Inverted Indexes
Compressed Inverted Indexes

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 40

Compressed Inverted Indexes

& |t is possible to combine index compression and text
compression without any complication

In fact, in all the construction algorithms mentioned, compression
can be added as a final step

& In a full-text inverted index, the lists of text positions or
file identifiers are in ascending order

@ Therefore, they can be represented as sequences of
gaps between consecutive numbers

Notice that these gaps are small for frequent words and large for
infrequent words

Thus, compression can be obtained by encoding small values
with shorter codes

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 41

Compressed Inverted Indexes

@ A coding scheme for this case is the unary code

In this method, each integer x > 0 is coded as (z — 1) 1-bits
followed by a 0-bit

@ A better scheme is the Elias-y code, which represents a
number = > 0 by a concatenation of two parts:

1. aunary code for 1 + |log, x|

2. acode of |log, x| bits that represents the number x — 2l1°822] in
binary

& Another coding scheme is the Elias-¢ code

& Elias-6 concatenates parts (1) and (2) as above, yet part
(1) is not represented in unary but using Elias-vy instead

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 42

Compressed Inverted Indexes

& Example codes for integers

Gap = | Unary Elias-~ Elias-0 Golomb

(b =3)

1 0 0 0 00

2 10 100 1000 010

3 110 101 1001 011

4 1110 11000 10100 100

5 11110 11001 10101 1010

6 111110 11010 10110 1011

7 1111110 11011 10111 1100

8 11111110 1110000 11000000 11010

9 111111110 1110001 11000001 11011

10 1111111110 1110010 11000010 11100

NOte GOlOm b COdeS WI ” be explal nednale%E%ESearching, Modern Information Retrieval, Addison Wesley, 2010 — p. 43

Compressed Inverted Indexes

& In general,
@ Elias-v for an arbitrary integer = > 0 requires 1 + 2|log, x| bits

@ Elias-0 requires 1 + 2|log, log, 2x| + |log, x| bits

@ For small values of x Elias-y codes are shorter than
Elias-6 codes, and the situation is reversed as x grows

@ Thus the choice depends on which values we expect to
encode

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 44

Compressed Inverted Indexes

@ Golomb presented another coding method that can be
parametrized to fit smaller or larger gaps

@ For some parameter b, let ¢ and r be the quotient and
remainder, respectively, of dividing z — 1 by b

dle,g=|(x—1)/bjandr=(z—1) —q-b
& Then z is coded by concatenating

the unary representation of ¢ + 1
the binary representation of r, using either |log, b| or [log, b]| bits

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 45

Compressed Inverted Indexes

M If r < 2llog2b]=1 then - uses |log, b| bits, and the
representation always starts with a 0-bit

al Otherwise it uses [log, b| bits where the first bit is 1 and
the remaining bits encode the value r — 2U10g26]-1 jn
[logy b| binary digits

a For example,

For b = 3 there are three possible remainders, and those are
coded as 0, 10, and 11, for » = 0, r = 1, and r = 2, respectively

For b = 5 there are five possible remainders r, 0 through 4, and
these are assigned the codes 00, 01, 100, 101, and 110

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 46

Compressed Inverted Indexes

@ To encode the lists of occurrences using Golomb
codes, we must define the parameter b for each list

@ Golomb codes usually give better compression than
either Elias-v or Elias-¢

However they need two passes to be generated as well as
information on terms statistics over the whole document collection

A For example, in the TREC-3 collection, the average
number of bits per list entry for each method is
Golomb =5.73
Elias-0 =6.19
4 Elias-y =6.43

@ This represents a five-fold reduction in space compared
to a plain inverted index representation

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 47

Compressed Inverted Indexes

2 Let us now consider inverted indexes for ranked search

In this case the documents are sorted by decreasing frequency of
the term or other similar type of weight

& Documents that share the same frequency can be
sorted in increasing order of identifiers

& This will permit the use of gap encoding to compress
most of each list

Indexing and Searching, Modern Information Retrieval, Addison Wesley, 2010 — p. 48

Text Compression

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 94

Text Compression

& A representation of text using less space
& Attractive option to reduce costs associated with

space requirements
d input/output (I/O) overhead

@ communication delays
@ Becoming an important issue for IR systems
Wl Trade-off: time to encode versus time to decode text

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 95

Text Compression

@ Our focus are compression methods that

d allow random access to text
do not require decoding the entire text
@ Important: compression and decompression speed
In many situations, decompression speed is more important than
compression speed
For instance, in textual databases in which texts are compressed
once and read many times from disk
& Also important: possibility of searching text without
decompressing
M faster because much less text has to be scanned

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 96

Compression Methods

& Two general approaches

statistical text compression
dictionary based text compression

ul Statistical methods

Estimate the probability of a symbol to appear next in the text
Symbol: a character, a text word, a fixed number of chars

a

Alphabet: set of all possible symbols in the text

Modeling: task of estimating probabilities of a symbol
a

Coding or encoding: process of converting symbols into binary
digits using the estimated probabilities

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 97

Compression Methods

& Dictionary methods

Identify a set of sequences that can be referenced

8 Sequences are often called phrases

@ Set of phrases is called the dictionary

Phrases in the text are replaced by pointers to dictionary entries

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 98

Statistical Methods

& Defined by the combination of two tasks

the modeling task estimates a probability for each next symbol

the coding task encodes the next symbol as a function of the
probability assigned to it by the model

@ A code establishes the representation (codeword) for
each source symbol

& The entropy E' is a lower bound on compression,
measured in bits per symbol

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 99

Statistical Methods

@ Golden rule

Shorter codewords should be assigned to more frequent
symbols to achieve higher compression

& If probability p. of a symbol ¢ is much higher than
others, then log, pic will be small
& To achieve good compression

Modeler must provide good estimation of probability p of symbol
occurrences

@ Encoder must assign codewords of length close to log,,]%

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 100

Statistical Methods: Modeling

@ Compression models can be

d adaptive, static, or semi-static
character-based or word-based

W Adaptive models:

start with no information about the text

@ progressively learn the statistical text distribution

need only one pass over the text

store no additional information apart from the compressed text

W Adaptive models provide an inadequate alternative for
full-text retrieval

@ decompression has to start from the beginning of text

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 101

Static models

a Static models

assume an average distribution for all input texts
modeling phase is done only once for all texts

@ achieve poor compression ratios when data deviate from initial
statistical assumptions

a a model that is adequate for English literary texts will probably
perform poorly for financial texts

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 102

Semi-static models

al Semi-static models

Do not assume any distribution on the data
Learn data distribution (fixed code) in a first pass

M Text compressed in a second pass using fixed code from first
pass

Information on data distribution sent to decoder before
transmitting encoded symbols

Advantage in IR contexts: direct access

a Same model used at every point in compressed file

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 103

Semi-static models

@ Simple semi-static model: use global frequency
information

M Let f. be the frequency of symbol ¢ in the text
T =tite... T,

@ The corresponding entropy is

fe n
E = —1 —
Z n 082 1.

& This simple modeling may not capture the
redundancies of the text

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 104

Semi-static models

& In the 2 gigabyte TREC-3 collection:

Entropy under this simple model: 4.5 bits per character
@ Compression ratio cannot be lower than 55%

But, state-of-the-art compressors achieve compression ratios
between 20% and 40%

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 105

Semi-static models

Al Order k of a model

Number of symbols used to estimate probability of next symbol
Zero-order model: computed independently of context
Compression improves with higher-order models

Model of order 3 in TREC-3 collection

. compression ratios of 30%
- handling about 1.3 million frequencies

u Model of order 4 in TREC-3 collection
. compression ratio of 25%
- handling about 6 million frequencies

& In adaptive compression, a higher-order modeler
requires much more memory to run

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 106

Word-based Modeling

@ Word-based modeling uses zero-order modeling over
a sequence of words

M Good reasons to use word-based models in IR

Distribution of words more skewed than that of individual chars
@ Number of different words is not as large as text size

Words are the atoms on which most IR systems are built

Word frequencies are useful in answering queries

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 107

Word-based Modeling

& Two different alphabets can be used

one for words
one for separators

& In TREC-3, 70% — 80% of separators are spaces

M Good properties of word-based models stem from
well-known statistical rules:

4 Heaps’ law: V = O(n?),
Zipf’s law: the i-th most frequent word occurs O(n/i%) times

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 108

Statistical Methods: Coding

@ Codeword: representation of a symbol according to a
model

& Encoders: generate the codeword of a symbol (coding)

assign short codewords to frequent symbols
assign long codewords to infrequent ones

@ entropy of probability distribution is lower bound on average
length of a codeword

& Decoders: obtain the symbol corresponding to a
codeword (decoding)

@ Speed of encoder and decoder is important

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 109

Statistical Methods: Coding

@ Symbol code: an assignment of a codeword to each
symbol

@ The least we can expect from a code is that it be
uniquely decodable

@ Consider three source symbols A, B, and C

Symbolcode: A —0,B—1,C — 01
@ Then, compressed text 011 corresponds to ABB or CB?

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 110

Statistical Methods: Coding

@ Consider again the three source symbols A, B, and C

4 Symbolcode: A — 00,B—11,C — 110
This symbol code is uniquely decodable
However, for the compressed text 110000000
a we must count total number of zeros to determine whether first
symbol is B or C

& A code is said to be instantaneous if every codeword
can be decoded immediately after reading its last bit

& Prefix-free or prefix codes: no codeword should be a
prefix of another

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 111

Statistical Methods: Coding

@ Huffman coding

a method to find the best prefix code for a probability distribution
Let {p.} be a set of probabilities for the symbols ¢ € ¥

a Huffman method assigns to each c a codeword of length /..
a Idea: minimize), v p. - L.

[n a first pass, the modeler of a semi-static Huffman-based
compression method:

a determines the probability distribution of the symbols
a builds a coding tree according to this distribution

In a second pass, each text symbol is encoded according to the
coding tree

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 112

Huffman Codes

& Figure below presents an example of Huffman
compression

0
1
rose
0 1
for is
Original text: for my rose, a rose is a rose

Compressed text: 110 010 00 011 10 00 111 10 00

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 113

Huffman Codes

@ Given V symbols and their frequencies in the text, the
algorithm builds the Huffman tree in O(V log V') time

& Decompression is accomplished as follows

@ Stream of bits in file is traversed from left to right

@ Seqguence of bits read is used to also traverse the Huffman
coding tree, starting at the root

Whenever a leaf node is reached, the corresponding word or
separator is printed out and the tree traversal is restarted

& In our example, the presence of the codeword 110 in
the compressed file leads to the symbol for

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 114

Huffman Codes

@ The Huffman tree for a given probability distribution is
not unique

0

Original text: for my rose, a rose is a rose Original text: for my rose, a rose is a rose

Compressedtext: 110 010 00 011 10 00 111 10 OO COIan'CSSCdteXtZ 010 000 10 001 11 10 O11 11 10

2 Canonical tree

@ right subtree of no node can be taller than its left subtree
@ can be stored very efficiently
allows faster decoding

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 115

Byte-Huffman Codes

@ Original Huffman method leads to binary coding trees

& However, we can make the code assign a sequence of
whole bytes to each symbol
As a result, Huffman tree has degree 256 instead of 2

This word-based model degrades compression ratios to around
30%

[n exchange, decompression of byte-Huffman code is much faster
than for binary Huffman code

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 116

Byte-Huffman Codes

& In byte-Huffman coding, direct searching on
compressed text is simpler

@ To search for a word in the compressed text

M first find it in the vocabulary
a for TREC-3, vocabulary requires just 5 megabytes
mark the corresponding leaf in the tree

M proceed over text as if decompressing, except that no symbol is
output

instead, report occurrences when visiting marked leaves

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 117

Byte-Huffman Codes

M Process is simple and fast: only 30% of the I/O is
necessary

@ Assume we wish to search for a complex pattern
Including ranges of characters or a regular expression
just apply the algorithm over the vocabulary
@ for each match of a whole vocabulary word, mark the word
@ done only on the vocabulary (much smaller than whole text)

@ once relevant words are marked, run simple byte-scanning
algorithm over the compressed text

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 118

Byte-Huffman Codes

& All complexity of the search is encapsulated in the
vocabulary scanning

& For this reason, searching the compressed text is

up to 8 times faster when complex patterns are involved

@ about 3 times faster when simple patterns are involved

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 119

Byte-Huffman Codes

@ Although the search technique is simple and uniform,
one could do better especially for single-word queries

& Concatenation of two codewords might contain a third
codeword

4@ Considerthecode: A —0,B — 10,C — 110, D — 111

4 DB would be codedas 11110

a If we search for C', we would incorrectly report a spurious
occurrence spanning the codewords of DB

a To check if the occurrence is spurious or not, rescan all text
from the beginning

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 120

Dense Codes

& An alternative coding simpler than byte-Huffman is
dense coding

@ Dense codes arrange the symbols in decreasing
frequency order

Codeword assigned to the i-th most frequent symbol is,
essentially, the number : — 1

number is written in a variable length sequence of bytes

7 bits of each byte are used to encode the number

highest bit is reserved to signal the last byte of the codeword

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 121

Dense Codes

@ Codewords of symbols ranked 1 to 128 are 0 to 127

¥ they receive one-byte codewords

highest bit is set to 1 to indicate last byte (that is, we add 128 to
all codewords)

@ symbol ranked 1 receives codeword (128) = (0 + 128)
symbol ranked 2 receives codeword (129) = (1 + 128)
@ symbol ranked 128 receives codeword (255)

M Symbols ranked from 129 to 16,512 (i.e., 128 + 128%) are
assigned two-byte codewords (0, 128) to (127, 255)

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 122

Dense Codes

W Stoppers

M these are those bytes with their highest bit set
they indicate the end of the codeword

@ Continuers
these are the bytes other than stoppers

& Text vocabularies are rarely large enough to require
4-byte codewords

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 123

Dense Codes

& Figure below illustrates an encoding with dense codes

Word rank Codeword Bytes | # of words
1 (128) 1
2 (129) 1
128
128 (255) 1
129 (0, 128) 2
130 (0, 129) 2
256 (0, 255) 2
257 (1,128) 2 1282
16,512 (127, 255)
16,513 (0,0, 128)
.. .. 1283
2,113,664 | (127,127, 255) 3

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 124

Dense Codes

& Highest bit signals the end of a codeword
adense code is automatically a prefix code
& Self-synchronization

Dense codes are self-synchronizing

a Given any position in the compressed text, it is very easy to
determine the next or previous codeword beginning
a decompression can start from any position, be it a codeword
beginning or not
Huffman-encoding is not self-synchronizing
a not possible to decode starting from an arbitrary position in
the compressed text

a notice that it is possible to decode starting at an arbitrary
codeword beginning

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 125

Dense Codes

@ Self-synchronization allows faster search
@ To search for a single word we can

#@ obtain its codeword

search for the codeword in the compressed text using any string
matching algorithm

@ This does not work over byte-Huffman coding

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 126

Dense Codes

@ An spurious occurrence is a codeword that is a suffix of
another codeword

assume we look for codeword a b ¢, where we have overlined the
stopper byte

@ there could be a codeword d a b ¢ in the code, so that we could
find our codeword inthetext...efgdabc...

M vyet, it is sufficient to access the text position preceding the
candidate occurrence, ‘d’, to see that it is not a stopper

@ Such a fast and simple check is not possible with
Huffman coding

& To search for phrases
@ concatenate the codewords
¥ search for the concatenation

Documents: Languages & Properties, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition — p. 127

