of Jump instructions which have
forward destinations. Each Jump instruction with a forward reference is generated
incompletely (i.e., without a destination address) when encountered, and each is also
entered into a fixup table, along with the Label to which it is jumping. As each Label
definition is encountered, it is entered into a table of Labels, along with its address value.
When all of the atoms have been read, all of the Label atoms will have been defined, and,
at this time, the code generator can revisit all of the Jump instructions in the Fixup table
and fill in their destination addresses. This is shown in Figure 6.5, below, for the same
atom sequence shown in Figure 6.4. Note that when the (JMP, L1) atom is encountered,

215

the Label L1 has not yet been defined, so the location of the Jump (8) is entered into the
Fixup table. When the (LBL, L1) atom is encountered, it is entered into the Label table,
because the target machine address corresponding to this Label (9) is now known. When
the end of file (EOF) is encountered, the destination of the Jump instruction at location 8
is changed, using the Fixup table and the Label table, to 9.

Fixup Table Label Table
Atom Loc Instruction Loc Label Label Value
(ADD,A,B,T1) 4 LOD R1,A

 5 ADD R1,B
 6 STO R1,T1

(JMP,L1) 7 CMP 0,0,0
 8 JMP 0 8 L1

(LBL,L1) L1 9

...
EOF

 8 JMP 9

Figure 6.5 Use of the Fixup Table and Label Table in a Single Pass Code
Generator for Forward Jumps

Multiple pass code generators do not require a Fixup table. In this case, the first
pass of the code generator does nothing but build the table of Labels, storing a memory
address for each Label. Then, in the second pass, all the Labels will have been defined,
and each time a Jump is encountered its destination Label will be in the table, with an
assigned memory address. This method is shown in Figure 6.6 which, again, uses the
atom sequence given in Figure 6.4.

Note that, in the first pass, the code generator needs to know how many machine
language instructions correspond to an atom (three to an ADD atom and two to a JMP
atom), though it does not actually generate the instructions. It can then assign a memory
address to each Label in the Label table.

A single pass code generator could be implemented as a subroutine to the
parser. Each time the parser generates an atom, it would call the code generator to
convert the atom to machine language and put out the instruction(s) corresponding to that
atom. A multiple pass code generator would have to read from a file of atoms, created
by the parser, and this is the method we use in our sample code generator in Section 6.5.

Sample Problem 6.3

The following atom string resulted from the C++ statement while (i<=x) {
x = x+2; i = i*3; }. Translate it into instructions as in (1) a single pass code
generator using a Fixup table and (2) a multiple pass code generator. Assume that 0 is

Section 6.3 Single Pass vs. Multiple Passes

Chapter 6 Code Generation216

stored at memory location 0, and 1 is stored at memory location 1. Your object code
should begin at location 2.

(LBL, L1)
(MOV, 1,, T1)
(TST, i, x,, 4, L2) // Is i<=x ?
(MOV, 0,, T1)
(LBL, L2)
(TST, T1, 0,, 1, L3) // Branch if T1 is false
(ADD, x, 2, x)
(MUL, i, 3, i)
(JMP, L1) // Repeat the loop
(LBL, L3) // End of loop

Begin First Pass: Label Table
Atom Loc Instruction Label Value

(ADD,A,B,T1) 4-6

(JMP,L1) 7-8

(LBL,L1) L1 9

...
EOF

Begin Second Pass:
Atom Loc Instruction

(ADD, A, B, T1) 4 LOD R1,A
5 ADD R1,B
6 STO R1,T1

(JMP,L1) 7 CMP 0,0,0
8 JMP 9

(LBL, L1)

...
EOF

Figure 6.6 Forward Jumps Handled by a Multiple Pass Code Generator

217

Solution:

(1) Single Pass
Fixup Table Label Table

Atom Loc Instruction Loc Label Label Value
(LBL, L1) L1 2
(MOV, 1,, T1) 2 LOD R1,1

3 STO R1,T1
(TST,i,x,,4,L2) 4 LOD R1,i

5 CMP R1,x,4
6 JMP 0 6 L2

(MOV, 0,, T1) 7 LOD R1,0
8 STO R1,T1

(LBL, L2) L2 9
(TST,T1,0,,1,L3) 9 LOD R1,T1

10 CMP R1,0,1
11 JMP 0 11 L3

(ADD, x, 2, x) 12 LOD R1, x
13 ADD R1,='2'
14 STO R1,x

(MUL, i, 3, i) 15 LOD R1,i
16 MUL R1,='3'
17 STO R1,i

(JMP, L1) 18 CMP 0,0,0
19 JMP 2

(LBL, L3) L3 20

...

6 JMP 9
11 JMP 20

(2) Multiple passes
Label Table

Atom Loc Instruction Label Value
Begin First Pass:
(LBL, L1) L1 2
(MOV, 1,, T1) 2-3
(TST,i,x,, 4,L2) 4-6
(MOV, 0,, T1) 7-8
(LBL, L2) L2 9
(TST,T1,0,,1,L3) 9-11

Section 6.3 Single Pass vs. Multiple Passes

Chapter 6 Code Generation218

(ADD, x, 2, x) 12-14
(MUL, i, 3, i) 15-17
(JMP, L1) 18-19
(LBL, L3) L3 20

Begin Second Pass:
Atom Loc Instruction

(LBL, L1)
(MOV, 1,, T1) 2 LOD R1,1

3 STO R1,T1
(TST,i,x,,4,L2) 4 LOD R1,i

5 CMP R1,x,4
6 JMP 9

(MOV, 0,, T1) 7 LOD R1,0
8 STO R1,T1

(LBL, L2)
(TST,T1,0,,1,L3) 9 LOD R1,T1

10 CMP T1,0
11 JMP 20

(ADD, x, 2, x) 12 LOD R1,x
13 ADD R1,='2'
14 STO R1,x

(MUL, i, 3, i) 15 LOD R1,i
16 MUL R1,='3'
17 STO R1,i

(JMP, L1) 18 CMP 0,0,0
19 JMP 2

(LBL, L3)

Exercises 6.3

1. The following atom string resulted from the C++ statement:
for (i=a; i<b+c; i++) b = b/2;
Translate the atoms to instructions as in the sample problem for this section using
two methods: (1) a single pass method with a Fixup table for forward Jumps and
(2) a multiple pass method. Refer to the variables a,b,c symbolically.

(MOV, a,, i)
(LBL, L1)
(ADD, b, c, T1) // T1 = b+c

219

(MOV, 1,, T2)
(TST, i, T1,, 2, L2) // Branch to L2 if i<b+c
(MOV, 0,, T2)
(LBL, L2)
(TST, T2, 0,, 6, L3) // If true, jump to loop body
(JMP, L4) // Exit loop
(LBL, L5)
(ADD, i, 1, i)
(JMP, L1) // Repeat loop
(LBL, L3)
(DIV, b, ='2', T3) // Loop Body
(MOV, T3,, b)
(JMP, L5) // Jump to increment
(LBL, L4)

2. Repeat Problem 1 for the atom string resulting from the C++ statement:
 if (a==(b-33)*2) a = (b-33)*2;

else a = x+y;

(SUB, b, ='33', T1)
(MUL, T1, ='2', T2)
(MOV, 1,, T3)
(TST, a, T2,, 1, L1) // If a == T2, jump to L1
(MOV, 0,, T3)
(LBL, L1)
(TST, T3, 0,, 1, L2) // If T3 is false, jump to L2
(SUB, b, ='33', T4)
(MUL, T3, ='2', T5)
(MOV, T5,, a)
(JMP, L3) // Skip else part
(LBL, L2)
(ADD, x, y, T6)
(MOV, T6,, a)
(LBL, L3)

Section 6.3 Single Pass vs. Multiple Passes

Chapter 6 Code Generation220

3. (a) What are the advantages of a single pass method of code generation over a
multiple pass method?

(b) What are the advantages of a multiple pass method of code generation over a
single pass method?

221

6.4 Register Allocation

Some computers (such as the DEC PDP-8) are designed with a single arithmetic register,
called an accumulator, in which all arithmetic operations are performed. Other comput-
ers (such as the Intel 8086) have only a few CPU registers, and they are not general
purpose registers; i.e., each one has a limited range of uses or functions. In these cases
the allocation of registers is not a problem.

However, most modern architectures have many CPU registers; the DEC VAX,
IBM mainframe, and Motorola 680x0 architectures each has sixteen general purpose
registers, for example, and the RISC (Reduced Instruction Set Computer) architectures,
such as the SUN SPARC and MIPS, generally have about 500 CPU registers (though
only 32 are used at a time). In this case, register allocation becomes an important
problem. Register allocation is the process of assigning a purpose to a particular
register, or binding a register to a programmer variable or compiler variable, so that for a
certain range or scope of instructions that register has the specified purpose or binding
and is used for no other purposes. The code generator must maintain information on
which registers are used for which purposes, and which registers are available for reuse.
The main objective in register allocation is to maximize utilization of the CPU registers,
and to minimize references to memory locations.

It might seem that register allocation is more properly a topic in the area of code
optimization, since code generation could be done with the assumption that there is only
one CPU register (resulting in rather inefficient code). Nevertheless, register allocation is
always handled (though perhaps not in an optimal way) in the code generation phase. A
well chosen register allocation scheme can not only reduce the number of instructions
required, but it can also reduce the number of memory references. Since operands which
are used repeatedly can be kept in registers, the operands do not need to be recomputed,
nor do they need to be loaded from memory. It is especially important to minimize
memory references in compilers for RISC machines, in which the objective is to execute
one instruction per machine cycle, as described in Tanenbaum [1990].

An example, showing the importance of smart register allocation, is shown in
Figure 6.7 for the two statement program segment:

A = B + C ∗ D ;
B = A - C ∗ D ;

The smart register allocation scheme takes advantage of the fact that C∗D is a
common subexpression, and that the variable A is bound, temporarily, to register R2. If
no attention is paid to register allocation, the two statements in Figure 6.7 are translated
into twelve instructions, involving a total of twelve memory references. With smart
register allocation, however, the two statements are translated into seven instructions,
with only five memory references. (Some computers, such as the VAX, permit arith-
metic on memory operands, in which case register allocation takes on lesser importance.)

An algorithm which takes advantage of repeated subexpressions will be dis-
cussed in Section 7.2. Here, we will discuss an algorithm which determines how many

Section 6.4 Register Allocation

Chapter 6 Code Generation222

registers will be needed to evaluate an expression without storing subexpressions to
temporary memory locations. This algorithm will also determine the sequence in which
subexpressions should be evaluated to minimize register usage.

This register allocation algorithm will require a syntax tree for an expression to
be evaluated. Each node of the syntax tree will have a weight associated with it which
tells us how many registers will be needed to evaluate each subexpression without storing
to temporary memory locations. Each leaf node which is a left operand will have a
weight of one, and each leaf node which is a right operand will have a weight of zero.
The weight of each interior node will be computed from the weights of its two children
as follows: If the two children have different weights, the parent’s weight is the maxi-
mum of the two children. If the two children have the same weight, w, then the parent’s
weight is w+1. As an example, the weighted syntax tree for the expression a∗b -
(c+d) ∗ (e+f) is shown in Figure 6.8 from which we can see that the entire expres-
sion should require two registers.

Intuitively, if two expressions representing the two children of a node, N, in a
syntax tree require the same number of registers, we will need an additional register to
store the result for node N, regardless of which subexpression is evaluated first. In the
other case, if the two subexpressions do not require the same number of registers, we can
evaluate the one requiring more registers first, at which point those registers are freed for
other use.

We can now generate code for this expression. We do this by evaluating the
operand having greater weight, first. If both operands of an operation have the same
weight, we evaluate the left operand first. For our example in Figure 6.8 we generate the
code shown in Figure 6.9. We assume that there are register-register instructions (i.e.,
instructions in which both operands are contained in registers) for the arithmetic opera-
tions in the target machine architecture. Note that if we had evaluated a∗b first we
would have needed either an additional register or memory references to a temporary
location.

Simple Register Allocation Smart Register Allocation
LOD R1,C LOD R1,C
MUL R1,D MUL R1,D C∗D
STO R1,Temp1 LOD R2,B
LOD R1,B ADD R2,R1 B+C∗D
ADD R1,Temp1 STO R2,A
STO R1,A SUB R2,R1 A-C∗D
LOD R1,C STO R2,B
MUL R1,D
STO R1,Temp2
LOD R1,A
SUB R1,Temp2
STO R1,B

Figure 6.7 Register Allocation, Simple and Smart, for a Two Statement Program

223

This problem would have had a more interesting solution if the expression had
been e+f - (c+d)∗(e+f) because of the repeated subexpression e+f. If the value
of e+f were left in a register, it would not have to be recomputed. There are algorithms
which handle this kind of problem, but they will be covered in the chapter on optimiza-
tion.

Figure 6.8 Weighted Syntax Tree for a∗b-(c+d)∗(e+f), with Weights Shown in
Parentheses

LOD R1,c
ADD R1,d R1 = c + d
LOD R2,e
ADD R2,f R2 = e + f
MUL R1,R2 R1 = (c+d) ∗ (e+f)
LOD R2,a
MUL R2,b R2 = a ∗ b
SUB R2,R1 R2 = a∗b - (c+d)∗(e+f

Figure 6.9 Code Generated for a∗b-(c+d)∗(e+f), Using Figure 6.8

Sample Problem 6.4

Use the register allocation algorithm of this section to show a weighted syntax tree for
the expression a - b/c + d ∗ (e-f + g∗h), and show the resulting instructions,
as in Figure 6.9.

Solution:

LOD R1,a
LOD R2,b
DIV R2,c b/c
SUB R1,R2 a - b/c

Section 6.4 Register Allocation

 - (2)

 * (1) * (2)

 a (1) b (0) + (1) + (1)

 c (1) d (0) e (1) f (0)

Chapter 6 Code Generation224

LOD R2,e
SUB R2,f e - f
LOD R3,g
MUL R3,h g ∗ h
ADD R2,R3 e - f + g ∗ h
LOD R3,d
MUL R3,R2 d ∗ (e-f + g∗h)
ADD R1,R3 a - b/c + d ∗ (e-f + g∗h)

Exercises 6.4

1. Use the register allocation algorithm given in this section to construct a weighted
syntax tree and generate code for each of the given expressions, as done in
Sample Problem 6.4. Do not attempt to optimize for common subexpressions.

(a) a + b ∗ c - d

(b) a + (b + (c + (d + e)))

(c) (a + b) ∗ (c + d) - (a + b) ∗ (c + d)

(d) a / (b + c) - (d + (e - f)) + (g - h ∗ i) ∗
(j ∗ (k / m))

 + (3)

 - (2) * (2)

a (1) / (1) d (1) + (2)

 b (1) c (0) - (1) * (1)

 e (1) f (0) g (1) h (0)

225

2. Show an expression different in structure from those in Problem 1 which requires:

(a) two registers (b) three registers

As in Problem 1, assume that common subexpressions are not detected and that
Loads and Stores are minimized.

3. Show how the code generated in Problem 1 (c) can be improved by making use of
common subexpressions.

Section 6.4 Register Allocation

Chapter 6 Code Generation226

6.5 Case Study: A MiniC Code Generator for the Mini Architecture

When working with code generators, at some point it becomes necessary to choose a
target machine. Up to this point we have been reluctant to do so because we wanted the
discussion to be as general as possible, so that the concepts could be applied to a variety
of architectures. However, in this section we will work with an example of a code
generator, and it now becomes necessary to specify a target machine architecture. It is
tempting to choose a popular machine such as a RISC, Intel, Motorola, IBM, or Sparc
CPU. If we did so, the student who had access to that processor could conceivably
generate executable code for that machine. But what about those who do not have access
to the chosen processor? Also, there would be details, such as Object formats (the input
to the linker), and supervisor or system calls for certain operations, which we have not
explained.

For these reasons, we choose our own simulated machine. This is an architec-
ture which we will specify for the student. We also provide a simulator for this machine,
written in the C language. Thus, anyone who has a C compiler has access to our simu-
lated machine, regardless of the actual platform on which it is running. Another advan-
tage of a simulated architecture is that we can make it as simple as necessary to illustrate
the concepts of code generation. We don’t need to be concerned with efficiency or
completeness. The architecture will be relatively simple and not cluttered with unneces-
sary features.

6.5.1 Mini: The Simulated Architecture

In this section we devise a completely fictitious computer, and we provide a simulator for
that computer so that the student will be able to generate and execute machine language
programs. We call our machine Mini, not because it is supposed to be a “minicomputer,”
but because it is really a minimal computer. We have described and implemented just
enough of the architecture to enable us to implement a fairly simple code generator. The
student should feel free to implement additional features in the Mini architecture. For
example, the Mini architecture contains no integer arithmetic; all arithmetic is done with
floating-point values, but the instruction set could easily be extended to include integer
arithmetic.

The Mini architecture has a 32-bit word size, with 32-bit registers, and a word
addressable memory consisting of, at most, 4 G (32 bit) words (the simulator defines a
memory of 64 K words, though this is easily extended). There are two addressing modes
in the Mini architecture: absolute and register-displacement. In absolute mode, the
memory address is stored in the instruction as a 20-bit quantity (in this mode it is only
possible to address the lowest megaword of memory). In register-displacement mode,
the memory address is computed by adding the contents of the specified general register
to the value of the 16-bit offset, or displacement, in the instruction (in this mode it is
possible to address all of memory).

The CPU has sixteen general purpose registers and sixteen floating-point
registers. All floating-point arithmetic must be done in the floating-point registers

227

and the register-displacement mode instruction can be described as

fpreg[r1] y fpreg[r1] op memory[reg[r2]+d2].

The operation codes (specified in the op field) are shown below:

0 CLR fpreg[r1] y 0 Clear Floating-Point Reg.
1 ADD fpreg[r1] y fpreg[r1] + memory[s2] Floating-Point Add
2 SUB fpreg[r1] y fpreg[r1] - memory[s2] Floating-Point Subtract
3 MUL fpreg[r1] y fpreg[r1] ∗ memory[s2] Floating-Point Multiply
4 DIV fpreg[r1] y fpreg[r1] / memory[s2] Floating-Point Division
5 JMP PC y s2 if flag is true Conditional Branch
6 CMP flag y r1 cmp memory[s2] Compare, Set Flag
7 LOD fpreg[r1] y memory[s2] Load Floating-Point Register
8 STO memory[s2] y fpreg[r1] Store Floating-Point Register
9 HLT Halt Processor

The Compare field in either instruction format (cmp) is used only by the Compare
instruction to indicate the kind of comparison to be done on arithmetic data. In addition
to a code of 0, which always sets the flag to True, there are six valid comparison codes as
shown below:

1 == 4 <=
2 < 5 >=
3 > 6 !=

Figure 6.10 Mini Instruction Formats

(floating-point data are stored in the
format of the simulator’s host machine,
so the student need not be concerned with
the specifics of floating-point data
formats). There is also a 1-bit flag in the
CPU which is set by the compare (CMP)
instruction and tested by the conditional
branch (JMP) instruction. There is also a
32-bit program counter register (PC).
The Mini processor has two instruction
formats corresponding to the two
addressing modes, as shown in Figure
6.10.

The absolute mode instruction
can be described as:

 fpreg[r1] y fpreg[r1] op
memory[s2]

Absolute mode

4 1 3 4 20

op 0 cmp r1 s2

Register-displacement mode

4 1 3 4 4 16

op 1 cmp r1 r2 d2

Section 6.5 Case Study: A MiniC Code Generator for the Mini Architecture

Chapter 6 Code Generation228

The following example of a Mini program will replace the memory word at
location 0 with its absolute value. The memory contents are shown in hexadecimal, and
program execution is assumed to begin at memory location 1.

Loc Contents
0 00000000 Data 0
1 00100000 CLR R1 Put 0 into Register R1.
2 64100000 CMP R1,Data,4 Is 0 <= Data?
3 50000006 JMP Stop If so, finished.
4 20100000 SUB R1,Data If not, find 0-Data.
5 80100000 STO R1,Data
6 90000000 Stop HLT Halt processor

The simulator for the Mini architecture is shown in Appendix C.

6.5.2 The Input to the Code Generator

In our example, the input to the code generator will be a file in which each record is an
atom, as discussed in Chapters 4 and 5. Here we specify the meaning of the atoms more
precisely in the table below:

Class Name Operands Meaning
1 ADD left right result

result y left + right
2 SUB left right result

result y left - right
3 MUL left right result

result y left ∗ right
4 DIV left right result

result y left / right
5 JMP — — — — dest

z dest
10 NEG left — result

result y - left
11 LBL — — — — dest

(no action)
12 TST left right - cmp dest

z dest if
left cmp right is true

13 MOV left — result — —
result y left

Each atom class is specified with an integer code, and each record may have up to six
fields specifying the atom class, the location of the left operand, the location of the right

229

operand, the location of the result, a comparison code (for TST atoms only), and a
destination (for JMP, LBL, and TST atoms only). Note that a JMP atom is an uncondi-
tional branch, whereas a JMP instruction is a conditional branch. An example of an input
file of atoms which would replace the value of Data with its absolute value is shown
below:

TST 0 Data 4 L1 — Branch to L1 if 0 <= Data
NEG Data — Data — — Data y - Data
LBL L1 — — — —

6.5.3 The Code Generator for Mini

The complete code generator is shown in Appendix B.4, in which the function name is
code_gen(). In this section we explain the techniques used and the design of that
program. The code generator reads from a file of atoms, and it is designed to work in
two passes. Since instructions are 32 bits, the code generator declares integer quantities
as long (assuming that the host machine will implement these in 32 bits).

In the first pass it builds a table of Labels, assigning each Label a value corre-
sponding to its ultimate machine address; the table is built by the function
build_labels(), and the name of the table is labels. It is simply an array of
integers holding the value of each Label. The integer variable pc is used to maintain a
hypothetical program counter as the atoms are read, incremented by two for MOV and
JMP atoms and incremented by three for all other atoms. The global variable
end_data indicates the memory location where the program instructions will begin,
since all constants and program variables are stored, beginning at memory location 0, by
a function called out_mem() and precede the instructions.

After the first pass is complete, the file of atoms is closed and reopened to begin
reading atoms for the second pass. The control structure for the second pass is a
switch statement that uses the atom class to determine flow of control. Each atom
class is handled by two or three calls to a function that actually generates an instruction -
gen(). Label definitions can be ignored in the second pass.

The function which generates instructions takes four arguments:
gen (op, r, add, cmp)
where op is the operation code of the instruction, r is the register for the first operand,
add is the absolute address for the second operand, and cmp is the comparison code for
Compare instructions. For simplicity, the addressing mode is assumed always to be
absolute (this limits us to a one megaword address space). As an example, Figure 6.11
shows that a Multiply atom would be translated by three calls to the gen() function to
generate LOD, MUL, and STO instructions.

In Figure 6.11, the function reg() returns an available floating-point register.
For simplicity, our implementation of reg() always returns a 1, which means that
floating-point values are always kept in floating-point register 1. The structure inp is
used to hold the atom which is being processed. The dest field of an atom is the
destination label for jump instructions, and the actual address is obtained from the labels
table by a function called lookup(). The code generator sends all instructions to the

Section 6.5 Case Study: A MiniC Code Generator for the Mini Architecture

Chapter 6 Code Generation230

standard output file as hex characters, so that the user has the option of discarding them,
storing them in a file, or piping them directly into the Mini simulator. The generated
instructions are shown to the right in Figure 6.11.

The student is encouraged to use, abuse, modify and/or distribute (but not for
profit) the software shown in the Appendix to gain a better understanding of the opera-
tion of the code generator.

Sample Problem 6.5

Show the code gerated by the code generator for the following TST atom.
Assume that the value of L1 is hex 23 and the variables A and B are stored at locations 0
and 1, respectively.

class left right result cmp dest
TST A B — 4 L1

Solution:

Loc Contents
0 A
1 B
2 70100000 LOD R1,A
3 64100001 CMP R1,B,4
4 50000023 JMP L1

Multiply atom to compute A∗B, putting result into T1:

class left right result cmp dest
MUL A B T1 — —

Loc Contents
0 A
1 B

gen (LOD, r = reg(), inp.left); 2 70100000
gen (MUL, r, inp.right); 3 30100001
gen (STO, r, inp.result); 4 80100010

...
10 T1

Figure 6.11 Translation of a Multiply Atom

231

Exercises 6.5

1. How is the compiler’s task simplified by the fact that floating-point is the only
numeric data type in the Mini architecture?

2. Disassemble the following Mini instructions. Assume that general register 7
contains hex 20, and that the variables A and B are stored at locations hex 21 and
hex 22, respectively.

70100021
10300022
18370002

3. Show the code, in hex, generated by the code generator for each of the following
atom strings. Assume that A and B are stored at locations 0 and 1, respectively.
Allocate space for the temporary value T1 at the end of the program.

(a) class left right result cmp dest
MUL A B T1 — —
LBL — — — — L1
TST A T1 — 2 L1
JMP — — — — L2
MOV T1 — B — —
LBL — — — — L2

(b) class left right result cmp dest
NEG A — T1 — —
LBL — — — — L1
MOV T1 — B — —
TST B T1 — 4 L1

(c) class left right result cmp dest
TST A B — 6 L2
JMP — — — — L1
LBL — — — — L2
TST A T1 — 0 L2
LBL — — — — L1

Section 6.5 Case Study: A MiniC Code Generator for the Mini Architecture

Chapter 6 Code Generation232

6.6 Chapter Summary

This chapter commences our study of the back end of a compiler. Prior to this point
everything we have studied was included in the front end. The code generator is the
portion of the compiler which accepts syntax trees or atoms (sometimes referred to as 3 -
address code) created by the front end and converts them to machine language instruc-
tions for the target machine.

It was shown that if the language of syntax trees or atoms (known as an interme-
diate form) is standardized, then, as new machines are constructed, we need only rewrite
the back ends of our compilers. Conversely, as new languages are developed, we need
only rewrite the front ends of our compilers.

The process of converting atoms to instructions is relatively easy to implement,
since each atom corresponds to a small, fixed number of instructions. The main prob-
lems to be solved in this process are (1)obtaining memory addresses for forward refer-
ences and (2) register allocation . Forward references result from branch instructions to
a higher memory address which can be computed by either single pass or multiple pass
methods. With a single pass method, a fixup table for forward references is required.
For either method a table of labels is used to bind labels to target machine addresses.

Register allocation is important for efficient object code in machines which
have several CPU registers. An algorithm for allocating registers from syntax trees are
presented. Algorithms which make use of common subexpressions in an expression, or
common subexpressions in a block of code, will be discussed in Chapter 7.

This chapter concludes with a case study code generator for the MiniC lan-
guage. In order to complete the case study, we define a fictitious target machine, called
Mini. This machine has a very simple 32 bit architecture, which simplifies the code
generation task. Since we have a simulator for the Mini machine, written in the C
language, in Appendix C, anyone with access to a C compiler can run the Mini machine.

It is assumed that all arithmetic is done in floating-point format, which elimi-
nates the need for data conversions. Code is generated by a function with three argu-
ments specifying the operation code and two operands. The code generator, shown in
Appendix B.4, uses a two pass method to handle forward references.

Chapter 7

Optimization
7.1 Introduction and View of Optimization

In recent years, most research and development in the area of compiler design has been
focused on the optimization phases of the compiler. Optimization is the process of
improving generated code so as to reduce its potential running time and/or reduce the
space required to store it in memory. Software designers are often faced with decisions
which involve a space-time tradeoff – i.e., one method will result in a faster program,
another method will result in a program which requires less memory, but no method will
do both. However, many optimization techniques are capable of improving the object
program in both time and space, which is why they are employed in most modern
compilers. This results from either the fact that much effort has been directed toward the
development of optimization techniques, or from the fact that the code normally gener-
ated is very poor and easily improved.

The word “optimization” is possibly a misnomer, since the techniques that have
been developed simply attempt to improve the generated code, and few of them are
guaranteed to produce, in any sense, optimal (the most efficient possible) code. Never-
theless, the word “optimization” is the one that is universally used to describe these
techniques, and we will use it also. We have already seen that some of these techniques
(such as register allocation) are normally handled in the code generation phase, and we
will not discuss them here.

Optimization techniques can be separated into two general classes: local and
global. Local optimization techniques normally are concerned with transformations on
small sections of code (involving only a few instructions) and generally operate on the
machine language instructions which are produced by the code generator. On the other
hand, global optimization techniques are generally concerned with larger blocks of code,
or even multiple blocks or modules, and will be applied to the intermediate form, atom

Chapter 7 Optimization234

Intermediate Form (atoms
from the parser)

Global Optimization

Improved Intermediate Form
(atoms)

Code Generator

Local Optimization

Object Code (instructions)

Improved Object Code
(instructions)

Figure 7.1 Sequence of Optimization Phases
in a Compiler

A fundamental question of philosophy is
inevitable in the design of the optimization phases.
Should the compiler make extensive transformations
and improvements to the source program, or should it
respect the programmer’s decision to do things that are
inefficient or unnecessary? Most compilers tend to
assume that the average programmer does not inten-
tionally write inefficient code, and will perform the
optimizing transformations. A sophisticated program-
mer or hacker who, in rare cases, has a reason for
writing the code in that fashion can usually find a way
to force the compiler to generate the desired output.

strings, or syntax trees put out by the parser. Both local and global optimization phases
are optional, but may be included in the compiler as shown in Figure 7.1, i.e., the output
of the parser is the input to the global optimization phase, the output of the global
optimization phase is the input to the code generator, the output of the code generator is
the input to the local optimization phase, and the output of the local optimization phase is
the final output of the compiler. The three compiler phases shown in Figure 7.1 make up
the back end of the compiler, discussed in Section 6.1.

In this discussion on improving performance, we stress the single most impor-
tant property of a compiler – that it preserve the semantics of the source program. In
other words, the purpose and behavior of the object program should be exactly as
specified by the source program for all possible inputs. There are no conceivable
improvements in efficiency which can justify violating this promise.

Having made this point, there are frequently situations in which the computation
specified by the source program is ambiguous or unclear for a particular computer
architecture. For example, in the expression (a + b) * (c + d) the compiler will
have to decide which addition is to be performed first (assuming that the target machine
has only one Arithmetic and Logic Unit). Most programming languages leave this
unspecified, and it is entirely up to the compiler designer, so that different compilers
could evaluate this expression in different ways. In most cases it may not matter, but if
any of a, b, c, or d happen to be function calls which produce output or side effects,
it may make a significant difference. Languages such
as C, Lisp, and APL, which have assignment operators,
yield an even more interesting example:
 a =2; b = (a∗1 + (a = 3));.
 Some compiler writers feel that programmers who use
ambiguous expressions such as these deserve whatever
the compiler may do to them.

235

One significant problem for the user of the compiler, introduced by the optimi-
zation phases, has to do with debugging. Many of the optimization techniques will
remove unnecessary code and move code within the object program to an extent that run-
time debugging is affected. The programmer may attempt to step through a series of
statements which either don’t exist, or occur in an order different from what was origi-
nally specified by the source program!

To solve this problem, most modern and available compilers include a switch
with which optimization may be turned on or off. When debugging new software, the
switch is off, and when the software is fully tested, the switch can be turned on to
produce an efficient version of the program for distribution. It is essential, however, that
the optimized version and the non-optimized version be functionally equivalent (i.e.,
given the same inputs, they should produce identical outputs). This is one of the more
difficult problems that the compiler designer must deal with.

Another solution to this problem, used by IBM in the early 1970’s for its PL/1
compiler, is to produce two separate compilers. The checkout compiler was designed for
interactive use and debugging. The optimizing compiler contained extensive optimiza-
tion, but was not amenable to the testing and development of software. Again, the
vendor (IBM in this case) had to be certain that the two compilers produced functionally
equivalent output.

Exercises 7.1

1. Using a C++ compiler,
(a) what would be printed as a result of running the following:

{
int a;
(a = 2) + (a = 3);
cout << a;
}

(b) What other value might be printed as a result of compilation with a different
compiler?

2. Explain why the following two statements cannot be assumed to be equivalent:

a = f(x) + f(x) + f(x) ;

a = 3 * f(x) ;

Section 7.1 Introduction and View of Optimization

Chapter 7 Optimization236

3. (a) Perform the following computations, rounding to four significant digits after
each operation.

(0.7043 + 0.4045) + -0.3330 = ?

0.7043 + (0.4045 + -0.3330) = ?

(b) What can you conclude about the associativity of addition with computer arith-
metic?

237

7.2 Global Optimization

As mentioned previously, global optimization is a transformation on the output of the
parser. Global optimization techniques will normally accept, as input, the intermediate
form as a sequence of atoms (three-address code) or syntax trees. There are several
global optimization techniques in the literature – more than we can hope to cover in
detail. Therefore, we will look at the optimization of common subexpressions in basic
blocks in some detail, and then briefly survey some of the other global optimization
techniques.

A few optimization techniques, such as algebraic optimizations, can be consid-
ered either local or global. Since it is generally easier to deal with atoms than with
instructions, we will include algebraic techniques in this section.

7.2.1 Basic Blocks and DAGs

The sequence of atoms put out by the parser is clearly not an optimal sequence; there are
many unnecessary and redundant atoms. For example, consider the C++ statement:

a = (b + c) ∗ (b + c) ;

The sequence of atoms put out by the parser could conceivably be as shown in Figure 7.2
below:

(ADD, b, c, T1)
(ADD, b, c, T2)
(MUL, T1, T2, T3)
(MOV, T3,, a)

Figure 7.2 Atom Sequence for a = (b + c) ∗ (b + c) ;

Every time the parser finds a correctly formed addition operation with two
operands it blindly puts out an ADD atom, whether or not this is necessary. In the above
example, it is clearly not necessary to evaluate the sum b + c twice. In addition, the
MOV atom is not necessary because the MUL atom could store its result directly into the
variable a. The atom sequence shown in Figure 7.3, below, is equivalent to the one
given in Figure 7.2, but requires only two atoms because it makes use of common
subexpressions and it stores the result in the variable a, rather than a temporary location.

(ADD, b, c, T1)
(MUL, T1, T1, a)

Figure 7.3 Optimized Atom Sequence for a = (b + c) ∗ (b + c) ;

Section 7.2 Global Optimization

Chapter 7 Optimization238

In this section, we will demonstrate some techniques for implementing these
optimization improvements to the atoms put out by the parser. These improvements will
result in programs which are both smaller and faster, i.e., they optimize in both space and
time.

It is important to recognize that these optimizations would not have been
possible if there had been intervening Label or Jump atoms in the parser output. For
example, if the atom sequence had been as shown in Figure 7.4, we could not have
optimized to the sequence of Figure 7.3, because there could be atoms which jump into
this code at Label L1, thus altering our assumptions about the values of the variables and
temporary locations. (The atoms in Figure 7.4 do not result from the given C++ state-

(ADD, b, c, T1)
(LBL, L1)
(ADD, b, c, T2)
(MUL, T1, T2, T3)
(TST, b, c,, 1, L3)
(MOV, T3,, a)

Figure 7.4 Example of an Atom
Sequence Which Cannot be Optimized

(ADD, b, c, T1) Block 1

(LBL, L1)

(ADD, b, c, T2) Block 2
(MUL, T1, T2, T3)

(TST, b, c,, 1, L3)

(MOV, T3,, a) Block 3

Figure 7.5 Basic Blocks Contain No LBL, TST, or JMP Atoms

ment, and the example is, admittedly, artificially
contrived to make the point that Label atoms will
affect our ability to optimize.)

By the same reasoning, Jump or Branch
atoms will interfere with our ability to make these
optimizing transformations to the atom sequence.
In Figure 7.4 the MUL atom cannot store its result
into the variable a, because the compiler does not
know whether the conditional branch will be
taken.

The optimization techniques which we will demonstrate can be effected only in
certain subsequences of the atom string, which we call basic blocks. A basic block is a
section of atoms which contains no Label or branch atoms (i.e., LBL, TST, JMP). In
Figure 7.5, we show that the atom sequence of Figure 7.4 is divided into three basic
blocks.

Each basic block is optimized as a separate entity. There are more advanced
techniques which permit optimization across basic blocks, but they are beyond the scope
of this text. We use a Directed Acyclic Graph, or DAG, to implement this optimization.
The DAG is directed because the arcs have arrows indicating the direction of the arcs,
and it is acyclic because there is no path leading from a node back to itself (i.e., it has no

239

a b

*

+

+

T1

T2

T3 cycles). The DAG is similar to a syntax tree, but
it is not truly a tree because some nodes may have
more than one parent and also because the
children of a node need not be distinct. An
example of a DAG, in which interior nodes are
labeled with operations, and leaf nodes are
labeled with operands, is shown, below, in Figure
7.6.

Each of the operations in Figure 7.6 is a
binary operation (i.e., each operation has two
operands), consequently each interior node has
two arcs pointing to the two operands. Note that
in general we will distinguish between the left
and right arc because we need to distinguish
between the left and right operands of an opera-

Figure 7.6 Example of a DAG

tion (this is certainly true for subtraction and division, which are not commutative
operations). We will be careful to draw the DAGs so that it is always clear which arc
represents the left operand and which arc represents the right operand. For example, in
Figure 7.6 the left operand of the addition labeled T3 is T2, and the right operand is T1.
Our plan is to show how to build a DAG from an atom sequence, from which we can
then optimize the atom sequence.

We will begin by building DAGs for simple arithmetic expressions. DAGs can
also be used to optimize complete assignment statements and blocks of statements, but
we will not take the time to do that here. To build a DAG, given a sequence of atoms
representing an arithmetic expression with binary operations, we use the following
algorithm:

1. Read an atom.
2. If the operation and operands match part of the existing DAG (i.e., if they form

a sub DAG), then add the result Label to the list of Labels on the parent and
repeat from Step 1. Otherwise, allocate a new node for each operand that is not
already in the DAG, and a node for the operation. Label the operation node
with the name of the result of the operation.

3. Connect the operation node to the two operands with directed arcs, so that it is
clear which operand is the left and which is the right.

4. Repeat from Step 1.

As an example, we will build a DAG for the expression a ∗ b + a ∗ b +
a ∗ b. This expression clearly has some common subexpressions, which should make
it amenable for optimization. The atom sequence as put out by the parser would be:

(MUL, a, b, T1)
(MUL, a, b, T2)
(ADD, T1, T2, T3)

Section 7.2 Global Optimization

Chapter 7 Optimization240

(MUL, a, b, T4)
(ADD, T3, T4, T5)

We follow the algorithm to build the
DAG, as shown in Figure 7.7, in which
we show how the DAG is constructed
as each atom is processed.

The DAG is a graphical
representation of the computation
needed to evaluate the original expres-
sion in which we have identified
common subexpressions. For example,
the expression a ∗ b occurs three
times in the original expression
a ∗ b + a ∗ b + a ∗ b. The
three atoms corresponding to these
subexpressions store results into T1,
T2, and T4. Since the computation
need be done only once, these three
atoms are combined into one node in
the DAG labeled T1.2.4. After that
point, any atom which uses T1, T2,
or T4 as an operand will point to
T1.2.4.

We are now ready to convert
the DAG to a basic block of atoms.
The algorithm given below will
generate atoms (in reverse order) in
which all common subexpressions are
evaluated only once:

1. Choose any node having no incom-
ing arcs (initially there should be only
one such node, representing the value
of the entire expression).

2. Put out an atom for its operation and
its operands.

3. Delete this node and its outgoing
arcs from the DAG.

4. Repeat from Step 1 as long as there
are still operation nodes remaining in
the DAG.

Figure 7.7 Building the DAG
for a ∗ b + a ∗ b + a ∗
b

*
T1

a b

(MUL, a , b, T1)

*
T1.2

a b

(MUL, a , b, T2)

* T1.2

a b

(ADD, T1, T2, T3)

+ T3

* T1.2.4

a b

(MUL a , b, T4)

+ T3

* T1.2.4

a b

(ADD T3, T4, T5)

+
T3

+
T5

241

(ADD, T3, T1.2.4, T5)

+

a b

* T1.2.4

T3

+ T5

+

a b

* T1.2.4

T3

(ADD, T1.2.4, T1.2.4, T3)

a b

*
T1.2.4

(MUL, a,b, T1.2.4)

This algorithm is demonstrated below, in
Figure 7.8, in which we are working with
the same expression that generated the
DAG of Figure 7.7. The DAG and the
output are shown for each iteration of the
algorithm (there are three iterations).

A composite node, such as
T1.2.4, is referred to by its full name
rather than simply T1 or T2 by conven-
tion, and to help check for mistakes. The
student should verify that the three atoms
generated in Figure 7.8 actually compute
the given expression, reading the atoms
from bottom to top. We started with a
string of five atoms, and have improved
it to an equivalent string of only three
atoms. This will result in significant
savings in both run time and space
required for the object program.

Unary operations can be
handled easily using this method. Since
a unary operation has only one operand,
its node will have only one arc pointing
to the operand, but in all other respects
the algorithms given for building DAGs
and generating optimized atom se-
quences remain unchanged. Conse-
quently, this method generalizes well to
expressions involving operations with
any number of operands, though for our
purposes operations will generally have
two operands.

Figure 7.8 Generating Atoms from the
DAG for a ∗ b + a ∗ b + a ∗ b

Sample Problem 7.2 (a)

Construct the DAG and show the optimized sequence of atoms for the C++
expression (a - b) ∗ c + d ∗ (a - b) ∗ c. The atoms produced by the
parser are shown below:
(SUB, a, b, T1)
(MUL, T1, c, T2)
(SUB, a, b, T3)
(MUL, d, T3, T4)
(MUL, T4, c, T5)
(ADD, T2, T5, T6)

Section 7.2 Global Optimization

Chapter 7 Optimization242

*

a b

-

T1.3

*

T5

c

T2

d

T4

*

+ T6

7.2.2 Other Global Optimization Techniques

We will now examine a few other common global optimization techniques, however, we
will not go into the implementation of these techniques.

Unreachable code is an atom or sequence of atoms which cannot be executed
because there is no way for the flow of control to reach that sequence of atoms. For
example, in the following atom sequence the MUL, SUB, and ADD atoms will never be
executed because of the unconditional jump preceding them.

(JMP, L1)
(MUL, a, b, T1)
(SUB, T1, c, T2) ⇒ (JMP, L1)
(ADD, T2, d, T3) (LBL, L2)
(LBL, L2)

Thus, the three atoms following the JMP and preceding the LBL can all be
removed from the program without changing the purpose of the program. In general, a
JMP atom should always be followed by an LBL atom. If this is not the case, simply
remove the intervening atoms between the JMP and the next LBL.

Data flow analysis is a formal way of tracing the way information about data
items moves through the program and is used for many optimization techniques. Though
data flow analysis is beyond the scope of this text, we will look at some of the optimiza-
tions that can result from this kind of analysis.

One such optimization technique is elimination of dead code, which involves
determining whether computations specified in the source program are actually used and
affect the program’s output. For example, the program in Figure 7.9 contains an
assigment to the variable a which has no effect on the output since a is not used subse-
quently, but prior to another assignment to the variable a.

Solution:

(SUB, a, b, T1.3)
(MUL, d, T1.3, T4)
(MUL, T4, c, T5)
(MUL, T1.3, c, T2)
(ADD, T2, T5, T6)

243

Another optimization technique which makes use of data flow analysis is the
detection of loop invariants. A loop invariant is code within a loop which deals with
data values that remain constant as the loop repeats. Such code can be moved outside the
loop, causing improved run time without changing the program’s semantics. An example
of loop invariant code is the call to the square root function (sqrt) in the program of
Figure 7.10, below.

Since the value assigned to a is the same each time the loop repeats, there is no
need for it to be repeated; it can be done once before entering the loop (we need to be
sure, however, that the loop is certain to be executed at least once). This optimization
will eliminate 999 unnecessary calls to the sqrt function.

The remaining global optimization techniques to be examined in this section all
involve mathematical transformations. The student is cautioned that their use is not
universally recommended, and that it is often possible, by employing them, that the
compiler designer is effecting transformations which are undesirable to the source
programmer. For example, the question of the meaning of arithmetic overflow is crucial
here. If the unoptimized program reaches an overflow condition for a particular input, is
it valid for the optimized program to avoid the overflow? (Be careful; most computers
have run-time traps designed to transfer control to handle conditions such as overflow. It

{
for (i=0; i<1000; i++)
 { a = sqrt (x); // loop invariant

vector[i] = i ∗ a;
 }

}

{ a = sqrt (x); // loop invariant
for (i=0; i<1000; i++)
 {

vector[i] = i ∗ a;
 }

}

Figure 7.10 Movement of Loop Invariant Code

{
a = b + c ∗ d; //This statement has no effect and can be removed
b = c ∗ d / e;
c = b - 3;
a = b - c;
cout << a << b << c ;

}

Figure 7.9 Elimination of Dead Code

Section 7.2 Global Optimization

Chapter 7 Optimization244

could be that the programmer intended to trap certain input conditions.) There is no right
or wrong answer to this question, but it is an important consideration when implementing
optimization.

Constant folding is the process of detecting operations on constants, which
could be done at compile time rather than run time. An example is shown, above, in
Figure 7.11 in which the value of the variable a is known to be 6, and the value of the
expression a ∗ a is known to be 36. If these computations occur in a small loop,
constant folding can result in significant improvement in run time (at the expense of a
little compile time).

Another mathematical transformation is called reduction in strength. This
optimization results from the fact that certain operations require more time than others on
virtually all architectures. For example, multiplication can be expected to be signifi-
cantly more time consuming than addition. Thus, the multiplication 2 ∗ x is certain to
be slower than the addition x + x. Likewise, if there is an exponentiation operator, x∗∗2
is certain to be slower than x ∗ x.

A similar use of reduction in strength involves using the shift instructions
available on most architectures to speed up fixed point multiplication and division. A
multiplication by a positive power of two is equivalent to a left shift, and a division by a
positive power of two is equivalent to a right shift. For example, the multiplication x∗8
can be done faster simply by shifting the value of x three bit positions to the left, and the
division x/32 can be done faster by shifting the value of x five bit positions to the right.

Our final example of mathematical transformations involves algebraic transfor-
mations using properties such as commutativity, associativity, and the distributive
property, all summarized, below, in Figure 7.12. We do not believe that these properties

{
a = 2 ∗ 3; // a must be 6
b = c + a ∗ a; // a ∗ a must be 36

}

{
a = 6;
b = c + 36;

}

Figure 7.11 Constant Folding

a + b == b + a Addition is commutative
(a + b) + c == a + (b + c) Addition is associative
a ∗ (b + c) == a ∗ b + a ∗ c Multiplication distributes over addition

Figure 7.12 Algebraic Identities

245

are necessarily true when dealing with computer arithmetic, due to the finite precision of
numeric data. Nevertheless, they are employed in many compilers, so we give a brief
discussion of them here.

Though these properties are certainly true in mathematics, they do not necessar-
ily hold in computer arithmetic, which has finite precision and is subject to overflow in
both fixed-point and floating-point representations. Thus, the decision to make use of
these properties must take into consideration the programs which will behave differently
with optimization put into effect. At the very least, a warning to the user is recom-
mended for the compiler’s user manual.

The discussion of common subexpresssions in Section 7.2.1 would not have
recognized any common subexpressions in the following:
a = b + c;
b = c + d + b;
but by employing the commutative property, we can eliminate an unnecessary computa-
tion of b + c:
a = b + c;
b = a + d;
A multiplication operation can be eliminated from the expression a ∗ c + b ∗ c by
using the distributive property to obtain (a + b) ∗ c.

Compiler writers who employ these techniques create more efficient programs
for the large number of programmers who want and appreciate the improvements, but
risk generating unwanted code for the small number of programmers who require that
algebraic expressions be evaluated exactly as specified in the source program.

Sample Problem 7.2 (b)

Use the methods of unreachable code, constant folding, reduction in strength, loop
invariants, and dead code to optimize the following atom stream; you may assume that
the TST condition is initially not satisfied:

(LBL, L1)
(TST, a, b,, 1, L2)
(SUB, a, 1, a)
(MUL, x, 2, b)
(ADD, x, y, z)
(ADD, 2, 3, z)
(JMP, L1)
(SUB, a, b, a)
(MUL, x, 2, z)
(LBL, L2)

Section 7.2 Global Optimization

Chapter 7 Optimization246

Exercises 7.2

1. Eliminate common subexpressions from each of the following strings of atoms,
using DAGs as shown in Sample Problem 7.2 (a) (we also give the C++ expres-
sions from which the atom strings were generated):

(a) (b + c) ∗ d ∗ (b + c)

(ADD, b, c, T1)
(MUL, T1, d, T2)
(ADD, b, c, T3)
(MUL, T2, T3, T4)

(b) (a + b) ∗ c / ((a + b) ∗ c - d)

(ADD, a, b, T1)
(MUL, T1, c, T2)
(ADD, a, b, T3)
(MUL, T3, c, T4)

Solution:

(LBL, L1)
(TST, a, b,, 1, L2)
(SUB, a, 1, a)
(MUL, x, 2, b) Reduction in strength
(ADD, x, y, z) Elimination of dead code
(ADD, 2, 3, z) Constant folding, loop invariant
(JMP, L1)
(SUB, a, b, a) Unreachable code
(MUL, x, 2, z) Unreachable code
(LBL, L2)

(MOV, 5,, z)
(LBL, L1)
(TST, a, b,, 1, L2)
(SUB, a, 1, a)
(ADD, x, x, b)
(JMP, L1)
(LBL, L2)

247

(SUB, T4, d, T5)
(DIV, T2, T5, T6)

(c) (a + b) ∗ (a + b) - (a + b) ∗ (a + b)

(ADD, a, b, T1)
(ADD, a, b, T2)
(MUL, T1, T2, T3)
(ADD, a, b, T4)
(ADD, a, b, T5)
(MUL, T4, T5, T6)
(SUB, T3, T6, T7)

(d) ((a + b) + c) / (a + b + c) - (a + b + c)

(ADD, a, b, T1)
(ADD, T1, c, T2)
(ADD, a, b, T3)
(ADD, T3, c, T4)
(DIV, T2, T4, T5)
(ADD, a, b, T6)
(ADD, T6, c, T7)
(SUB, T5, T7, T8)

(e) a / b - c / d - e / f

(DIV, a, b, T1)
(DIV, c, d, T2)
(SUB, T1, T2, T3)
(DIV, e, f, T4)
(SUB, T3, T4, T5)

2. How many different atom sequences can be generated from the DAG given in
your response to Problem 1 (e), above?

Section 7.2 Global Optimization

Chapter 7 Optimization248

3. In each of the following sequences of atoms, eliminate the unreachable atoms:
(a) (ADD, a, b, T1)

(LBL, L1)
(SUB, b, a, b)
(TST, a, b,, 1, L1)
(ADD, a, b, T3)
(JMP, L1)

(b) (ADD, a, b, T1)
(LBL, L1)
(SUB, b, a, b)
(JMP, L1)
(ADD, a, b, T3)
(LBL, L2)

(c) (JMP, L2)
(ADD, a, b, T1)
(TST, a, b,, 3, L2)
(SUB, b, b, T3)
(LBL, L2)
(MUL, a, b, T4)

4. In each of the following C++ functions, eliminate statements which constitute dead
code. In each case, the function returns a value to the calling function in the parameter
d:

(a) void f (int & d)
{ int a,b,c;

a = 3;
b = 4;
d = a ∗ b + d;

}

(b) void f (int & d)
{ int a,b,c;

a = 3;
b = 4;

249

c = a +b;
d = a + b;
a = b + c ∗ d;
b = a + c;

}

5. In each of the following C++ program segments, optimize the loops by moving
loop invariant code outside the loop:

(a) { for (i=0; i<100; i++)
 { a = x[i] + 2 ∗ a;

b = x[i];
c = sqrt (100 ∗ c);

 }
}

(b) { for (j=0; j<50; j++)
 { a = sqrt (x);

n = n ∗ 2;
for (i=0; i<10; i++)
 { y = x;

b[n] = 0;
b[i] = 0;

 }
 }

}

6. Show how constant folding can be used to optimize the following C++ program
segments:

(a) a = 2 + 3 ∗ 8;
b = b + (a - 3);

Section 7.2 Global Optimization

Chapter 7 Optimization250

(b) void f (int & c)
{ const int a = 44;

const int b = a - 12;
c = a + b - 7;

}

7. Use reduction in strength to optimize the following sequences of atoms. Assume
that there are (SHL, x, y, z) and (SHR, x, y, z) atoms which will
shift x left or right respectively by y bit positions, leaving the result in z (also
assume that these are fixed-point operations):

(a) (MUL, x, 2, T1)
(MUL, y, 2, T2)

(b) (MUL, x, 8, T1)
(DIV, y, 16, T2)

8. Which of the following optimization techniques, when applied successfully, will
always result in improved execution time? Which will result in reduced program
size?

(a) Detection of common subexpressions with DAGs
(b) Elimination of unreachable code
(c) Elimination of dead code
(d) Movement of loop invariants outside of loop
(e) Constant folding
(f) Reduction in strength

251

7.3 Local Optimization

In this section we discuss local optimization techniques. The definition of local versus
global techniques varies considerably among compiler design textbooks. Our view is
that any optimization which is applied to the generated code is considered local. Local
optimization techniques are often called peephole optimization, since they generally
involve transformations on instructions which are close together in the object program.
The student can visualize them as if peering through a small peephole at the generated
code.

There are three types of local optimization techniques which will be discussed
here: load/store optimization, jump over jump optimization, and simple algebraic
optimization. In addition, register allocation schemes such as the one discussed in
Section 6.4 could be considered local optimization, though they are generally handled in
the code generator itself.

The parser would translate the expression a + b - c into the following
stream of atoms:

(ADD, a, b, T1)
(SUB, T1, c, T2)

The simplest code generator design, as presented in Chapter 6, would generate three
instructions corresponding to each atom: Load the first operand into a register (LOD),
perform the operation, and store the result back to memory (STO). The code generator
would then produce the following instructions from the atoms:

LOD R1,a
ADD R1,b
STO R1,T1
LOD R1,T1
SUB R1,c
STO R1,T2

Notice that the third and fourth instructions in this sequence are entirely
unnecessary since the value being stored and loaded is already at its destination. The
above sequence of six instructions can be optimized to the following sequence of four
instructions by eliminating the intermediate Load and Store instructions as shown below:

LOD R1,a
ADD R1,b
SUB R1,c
STO R1,T2

For lack of a better term, we call this a load/store optimization. It is clearly
machine dependent.

Section 7.3 Local Optimization

Chapter 7 Optimization252

Another local optimization technique, which we call a jump over jump optimi-
zation, is very common and has to do with unnecessary jumps. The student has already
seen examples in Chapter 4 of conditional jumps in which it is clear that greater effi-
ciency can be obtained by rewriting the conditional logic. A good example of this can be
found in a C++ compiler for the statement if (a>b) a = b;. It might be translated
into the following stream of atoms:

(TST, a, b,, 3, L1)
(JMP, L2)
(LBL, L1)
(MOV, b,, a)
(LBL, L2)

A reading of this atom stream is “Test for a greater than b, and if true, jump to
the assignment. Otherwise, jump around the assignment.” The reason for this somewhat
convoluted logic is that the TST atom uses the same comparison code found in the
expression. The instructions generated by the code generator from this atom stream
would be:

LOD R1,a
CMP R1,b,3 //Is R1 > b?
JMP L1
CMP 0,0,0 // Unconditional Jump
JMP L2

L1:
LOD R1,b
STO R1,a

L2:

It is not necessary to implement this logic with two Jump instructions. We can
improve this code significantly by testing for the condition to be false rather than true, as
shown below:

LOD R1,a
CMP R1,b,4 // Is R1 <= b?
JMP L1
LOD R1,b
STO R1,a

L1:

This optimization could have occurred in the intermediate form (i.e., we could
have considered it a global optimization), but this kind of jump over jump can occur for
various other reasons. For example, in some architectures, a conditional jump is a
“short” jump (to a restricted range of addresses), and an unconditional jump is a “long”
jump. Thus, it is not known until code has been generated whether the target of a

253

conditional jump is within reach, or whether an unconditional jump is needed to jump
that far.

The final example of local optimization techniques involves simple algebraic
transformations which are machine dependent and are called simple algebraic optimiza-
tions. For example, the following instructions can be eliminated:

MUL R1, 1
ADD R1, 0

because multiplying a value by 1, or adding 0 to a value, should not change that value.
(Be sure, though, that the instruction has not been inserted to alter the condition code or
flags register.) In addition, the instruction (MUL R1, 0) can be improved by
replacing it with (CLR R1), because the result will always be 0 (this is actually a
reduction in strength transformation).

Sample Problem 7.3

Use the peephole methods of load/store, jump over jump, and simple algebraic optimiza-
tion to improve the following Mini program segment:

CMP R1,a,2 // JMP if R1 < a
JMP L1
CMP 0,0,0
JMP L2

L1:
LOD R1,b
ADD R1,c
STO R1,T1
LOD R1,T1
SUB R1,a
STO R1,T2
LOD R1,T2
STO R1,a
SUB R1,0
STO R1,b

L2:

Solution:

CMP R1,a,2 // Jump Over Jump
JMP L1
CMP 0,0,0
JMP L2

Section 7.3 Local Optimization

Chapter 7 Optimization254

Exercises 7.3

1. Optimize each of the following code segments for unnecessary Load/Store in-
structions:

(a) LOD R1,a (b) LOD R1,a
ADD R1,b LOD R2,c
STO R1,T1 ADD R1,b
LOD R1,T1 ADD R2,b
SUB R1,c STO R2,T1
STO R1,T2 ADD R1,c
LOD R1,T2 LOD R2,T1
STO R1,d STO R1,T2

STO R2,c

L1:
LOD R1,b
ADD R1,c
STO R1,T1 // Load/Store
LOD R1,T1
SUB R1,a
STO R1,T2 // Load/Store
LOD R1,T2
STO R1,a
SUB R1,0 // Algebraic
STO R1,b

L2:

// optimized code
CMP R1,a,5 // JMP if R1 >= a
JMP L2
LOD R1,b
ADD R1,c
SUB R1,a
STO R1,a
STO R1,b

L2:

255

2. Optimize each of the following code segments for unnecessary jump over jump
instructions:

(a) CMP R1,a,1 (b) CMP R1,a,5
JMP L1 JMP L1
CMP 0,0,0 CMP 0,0,0
JMP L2 JMP L2

L1: L1:
ADD R1,R2 SUB R1,a

L2: L2:

(c) L1:
ADD R1,R2
CMP R1,R2,3
JMP L2
CMP 0,0,0
JMP L1

L2:

3. Use any of the local optimization methods of this section to optimize the follow-
ing code segment:

CMP R1,R2,6 // JMP if R1 != R2
JMP L1
CMP 0,0,0
JMP L2

L1:
LOD R2,a
ADD R2,b
STO R2,T1
LOD R2,T1
MUL R2,c
STO R2,T2
LOD R2,T2
STO R2,d
SUB R1,0
STO R1,b

L2:

Section 7.3 Local Optimization

Chapter 7 Optimization256

7.4 Chapter Summary

Optimization has to do with the improvement of machine code and/or intermediate code
generated by other phases of the compiler. These improvements can result in reduced
run time and/or space for the object program. There are two main classifications of
optimization: global and local. Global optimization operates on atoms or syntax trees put
out by the front end of the compiler, and local optimization operates on instructions put
out by the code generator. The term “optimization” is used for this phase of the com-
piler, even though it is never certain to produce optimal code in either space or time.

The compiler writer must be careful not to change the intent of the program
when applying optimizing techniques. Many of these techniques can have a profound
effect on debugging tools; consequently, debugging is generally done on unoptimized
code.

Global optimization is applied to blocks of code in the intermediate form
(atoms) which contain no Label or branch atoms. These are called basic blocks, and they
can be represented by directed acyclic graphs (DAGs), in which each interior node
represents an operation with links to its operands. We show how the DAGs can be used
to optimize common subexpressions in an arithmetic expression.

We briefly describe a few more global optimization techniques without going
into the details of their implementation. They include: (1) unreachable code – code
which can never be executed and can therefore be eliminated; (2) dead code – code
which may be executed but can not have any effect on the program's output and can
therefore be eliminated; (3) loop invariant code – code which is inside a loop, but which
doesn't really need to be in the loop and can be moved out of the loop; (4) consant
folding – detecting arithmetic operations on constants which can be computed at compile
time rather than at run time; (5) reduction in strength – substituting a faster arithmetic
operation for a slow one; (6) algebraic transformations – transformations involving the
commutative, associative, and distributive properties of arithmetic.

We describe three types of local optimization: (1) load/store optimization –
eliminating unnecessary Load and Store instructions in a Load/Store architecture; (2)
jump over jump optimizations – replacing two Jump instructions with a single Jump by
inverting the logic; (3) simple algebraic optimization – eliminating an addition or
subtraction of 0 or a multiplication or division by 1.

These optimization techniques are optional, but they are used in most modern
compilers because of the resultant improvements to the object program, which are
significant.

Appendix A

MiniC Grammar
In this appendix, we give a description and grammar of the source language that we call
“MiniC.” MiniC is a simple subset of the standard C language. It does not include
arrays, structs, unions, files, sets, switch statements, do statements, or or many of the low
level operators. The only data types permitted are int and float. A complete grammar for
MiniC is shown below, and it is similar to the yacc grammar used in the compiler in
Appendix B.2. Here we use the convention that symbols beginning with upper-case
letters are nonterminals, and all other symbols are terminals (i.e., lexical tokens). As in
BNF, we use the vertical bar | to indicate alternate definitions for a nonterminal.

Function z Type identifier (ArgList) CompoundStmt
ArgList z Arg

| ArgList , Arg
Arg z Type identifier
Declaration z Type IdentList ;
Type z int

| float
IdentList z identifier , IdentList

identifier
Stmt z ForStmt

| WhileStmt
| Expr ;
| IfStmt
| CompoundStmt
| Declaration
| ;

ForStmt z for (Expr ; OptExpr ; OptExpr) Stmt

271

OptExpr z Expr
| ε

WhileStmt z while (Expr) Stmt

IfStmt z if (Expr) Stmt ElsePart
ElsePart z else Stmt

| ε
CompoundStmtz { StmtList }
StmtList z StmtList Stmt

| ε
Expr z identifier = Expr

| Rvalue
Rvalue z Rvalue Compare Mag

| Mag
Compare z == | < | > | <= | >= | !=
Mag z Mag + Term

| Mag - Term
| Term

Term z Term * Factor
| Term / Factor
| Factor

Factor z (Expr)
| - Factor
| + Factor
| identifier
| number

This grammar is used in Appendix B.2 as the yacc grammar for our MiniC
compiler, with very few modifications. It is not unusual for a compiler writer to make
changes to the given grammar (which is descriptive of the source language) to obtain an
equivalent grammar which is more amenable for parsing.

Appendix A Minipas Grammar272

MiniC is clearly a very limited programming language, yet despite its limitations it
can be used to program some useful applications. For example, a MiniC program to
compute the cosine function is shown in Figure A.1.

int main ()
{float cos, x, n, term, eps, alt;
// compute the cosine of x to within tolerance eps
// use an alternating series

x = 3.14159;
eps = 0.1;
n = 1;
cos = 1;
term = 1;
alt = -1;
while (term>eps)

{
term = term * x * x / n / (n+1);
cos = cos + alt * term;
alt = -alt;
n = n + 2;
}

}

Figure A.1 A MiniC Program to Compute the Cosine Function

Appendix B

MiniC Compiler

B.1 Software Files

The compiler for MiniC shown in this appendix is implemented using lex for the
lexical analysis and yacc for the syntax analysis. The syntax phase puts out a file of
atoms, which forms the input to the code generator, written as a separate C program. The
code generator puts out hex characters to stdout (the standard output file), one
instruction per line. This output can be displayed on the monitor, stored in a file, or piped
into the Mini simulator and executed.

This software is available in source code from the author via the Internet. The
file names included in this package are, at the time of this printing:

mk Shell script to compile software using make utility
makefile Input to make utility
MiniC.l Input to lex
MiniC.y Input to yacc
MiniC.c Recursive descent parser
gen.c Code generator
mini.c Target machine simulator
mini.h Header file for simulator
MiniC.h Header file for compiler
cos.c MiniC program to compute the cosine function
bisect.c MiniC program to compute the square root of two by

bisection
fact.c MiniC program to compute the factorial function
locate Shell script to find file containing specified source code
readme Updated information regarding the software

Appendix B MiniC Compiler274

miniC.l miniC.y

lex yacc

lex.yy.c y.tab.c gen.c mini.h

cc

miniC.h

#include#include

miniC

mini.c

cc

#include

mini

miniC

program

mini

miniC

 mini

program

The source files are available at:

http://www.rowan.edu/~bergmann/books/miniC

The unix/linux make command can be used to generate executables.

Figure B.1 Flow Diagram to Generate the Compiler and Simulator

275

After copying these files to a new directory, simply invoke the make command to
compile and link the software. If you make any changes to the source code, again invoke
make to compile only those modules which need to be compiled.

To compile the cosine program and view the output on the monitor, use the
command:

$ MiniC <cos.c

To compile the cosine program and store the output in a file named cos.mini, use the
command:

$ MiniC <cos.c >cos.mini

To run this program on the simulator, first compile the mini simulator:

$ cc mini.c -o mini

then run the cosine program using the command:

$ mini <cos.mini

To compile the cosine program, and execute it on the simulator with one command:

$ MiniC <cos.c | mini

A flow graph indicating the relationships of these files is shown in Figure B.1 in
which input and output file names are shown in ovals and executing programs are shown
in rectangles.

B.2 Lexical Phase

The lexical analysis phase is implemented with the Unix lex utility. The input to lex is the
source file MiniC.l, and the output is the file lex.yy.c, which includes the
yylex() function. This function reads MiniC source code from stdin (the standard
input file) and returns tokens to the parser. The tokens are listed in the MiniC.y file
(though single character tokens are not listed there). In addition to key words, the lexical
phase finds comparison tokens, the assignment token, comments, numeric constants, and
identifiers. White space and newline characters are taken as token delimiters, but ignored
otherwise.

The function searchIdent() is used to install and look up identifiers in a
hash table, which forms the symbol table for this compiler. The searchIdent()
function checks for the use of undeclared identifiers and multiply-declared identifiers and
puts out an appropriate error message.

Appendix B.1 Software Files

Appendix B MiniC Compiler276

The function searchNums() is used to install numeric constants into a binary
search tree so that constants used more than once in the source program are stored only
once in the run-time program. The value of the constant is stored as a floating-point
number in the target machine’s memory.

The function alloc(size) allocates the specified number of words of
memory for use at run time. It is used to allocate space on the target machine for declared
identifiers.

As explained in Appendix B.3 below, the parser stack may store three different
types of data: a target machine address (address), an integer code (code), and a
structure of three label numbers (labels). Consequently in our lex source file when we
assign a value to the global variable yylval, we must indicate which of the three types
is being returned, because it will be pushed onto the parser stack. For example, when a
numeric constant is found, we assign its location in the target machine memory to
yylval: yylval.address = searchNums();.

The source code forming the input to lex, taken from the file MiniC.l, is shown
below:

INT [0-9]+
EXP ([eE][+-]?{INT})
NUM ({INT}\.?{INT}?|\.{INT}){EXP}?
%{
#include <stdlib.h>
ADDRESS searchIdent(void);
ADDRESS searchNums(void);
ADDRESS alloc(int size);
%}
%start COMMENT1 COMMENT2
%%
<COMMENT1>.+ ;
<COMMENT1>\n BEGIN 0; /* end comment */
<COMMENT2>[^*]+ ;
<COMMENT2>*[^/] ;
<COMMENT2>*\/ BEGIN 0; /* end comment */
"//" BEGIN COMMENT1;
"/*" BEGIN COMMENT2;
int {yylval.code = 2; return INT;}
float {yylval.code = 3; return FLOAT;}
for return FOR;
while return WHILE;
if return IF;
else return ELSE;
"==" {yylval.code = 1; return COMPARISON;}
\< {yylval.code = 2; return COMPARISON;}
> {yylval.code = 3; return COMPARISON;}
"<=" {yylval.code = 4; return COMPARISON;}

277

">=" {yylval.code = 5; return COMPARISON;}
"!=" {yylval.code = 6; return COMPARISON;}
[a-zA-Z][a-zA-Z0-9_]* {yylval.address = searchIdent();

 return IDENTIFIER;}
{NUM} {yylval.address = searchNums(); return NUM;}
[\t] ; /* white space */
\n lineno++; /* free format */
. return yytext[0]; /* any other char */
%%
yywrap ()
{return 1; /* terminate when reaching end of stdin */}

ADDRESS searchIdent(void)
/* search the hash table for the identifier in yytext.
insert if
necessary */
{ struct Ident * ptr;
 int h;
 h = hash(yytext);
 ptr = HashTable[h];
 while ((ptr!=NULL) && (strcmp(ptr->name,yytext)!=0))

ptr = ptr->link;
 if (ptr==NULL)
 if (dcl)

{ ptr = malloc (sizeof (struct Ident));
 ptr->link = HashTable[h];
 strcpy (ptr->name = malloc (yyleng+1), yytext);
 HashTable[h] = ptr;
 ptr->memloc = alloc(1);
 ptr->type = identType;
}

 else { printf ("%s \n", yytext);
yyerror ("undeclared identifier");
return 0;

 }
 else if (dcl)

{ printf("%s \n", yytext);
 yyerror ("multiply defined identifier");
}

 return ptr->memloc;
}

int hash(char * str)
{ int h=0, i;
 for (i=0; i<yyleng; i++) h += str[i];

Appendix B.2 Lexical Phase

Appendix B MiniC Compiler278

 return h % HashMax;
}

ADDRESS searchNums(void)
/* search the binary search tree of numbers for the number
in
 yytext. Insert if not found. */
{ struct nums * ptr;
 struct nums * parent;
 double val;
 sscanf (yytext,"%lf",&val);
 if (numsBST==NULL)
 { numsBST = malloc (sizeof (struct nums));
 memory[numsBST->memloc = alloc(1)].data = val;
 numsBST->left = numsBST->right = NULL;
 return numsBST->memloc;
 }
 ptr = numsBST;
 while (ptr!=NULL)
 { if (memory[ptr->memloc].data==val) return ptr->memloc;
 parent = ptr;
 if (memory[ptr->memloc].data<val) ptr = ptr->left;
 else ptr = ptr->right;
 }
 ptr = malloc (sizeof (struct nums));
 memory[ptr->memloc = alloc(1)].data = val;
 ptr->left = ptr->right = NULL;
 if (memory[parent->memloc].data<val) parent->left = ptr;
 else parent->right = ptr;
 return ptr->memloc;
}

ADDRESS alloc (int size)
/* allocate words on the target machine memory */
{
 ADDRESS t;
 t = avail;
 avail += size;
 return t;
}

279

B.3 Syntax Analysis

The syntax analysis phase is implemented with the yacc utility and is stored in the file
MiniC.y. This file contains the main program, which shows that control is initially given
to the yyparse() function, which calls the yylex() function when it needs a token.
The yyparse() function creates a file of atoms, and when there are no more tokens in
the input stream, it calls the code generator. The file MiniC.y is shown below:

%{
#include <stdio.h>
#include "mini.h"
#include "miniC.h"
%}
%union {

ADDRESS address;
int code; /* comparison code 1-6 */
struct {int L1;

 int L2;
 int L3;
 int L4;} labels;

 }
%token <address> IDENTIFIER
%token <code> INT
%token <code> FLOAT
%token FOR
%token WHILE
%token <code> COMPARISON
%token IF
%token ELSE
%token <address> NUM
/* nonterminal types are: */
%type <code> Type
%type <address> Expr
%type <address> OptExpr
%type <labels> WhileStmt
%type <labels> ForStmt
%type <labels> IfStmt
%type <labels> Label
%right '='
%left COMPARISON
%left '+' '-'
%left '*' '/'
%left UMINUS UPLUS
%%

Appendix B.3 Syntax Analysis

Appendix B MiniC Compiler280

Function: Type IDENTIFIER '(' ArgListOpt ')' CompoundStmt
;

ArgListOpt: ArgList
|
;

ArgList: ArgList ',' Arg
| Arg
;

Arg: Type IDENTIFIER
;

Declaration: Type {dcl = TRUE;
 identType = $1;}

IdentList ';' {dcl = FALSE;}
;

IdentList: IDENTIFIER ',' IdentList
| IDENTIFIER
;

Type: INT {$$ = $1;}
| FLOAT {$$ = $1;}
;

Stmt: ForStmt
| WhileStmt
| Expr ';'
| IfStmt
| CompoundStmt
| Declaration
| ';' /* null statement */
;

ForStmt: FOR '(' Expr ';' {$$.L1 = newlabel();
atom (LBL,NULL,NULL,NULL,0,$$.L1);}

OptExpr ';' {$$.L2 = newlabel();
 atom (TST,$6,zero,NULL,6,

$<labels>$.L2);
 $$.L3 = newlabel();
 atom (JMP,NULL,NULL,NULL,0,

$<labels>$.L3);
 $$.L4 = newlabel();
 atom (LBL,NULL,NULL,NULL,0,

$<labels>$.L4);}
OptExpr ')' {atom (JMP,NULL,NULL,NULL,0,

$<labels>5.L1);
 atom (LBL,NULL,NULL,NULL,0,

$<labels>8.L2);}
 Stmt {atom (JMP,NULL,NULL,NULL,0,

$<labels>8.L4);

281

 atom (LBL,NULL,NULL,NULL,0,
$<labels>8.L3);}

;
OptExpr: Expr {$$ = $1;}

| {$$ = one;} /* default to inf
loop */

;
WhileStmt: WHILE {$$.L1 = newlabel();

 atom(LBL,NULL,NULL,NULL,0,$$.L1);}
'(' Expr ')' {$$.L2 = newlabel();

 atom (TST,$4, zero,
 NULL,1,$$.L2);}

Stmt {atom (JMP,NULL,NULL,NULL,0,
$<labels>2.L1);

 atom (LBL,NULL,NULL,NULL,0,
$<labels>6.L2);}

;
IfStmt: IF '(' Expr ')' {$$.L1 = newlabel();

 atom (TST, $3, zero, NULL, 1, $$.L1);}
Stmt {$$.L2 = newlabel();

atom (JMP,NULL,NULL,NULL,0, $$.L2);
atom (LBL,NULL,NULL,NULL,0,

$<labels>5.L1);}
ElsePart {atom (LBL,NULL,NULL,NULL,0,

$<labels>7.L2);}
;

ElsePart:
| ELSE Stmt
;

CompoundStmt: '{' StmtList '}'
;

StmtList: StmtList Stmt
|
;

Expr: IDENTIFIER '=' Expr {atom (MOV, $3, NULL,
 $1,0,0);
 $$ = $3;}

| Expr COMPARISON Expr
 Label {$$ = alloc(1);

 atom (MOV, one, NULL, $$,0,0);
 atom (TST, $1, $3, NULL, $2,

 $4.L1);
 atom (MOV, zero, NULL, $$,0,0);
atom (LBL,NULL,NULL,NULL,0,$4.L1);}

Appendix B.3 Syntax Analysis

Appendix B MiniC Compiler282

| '+' Expr %prec UPLUS {$$ = $2;}
| '-' Expr %prec UMINUS {$$ = alloc(1);

 atom (NEG, $2,NULL,$$,0,0); }
| Expr '+' Expr {$$ = alloc(1);

 atom (ADD, $1, $3,$$,0,0); }
| Expr '-' Expr {$$ = alloc(1);

 atom (SUB, $1, $3, $$,0,0); }
| Expr '*' Expr {$$ = alloc(1);

 atom (MUL, $1, $3, $$,0,0); }
| Expr '/' Expr {$$ = alloc(1);

 atom (DIV, $1, $3, $$,0,0); }
| '(' Expr ')' {$$ = $2;}
| IDENTIFIER {$$ = $1; }
| NUM {$$ = $1; }
;

Label: {$$.L1 = newlabel();}
; /* Used to store a label in

 compare expr above */
%%
char *progname;
char * op_text();
int lineno = 1;
ADDRESS save;
ADDRESS one;
ADDRESS zero;
int nextlabel = 1;
#include "lex.yy.c"
#include "gen.c"

main (int argc, char *argv[])
{
 progname = argv[0];
 atom_file_ptr = fopen ("atoms", "wb");
 strcpy (yytext,"0.0");
 zero = searchNums(); /* install the constant 0.0

 in table */
 strcpy (yytext, "1.0");
 one = searchNums(); /* also 1.0 */
 yyparse();
 fclose (atom_file_ptr);
 if (!err_flag) code_gen();
}

yyerror (char * s)
{

283

 fprintf(stderr, "%s[%d]: %s\n", progname, lineno, s);
printf ("yytext is <%s>", yytext);
 err_flag = TRUE;
}

newlabel (void)
{ return nextlabel++;}

/* testing only */ char mne[4];

atom (int operation, ADDRESS operand1, ADDRESS operand2,
 ADDRESS result, int comparison, int dest)

/* put out an atom. destination will be a label number. */
{ struct atom outp;

 outp.op = operation;
 outp.left = operand1;
 outp.right = operand2;
 outp.result = result;
 outp.cmp = comparison;
 outp.dest = dest;

 fwrite (&outp, sizeof (struct atom), 1, atom_file_ptr);
 /* testing only
 printf ("%d %x %x %x %d %d\n", operation, operand1,

operand2, result, comparison, dest);
 decode (operation);
 printf (" %s\n", mne);
 */
}

decode (int atom)
/* Convert an atom number to a readable mnemonic */
{

 switch (atom)
 { case ADD: strcpy (mne, "ADD");

break;
 case SUB: strcpy (mne, "SUB");

break;
 case MUL: strcpy (mne, "MUL");

break;
 case DIV: strcpy (mne, "DIV");

break;
 case JMP: strcpy (mne, "JMP");

Appendix B.3 Syntax Analysis

Appendix B MiniC Compiler284

 break;
 case NEG: strcpy (mne, "NEG");

break;
 case LBL: strcpy (mne, "LBL");

break;
 case TST: strcpy (mne, "TST");

break;
 case MOV: strcpy (mne, "MOV");
 }
}

B.4 Code Generator

The code generator is written in the C language; the main function is named
code_gen() and is stored in the file gen.c. There is a #include statement in the
yacc program in MiniC.y, which incorporates the code generator into the MiniC
compiler. The function code_gen() is called from the main program after the
yyparse() function terminates. Code_gen() reads from the file of atoms and writes
instructions in hex characters for the Mini machine simulator to stdout, the standard
output file. This can be displayed on the monitor, stored in a file, or piped directly into the
Mini simulator as described, above, in Appendix B.2.

The code generator output also includes a hex location and disassembled op
code on each line. These are ignored by the Mini machine simulator and are included only
so that the student will be able to read the output and understand how the compiler
works.

The first line of output is the starting location of the program instructions.
Program variables and temporary storage are located beginning at memory location 0,
consequently the Mini machine simulator needs to know where the first instruction is
located. The function out_mem() sends the constants which have been stored in the
target machine memory to stdout. The function dump_atom() is included for
debugging purposes only; the student may use it to examine the atoms produced by the
parser.

The code generator solves the problem of forward jump references by making
two passes over the input atoms. The first pass is implemented with a function named
build_labels() which builds a table of Labels (a one dimensional array), associating
a machine address with each Label.

The file of atoms is closed and reopened for the second pass, which is imple-
mented with a switch statement on the input atom class. The important function involved
here is called gen(), and it actually generates a Mini machine instruction, given the
operation code (atom class codes and corresponding machine operation codes are the
same whenever possible), register number, memory operand address (all addressing is
absolute), and a comparison code for compare instructions. Register allocation is kept as

285

simple as possible by always using floating-point register 1, and storing all results in
temporary locations.

The source code for the code generator, from the file gen.c, is shown below:

struct atom inp;
long labels[MAXL];
ADDRESS pc=0;
int ok = TRUE;

code_gen ()
{ int r;

 /* send target machine memory containing constants to
stdout */

 end_data = alloc(0); /* constants precede
instructions */

 out_mem();

 atom_file_ptr = fopen (“atoms”,”rb”); /* open file of
atoms */

 pc = end_data; /* starting address of
instructions */

 build_labels(); /* first pass */
 fclose (atom_file_ptr);

 atom_file_ptr = fopen (“atoms”,”rb”); /* open file of
 atoms for */

 get_atom(); /* second pass */
 pc = end_data;
 ok = TRUE;
 while (ok)
 {
 /* dump_atom(); */

 switch (inp.op) /* check atom class */
{ case ADD: gen (LOD, r=regalloc(),inp.left);

gen (ADD, r, inp.right);
gen (STO, r, inp.result);
break;

case SUB: gen (LOD, r=regalloc(), inp.left);
gen (SUB, r, inp.right);
gen (STO, r, inp.result);
break;

case NEG: gen (CLR, r=regalloc());
gen (SUB, r, inp.left);

Appendix B.4 Code Generator

Appendix B MiniC Compiler286

gen (STO, r, inp.result);
break;

case MUL: gen (LOD, r=regalloc(), inp.left);
gen (MUL, r, inp.right);
gen (STO, r, inp.result);

break;
case DIV: gen (LOD, r=regalloc(), inp.left);

gen (DIV, r, inp.right);
gen (STO, r, inp.result);

break;
case JMP: gen (CMP, 0, 0, 0);

gen (JMP);
break;

case TST: gen (LOD, r=regalloc(), inp.left);
gen (CMP, r, inp.right, inp.cmp);
gen (JMP);

break;
case MOV: gen (LOD, r=regalloc(), inp.left);

gen (STO, r, inp.result);
break;

}
 get_atom();
 }
 gen (HLT);
}

get_atom()
/* read an atom from the file of atoms into inp */
/* ok indicates that an atom was actually read */
{ int n;

 n = fread (&inp, sizeof (struct atom), 1, atom_file_ptr);
 if (n==0) ok = FALSE;
}

dump_atom()
{ printf (“op: %d left: %04x right: %04x result: %04x
cmp: %d dest: %d\n”,
 inp.op, inp.left, inp.right, inp.result, inp.cmp,
inp.dest); }

gen (int op, int r, ADDRESS add, int cmp)
/* generate an instruction to stdout
 op is the simulated machine operation code

287

 r is the first operand register
 add is the second operand address
 cmp is the comparison code for compare instructions

1 is ==
2 is <
3 is >
4 is <=
5 is >=
6 is !=

 jump destination is taken from the atom inp.dest
*/
{union {struct fmt instr;

unsigned long word;
 } outp;

 outp.word = 0;

 outp.instr.op = op; /* op code */
 if (op!=JMP)
 { outp.instr.r1 = r; /* first operand */
 outp.instr.s2 = add; /* second operand */
 }
 else outp.instr.s2 = lookup (inp.dest); /* jump

destination */
 if (op==CMP) outp.instr.cmp = cmp; /* comparison

code 1-6 */

 printf (“%08x\t%04x\t%s\n”, outp.word, pc, op_text(op));
 pc++;
}

int regalloc ()
/* allocate a register for use in an instruction */
{ return 1; }

build_labels()
/* Build a table of label values on the first pass */
{
 get_atom();
 while (ok)
 {
 if (inp.op==LBL)

labels[inp.dest] = pc;

Appendix B.4 Code Generator

Appendix B MiniC Compiler288

/* MOV and JMP atoms require two instructions,
 all other atoms require three instructions. */
else if (inp.op==MOV || inp.op==JMP) pc += 2;

else pc += 3;
 get_atom();
 }
}

long lookup (int label_num)
/* look up a label in the table and return its memory ad-
dress */
{ return labels[label_num];
}

out_mem()
/* send target machine memory contents to stdout. this is
the beginning of the object file, to be followed by the
instructions. the first word in the object file is the
starting address of the program; the next word is memory
location 0. */
{
 ADDRESS i;

 printf (“%08x\tLoc\tDisassembled Contents\n”, end_data);
/* starting address of instructions */

 for (i=0; i<end_data; i++)
printf (“%08x\t%04x\t%8lf\n”, memory[i].instr, i,

memory[i].data);
}

char * op_text(int operation)
/* convert op_codes to mnemonics */
{
 switch (operation)

{ case CLR: return “CLR”;
 case ADD: return “ADD”;

289

 case SUB: return “SUB”;
 case MUL: return “MUL”;
 case DIV: return “DIV”;
 case JMP: return “JMP”;
 case CMP: return “CMP”;
 case LOD: return “LOD”;
 case STO: return “STO”;
 case HLT: return “HLT”;
}

}

Appendix B.4 Code Generator

Appendix C

Mini Simulator

The Mini machine simulator is simply a C program stored in the file mini.c. It
reads instructions and data in the form of hex characters from the standard input file,
stdin. The instruction format is as specified in Section 6.5.1, and is specified with a
structure called fmt in the header file, mini.h.

The simulator begins by calling the function boot(), which loads the Mini
machine memory from the values in the standard input file, stdin, one memory location
per line. These values are numeric constants, and zeroes for program variables and
temporary locations. The boot() function also initializes the program counter, PC
(register 1), to the starting instruction address.

The simulator fetches one instruction at a time into the instruction register, ir,
decodes the instruction, and performs a switch operation on the operation code to execute
the appropriate instruction. The user interface is designed to allow as many instruction
cycles as the user wishes, before displaying the machine registers and memory locations.
The display is accomplished with the dump() function, which sends the Mini CPU
registers, and the first sixteen memory locations to stdout so that the user can observe
the operation of the simulated machine. The memory locations displayed can be changed
easily by setting the two arguments to the dumpmem() function. The displays include
both hex and decimal displays of the indicated locations.

As the user observes a program executing on the simulated machine, it is
probably helpful to watch the memory locations associated with program variables in
order to trace the behavior of the original MiniC program. Though the compiler produces
no memory location map for variables, their locations can be determined easily, because
they are stored in the order in which they are declared. The first two locations are
reserved for the constants 0.0 and 1.0. For example, the program that computes the
cosine function begins as shown here:

291Appendix C Mini Simulator

int main ()
{ float cos, x, n, term, eps, alt;

In this case, the variables cos, x, n, term, eps, and alt will be stored in that
order in memory locations 3 through 8.

The source code for the Mini machine is in the file mini.c and is shown below:

/* simulate the Mini architecture */
/* 32-bit word addressable machine, with 16 general regis-
ters and

16 floating-point registers.
 r1: program counter
 ir: instruction register
 r0-r15: general registers (32 bits)
 fpr0-fpr15: floating-point registers (32 bits)

 instruction format:
bits function
0-3 opcode 1 r1 = r1+s2

2 r1 = r1-s2
4 r1 = r1*s2
5 r1 = r1/s2
7 pc = S2 if flag JMP
8 flag = r1 cmp s2 CMP
9 r1 = s2 Load
10 s2 = r1 Store
11 r1 = 0 Clear

4 mode 0 s2 is 20 bit address
1 s2 is 4 bit reg (r2) and 16 bit

offset (o2)

5-7 cmp 0 always true
1 ==
2 <
3 >
4 <=
5 >=
6 !=

8-11 r1 register address for first operand
12-31 s2 storage adress if mode=0
12-15 r2 part of storage address if mode=1
16-31 o2 rest of storage address if mode=1

Appendix C Mini Simulator292

if mode=1, s2 = c(r2) + o2 */

#include <stdio.h>
#include “mini.h”
#define PC reg[1]

FILE * tty; /* read from keyboard */

unsigned long addr;
unsigned int flag, r2, o2;

main ()
{
int n = 1, count;

boot(); /* load memory from stdin */

tty = fopen (“/dev/tty”, “r”); /* read from keyboard
even if stdin is
redirected */

while (n>0)
{
for (count = 1; count<=n; count++)
 { /* fetch */

ir.full32 = memory[PC++].instr;
if (ir.instr.mode==1)
 { o2 = ir.instr.s2 & 0x0ffff;
 r2 = ir.instr.s2 & 0xf0000;
 addr = reg[r2] + o2;}
else addr = ir.instr.s2;

switch (ir.instr.op)
 { case ADD: fpreg[ir.instr.r1].data =

fpreg[ir.instr.r1].data +
memory[addr].data;

break;
 case SUB: fpreg[ir.instr.r1].data =

fpreg[ir.instr.r1].data -
memory[addr].data;

break;
 case MUL: fpreg[ir.instr.r1].data =

fpreg[ir.instr.r1].data *
memory[addr].data;

break;

293Appendix C Mini Simulator

 case DIV: fpreg[ir.instr.r1].data =
fpreg[ir.instr.r1].data /
memory[addr].data;

break;
 case JMP: if (flag) PC = addr; /* conditional

jump */
break;

 case CMP: switch (ir.instr.cmp)
{case 0: flag = TRUE; /* uncondi-

tional */
break;

case 1: flag = fpreg[ir.instr.r1].data
== memory[addr].data;

break;
case 2: flag = fpreg[ir.instr.r1].data

< memory[addr].data;
break;

case 3: flag = fpreg[ir.instr.r1].data
> memory[addr].data;

break;
case 4: flag = fpreg[ir.instr.r1].data

<= memory[addr].data;
break;

case 5: flag = fpreg[ir.instr.r1].data
>= memory[addr].data;

break;
case 6: flag = fpreg[ir.instr.r1].data

!= memory[addr].data;
}

case LOD: fpreg[ir.instr.r1].data =
memory[addr].data;

break;
case STO: memory[addr].data = fpreg[ir.instr.r1].data;

break;
case CLR: fpreg[ir.instr.r1].data = 0.0;

break;
case HLT: n = -1;
}

 }

Appendix C Mini Simulator294

 dump ();
 printf (“Enter number of instruction cycles, 0 for no

change, or -1 to quit\n”);
/* read from keyboard if stdin is redirected */

 fscanf (tty,”%d”, &count);
 if (count!=0 && n>0) n = count;
}
}

void dump ()
{ dumpregs();
 dumpmem(0,15);
}

void dumpregs ()
{int i;
 char * pstr;

 printf (“ir = %08x\n”, ir.full32);
 for (i=0; i<8; i++)
 { if (i==1) pstr = “PC = “; else pstr = “ “;
 printf (“%s reg[%d] = %08x = %d\tfpreg[%d] = %08x =

%e\n”,
pstr,i,reg[i],reg[i],i,fpreg[i].instr,fpreg[i].data);

 }
}

void dumpmem(int low, int high)
{int i;
 char * f;
 low = low/4*4;
 high = (high+4)/4*4 - 1;
 if (flag) f = “TRUE”; else f = “FALSE”;
 printf (“memory\t\t\t\t\tflag =

%s\naddress\t\tcontents\n”,f);
 for (i=low; i<=high; i+=4)
 printf (“%08x\t%08x %08x %08x %08x\n\t\t%8e

%8e %8e %8e\n”,
i,memory[i].instr,memory[i+1].instr,memory[i+2].instr,

memory[i+3].instr,
memory[i].data, memory[i+1].data, memory[i+2].data,
memory[i+3].data);

}

295Appendix C Mini Simulator

void boot()
/* load memory from stdin */
{ int i = 0;

 scanf (“%8lx%*[^\n]\n”, &PC); /* starting ad-
dress of instructions */

 while (EOF!=scanf (“%8lx%*[^\n]\n”, &memory[i++].instr));
}

The only source files that have not been displayed are the header files. The file minipas.h
contains declarations, macros, and includes which are needed by the compiler but not by
the simulator. The file mini.h contains information needed by the simulator.

The header file minipas.h is shown below:

/* Size of hash table for identifier symbol table */
#define HashMax 100

/* Size of table of compiler generated address labels */
#define MAXL 1024

/* memory address type on the simulated machine */
typedef unsigned long ADDRESS;

/* Symbol table entry */
struct Ident

{char * name;
struct Ident * link;
int type; /* program name = 1,

 integer = 2,
 real = 3 */

ADDRESS memloc;};

/* Symbol table */
struct Ident * HashTable[HashMax];

/* Linked list for declared identifiers */
struct idptr

{struct Ident * ptr;

Appendix C Mini Simulator296

 struct idptr * next;
};

struct idptr * head = NULL;
int dcl = TRUE; /* processing the declarations section */

/* Binary search tree for numeric constants */
struct nums

{ADDRESS memloc;
struct nums * left;
struct nums * right;};

struct nums * numsBST = NULL;

/* Record for file of atoms */
struct atom

{int op; /* atom classes are shown below */
ADDRESS left;
ADDRESS right;
ADDRESS result;
int cmp; /* comparison codes are 1-6 */
int dest;
};

/* ADD, SUB, MUL, DIV, and JMP are also atom classes */
/* The following atom classes are not op codes */
#define NEG 10
#define LBL 11
#define TST 12
#define MOV 13

FILE * atom_file_ptr;
ADDRESS avail = 0, end_data = 0;
int err_flag = FALSE; /* has an error been detected? */

The header file mini.h is shown below:

#define MaxMem 0xffff
#define TRUE 1
#define FALSE 0

297Appendix C Mini Simulator

/* Op codes are defined here: */
#define CLR 0
#define ADD 1
#define SUB 2
#define MUL 3
#define DIV 4
#define JMP 5
#define CMP 6
#define LOD 7
#define STO 8
#define HLT 9

/* Memory word on the simulated machine may be treated as
numeric data or as an instruction */

union { float data;
unsigned long instr;
} memory [MaxMem];

/* careful! this structure is machine dependent! */
struct fmt
 { unsigned int s2: 20;
 unsigned int r1: 4;
 unsigned int cmp: 3;
 unsigned int mode: 1;
 unsigned int op: 4;
 }
 ;

union {
struct fmt instr;
unsigned long full32;

 } ir;

unsigned long reg[8];
union { float data;

unsigned long instr;
} fpreg[8];

Glossary

absolute addressing An address mode in the Mini architecture which stores a complete
memory address in a single instruction field.

action An executable statement or procedure, often used in association with an automa-
ton or program specification tool.

action symbols Symbols in a translation grammar enclosed in braces {} and used to
indicate output or a procedure call during the parse.

action table A table in LR parsing algorithms which is used to determine whether a
shift or reduce operation is to be performed.

algebraic transformations An optimization technique which makes use of algebraic
properties, such as commutativity and associativity to simplify arithmetic
expressions.

alphabet A set of characters used to make up the strings in a given language.

ambiguous grammar A grammar which permits more than one derivation tree for a
particular input string.

architecture The definition of a computer’s central processing unit as seen by a
machine language programmer, including specifications of instruction set
operations, instruction formats, addressing modes, data formats, CPU registers,
and input/output instruction interrupts and traps.

arithmetic expressions Infix expressions involving numeric constants, variables,
arithmetic operations, and parentheses.

atom A record put out by the syntax analysis phase of a compiler which specifies a
primitive operation and operands.

Glossary258

attributed grammar A grammar in which each symbol may have zero or more
attributes, denoted with subscripts, and each rule may have zero or more
attribute computation rules associated with it.

automata theory The branch of computer science having to do with theoretical
machines.

back end The last few phases of the compiler, code generation and optimization, which
are machine dependent.

balanced binary search tree A binary search tree in which the difference in the heights
of both subtrees of each node does not exceed a given constant.

basic block A group of atoms or intermediate code which contains no label or branch
code.

binary search tree A connected data structure in which each node has, at most, two
links and there are no cycles; it must also have the property that the nodes are
ordered, with all of the nodes in the left subtree preceding the node, and all of
the nodes in the right subtree following the node.

bison A public domain version of yacc.

bootstrapping The process of using a program as input to itself – as in compiler
development – through a series of increasingly larger subsets of the source
language.

bottom up parsing Finding the structure of a string in a way that produces or traverses
the derivation tree from bottom to top.

closure Another term for the Kleene * operation.

code generation The phase of the compiler which produces machine language object
code from syntax trees or atoms.

comment Text in a source program which is ignored by the compiler, and is for the
programmer’s reference only.

compile time The time at which a program is compiled, as opposed to run time.

259Glossary

compiler A software translator which accepts, as input, a program written in a particu-
lar high-level language and produces, as output, an equivalent program in
machine language for a particular machine.

compiler-compiler A program which accepts, as input, the specifications of a program-
ming language and the specifications of a target machine, and produces, as
output, a compiler for the specified language and machine.

conflict In bottom up parsing, the failure of the algorithm to find an appropriate shift or
reduce operation.

constant folding An optimization technique which involves detecting operations on
constants, which could be done at compile time rather than at run time.

context-free grammar A grammar in which the left side of each rule consists of a
nonterminal being rewritten (type 2).

context-free language A language which can be specified by a context-free grammar.

context-sensitive grammar A grammar in which the left side of each rule consists of a
nonterminal being rewritten, along with left and right context, which may be
null (type 1).

context-sensitive language A language which can be specified by a context-sensitive
grammar.

conventional machine language The language in which a computer architecture can be
programmed, as distinguished from a microcode language.

cross compiling The process of generating a compiler for a new computer architecture,
automatically.

DAG Directed acyclic graph.

data flow analysis A formal method for tracing the way information about data objects
flows through a program, used in optimization.

dead code Code, usually in an intermediate code string, which can be removed because
it has no effect on the output or final results of a program.

derivation A sequence of applications of rewriting rules of a grammar, beginning with
the starting nonterminal and ending with a string of terminal symbols.

Glossary260

derivation tree A tree showing a derivation for a context-free grammar, in which the
interior nodes represent nonterminal symbols and the leaves represent terminal
symbols.

deterministic Having the property that every operation can be completely and uniquely
determined, given the inputs (as applied to a machine).

deterministic context-free language A context-free language which can be accepted
by a deterministic pushdown machine.

directed acyclic graph (DAG) A graph consisting of nodes connected with one-
directional arcs, in which there is no path from any node back to itself.

disjoint Not intersecting.

embedded actions In a yacc grammar rule, an action which is not at the end of the rule.

empty set The set containing no elements.

endmarker A symbol, N, used to mark the end of an input string (used here with
pushdown machines).

equivalent grammars Grammars which specify the same language.

equivalent programs Programs which have the same input/output relation.

example (of a nonterminal) A string of input symbols which may be derived from a
particular nonterminal.

expression A language construct consisting of an operation and zero, one, or two
operands, each of which may be an object or expression.

extended pushdown machine A pushdown machine which uses the replace operation.

extended pushdown translator A pushdown machine which has both an output
function and a replace operation.

finite state machine A theoretical machine consisting of a finite set of states, a finite
input alphabet, and a state transition function which specifies the machine’s
state, given its present state and the current input.

261Glossary

follow set (of a nonterminal, A) The set of all terminals (or endmarker ) which can
immediately follow the nonterminal A in a sentential form derived from S .

formal language A language which can be defined by a precise specification.

front end The first few phases of the compiler, lexical and syntax analysis, which are
machine independent.

global optimization Improvement of intermediate code in space and/or time.

goto table A table in LR parsing algorithms which determines which stack symbol is to
be pushed when a reduce operation is performed.

grammar A language specification system consisting of a finite set of rewriting rules
involving terminal and nonterminal symbols.

handle The string of symbols on the parsing stack, which matches the right side of a
grammar rule in order for a reduce operation to be performed, in a bottom up
parsing algorithm.

hash function A computation using the value of an item to be stored in a table, to
determine the item’s location in the table.

hash table A data structure in which the location of a node’s entry is determined by a
computation on the node value, called a hash function.

high-level language A programming language which permits operations, control
structures, and data structures more complex than those available on a typical
computer architecture.

identifier A word in a source program representing a data object, type, or procedure.

implementation language The language in which a compiler exists.

inherited attributes Those attributes in an attributed grammar which receive values
from nodes on the same or higher levels in the derivation tree.

input alphabet The alphabet of characters used to make up the strings in a given
language.

intermediate form A language somewhere between the source and object languages.

Glossary262

interpreter A programming language processor which carries out the intended opera-
tions, rather than producing, as output, an object program.

jump over jump optimization The process of eliminating unnecessary Jump instruc-
tions.

keyword A word in a source program, usually alphanumeric, which has a predefined
meaning to the compiler.

language A set of strings.

left recursion The grammar property that the right side of a rule begins with the same
nonterminal that is being defined by that rule.

left-most derivation A derivation for a context-free grammar, in which the left-most
nonterminal is always rewritten.

lex A lexical analyzer generator utility in the Unix programming environment which
uses regular expressions to define patterns.

lex library A collection of run-time functions which may be called by the yylex()
function.

lexeme The output of the lexical analyzer representing a single word in the source
program; a lexical token.

lexical analysis The first phase of the compiler, in which words in the source program
are converted to a sequence of tokens representing entities such as keywords,
numeric constants, identifiers, operators, etc.

LL(1) grammar A grammar in which all rules defining the same nonterminal have
disjoint selection sets.

LL(1) language A language which can be described by an LL(1) grammar.

load/store architecture A computer architecture in which data must be loaded into a
CPU register before performing operations.

load/store optimization The process of eliminating unnecessary Load and Store
operations.

263Glossary

local optimization Optimization applied to object code, usually by examining relatively
small blocks of code.

loop invariant A statement or construct which is independent of, or static within, a
particular loop structure.

LR A class of bottom up parsing algorithms in which the input string is read from the
left, and a right-most derivation is found.

LR(k) An LR parsing algorithm which looks ahead at most k input symbols.

multiple pass code generator A code generator which reads the the intermediate code
string more than once, to handle forward references.

multiple pass compiler A compiler which scans the source program more than once.

natural language A language used by people, which cannot be defined perfectly with a
precise specification system.

newline A character, usually entered into the computer as a Return or Enter key, which
indicates the end of a line on an output device.

nondeterministic Not deterministic; i.e., having the property that an input could result
in any one of several operations, or that an input could result in no specified
operation (as applied to a machine).

nonterminal symbol A symbol used in the rewriting rules of a grammar, which is not a
terminal symbol.

normal form A method for choosing a unique member of an equivalence class; left-
most (or right-most) derivations are a normal form for context-free derivations.

null string The string consisting of zero characters.

nullable nonterminal A nonterminal from which the null string can be derived.

nullable rule A grammar rule which can be used to derive the null string.

object language The language of the target machine; the output of the compiler is a
program in this language.

object program A program produced as the output of the compiler.

Glossary264

operator A source language symbol used to specify an arithmetic, assignment, com-
parison, logical, or other operation involving one or two operands.

optimization The process of improving generated code in run time and/or space.

p-code A standard intermediate form developed at the University of California at San
Diego.

palindrome A string which reads the same from left to right as it does from right to left.

parse A description of the structure of a valid string in a formal language, or to find
such a description.

parser The syntax analysis phase of a compiler.

parsing algorithm An algorithm which solves the parsing problem for a particular class
of grammars.

parsing problem Given a grammar and an input string, determine whether the string is
in the language of the grammar and, if so, find its structure (as in a derivation
tree, for example).

pop A pushdown machine operation used to remove a stack symbol from the top of the
stack.

postfix traversal A tree-scanning algorithm in which the children of a node are visited,
followed by the node itself; used to generate object code from a syntax tree.

production A rewriting rule in a grammar.

programming language A language used to specify a sequence of operations to be
performed by a computer.

push A pushdown machine operation used to place a stack symbol on top of the stack.

pushdown machine A finite state machine, with an infinite last-in first-out stack; the
top stack symbol, current state, and current input are used to determine the next
state.

pushdown translator A pushdown machine with an output function, used to translate
input strings into output strings.

265Glossary

quasi-simple grammar A simple grammar which permits rules rewritten as the null
string, as long as the follow set is disjoint with the selection sets of other rules
defining the same nonterminal.

quasi-simple language A language which can be described with a quasi-simple
grammar.

recursive descent A top down parsing algorithm in which there is a procedure for each
nonterminal symbol in the grammar.

reduce/reduce conflict In bottom up parsing, the failure of the algorithm to determine
which of two or more reduce operations is to be performed in a particular stack
and input configuration.

reduce operation The operation of replacing 0 or more symbols on the top of the
parsing stack with a nonterminal grammar symbol, in a bottom up parsing
algorithm.

reduction in strength The process of replacing a complex operation with an equiva-
lent, but simpler, operation during optimization.

reflexive transitive closure (of a relation) The relation, R', formed from a given
relation, R, including all pairs in the given relation, all reflexive pairs (a R' a),
and all transitive pairs (a R' c if a R' b and b R' c).

register allocation The process of assigning a purpose to a particular register, or
binding a register to a source program variable or compiler variable, so that for a
certain range or scope of instructions that register can be used to store no other
data.

register-displacement addressing An address mode in which a complete memory
address is formed by adding the contents of a CPU register to the value of the
displacement instruction field.

regular expression An expression involving three operations on sets of strings – union,
concatenation, and Kleene * (also known as closure).

relation A set of ordered pairs.

replace An extended pushdown machine operation, equivalent to a pop operation,
followed by zero or more push operations.

Glossary266

reserved word A key word which is not available to the programmer for use as an
identifier.

rewriting rule The component of a grammar which specifies how a string of nontermi-
nal and terminal symbols may be rewritten as another string of nonterminals and
terminals.

right linear grammar A grammar in which the left side of each rule is a single nonter-
minal and the right side of each rule is either a terminal or a terminal followed
by a nonterminal (type 3).

right linear language A language which can be specified by a right linear grammar.

right-most derivation A derivation for a context-free grammar, in which the right-most
nonterminal symbol is always the one rewritten.

run time The time at which an object program is executed, as opposed to compile time.

scanner The phase of the compiler which performs lexical analysis.

selection set The set of terminals which may be used to direct a top down parser to
apply a particular grammar rule.

semantic analysis That portion of the compiler which generates intermediate code and
which attempts to find non-syntactic errors by checking types and declarations
of identifiers.

semantics The intent, or meaning, of an input string.

sentential form An intermediate form in a derivation which may contain nonterminal
symbols.

 set A collection of unique objects.

shift operation The operation of pushing an input symbol onto the parsing stack, and
advancing to the next input symbol, in a bottom up parsing algorithm.

shift reduce parser A bottom up parsing algorithm which uses a sequence of shift and
reduce operations to transform an acceptable input string to the starting nonter-
minal of a given grammar.

267Glossary

shift/reduce conflict In bottom up parsing, the failure of the algorithm to determine
whether a shift or reduce operation is to be performed in a particular stack and
input configuration.

simple algebraic optimization The elimination of instructions which add 0 to or
multiply 1 by a number.

simple grammar A grammar in which the right side of every rule begins with a
terminal symbol, and all rules defining the same nonterminal begin with a
different terminal.

simple language A language which can be described with a simple grammar.

single pass code generator A code generator which keeps a fixup table for forward
references, and thus needs to read the intermediate code string only once.

single pass compiler A compiler which scans the source program only once.

source language The language in which programs may be written and used as input to
a compiler.

source program A program in the source language, intended as input to a compiler.

start condition In the lex utility, a state which is entered by the scanner, resulting from
a particular input; used to specify the left context for a pattern.

starting nonterminal The nonterminal in a grammar from which all derivations begin.

stdin In Unix or MSDOS, the standard input file, normally directed to the keyboard.

stdout In Unix or MSDOS, the standard output file, normally directed to the user’s
monitor.

string A list or sequence of characters from a given alphabet.

string space A memory buffer used to store string constants and possibly identifier
names or key words.

symbol table A data structure used to store identifiers and possibly other lexical entities
during compilation.

Glossary268

syntax The specification of correctly formed strings in a language, or the correctly
formed programs of a programming language.

syntax analysis The phase of the compiler which checks for syntax errors in the source
program, using, as input, tokens put out by the lexical phase and producing, as
output, a stream of atoms or syntax trees.

syntax directed translation A translation in which a parser or syntax specification is
used to specify output as well as syntax.

syntax tree A tree data structure showing the structure of a source program or state-
ment, in which the leaves represent operands, and the internal nodes represent
operations or control structures.

synthesized attributes Those attributes in an attributed grammar which receive values
from lower nodes in the derivation tree.

target machine The machine for which the output of a compiler is intended.

terminal symbol A symbol in the input alphabet of a language specified by a grammar.

token The output of the lexical analyzer representing a single word in the source
program.

top down parsing Finding the structure of a string in a way that produces or traverses
the derivation tree from top to bottom.

translation grammar A grammar which specifies output for some or all input strings.

underlying grammar The grammar resulting when all action symbols are removed
from a translation grammar.

unreachable code Code, usually in an intermediate code string, which can never be
executed.

unrestricted grammar A grammar in which there are no restrictions on the form of the
rewriting rules (type 0).

unrestricted language A language which can be specified by an unrestricted grammar.

white space Blank, tab, or newline characters which appear as nothing on an output
device.

269Glossary

yacc (Yet Another Compiler-Compiler) A parser generator utility in the Unix program-
ming environment which uses a grammar to specify syntax.

yylex() The C function written by the lex utility to perform lexical analysis, using a
pattern-matching mechanism.

yyparse() The C function, written by the yacc utility, to parse according to a given
grammar.

Bibliography

Adams, J, et.al., Turbo C++ An Introduction to Computing, Upper Saddle River, NJ:
Prentice Hall, 1996.

Aho, A. V. and J. D. Ullman The Theory of Parsing, Translation, and Compiling, Vol. I:
Parsing Englewood Cliffs, NJ: Prentice Hall, 1972.

Aho, A. V. and J. D. Ullman The Theory of Parsing, Translation, and Compiling, Vol. II:
Compiling Englewood Cliffs, NJ: Prentice Hall, 1973.

Aho, A. V., R. Sethi, and J. D. Ullman Compilers: Principles, Techniques, and Tools
Reading, MA: Addison Wesley, 1987.

Barrett, W. A., et. al. Compiler Construction, Theory and Practice Chicago: Science
Research Associates, 1986.

Bennett, J. P. Introduction to Compiling Techniques: A First Course using ANSI C, LEX,
and YACC, London: McGraw-Hill, 1990.

Berman, A.M., Data Structures in C++, New York: Oxford University Press, 1997.

Bornat, R. Understanding and Writing Compilers London: MacMillan, 1986.

Chomsky, N. Syntactic Structures The Hague: Mouton, 1965.

Chomsky, N., “Certain Formal Properties of Grammars” Information and Control Vol. 2,
No. 2, June 1958: 137-167.

Cohen, D. I. A. Introduction to Computer Theory New York: Wiley, 1986.

Ellis, M., and B. Stroustrup The Annotated C++ Reference Manual Reading, MA:
Addison Wesley, 1990.

Fischer, C. N., and R. J. LeBlanc Crafting a Compiler with C Menlo Park, CA: Benjamin-
Cummings, 1991.

299Bibliography

Ginsburg, S. The Mathematical Theory of Context Free Languages New York: McGraw-
Hill, 1966.

Gries, D. Compiler Construction for Digital Computers New York: Wiley, 1968.

Holub, A. I. Compiler Design in C Englewood Cliffs, NJ: Prentice Hall, 1990.

Hopcroft, J. E., and J. D. Ullman Introduction to Automata Theory, Languages, and
Computation Reading, MA: Addison Wesley, 1979.

Hutton, B., “Language Implementation,” Unpublished manuscript, University of
Auckland, NZ, 1987.

Johnson, S. C., “YACC - Yet Another Compiler Compiler,” C. S. Technical Report No. 32,
Murray Hill, NJ: Bell Telephone Labs, 1975.

Kamin, S. N. Programming Languages: An Interpreter Based Approach Reading, MA:
Addison Wesley, 1990.

Kernighan, B. W., and R. Pike The Unix Programming Environment Englewood Cliffs, NJ:
Prentice Hall, 1984.

Knuth, D. E., “On the Translation of Languages from Left to Right” Information and
Control Vol. 8, No. 6, Dec. 1965: 607-639.

Lesk, M. E., and E. Schmidt, “LEX - a Lexical Analyzer Generator” In Unix Programmer’s
Manual 2 Murray Hill: Bell Telephone Labs, 1975.

Lemone, K. A. Fundamentals of Compilers: An Introduction to Computer Language
Translation Boca Raton, FL: CRC, 1992.

Lemone, K. A. Design of Compilers: Techniques of Computer Language Translation
Boca Raton, FL: CRC, 1992.

Levine, J. R., et. al. lex and yacc Sebastopol, CA: O’Reilly, 1992.

Lewis, P. M., et. al. Compiler Design Theory Reading, MA: Addison Wesley, 1976.

Mak, R. Writing Compilers and Interpreters New York: Wiley, 1991.

Martin, S. C Through Unix Dubuque: Wm. C. Brown, 1992.

McKeeman, W. M., et. al. A Compiler Generator Englewood Cliffs, NJ: Prentice Hall, 1970.

Bibliography300

Muchnick, S. S., Advanced Compiler Design Implementation San Francisco: Morgan
Kaufmann, 1997.

Parsons, T. W., Introduction to Compiler Construction, New York: Freeman, 1992.

Pollack, B. W., ed. Compiler Techniques Princeton, NJ: Auerbach, 1972.

Pratt, T. W. Programming Languages: Design and Implemenation Englewood Cliffs, NJ:
Prentice Hall, 1984.

Pyster, A. B. Compiler Design and Construction Boston: PWS, 1980.

Salomaa, A. Formal Languages New York: Academic Press, 1973.

Sethi, R. Programming Languages: Concepts and Constructs Reading, MA: Addison
Wesley, 1989.

Schecter, P. B., and E. T. Desautels An Introduction to Computer Architecture Using VAX
Machine and Assembly Language Dubuque: Wm. C. Brown, 1989.

Schreiner, A. T., and H. G. Friedman Introduction to Compiler Construction with UNIX
Englewood Cliffs, NJ: Prentice Hall, 1985.

Stroustrup, B., The Design and Evolution of C++ Reading, MA: Addison Wesley, 1994.

Tanenbaum, A. S. Structured Computer Organization Englewood Cliffs, NJ: Prentice Hall,
1990.

Tremblay, J. P., and P. G. Sorenson The Theory and Practice of Compiler Writing New
York: McGraw-Hill, 1985.

Waite, W. H., and G. Goos Compiler Construction New York: Springer, 1984.

Waite, W. M., and L. R. Carter An Introduction to Compiler Construction New York:
Harper Collins, 1993.

Wang, P. An Introduction to Berkeley Unix Belmont, CA: Wadsworth, 1988.

Wirth, N. Compiler Construction, Edinburgh: Addison Wesley Longman, 1996.

Index 301

Index

Symbols

$
in lex pattern 55

$$, in yacc grammar 178
$1, $2, $3,... in yacc grammar 178
%{... %}

yacc declarations section 178
%left 179

miniC compiler 279
%left directive in yacc 199
%right 179

miniC compiler 279
%right directive in yacc 199
%start

miniC compiler 276
%token 198

miniC compiler 279
%type 199

miniC compiler 279
%union 198

miniC compiler 279
*

reflexive transitive closure of a relation 95–97
+

in lex pattern 55
/

in lex pattern 55
<S>

in lex pattern 56
?

in lex pattern 55
[]

in lex pattern 55
[a-z]

in lex pattern 55
\

in lex pattern 55
^

in lex pattern 55
{m,n}

in lex pattern 56
{name}

in lex pattern 56
|

in lex pattern 55

A

absolute address mode
Mini architecture 226

action

yacc grammar 177
action symbol 133
action table

LR parsing 171
actions

finite state machine 46
for lex 55–57

ADD atom 228
ADD, Mini Instruction 227
address

target machine for MiniC 197
addressing modes 210

Mini architecture 226
algebraic local optimization 253
algebraic transformations 244
alloc function

arithmetic expression translation to atoms 146
MiniC compiler 276
parser for MiniC 159

ambiguous
if-then-else statement

parsing bottom up 168
ambiguous grammar 75

programming languages 87–89
resolution with yacc 178, 179

ambiguous grammar, eliminating
arithmetic expressions 87
if-then-else statements 87–89

architecture 204
arithmetic expression

attributed translation grammar 145–148
LL(1) grammar 125–132
MiniC

yacc rules 200
parsing bottom up 171
precedence in yacc 179
recursive descent translator 146–148
registers needed 221–224
top down parsing 123–129
translation to atoms with yacc 177–184

arithmetic expressions
eliminating ambiguity 87

array references 191–194
assignment operator 149
atom 68
atom file

input to code generator 228–229
atom file format

MiniC 228
atom() function to generate atoms 179
atom() function 200
atoms 9–11

MiniC 296
attribute

inherited 140–142
synthesized 140–142

attribute computation rule 140–144

302 Index

attributed grammar 140–142
array references 193–194
recursive descent parser 142–144

attributed translation grammar
arithmetic expression 145–148

automata theory 32

B

, bottom of stack marker 78
back end 22, 204, 204–205, 234
Backus-Naur Form 74
basic block 237–241
BDW relation 114
begins directly with 114
begins with 114
binary search tree, for lexical tables 50
bisect.c 273
bison 176
BNF 74
boot()

Mini simulator 290, 295
bootstrapping 20–22
bottom up parsing 164–190

summary 203
bottom-up parsing algorithm 92
build_labels

MiniC code generator 284
build_labels() 229
BW relation 114

C

character constant 40
Chomsky, Noam 71
class

of token 41
closure. See Kleene *, for regular expressions

relations 95–97
CLR, Mini instruction 227
CMP. Mini Instruction 227
code generation 13–14, 204–209

common subexpressions 221
MiniC 226–231

input file of atoms 228–229
summary 232

code generator
invoked from parser 197
MiniC compiler 284–289

code_gen() 197, 229
MiniC code generator 284

comment 40
comments

miniC 63
common subexpressions, code generation 221
compare field, Mini instruction format 227
comparison operators

miniC 63

comparisons 149
compilation

concise notation for 19
compile time 4
compiler

big C notation 5
concise notation for 5
definition 1–2, 29
examples 2

compiler-compiler 23, 101, 176
compiler-compiler (yacc) 176–190
concatenation, of regular expressions 35
conflict

reduce/reduce 167
shift/reduce 167

constant folding 244
constants 0.0 and 1.0

MiniC 200
context free grammar 74–76
context free language

deterministic 83
context-free grammar 72

parsing algorithms 92
context-free language 73
context-sensitive grammar 72

example 73
context-sensitive language 73
control structure

yacc grammar for MiniC 199–200
control structures

translating to atoms 153–158
conventional machine language 204
conversion of atoms to instructions 210–213
cos.c 273
cosine program

compiling with MiniC 275
cosine program in MiniC 272
CPU

Mini architecture 226–227
cross compiling 22

D

DAG (directed acyclic graph) 237–241
data flow analysis 242
dead code, elimination of 242
debugging and optimization 235
declarations section, yacc source file 177
DEO relation 116
derivation 69
derivation tree 75
deterministic context free languages 83
deterministic pushdown machine 79
direct end of 116
directed acyclic graph (DAG) 238
DIV atom 228
DIV. Mini Instruction 227

Index 303

dump()
Mini simulator 290, 294

dump_mem()
MiniC code generator 284

dumpmem()
Mini simulator 290, 294

dumpregs()
Mini simulator 294

E

elimination of dead code 242
empty set 31
end of 116
endmarker

FB relation 117
endmarker, for pushdown machines 78
EO relation 116
epsilon rule

parsing 106, 109
translation grammar 133

epsilon rules
parsing quasi-simple grammar 107

equivalent grammars 71
equivalent programs 2
example of a nonterminal 101
exit, from pushdown machine 78
expression trees

yacc 182–186
expressions

MiniC 149–150
attributed translation grammar 150

extended pushdown machine 79–80
extended pushdown translator 80

F

fact.c 273
FB 116–117
FDB relation 115
finite state machine 31–33

example of 32–33
implementation for lexical analysis 44–46
table representation 33
with actions 46

first (x) 114–115
first of right side 115
fixup table, for forward jumps in code generation 214
Fol(A) 117
follow set 106, 118

LL(1) grammar 117
followed by 116–117
followed directly by 115
for statement

translation to atoms 153–158
formal language 30
forward jumps

fixup table in single pass code generator 214

forward jumps, in code generation 214
forward references

MiniC code generator 284
front end 22, 204
ftp 274

G

gen () function
Mini code generator 229

gen()
MiniC code generator 284

gen.c 273
MiniC code generator 284–289

global optimization 12–13, 233, 237–250
effect on debugging 13

goto table
LR parsing 171

grammar
classes 71–76
definition 69
examples 70–71
LL(2) 150
LR 165
LR(k) 167. See also deterministic
quasi-simple 106–109
simple 98–102
yacc 177

H

handle
shift reduce parsing 165

hash function 50–52
hash table, for lexical tables 50–52
header files for MiniC compiler 197–198
high level language

advantages over assembly language 3
disadvantages versus assembly language 3

high-level language 2
HLT. Mini Instruction 227

I

identifier 40
accepted by finite state machine 44

identifiers
miniC 63

if-then-else statement
ambiguity 168
translation to atoms 153–158

implementation techniques 19–22, 29
in lex pattern 55
infix expression 80

attributed translation grammar 145
translation to atoms with yacc 177–184

infix to postfix expressions 133–134
inherited attibutes 140–142

304 Index

input alphabet 69
pushdown machine 77

input symbol 69
instruction register

Mini computer 290
Intermediate form

Java Virtual Machine 23
intermediate form 22
interpreter 3

J

Java Virtual Machine 23
JMP atom 228
jmp atom 153
JMP. Mini Instruction 227
jump over jump optimization 252

K

key word 40
key words

miniC 62
keyword

accepted by finite state machine 45
Kleene *, for regular expressions 35–36

nested 37

L

label atom 10
label table, in code generation 214
language 31

context-free 73
context-sensitive 73
right linear 73
simple 98

LBL atom 228
lbl atom 153
left associative

operations 199
left precedence (associativity) in yacc 179
left recursion 124–125
left-most derivation 76
lex 54–59

actions 55–57
example 58–59
example of use with yacc 178–184
execution 60
in MiniC compiler 275–279
library 60
miniC

supporting functions 63
patterns 55–57
section 1 of source file 54–55
section 2 of source file 55–57
section 3 of source file 57
sections of source file 54

lex.yy.c
included in a yacc program 179

lexeme. See token
lexical analyis

summary 67
lexical analysis 9, 30, 40

MiniC compiler 275
lexical item. See token
lexical scanner. See lexical analysis
lexical tables 50
lexical token 40
LL(1) grammar 113–115, 118

arithmetic expression 125–132
parsing

pushdown machine 119
recursive descent 119–121

LL(2) grammar 150
load/store architecture

converting atoms to instructions 210
load/store optimization 251
local optimization 14–15, 233, 251–255
locate 273
LOD. Mini Instruction 227
lookup() function

Mini code generator 229
loop invariant 13
loop invariant code 243
LR grammar 165
LR parsing, with tables 171–175
LR(k) parser, grammar 167
lvalue 150

M

machine language 2
makefile 273
matrix references 191–194
Mini

CPU registers 297
instruction format 291, 297
memory 297
operation codes 297

Mini (computer)
simulator for 290–297

Mini machine
code generation from MiniC 226–231

lookup() function 229
reg() function 229

multiple pass code generator 229
sample program 228

Mini, simulated architecture 226–228
mini.c 273

Mini simulator source file 291–297
mini.h 273

Mini simulator header 290, 296
mini.h, header file for MiniC compiler 197
MiniC 26, 29

Index 305

arithmetic expression
yacc 200

atoms 296
code generator 226–231
compiler 273–289

code generator 284–289
execution of 275
lexical phase 275–279
software files 273–275
syntax phase 279–284

definition 270–272
expressions 149–150

attributed translation grammar 150
format of atom file 228
lexical analysis 62–65
multiply declared identifiers 200
parser 159–162
sample program 272
symbol table 276

declaration in header file 295
syntax error 200
translating control structures to atoms 199–200
undeclared identifiers 200
yacc

supporting functions 200–201
yacc parser 197–201

yacc grammar 199–200
yacc stack type 198

miniC
comments 63
comparison operators 63
identifiers 63
key words 62
lex

supporting functions 63–64
lexical structure 63
numeric constants 63

miniC.c 273
miniC.h 273

MiniC and Mini header file 295
miniC.h, header file for MiniC compiler 197
miniC.l 273, 275
miniC.y 197, 273

MiniC compiler 279
mk 273
MOV atom 228
mov atom 153
MUL atom 228
MUL, Mini instruction 227
multiple pass code generator 214–220, 215

Mini machine 229
multiple pass compiler 15
multiply declared identifiers

MiniC 200

N

N
endmarker 78

natural language 30
NEG atom 228
newlab function

parser for MiniC 159
newline 40
nondeterministic pushdown machine 79, 83
nonterminal symbol 69
normal form, for derivations 76
null string 31
nullable nonterminal 113–114
nullable rule 113–114
numeric constant 40

accepted by finite state machine 44
numeric constants

miniC 63
MiniC compiler 276
storage in MiniC 296

O

object language 2
object program 2
offset computation for arrays 191–194
operation codes

Mini computer 297
operator 40
optimization 12–13, 233–236

and debugging 235
global 233, 237–250
local 233, 251–255

jump over jump 252
load/store 251
simple algebraic 253

summary 256
out_mem() 229

MiniC code generator 284
output function for pushdown machine 79–80

P

palindrome
grammar 70
with center marker 81

parenthesis language 79
parity bit generator 46
parser. See syntax analysis

miniC 159–162
parser generator, yacc 176–190
parsing

arithmetic expression
top down 123–129

bottom up 164–190
summary 203

epsilon rule 106

306 Index

LL(1) grammar
pushdown machine 119
recursive descent 119–121

quasi-simple grammar
pushdown machine 107–108

shift reduce 164–170
parsing algorithm

definition 92
simple grammar 99–101

parsing problem 92
Pascal 30
patterns

for lex 55–57
pc, program counter in Mini code generator 229
peephole optimization. See local optimization
phases 9–14, 29
pop operation 77
postfix expression 80
precedence

specified with yacc 199
prefix expressions

attributed grammar 140
production. See rewriting rule
program counter

Mini computer 290
programming language 2
push operation 77
pushdown machine

definition 76–78
examples 78–79
extended 79
with output operation 79

pushdown translator 79–80

Q

quasi-simple grammar 106–109
parsing with pushdown machine 107–108
parsing with recursive descent 108–109

R

readme 273
recursive descent

arithmetic expression
translation to atoms 146–148

attributed grammar 142–144
MiniC parser 159–162
translation grammar 134–137

recursive descent parsing
LL(1) grammar 119–121
quasi-simple grammar 108–109
simple grammar 101–102

reduce operation, parsing bottom up 164, 171
reduce/reduce conflict 167
reduction in strength 244
reflexive relation 96
reflexive transitive closure 95–97

reg() function
Mini code generator 229

register allocation 13, 204, 221–225
arithmetic expression evaluation 221–224
MiniC compiler 285

register-displacement address mode
Mini architecture 226

regular expression 35–37
relation 95–97
rewriting rule 69
right linear grammar 72
right linear language 73
right precedence (associativity) in yacc 179
RISC machine

register allocation 221
rules section of lex program 55–57
rules section, yacc source file 177

MiniC 199–200
run time. 4

S

scanner. See lexical analysis
searchIdent()

in MiniC compiler 276
searchIdent() function

miniC
lex 65

searchNums()
in MiniC compiler 276

searchNums() function
miniC

lex 65
selection set

definition 98
LL(1) grammar 113–115, 117
quasi-simple grammar 106

semantic analysis 12, 197
semantics 133–134
sentential form 69
sequential search

for lexical table 50
set 30
shift operation, parsing bottom up 164, 171
shift reduce parsing 164–170
shift/reduce conflict 167
simple algebraic optimization 253
simple grammar 98–102

parsing with pushdown machine 99–101
recursive descent parsing 101–102

simple language 98
single pass code generator 214–220

fixup table 214
single pass compiler 15
software

distribution rights 230
source language 2

Index 307

source program 2
special character 40
sscanf() 58
stack, for pushdown machines 77
start condition

in lex pattern 56
starting nonterminal. 69
starting state

pushdown machine 76
STO. Mini Instruction 227
string 31
SUB atom 228
SUB, Mini instruction 227
supporting functions

lex
miniC 63

yacc
MiniC 200–201

symbol table 50
MiniC 276

declaration 295
syntax 2
syntax analysis 9–11, 68, 93

MiniC compiler 279–284
syntax directed translation 68, 95, 133
syntax error

MiniC 200
syntax tree 68
syntax tree, weighted

register allocation 221
syntax trees 9–11
synthesized attributes 140

T

tar file 275
target machine 2

Mini 290–297
terminal symbol 69
token 40

class 41
value 41

tokens
for MiniC 275

tools 19
top down parser

MiniC 159–162
top down parsing 94

arithmetic expression 123–129
summary 163

top-down parsing algorithm 92
transfer of control with atoms 10
transitive relation 95
translation

control structures 153–158
infix to postfix 133–134
syntax directed 133

translation grammar 133
array references 193–194
attributed grammar

arithmetic expression 145–148
recursive descent 134–137

traversal of syntax trees 11
TST atom 228
tst atom 153

U

undeclared identifiers
MiniC 200

underlying grammar, of translation grammar 133
union, of regular expressions 35
unreachable code 242
unrestricted grammar 72
user interface 1

V

value
of token 41

W

weighted syntax tree
register allocation 221

while statement
translation to atoms 153–158
translation to atoms with yacc 199–200

white space 40
word. See token

Y

y.tab.c 197
yacc 54

example 177–184
expression trees example 182–186
grammar for miniC 280
infix to prefix expression translation 182–186
left and right precedence of operators 179
MiniC

arithmetic expression 200
supporting functions 200–201

MiniC compiler 279–284
MiniC grammar rules and actions 199–200
nonterminal type declaration 199
parser for MiniC 197–201
PC version with Pascal 176
public domain version 176
source file 177
stack type

MiniC 198
token type declarations 198

yacc parser generator 176–190
yyerror() function 179, 200
yyleng 57

308 Index

yylex() 54
yylex() function 197

called from yyparse() 179
yylval

MiniC compiler 276
use with yacc 179

yyparse() 54, 179
yyparse() function 197
YYSTYPE 178
yytext 57

