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Compressed Inverted Indexes

& |t is possible to combine index compression and text
compression without any complication

# In fact, in all the construction algorithms mentioned, compression
can be added as a final step

& In a full-text inverted index, the lists of text positions or
file identifiers are in ascending order

@ Therefore, they can be represented as sequences of
gaps between consecutive numbers

# Notice that these gaps are small for frequent words and large for
infrequent words

# Thus, compression can be obtained by encoding small values
with shorter codes
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Compressed Inverted Indexes

@ A coding scheme for this case is the unary code

# In this method, each integer x > 0 is coded as (z — 1) 1-bits
followed by a 0-bit

@ A better scheme is the Elias-y code, which represents a
number = > 0 by a concatenation of two parts:

1. aunary code for 1 + |log, x|

2. acode of |log, x| bits that represents the number x — 2l1°822] in
binary

& Another coding scheme is the Elias-¢ code

& Elias-6 concatenates parts (1) and (2) as above, yet part
(1) is not represented in unary but using Elias-vy instead
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Compressed Inverted Indexes

& Example codes for integers

Gap = | Unary Elias-~ Elias-0 Golomb

(b =3)

1 0 0 0 00

2 10 100 1000 010

3 110 101 1001 011

4 1110 11000 10100 100

5 11110 11001 10101 1010

6 111110 11010 10110 1011

7 1111110 11011 10111 1100

8 11111110 1110000 11000000 11010

9 111111110 1110001 11000001 11011

10 1111111110 1110010 11000010 11100
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Compressed Inverted Indexes

& In general,
@ Elias-v for an arbitrary integer = > 0 requires 1 + 2|log, x| bits

@ Elias-0 requires 1 + 2|log, log, 2x| + |log, x| bits

@ For small values of x Elias-y codes are shorter than
Elias-6 codes, and the situation is reversed as x grows

@ Thus the choice depends on which values we expect to
encode
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Compressed Inverted Indexes

@ Golomb presented another coding method that can be
parametrized to fit smaller or larger gaps

@ For some parameter b, let ¢ and r be the quotient and
remainder, respectively, of dividing z — 1 by b

dle,g=|(x—1)/bjandr=(z—1) —q-b
& Then z is coded by concatenating

# the unary representation of ¢ + 1
# the binary representation of r, using either |log, b| or [log, b]| bits
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Compressed Inverted Indexes

M If r < 2llog2b]=1 then - uses |log, b| bits, and the
representation always starts with a 0-bit

al Otherwise it uses [log, b| bits where the first bit is 1 and
the remaining bits encode the value r — 2U10g26]-1 jn
[logy b| binary digits

a For example,

# For b = 3 there are three possible remainders, and those are
coded as 0, 10, and 11, for » = 0, r = 1, and r = 2, respectively

# For b = 5 there are five possible remainders r, 0 through 4, and
these are assigned the codes 00, 01, 100, 101, and 110
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Compressed Inverted Indexes

@ To encode the lists of occurrences using Golomb
codes, we must define the parameter b for each list

@ Golomb codes usually give better compression than
either Elias-v or Elias-¢

# However they need two passes to be generated as well as
information on terms statistics over the whole document collection

A For example, in the TREC-3 collection, the average
number of bits per list entry for each method is
# Golomb =5.73
# Elias-0 =6.19
4 Elias-y =6.43

@ This represents a five-fold reduction in space compared
to a plain inverted index representation
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Compressed Inverted Indexes

2 Let us now consider inverted indexes for ranked search

# In this case the documents are sorted by decreasing frequency of
the term or other similar type of weight

& Documents that share the same frequency can be
sorted in increasing order of identifiers

& This will permit the use of gap encoding to compress
most of each list

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 48



Text Compression
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Text Compression

& A representation of text using less space
& Attractive option to reduce costs associated with

# space requirements
d input/output (I/O) overhead

@ communication delays
@ Becoming an important issue for IR systems
Wl Trade-off: time to encode versus time to decode text
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Text Compression

@ Our focus are compression methods that

d allow random access to text
# do not require decoding the entire text
@ Important: compression and decompression speed
# In many situations, decompression speed is more important than
compression speed
# For instance, in textual databases in which texts are compressed
once and read many times from disk
& Also important: possibility of searching text without
decompressing
M faster because much less text has to be scanned
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Compression Methods

& Two general approaches

# statistical text compression
# dictionary based text compression

ul Statistical methods

# Estimate the probability of a symbol to appear next in the text
Symbol: a character, a text word, a fixed number of chars

a

# Alphabet: set of all possible symbols in the text

# Modeling: task of estimating probabilities of a symbol
a

Coding or encoding: process of converting symbols into binary
digits using the estimated probabilities
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Compression Methods

& Dictionary methods

# Identify a set of sequences that can be referenced

8 Sequences are often called phrases

@ Set of phrases is called the dictionary

# Phrases in the text are replaced by pointers to dictionary entries
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Statistical Methods

& Defined by the combination of two tasks

# the modeling task estimates a probability for each next symbol

# the coding task encodes the next symbol as a function of the
probability assigned to it by the model

@ A code establishes the representation (codeword) for
each source symbol

& The entropy E' is a lower bound on compression,
measured in bits per symbol
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Statistical Methods

@ Golden rule

Shorter codewords should be assigned to more frequent
symbols to achieve higher compression

& If probability p. of a symbol ¢ is much higher than
others, then log, pic will be small
& To achieve good compression

# Modeler must provide good estimation of probability p of symbol
occurrences

@ Encoder must assign codewords of length close to log,, ]%
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Statistical Methods: Modeling

@ Compression models can be

d adaptive, static, or semi-static
# character-based or word-based

W Adaptive models:

# start with no information about the text

@ progressively learn the statistical text distribution

# need only one pass over the text

# store no additional information apart from the compressed text

W Adaptive models provide an inadequate alternative for
full-text retrieval

@ decompression has to start from the beginning of text

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 101



Static models

a Static models

# assume an average distribution for all input texts
# modeling phase is done only once for all texts

@ achieve poor compression ratios when data deviate from initial
statistical assumptions

a a model that is adequate for English literary texts will probably
perform poorly for financial texts
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Semi-static models

al Semi-static models

# Do not assume any distribution on the data
# Learn data distribution (fixed code) in a first pass

M Text compressed in a second pass using fixed code from first
pass

# Information on data distribution sent to decoder before
transmitting encoded symbols

# Advantage in IR contexts: direct access

a Same model used at every point in compressed file
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Semi-static models

@ Simple semi-static model: use global frequency
information

M Let f. be the frequency of symbol ¢ in the text
T =tite... T,

@ The corresponding entropy is

fe n
E = —1 —
Z n 082 1.

& This simple modeling may not capture the
redundancies of the text
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Semi-static models

& In the 2 gigabyte TREC-3 collection:

# Entropy under this simple model: 4.5 bits per character
@ Compression ratio cannot be lower than 55%

# But, state-of-the-art compressors achieve compression ratios
between 20% and 40%
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Semi-static models

Al Order k of a model

# Number of symbols used to estimate probability of next symbol
# Zero-order model: computed independently of context
# Compression improves with higher-order models

# Model of order 3 in TREC-3 collection

. compression ratios of 30%
- handling about 1.3 million frequencies

u Model of order 4 in TREC-3 collection
. compression ratio of 25%
- handling about 6 million frequencies

& In adaptive compression, a higher-order modeler
requires much more memory to run
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Word-based Modeling

@ Word-based modeling uses zero-order modeling over
a sequence of words

M Good reasons to use word-based models in IR

# Distribution of words more skewed than that of individual chars
@ Number of different words is not as large as text size

# Words are the atoms on which most IR systems are built

# Word frequencies are useful in answering queries
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Word-based Modeling

& Two different alphabets can be used

# one for words
# one for separators

& In TREC-3, 70% — 80% of separators are spaces

M Good properties of word-based models stem from
well-known statistical rules:

4 Heaps’ law: V = O(n?),
# Zipf’s law: the i-th most frequent word occurs O(n/i%) times
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Statistical Methods: Coding

@ Codeword: representation of a symbol according to a
model

& Encoders: generate the codeword of a symbol (coding)

# assign short codewords to frequent symbols
# assign long codewords to infrequent ones

@ entropy of probability distribution is lower bound on average
length of a codeword

& Decoders: obtain the symbol corresponding to a
codeword (decoding)

@ Speed of encoder and decoder is important
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Statistical Methods: Coding

@ Symbol code: an assignment of a codeword to each
symbol

@ The least we can expect from a code is that it be
uniquely decodable

@ Consider three source symbols A, B, and C

# Symbolcode: A —0,B—1,C — 01
@ Then, compressed text 011 corresponds to ABB or CB?
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Statistical Methods: Coding

@ Consider again the three source symbols A, B, and C

4 Symbolcode: A — 00,B—11,C — 110
# This symbol code is uniquely decodable
# However, for the compressed text 110000000
a we must count total number of zeros to determine whether first
symbol is B or C

& A code is said to be instantaneous if every codeword
can be decoded immediately after reading its last bit

& Prefix-free or prefix codes: no codeword should be a
prefix of another
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Statistical Methods: Coding

@ Huffman coding

# a method to find the best prefix code for a probability distribution
# Let {p.} be a set of probabilities for the symbols ¢ € ¥

a Huffman method assigns to each c a codeword of length /..
a Idea: minimize ), v p. - L.

# [n a first pass, the modeler of a semi-static Huffman-based
compression method:

a determines the probability distribution of the symbols
a builds a coding tree according to this distribution

# In a second pass, each text symbol is encoded according to the
coding tree
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Huffman Codes

& Figure below presents an example of Huffman
compression

0
1
rose
0 1
for is
Original text: for my rose, a rose is a rose

Compressed text: 110 010 00 011 10 00 111 10 00
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Huffman Codes

@ Given V symbols and their frequencies in the text, the
algorithm builds the Huffman tree in O(V log V') time

& Decompression is accomplished as follows

@ Stream of bits in file is traversed from left to right

@ Seqguence of bits read is used to also traverse the Huffman
coding tree, starting at the root

# Whenever a leaf node is reached, the corresponding word or
separator is printed out and the tree traversal is restarted

& In our example, the presence of the codeword 110 in
the compressed file leads to the symbol for

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 114



Huffman Codes

@ The Huffman tree for a given probability distribution is
not unique

0

Original text: for my rose, a rose is a rose Original text: for my rose, a rose is a rose

Compressedtext: 110 010 00 011 10 00 111 10 OO COIan'CSSCdteXtZ 010 000 10 001 11 10 O11 11 10

2 Canonical tree

@ right subtree of no node can be taller than its left subtree
@ can be stored very efficiently
# allows faster decoding
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Byte-Huffman Codes

@ Original Huffman method leads to binary coding trees

& However, we can make the code assign a sequence of
whole bytes to each symbol
# As a result, Huffman tree has degree 256 instead of 2

# This word-based model degrades compression ratios to around
30%

# [n exchange, decompression of byte-Huffman code is much faster
than for binary Huffman code
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Byte-Huffman Codes

& In byte-Huffman coding, direct searching on
compressed text is simpler

@ To search for a word in the compressed text

M first find it in the vocabulary
a for TREC-3, vocabulary requires just 5 megabytes
# mark the corresponding leaf in the tree

M proceed over text as if decompressing, except that no symbol is
output

# instead, report occurrences when visiting marked leaves

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 117



Byte-Huffman Codes

M Process is simple and fast: only 30% of the I/O is
necessary

@ Assume we wish to search for a complex pattern
Including ranges of characters or a regular expression
# just apply the algorithm over the vocabulary
@ for each match of a whole vocabulary word, mark the word
@ done only on the vocabulary (much smaller than whole text)

@ once relevant words are marked, run simple byte-scanning
algorithm over the compressed text
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Byte-Huffman Codes

& All complexity of the search is encapsulated in the
vocabulary scanning

& For this reason, searching the compressed text is

# up to 8 times faster when complex patterns are involved

@ about 3 times faster when simple patterns are involved
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Byte-Huffman Codes

@ Although the search technique is simple and uniform,
one could do better especially for single-word queries

& Concatenation of two codewords might contain a third
codeword

4@ Considerthecode: A —0,B — 10,C — 110, D — 111

4 DB would be codedas 11110

a If we search for C', we would incorrectly report a spurious
occurrence spanning the codewords of DB

a To check if the occurrence is spurious or not, rescan all text
from the beginning
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Dense Codes

& An alternative coding simpler than byte-Huffman is
dense coding

@ Dense codes arrange the symbols in decreasing
frequency order

# Codeword assigned to the i-th most frequent symbol is,
essentially, the number : — 1

# number is written in a variable length sequence of bytes

# 7 bits of each byte are used to encode the number

# highest bit is reserved to signal the last byte of the codeword
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Dense Codes

@ Codewords of symbols ranked 1 to 128 are 0 to 127

¥ they receive one-byte codewords

# highest bit is set to 1 to indicate last byte (that is, we add 128 to
all codewords)

@ symbol ranked 1 receives codeword (128) = (0 + 128)
# symbol ranked 2 receives codeword (129) = (1 + 128)
@ symbol ranked 128 receives codeword (255)

M Symbols ranked from 129 to 16,512 (i.e., 128 + 128%) are
assigned two-byte codewords (0, 128) to (127, 255)
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Dense Codes

W Stoppers

M these are those bytes with their highest bit set
# they indicate the end of the codeword

@ Continuers
# these are the bytes other than stoppers

& Text vocabularies are rarely large enough to require
4-byte codewords
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Dense Codes

& Figure below illustrates an encoding with dense codes

Word rank Codeword Bytes | # of words
1 (128) 1
2 (129) 1
128
128 (255) 1
129 (0, 128) 2
130 (0, 129) 2
256 (0, 255) 2
257 (1,128) 2 1282
16,512 (127, 255)
16,513 (0,0, 128)
.. .. 1283
2,113,664 | (127,127, 255) 3
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Dense Codes

& Highest bit signals the end of a codeword
# adense code is automatically a prefix code
& Self-synchronization

# Dense codes are self-synchronizing

a Given any position in the compressed text, it is very easy to
determine the next or previous codeword beginning
a decompression can start from any position, be it a codeword
beginning or not
# Huffman-encoding is not self-synchronizing
a not possible to decode starting from an arbitrary position in
the compressed text

a notice that it is possible to decode starting at an arbitrary
codeword beginning
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Dense Codes

@ Self-synchronization allows faster search
@ To search for a single word we can

#@ obtain its codeword

# search for the codeword in the compressed text using any string
matching algorithm

@ This does not work over byte-Huffman coding
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Dense Codes

@ An spurious occurrence is a codeword that is a suffix of
another codeword

# assume we look for codeword a b ¢, where we have overlined the
stopper byte

@ there could be a codeword d a b ¢ in the code, so that we could
find our codeword inthetext...efgdabc...

M vyet, it is sufficient to access the text position preceding the
candidate occurrence, ‘d’, to see that it is not a stopper

@ Such a fast and simple check is not possible with
Huffman coding

& To search for phrases
@ concatenate the codewords
¥ search for the concatenation
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