
Concurrent Hash Tables: Fast and General(?)!

Tobias Maier1, Peter Sanders1, and Roman Dementiev2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany {t.maier,sanders}@kit.edu
2 Intel Deutschland GmbH roman.dementiev@intel.com

Abstract

Concurrent hash tables are one of the most impor-
tant concurrent data structures which is used in
numerous applications. Since hash table accesses
can dominate the execution time of whole applica-
tions, we need implementations that achieve good
speedup even in these cases. Unfortunately, cur-
rently available concurrent hashing libraries turn
out to be far away from this requirement in partic-
ular when adaptively sized tables are necessary or
contention on some elements occurs.

Our starting point for better performing data
structures is a fast and simple lock-free concurrent
hash table based on linear probing that is however
limited to word sized key-value types and does not
support dynamic size adaptation. We explain how
to lift these limitations in a provably scalable way
and demonstrate that dynamic growing has a per-
formance overhead comparable to the same gener-
alization in sequential hash tables.

We perform extensive experiments comparing
the performance of our implementations with six of
the most widely used concurrent hash tables. Ours
are considerably faster than the best algorithms
with similar restrictions and an order of magnitude
faster than the best more general tables. In some
extreme cases, the difference even approaches four
orders of magnitude.

Category: [D.1.3] Programming Techniques
Concurrent Programming [E.1] Data Structures
Tables [E.2] Data Storage Representation Hash-
table representations

Terms: Performance, Experimentation, Mea-
surement, Design, Algorithms

Keywords: Concurrency, dynamic data struc-
tures, experimental analysis, hash table, lock-
freedom, transactional memory

1 Introduction

A hash table is a dynamic data structure which
stores a set of elements that are accessible by their
key. It supports insertion, deletion, find and update
in constant expected time. In a concurrent hash ta-
ble, multiple threads have access to the same table.
This allows threads to share information in a flex-
ible and efficient way. Therefore, concurrent hash
tables are one of the most important concurrent
data structures. See Section 4 for a more detailed
discussion of concurrent hash table functionality.

To show the ubiquity of hash tables we give a
short list of example applications: A very sim-
ple use case is storing sparse sets of precom-
puted solutions (e.g. [27], [3]). A more compli-
cated one is aggregation as it is frequently used
in analytical data base queries of the form SELECT

FROM. . . COUNT. . . GROUP BY x [25]. Such a query se-
lects rows from one or several relations and counts
for every key x how many rows have been found
(similar queries work with SUM, MIN, or MAX). Hash-
ing can also be used for a data-base join [5]. An-
other group of examples is the exploration of a large
combinatorial search space where a hash table is
used to remember the already explored elements
(e.g., in dynamic programming [36], itemset mining
[28], a chess program, or when exploring an implic-
itly defined graph in model checking [37]). Simi-
larly, a hash table can maintain a set of cached ob-
jects to save I/Os [26]. Further examples are dupli-
cate removal, storing the edge set of a sparse graph
in order to support edge queries [23], maintaining
the set of nonempty cells in a grid-data structure
used in geometry processing (e.g. [7]), or maintain-
ing the children in tree data structures such as van
Emde-Boas search trees [6] or suffix trees [21].

Many of these applications have in common that
– even in the sequential version of the program –
hash table accesses constitute a significant fraction

1

ar
X

iv
:1

60
1.

04
01

7v
2

 [
cs

.D
S]

 6
 S

ep
 2

01
6

of the running time. Thus, it is essential to have
highly scalable concurrent hash tables that actually
deliver significant speedups in order to parallelize
these applications. Unfortunately, currently avail-
able general purpose concurrent hash tables do not
offer the needed scalability (see Section 8 for con-
crete numbers). On the other hand, it seems to be
folklore that a lock-free linear probing hash table
where keys and values are machine words, which is
preallocated to a bounded size, and which supports
no true deletion operation can be implemented us-
ing atomic compare-and-swap (CAS) instructions
[36]. Find-operations can even proceed naively and
without any write operations. In Section 4 we ex-
plain our own implementation (folklore) in detail,
after elaborating on some related work, and intro-
ducing the necessary notation (in Section 2 and
3 respectively). To see the potential big perfor-
mance differences, consider an exemplary situation
with mostly read only access to the table and heavy
contention for a small number of elements that are
accessed again and again by all threads. folklore
actually profits from this situation because the con-
tended elements are likely to be replicated into lo-
cal caches. On the other hand, any implementa-
tion that needs locks or CAS instructions for find-
operations, will become much slower than the se-
quential code on current machines. The purpose of
our paper is to document and explain performance
differences, and, more importantly, to explore to
what extent we can make folklore more general with
an acceptable deterioration in performance.

These generalizations are discussed in Section 5.
We explain how to grow (and shrink) such a table,
and how to support deletions and more general data
types. In Section 6 we explain how hardware trans-
actional memory can be used to speed up insertions
and updates and how it may help to handle more
general data types.

After describing implementation details in Sec-
tion 7, Section 8 experimentally compares our hash
tables with six of the most widely used concurrent
hash tables for microbenchmarks including inser-
tion, finding, and aggregating data. We look at
both uniformly distributed and skewed input dis-
tributions. Section 9 summarizes the results and
discusses possible lines of future research.

2 Related Work

This publication follows up on our previous findings
about generalizing fast concurrent hash tables [18].
In addition to describing how to generalize a fast
linear probing hash table, we offer an extensive
experimental analysis comparing many concurrent
hash tables from several libraries.

There has been extensive previous work on con-
current hashing. The widely used textbook “The
Art of Multiprocessor Programming” [12] by Her-
lihy and Shavit devotes an entire chapter to concur-
rent hashing and gives an overview over previous
work. However, it seems to us that a lot of previ-
ous work focuses more on concepts and correctness
but surprisingly little on scalability. For example,
most of the discussed growing mechanisms assume
that the size of the hash table is known exactly
without a discussion that this introduces a perfor-
mance bottleneck limiting the speedup to a con-
stant. Similarly, the actual migration is often done
sequentially.

Stivala et al. [36] describe a bounded concurrent
linear probing hash table specialized for dynamic
programming that only support insert and find.
Their insert operation starts from scratch when the
CAS fails which seems suboptimal in the presence
of contention. An interesting point is that they
need only word size CAS instructions at the price
of reserving a special empty value. This technique
could also be adapted to port our code to machines
without 128-bit CAS.

Kim and Kim [14] compare this table with a
cache-optimized lockless implementation of hashing
with chaining and with hopscotch hashing [13]. The
experiments use only uniformly distributed keys,
i.e., there is little contention. Both linear prob-
ing and hashing with chaining perform well in that
case. The evaluation of find-performance is a bit
inconclusive: chaining wins but using more space
than linear probing. Moreover it is not specified
whether this is for successful (use key of inserted
elements) or mostly unsuccessful (generate fresh
keys) accesses. We suspect that varying these pa-
rameters could reverse the result.

Gao et al. [10] present a theoretical dynamic lin-
ear probing hash table, that is lock-free. The main
contribution is a formal correctness proof. Not all
details of the algorithm or even an implementation
is given. There is also no analysis of the complexity

2

of the growing procedure.

Shun and Blelloch [34] propose phase concurrent
hash tables which are allowed to use only a sin-
gle operation within a globally synchronized phase.
They show how phase concurrency helps to im-
plement some operations more efficiently and even
deterministically in a linear probing context. For
example, deletions can adapt the approach from
[15] and rearrange elements. This is not possible
in a general hash table since this might cause find-
operations to report false negatives. They also out-
line an elegant growing mechanism albeit without
implementing it and without filling in all the detail
like how to initialize newly allocated tables. They
propose to trigger a growing operation when any
operation has to scan more than k log n elements
where k is a tuning parameter. This approach is
tempting since it is somewhat faster than the ap-
proximate size estimator we use. We actually tried
that but found that this trigger has a very high
variance – sometimes it triggers late making opera-
tions rather slow, sometimes it triggers early wast-
ing a lot of space. We also have theoretical concerns
since the bound k log n on the length of the longest
probe sequence implies strong assumptions on cer-
tain properties of the hash function. Shun and Blel-
loch make extensive experiments including applica-
tions from the problem based benchmark suite [35].

Li et al. [17] use the bucket cuckoo-hashing
method by Dietzfelbinger and Weidling [8] and de-
velop a concurrent implementation. They exploit
that using a BFS-based insertion algorithm, the
number of element moves for an insertion is very
small. They use fine grained locks which can some-
times be avoided using transactional memory (Intel
TSX). As a result of their work, they implemented
the small open source library libcuckoo, which we
measure against (which does not use TSX). This
approach has the potential to achieve very good
space efficiency. However, our measurements indi-
cate that the performance penalty is high.

The practical importance of concurrent hash ta-
bles also leads to new and innovative implementa-
tions outside of the scientific community. A good
example of this is the Junction library, that was
published by Preshing [31] in the beginning of 2016,
shortly after our initial publication [19].

3 Preliminaries

We assume that each application thread has its own
designated hardware thread or processing core and
denote the number of these threads with p. A data
structure is non-blocking if no blocked thread cur-
rently accessing this data structure can block an
operation on the data structure by another thread.
A data structure is lock-free if it is non-blocking
and guarantees global progress, i.e., there must al-
ways be at least one thread finishing its operation
in a finite number of steps.

Hash Tables store a set of 〈Key,Value〉 pairs (ele-
ments).1 A hash function h maps each key to a cell
of a table (an array). The number of elements in
the hash table is denoted n and the number of oper-
ations is m. For the purpose of algorithm analysis,
we assume that n and m are � p2 – this allows us
to simplify algorithm complexities by hiding O(p)
terms that are independent of n and m in the over-
all cost. Sequential hash tables support the inser-
tion of elements, and finding, updating, or delet-
ing an element with given key – all of this in con-
stant expected time. Further operations compute n
(size), build a table with a given number of initial
elements, and iterate over all elements (forall).

Linear Probing is one of the most popular se-
quential hash table schemes used in practice. An
element 〈x, a〉 is stored at the first free table entry
following position h(x) (wrapping around when the
end of the table is reached). Linear probing is at
the same time simple and efficient – if the table is
not too full, a single cache line access will be enough
most of the time. Deletion can be implemented by
rearranging the elements locally [15] to avoid holes
violating the invariant mentioned above. When the
table becomes too full or too empty, the elements
can be migrated to a larger or smaller table re-
spectively. The migration cost can be charged to
insertions and deletions causing amortized constant
overhead.

1Much of what is said here can be generalized to the
case when Elements are black boxes from which keys are
extracted by an accessor function.

3

4 Concurrent Hash Table In-
terface and Folklore Imple-
mentation

Although it seems quite clear what a hash table is
and how this generalizes to concurrent hash tables,
there is a surprising number of details to consider.
Therefore, we will quickly go over some of our inter-
face decisions, and detail how this interface can be
implemented in a simple, fast, lock-free concurrent
linear probing hash table.

This hash table will have a bounded capacity
c that has to be specified when the table is con-
structed. It is the basis for all other hash table
variants presented in this publication. We call this
table the folklore solution, because variations of it
are used in many publications and it is not clear to
us by whom it was first published.

The most important requirement for concurrent
data structures is, that they should be linearizable,
i.e., it must be possible to order the hash table op-
erations in some sequence – without reordering two
opperations of the same thread – so that executing
them sequentially in that order yields the same re-
sults as the concurrent processing. For a hash ta-
ble data structure, this basically means that all op-
erations should be executed atomically some time
between their invokation and their return. For ex-
ample, it has to be avoided, that a find returns
an inconsistent state, e.g. a half-updated data field
that was never actually stored at the corresponding
key.

Our variant of the folklore solution ensures the
atomicity of operations using 2-word atomic CAS
operations for all changes of the table. As long as
the key and the value each only use one machine
word, we can use 2-word CAS opearations to atom-
ically manipulate a stored key together with the
corresponding value. There are other variants that
avoid need 2-word compare and swap operations,
but they often need a designated empty value (see
[31]) . Since, the corresponding machine instruc-
tions are widely available on modern hardware, us-
ing them should not be a problem. If the target
architecture does not support the needed instruc-
tions, the implementation can easily be switched
to use a variant of the folklore solution which does
not use 2-word CAS. As it can easily be deduced
by the context, we will usually omit the “2-word”

prefix and use the abbreviation CAS for both single
and double word CAS operations.

Initialization The constructor allocates an array
of size c consisting of 128-bit aligned cells whose key
is initialized to the empty values.

Modifications We propose, to categorize all
changes to the hash table content into one of the
following three functions, that can be implemented
very similarly (does not cover deletions).

insert(k, d): Returns false if an element with
the specified key is already present. Only one op-
eration should succeed if multiple threads are in-
serting the same key at the same time.

update(k, d, up): Returns false, if there is no
value stored at the specified key, otherwise this
function atomically updates the stored value to
new = up(current, d). Notice, that the resulting
value can be dependent on both the current value
and the input parameter d.

insertOrUpdate(k, d, up): This operation updates
the current value, if one is present, otherwise the
given data element is inserted as the new value.
The function returns true, if insertOrUpdate per-
formed an insert (key was not present), and false

if an update was executed.

We choose this interface for two main reasons.
It allows applications to quickly differentiate be-
tween inserting and changing an element – this is
especially usefull since the thread who first inserted
a key can be identified uniquely. Additionally it
allows transparent, lockless updates that can be
more complex, than just replacing the current value
(think of CAS or Fetch-and-Add).

The update interface using an update function
deserves some special attention, as it is a novel ap-
proach compared to most interfaces we encountered
during our research. Most implementations fall into
one of two categories: They return mutable refer-
ences to table elements – forcing the user to imple-
ment atomic operations on the data type; or they
offer an update function which usually replaces the
current value with a new one – making it very hard
to implement atomic changes like a simple counter
(find + increment + overwrite not necessarily
atomic).

In Algorithm 1 we show the pseudocode of the
insertOrUpdate function. The operation com-

4

ALGORITHM 1: Pseudocode for the insertOrUpdate operation

Input: Key k, Data Element d, Update Function up : Key×Val×Val→ Val
Output: Boolean true when a new key was inserted, false if an update occurred

1 i = h(k);
2 while true do
3 i = i % c;
4 current = table[i];

5 if current.key == empty key then // Key is not present yet ...

6 if table[i].CAS(current, 〈k, d 〉) then
7 return true

8 else
9 i--;

10 else if current.key == k then // Same key already present ...

11 if table[i].atomicUpdate(current, d, up) then
// default: atomicUpdate(·) = CAS(current, up(k, current.data, d))

12 return false

13 else
14 i--;

15 i++;

putes the hash value of the key and proceeds to
look for an element with the appropriate key (be-
ginning at the corresponding position). If no ele-
ment matching the key is found (when an empty
space is encountered), the new element has to be
inserted. This is done using a CAS operation. A
failed swap can only be caused by another inser-
tion into the same cell. In this case, we have to
revisit the same cell, to check if the inserted el-
ement matches the current key. If a cell storing
the same key is found, it will be updated using the
atomicUpdate function. This function is usually
implemented by evaluating the passed update func-
tion (up) and using a CAS operation, to change the
cell. In the case of multiple concurrent updates, at
least one will be successful.

In our (C++) implementation, partial template
specialization can be used to implement more ef-
ficient atomicUpdate variants using atomic opera-
tions – changing the default line 11, e.g. overwrite
(using single word store), increment (using fetch
and add).

The code presented in Algorithm 1 can easily be
modified to implement the insert (return false

when the key is already present – line 10) and
update (return true after a successful update –
line 12 and false when the key is not found –
line 5) functions. All modification functions have a

constant expected running time.

Lookup Since this folklore implementation does
not move elements within the table, it would be
possible for find(k) to return a reference to the
corresponding element. In our experience, return-
ing references directly tempts inexperienced pro-
grammers to opperate on these references in a way
that is not necessarily threadsafe. Therefore, our
implementation returns a copy of the corresponding
cell (〈k, d 〉), if one is found (〈empty key, ·〉 other-
wise). The find operation has a constant expected
running time.

Our implementation of find somewhat non-
trivial, because it is not possible to read two ma-
chine words at once using an atomic instruction2.
Therefore it is possible for a cell to be changed in-
between reading its key and its value – this is called
a torn read. We have to make sure, that torn reads
cannot lead to any wrong behavior. There are two
kinds of interesting torn reads: First an empty key
is read while the searched key is inserted into the
same cell, in this case the element is not found (con-
sistent since it has not been fully inserted); Second

2The element is not read atomically, because x86 does
not support that. One could use a 2-word CAS to achieve
the same effect but this would have disastrous effects on per-
formance when many threads try to find the same element.

5

the element is updated between the key being read
and the data being read, since the data is read sec-
ond, only the newer data is read (consistent with a
finished update).

Deletions The folklore solution can only han-
dle deletions using dummy elements – called tomb-
stones. Usually the key stored in a cell is replaced
with del key. Afterwards the cell cannot be used
anymore. This method of handling deleted ele-
ments is usually not feasible, as it does not increase
the capacity for new elements. In Section 5.4 We
will show, how our generalizations can be used to
handle tombstones more efficiently.

Bulk Operations While not often used in prac-
tice, the folklore table can be modified to sup-
port operations like buildFrom(·) (see Section 5.5)
– using a bulk insertion which can be more effi-
cient than element-wise insertion – or forall(f) –
which can be implemented embarrassingly parallel
by splitting the table between threads.

Size Keeping track of the number of contained el-
ements deserves special notice here because it turns
out to be significantly harder in concurrent hash ta-
bles. In sequential hash tables, it is trivial to count
the number of contained elements – using a single
counter. This same method is possible in parallel
tables using atomic fetch and add operations, but it
introduces a massive amount of contention on one
single counter creating a performance bottleneck.

Because of this we did not include a counting
method in folklore implementation. In Section 5.2
we show how this can be alleviated using an ap-
proximate count.

5 Generalizations and Exten-
sions

In this section, we detail how to adapt the concur-
rent hash table implementation – described in the
previous section – to be universally applicable to
all hash table workloads. Most of our efforts have
gone into a scalable migration method that is used
to move all elements stored in one table into an-
other table. It turns out that a fast migration can

solve most shortcomings of the folklore implemen-
tation (especially deletions and adaptable size).

5.1 Storing Thread-Local Data

By itself, storing thread specific data connected to
a hash table does not offer additional functionality,
but it is necessary to efficiently implement some of
our other extensions. Per-thread data can be used
in many different ways, from counting the number
of insertions to caching shared resources.

From a theoretical point of view, it is easy to
store thread specific data. The additional space is
usually only dependent on the number of threads
(O(p) additional space), since the stored data is
often constant sized. Compared to the hash table
this is usually negligible (p� n < c).

Storing thread specific data is challenging from
a software design and performance perspective.
Some of our competitors use a register(·) func-
tion that each thread has to call before accessing
the table. This allocates some memory, that can
be accessed using the global hash table object.

Our solution uses explicit handles. Each thread
has to create a handle, before accessing the hash ta-
ble. These handles can store thread specific data,
since they are not shared between threads. This is
not only in line with the RAII idiom (resource ac-
quisition is initialization [24]), it also protects our
implementation from some performance pitfalls like
unnecessary indirections and false sharing3. More-
over, the data can easily be deleted once the thread
does not use the hash table anymore (delete the
handle).

5.2 Approximating the Size

Keeping an exact count of the elements stored in
the hash table can often lead to contention on one
count variable. Therefore, we propose to support
only an approximative size operation.

To keep an approximate count of all elements,
each thread maintains a local counter of its success-
ful insertions (using the method desribed in Sec-
tion 5.1). Every Θ(p) such insertions this counter
is atomically added to a global insertion counter
I and then reset. Contention at I can be provably

3Significant slow down created by the cache coherency
protocol due to multiple threads repeatedly changing dis-
tinct values within the same cache line.

6

made small by randomizing the exact number of lo-
cal insertions accepted before adding to the global
counter, e.g., between 1 and p. I underestimates
the size by at most O

(
p2
)
. Since we assume the

size to be � p2 this still means a small relative er-
ror. By adding the maximal error, we also get an
upper bound for the table size.

If deletions are also allowed, we maintain a global
counter D in a similar way. S = I − D is then a
good estimate of the total size as long as S � p2.

When a table is migrated for growing or shrink-
ing (see Section 5.3.1), each migration thread lo-
cally counts the elements it moves. At the end of
the migration, local counters are added to create
the initial count for I (D is set to 0).

This method can also be extended to give an
exact count – in absence of concurrent inser-
tions/deletions. To do this, a list of all handles
has to be stored at the global hash table object. A
thread can now iterate over all handles computing
the actual element size.

5.3 Table Migration

While Gao et al. [10] have shown that lock-free dy-
namic linear probing hash tables are possible, there
is no result on their practical feasibility. Our focus
is geared more towards engineering the fastest mi-
gration possible, therefore, we are fine with small
amounts of locking, as long as it improves the over-
all performance.

5.3.1 Eliminating Unnecessary Contention
from the Migration

If the table size is not fixed, it makes sense to as-
sume that the hash function h yields a large pseu-
dorandom integer which is then mapped to a cell
position in 0..c− 1 where c is the current capacity
c.4 We will discuss a way to do this by scaling. If
h yields values in the global range 0..U − 1 we map
key x to cell hc(x) := bh(x) c

U c. Note that when
both c and U are powers of two, the mapping can
be implemented by a simple shift operation.

Growing Now suppose that we want to migrate
the table into a table that has at least the same size
(growing factor γ ≥ 1). Exploiting the properties

4We use x..y as a shorthand for {x, . . . , y} in this paper.

of linear probing and our scaling function, there is
a surprisingly simple way to migrate the elements
from the old table to the new table in parallel which
results in exactly the same order a sequential algo-
rithm would take and that completely avoids syn-
chronization between threads.

Lemma 1. Consider a range a..b of nonempty cells
in the old table with the property that the cells
a− 1 mod c and b+ 1 mod c are both empty – call
such a range a cluster (see Figure 1a). When
migrating a table, sequential migration will map
the elements stored in that cluster into the range
bγac .. bγ(b+ 1)c in the target table, regardless of
the rest of the source array.

Proof. Let x be an element stored in the cluster a..b
at position p(x) = hc(x) + d(x). Then hc(x) has to
be in the cluster a..b, because linear probing does
not displace elements over empty cells (hc(x) =

bh(x) c
U c ≥ a), and therefore, h(x) c′

U ≥ a
c′

c ≥ γa.
Similarly, from bh(x) c

U c ≤ b follows h(x) c
U <

b+ 1, and therefore, h(x) c′

U < γ(b+ 1).

Therefore, two distinct clusters in the source ta-
ble cannot overlap in the target table. We can ex-
ploit this lemma by assigning entire clusters to mi-
grating threads which can then process each cluster
completely independently. Distributing clusters be-
tween threads can easily be achieved by first split-
ting the table into blocks (regardless of the tables
contents) which we assign to threads for parallel mi-
gration. A thread assigned block d..e will migrate
those clusters that start within this range – implic-
itly moving the block borders to free cells as seen in
Figure 1b). Since the average cluster length is short
and c = Ω

(
p2
)
, it is sufficient to deal out blocks

of size Ω(p) using a single shared global variable
and atomic fetch-and-add operations. Additionally
each thread is responsible for initializing all cells in
its region of the target table. This is important,
because sequentially initializing the hash table can
quickly become infeasible.

Note that waiting for the last thread at the end
of the migration introduces some waiting (locking),
but this does not create significant work imbalance,
since the block/cluster migration is really fast and
clusters are expected to be short.

Shrinking Unfortunately, the nice structural
Lemma 1 no longer applies. We can still parallelize

7

a

b

γa

γ(b+ 1)
a′

b′
γa′

γ(b′ + 1)

(a) Two neighboring clusters and their non-
overlapping target areas (γ = 2).

(b) Left: table split into even blocks. Right: resulting
cluster distribution (moved implicit block borders).

Figure 1: Cluster migration and work distribution

the migration with little synchronization. Once
more, we cut the source table into blocks that we
assign to threads for migration. The scaling func-
tion maps each block a..b in the source table to a
block a′..b′ in the target table. We have to be care-
ful with rounding issues so that the blocks in the
target table are non-overlapping. We can then pro-
ceed in two phases. First, a migrating thread mi-
grates those elements that move from a..b to a′..b′.
These migrations can be done in a sequential man-
ner, since target blocks are disjoint. The majority
of elements will fit into the target block. Then, af-
ter a barrier synchronization, all elements that did
not fit into their respective target blocks are mi-
grated using concurrent insertion i.e., using atomic
operations. This has negligible overhead since el-
ements like this only exist at the boundaries of
blocks. The resulting allocation of elements in the
target table will no longer be the same as for a
sequential migration but as long as the data struc-
ture invariants of a linear probing hash table are
fulfilled, this is not a problem.

5.3.2 Hiding the Migration from the Un-
derlying Application

To make the concurrent hash table more general
and easy to use, we would like to avoid all explicit
synchronization. The growing (and shrinking) op-
erations should be performed asynchronously when
needed, without involvement of the underlying ap-
plication. The migration is triggered once the ta-
ble is filled to a factor ≥ α (e.g. 50 %), this is
estimated using the approximate count from Sec-
tion 5.2, and checked whenever the global count is
updated. When a growing operation is triggered,

the capacity will be increased by a factor of γ ≥ 1
(Usually γ = 2). The difficulty is ensuring that this
operation is done in a transparent way without in-
troducing any inconsistent behavior and without
incurring undue overheads.

To hide the migration process from the user, two
problems have to be solved. First, we have to find
threads to grow the table, and second, we have to
ensure, that changing elements in the source table
will not lead to any inconsistent states in the target
table (possibly reverting changes made during the
migration). Each of these problems can be solved
in multiple ways. We implemented two strategies
for each of them resulting in four different variants
of the hash table (mix and match).

Recruiting User-Threads A simple approach
to dynamically allocate threads to growing the ta-
ble, is to “enslave” threads that try to perform
table accesses that would otherwise have to wait
for the completion of the growing process anyway.
This works really well when the table is regularly
accessed by all user-threads, but is inefficient in the
worst case when most threads stop accessing the ta-
ble at some point, e.g., waiting for the completion of
a global computation phase at a barrier. The few
threads still accessing the table at this point will
need a lot of time for growing (up to Ω(n)) while
most threads are waiting for them. One could try
to also enslave waiting threads but it looks difficult
to do this in a sufficiently general and portable way.

Using a Dedicated Thread Pool A provably
efficient approach is to maintain a pool of p threads
dedicated to growing the table. They are blocked

8

until a growing operation is triggered. This is when
they are awoken to collectively perform the migra-
tion in time O(n/p) and then get back to sleep.
During a migration, application threads might have
to sleep until the migration threads are finished.
This will increase the CPU time of our migration
threads making this method nearly as efficient as
the enslavement variant. Using a reasonable com-
putation model, one can show that using thread
pools for migration increases the cost of each table
access by at most a constant in a globally amortized
sense (over the non-growing folklore solution). We
omit the relatively simple proof.

To remain fair to all competitors, we used ex-
actly as many threads for the thread pool as there
were application threads accessing the table. Ad-
ditionally each migration thread was bound to a
core, that was also used by one corresponding ap-
plication thread.

Marking Moved Elements for Consistency
(asynchronous) During the migration it is im-
portant that no element can be changed in the old
table after it has been copied to the new table. Oth-
erwise, it would be hard to guarantee that changes
are correctly applied to the new table. The easiest
solution to this problem is, to mark each cell before
it is copied. Marking each cell can be done using
a CAS operation to set a special marked bit which
is stored in the key. In practice this reduces the
possible key space. If this reduction is a problem,
see Section 5.6 on how to circumvent it. To ensure
that no copied cell can be changed, it suffices to
ensure that no marked cell can be changed. This
can easily be done by checking the bit before each
writing operation, and by using CAS operations for
each update. This prohibits the use of fast atomic
operations to change element values.

After the migration, the old hash table has to
be deallocated. Before deallocating an old table,
we have to make sure that no thread is currently
using it anymore. This problem can generally be
solved by using reference counting. Instead of stor-
ing the table with a usual pointer, we use a ref-
erence counted pointer (e.g. std::shared ptr) to
ensure that the table is eventually freed.

The main disadvantage of counting pointers
is that acquiring a counting pointer requires an
atomic increment on a shared counter. Therefore, it

is not feasible to acquire a counting pointer for each
operation. Instead a copy of the shared pointer can
be stored locally, together with the increasing ver-
sion number of the corresponding hash table (using
the method from Section 5.1). At the beginning of
each operation, we can use the local version number
to make sure that the local counting pointer still
points to the newest table version. If this is not the
case, a new pointer will be acquired. This happens
only once per version of the hash table. The old
table will automatically be freed once every thread
has updated its local pointer. Note that counting
pointers cannot be exchanged in a lock-free man-
ner increasing the cost of changing the current table
(using a lock). This lock could be avoided by using
a hazard pointer. We did not do this

Prevent Concurrent Updates to ensure Con-
sistency (synchronized) We propose a simple
protocol inspired by read-copy-update protocols
[22]. The thread t triggering the growing operation
sets some global growing flag using a CAS instruc-
tion. A thread t performing a table access sets a
local busy flag when starting an operation. Then
it inspects the growing flag, if the flag is set, the
local flag is unset. Then the local thread waits for
the completion of the growing operation, or helps
with migrating the table depending on the current
growing strategy. Thread t waits until all busy
flags have been unset at least once before starting
the migration. When the migration is completed,
the growing flag is reset, signaling to the waiting
threads that they can safely continue their table-
operations. Because this protocol ensures that no
thread is accessing the previous table after the be-
ginning of the migration, it can be freed without
using reference counting.

We call this method (semi-)synchronized, be-
cause grow and update operations are disjoint.
Threads participating in one growing step still ar-
rive asynchronously, e.g. when the parent applica-
tion called a hash table operation. Compared to
the marking based protocol, we save cost during
migration by avoiding CAS operations. However,
this is at the expense of setting the busy flags for
every operation. Our experiments indicates that
overall this is only advantageous for updates using
atomic operations like fetch-and-add that cannot
coexist with the marker flags.

9

5.4 Deletions

For concurrent linear probing, we combine tomb-
stoning (see Section 4) with our migration algo-
rithm to clean the table once it is filled with too
many tombstones.

A tombstone is an element, that has a del key in
place of its key. The key x of a deleted entry 〈x, a〉
is atomically changed to 〈del key, a〉. Other ta-
ble operations scan over these deleted elements like
over any other nonempty entry. No inconsistencies
can arise from deletions. In particular, a concurrent
find-operations with a torn read will return the ele-
ment before the deletion since the delete-operation
will leave the value-slot a untouched. A concurrent
insert 〈x, b〉 might read the key x before it is over-
written by the deletion and return false because
it concludes that an element with key x is already
present. This is consistent with the outcome when
the insertion is performed before the deletion in a
linearization.

This method of deletion can easily be imple-
mented in the folklore solution from Section 4. But
the starting capacity has to be set dependent on
the number of overall insertions, since this form of
deletion does not free up any of the deleted cells.
Even worse, tombstones will fill up the table and
slow down find queries.

Both of these problems can be solved by migrat-
ing all non-tombstone elements into a new table.
The decision when to migrate the table should be
made solely based on the number of insertions I
(= number of nonempty cells). The count of all
non-deleted elements I −D is then used to decide
whether the table should grow, keep the same size
(notice γ = 1 is a special case for our optimized mi-
gration), or shrink. Either way, all tombstones can
be removed in the course of the element migration.

5.5 Bulk Operations

Building a hash table for n elements passed to the
constructor can be parallelized using integer sorting
by the hash function value. This works in time
O(n/p) regardless how many times an element is
inserted, i.e., sorting circumvents contention. See
the work of Mller et al.[25] for a discussion of this
phenomenon in the context of aggregation.

This can be generalized for processing batches of
sizem = Ω(n) that may even contain a mix of inser-

tions, deletions, and updates. We outline a simple
algorithm for bulk-insertion that works without ex-
plicit sorting albeit does not avoid contention. Let
a denote the old size of the hash table and b the
number of insertions. Then a+b is an upper bound
for the new table size. If necessary, grow the table
to that size or larger (see below). Finally, in paral-
lel, insert the new elements.

More generally, processing batches of size m =
Ω(n) in a globally synchronized way can use the
same strategy. We outline it for the case of bulk
insertions. Generalization to deletions, updates,
or mixed batches is possible: Integer sort the ele-
ments to be inserted by their hash key in expected
time O(m/p). Among elements with the same hash
value, remove all but the last. Then “merge” the
batch and the hash table into a new hash table
(that may have to be larger to provide space for the
new elements). We can adapt ideas from parallel
merging [11]. We co-partition the sorted insertion
array and the hash table into corresponding pieces
of size O(m/p). Most of the work can now be done
on these pieces in an embarrassingly parallel way –
each piece of the insertion array is scanned sequen-
tially by one thread. Consider an element 〈x, a〉 and
previous insertion position i in the table. Then we
start looking for a free cell at position max(h(x), i)

5.6 Restoring the Full Key Space

Our table uses special keys, like the empty key
(empty key) and the deleted key (del key). El-
ements that actually have these keys cannot be
stored in the hash table. This can easily be fixed
by using two special slots in the global hash table
data structure. This makes some case distinction
necessary but should have rather low impact on the
overall performance.

One of our growing variants (asynchronous) uses
a marker bit in its key field. This halves the possi-
ble key space from 264 to 263. To regain the lost key
space, we can store the lost bit implicitly. Instead
of using one hash table that holds all elements, we
use the two subtables t0 and t1. The subtable t0
holds all elements whose key does not have its top-
most bit set. While t1 stores all elements whose
key does have the topmost bit set, but instead of
storing the topmost bit explicitly it is removed.

Each element can still be found in constant time,
because when looking for a certain key, it is imme-

10

diately obvious in which table the corresponding
element will be stored. After choosing the right
table, comparing the 63 explicitly stored bits can
uniquely identify the correct element. Notice that
both empty keys have to be stored distinctly (as
described above).

5.7 Complex Key and Value Types

Using CAS instructions to change the content of
hash table cells makes our data structure fast but
limits its use to cases where keys and values fit into
memory words. Lifting this restriction is bound
to have some impact on performance but we want
to outline ways to keep this penalty small. The
general idea is to replace the keys and or values by
references to the actual data.

Complex Keys To make things more concrete
we outline a way where the keys are strings and
the hash table data structure itself manages space
for the keys. When an element 〈s, a〉 is inserted,
space for string s is allocated. The hash table
stores 〈r, a〉 where r is a pointer to s. Unfortu-
nately, we get a considerable performance penalty
during table operations because looking for an el-
ement with a given key now has to follow this in-
direction for every key comparison – effectively de-
stroying the advantage of linear probing over other
hashing schemes with respect to cache efficiency.
This overhead can be reduced by two measures:
First, we can make the table bigger thus reducing
the necessary search distance – considering that the
keys are large anyway, this has a relatively small
impact on overall storage consumption. A more
sophisticated idea is to store a signature of the key
in some unused bits of the reference to the key (on
modern machines keys actually only use 48 bits).
This signature can be obtained from the master
hash function h extracting bits that were not used
for finding the position in the table (i.e. the least
significant digits). While searching for a key y one
can then first compare the signatures before actu-
ally making a full key comparison that involves a
costly pointer dereference.

Deletions do not immediately deallocate the
space for the key because concurrent operations
might still be scanning through them. The space
for deleted keys can be reclaimed when the array
grows. At that time, our migration protocols make

sure that no concurrent table operations are going
on.

The memory management is challenging since
we need high throughput allocation for very fine
grained variable sized objects and a kind of garbage
collection. On the positive side, we can find all the
pointers to the strings using the hash function. All
in all, these properties might be sufficiently unique
that a carefully designed special purpose imple-
mentation is faster than currently available general
purpose allocators. We outline one such approach:
New strings are allocated into memory pages of size
Ω(p). Each thread has one current page that is
only used locally for allocating short strings. Long
strings are allocated using a general purpose allo-
cator. When the local page of a thread is full, the
thread allocates a fresh page and remembers the
old one on a stack. During a shrinking phase, a
garbage collection is done on the string memory.
This can be parallelized on a page by page basis.
Each thread works on two pages A and B at a time
where A is a partially filled page. B is scanned and
the strings stored there are moved to A (updating
their pointer in the hash table). When A runs full,
B replaces A. When B runs empty, it is freed. In
either case, an unprocessed page is obtained to be-
come B.

Complex Values We can take a similar ap-
proach as for complex keys – the hash table data
structure itself allocates space for complex val-
ues. This space is only deallocated during migra-
tion/cleanup phases that make sure that no con-
current table operations are affected. The find-
operation only hands out copies of the values so
that there is no danger of stale data. There are
now two types of update operations. One that mod-
ifies part of a complex value using an atomic CAS
operation and one that allocates an entirely new
value object and performs the update by atomi-
cally setting the value-reference to the new object.
Unfortunately it is not possible to use both types
concurrently.

Complex Keys and Values Of course we can
combine the two approaches described above. How-
ever in that case, it will be more efficient to store
a single reference to a combined key-value object
together with a signature.

11

6 Using Hardware Memory
Transactions

The biggest difference between a concurrent table,
and a sequential hash table is the use of atomic
processor instructions. We use them for access-
ing and modifying data which is shared between
threads. An additional way to achieve atomicity is
the use of hardware transactional memory synchro-
nization introduced recently by Intel and IBM. The
new instruction extensions can group many mem-
ory accesses into a single transaction. All changes
from one transaction are committed at the same
time. For other threads they appear to be atomic.
General purpose memory transactions do not have
progress guarantees (i.e. can always be aborted),
therefore they require a fall-back path implement-
ing atomicity (a lock or an implementation using
traditional atomic instructions).

We believe that transactional memory synchro-
nization is an important opportunity for concurrent
data structures. Therefore, we analyze how to ef-
ficiently use memory transactions for our concur-
rent linear probing hash tables. In the following,
we discuss which aspects of our hash table can be
improved by using restricted transactional mem-
ory implemented in Intel Transactional Synchro-
nization Extensions (Intel TSX).

We use Intel TSX by wrapping sequential code
into a memory transaction. Since the sequential
code is simpler (e.g. less branches, more freedom
for compiler optimizations) it can outperform in-
herently more complex code based on (expensive
128-bit CAS) atomic instructions. As a transac-
tion fall-back mechanism, we employ our atomic
variants of hash table operations. Replacing the
insert and update functions of our specialized grow-
ing hash table with Intel TSX variants increases the
throughput of our hash table by up to 28 % (see
Section 8.4). Speedups like this are easy to ob-
tain on workloads without contentious accesses (si-
multaneous write accesses on the same cell). Con-
tentious write accesses lead to transaction aborts
which have a higher latency than the failure of a
CAS. Our atomic fall-back minimizes the penalty
for such scenarios compared to the classic lock-
based fall-back that causes more overhead and se-
rialization.

Another aspect that can be improved through

the use of memory transactions is the key and
value size. On current x86 hardware, there is no
atomic instruction that can change words bigger
than 128 bits at once. The amount of memory that
can be manipulated during one memory transac-
tion can be far greater than 128 bits. Therefore,
one could easily implement hash tables with com-
plex keys and values using transactional memory
synchronization. However, using atomic functions
as fall-back will not be possible. Solutions with
fine-grained locks that are only needed when the
transactions actually fail, are still possible.

With general purpose memory transactions it is
even possible to atomically change multiple values
that are not stored consecutively. Therefore, it is
possible to implement a hash table that separates
the keys from the values storing each in a separate
table. In theory this could improve the cache local-
ity of linear probing.

Overall, transactional memory synchronization
can be used to improve performance and to make
the data structure more flexible.

7 Implementation Details

Bounded Hash Tables. All of our implemen-
tations are constructed around a highly optimized
variant of the circular bounded folklore hash table
that was describe in Section 4. The main perfor-
mance optimizations were to restrict the table size
to powers of two – replacing expensive modulo op-
erations with fast bit operations When initializing
the capacity c, we compute the lowest power of two,
that is still at least twice as large as the expected
number of insertions (2n ≤ size ≤ 4n).

We also built a second non growing hash table
variant called tsxfolklore, this variant forgoes the
usual CAS-operations that are used to change cells.
Instead tsxfolklore uses TSX transactions to change
elements in the table atomically. As described in
Section 6, we use our usual atomic operations as
fallback in case a TSX transaction is aborted.

Growing Hash Tables. All of our growing hash
tables use folklore or tsxfolklore to represent the
current status of the hash table. When the table
is approximately 60% filled, a migration is started.
With each migration, we double the capacity. The
migration works in cell-blocks of the size 4096.

12

Blocks are migrated with a minimum amount of
atomics by using the cluster migration described in
Section 5.3.1.

We use a user-space memory pool from Intel’s
TBB library to prevent a slow down due to the re-
mapping of virtual to physical memory (protected
by a coarse lock in the Linux kernel). This improves
the performance of our growing variants, especially
when using more than 24 threads. By allocating
memory from this memory pool, we ensure that the
virtual memory that we receive is already mapped
to physical memory, bypassing the kernel lock.

In Section 5.3.1 we identified two orthogonal
problems that have to be solved to migrate hash
tables: which threads execute the migration? and
how can we make sure that copied elements cannot
be changed? For each of these problems we formu-
lated two strategies. The table can either be mi-
grated by user-threads that execute operations on
the table (u), or by using a pool of threads which
is only responsible for the migration (p). To en-
sure that copied elements cannot be changed, we
proposed to wait for each currently running opera-
tion synchronizing update and growing phases (s),
or to mark elements before they are copied, thus
proceeding fully asynchronously (a).

All strategies can be combined – creating the fol-
lowing four growing hash table variants: uaGrow
uses enslavement of user threads and asynchronous
marking for consistency; usGrow also uses user
threads threads, but ensures consistency by syn-
chronizing updates and growing routines; paGrow
uses a pool of dedicated migration threads for the
migration and asynchronous marking of migrated
entries for consistency; and psGrow combines the
use of a dedicated thread pool for migration with
the synchronized exclusion mechanism.

All of these versions can also be instantiated us-
ing the TSX based non-growing table tsxfolklore as
a basis.

8 Experimental Evaluation

We performed a large number of experiments to
investigate the performance of different concur-
rent hash tables in a variety of circumstances (an
overview over all tested hash tables can be found in
Table 1). We begin by describing the tested com-
petitors (Section 8.1, our variants are introduced in

Section 7), the test instances (Section 8.3), and the
test environment (Section 8.2). Then Section 8.4
discusses the actual measurements. In Section 8.5,
we conclude the section by summarizing our exper-
iments and reflecting how different generalizations
affect the performance of hash tables.

8.1 Competitors

To compare our implementation to the current
state of the art we use a broad selection of other
concurrent hash tables. These tables were chosen
on the basis of their popularity in applications and
academic publications. We split these hash table
implementations into the following three groups de-
pending on their growing functionality.

8.1.1 Efficiently Growing Hash Tables

This group contains all hash tables, that are able
to grow efficiently from a very small initial size.
They are used in our growing benchmarks, where
we initialize tables with an initial size of 4096 thus
making growing necessary.

Junction Linear , Junction Grampa , and
Junction Leapfrog The junction library con-
sists of three different variants of a dynamic con-
current hash table. It was published by Jeff Presh-
ing over github [31], after our first publication on
the subject ([19]). There are no scientific publi-
cations, but on his blog [32] Preshing writes some
insightful posts on his implementation. In theory,
junction’s hash tables use an approach to growing
which is similar to ours. A filled bounded hash
table is migrated into a newly allocated bigger ta-
ble. Although they are constructed from a simi-
lar idea, the execution seems to differ quite signif-
icantly. The junction hash tables use a quiescent-
state based reclamation (QSBR) protocol, for mem-
ory reclamation. Using this protocol, in order to
reclaim freed hash table memory, the user has to
regularly call a designated function.

Contrary to other hash tables, we used the pro-
vided standard hash function (avalanche), because
junction assumes its hash function, to be invertible.
Therefore, the hash function which is used for all
other tables (see Section 8.3) is not usable.

The different hash tables within junction all per-
form different variants of open addressing. These

13

variants are described in more detail, in one of
Preshing’s blogposts (see [32]).

tbbHM F and tbbUM F (correspond to
the TBB maps tbb::concurrent hash map and
tbb::concurrent unordered map respectively)
The Threading Building Blocks [30] (TBB) library
(Version 4.3 Update 6) developed by Intel is one of
the most widely used libraries for shared memory
concurrent programming. The two different con-
current hash tables it contains behave relatively
similar in our tests. Therefore, we sometimes
only plot the results of tbbHM F. But they have
some differences concerning the locking of accessed
elements. Therefore, they behave very differently
under contention.

8.1.2 Hash Tables with Limited Growing
Capabilities

This group contains all hash tables that can only
grow by a limited amount (constant factor of the
initial size) or become very slow when growing is
required. When testing their growing capabilities,
we usually initialize these tables with half their tar-
get size. This is comparable to a workload where
the approximate number of elements is known but
cannot be bound strictly.

folly + (folly::AtomicHashMap) This hash ta-
ble was developed at facebook as a part of their
open source library folly [9] (Version 57:0). It uses
restrictions on key and data types similar to our
folklore implementation. In contrast to our grow-
ing procedure, the folly table grows by allocating
additional hash tables. This increases the cost of
future queries and it bounds the total growing fac-
tor to ≈ 18 (×initial size).

cuckoo (cuckoohash map) This hash table us-
ing (bucket) cuckoo hashing as its collision resolu-
tion method, is part of the small libcuckoo library
(Version 1.0). It uses a fine grained locking ap-
proach presented by Li et al. [17] to ensure consis-
tency. Cuckoo is mentionable for their interesting
interface, which combines easy container style ac-
cess with an update routine similar to our update
interface.

RCU ×/RCU QSBR × This hash table is
part of the Userspace RCU library (Version 0.8.7)
[29], that brings the read copy update principle to
userspace applications. Read copy update is a set
of protocols for concurrent programming, that are
popular in the Linux kernel community [22]. The
hash table uses split-ordered lists to grow in a lock-
free manner. This approach has been proposed by
Shalev and Shavit [33].

RCU uses the recommended read-copy-update
variant called urcu. RCU QSBR uses a QSBR
based protocol that is comparable to the one used
by junction hash tables. It forces the user to repeat-
edly call a function with each participating thread.
We tested both variants, but in many plots we show
only RCU × because both variants behaved very
similarly in our tests.

8.1.3 Non-Growing Hash Tables

One of the most important subjects of this publica-
tion is offering a scalable asynchronous migration
for the simple folklore hash table. While this makes
it usable in circumstances where bounded tables
cannot be used, we want to show that even when
no growing is necessary we can compete against
bounded hash tables. Therefore, it is reasonable
to use our growing hash table even in applications
where the number of elements can be bounded in a
reasonable manner, offering a graceful degradation
in edge cases and allowing improved memory usage
if the bound is not reached.

Folklore Our implementation of the folklore
solution described in Section 4. Notice that this
hash table is the core of our growing variants.
Therefore, we can immediately determine the over-
head that the ability for growing places on this im-
plementation (Overhead for approximate counting
and shared pointers).

Phase Concurrent � This hash table imple-
mentation proposed by Shun and Blelloch [34] is
designed to support only phase concurrent accesses,
i.e. no reads can occur concurrently with writes.
We tested this table anyway, because several of our
test instances satisfy this constraint and it showed
promising running times.

14

Hopscotch Hash N Hopscotch hashing (ver 2.0)
is one of the more popular variants of open ad-
dressing. The version we tested, was published
by Herlihy et al. [13] connected to their origi-
nal publication proposing the technique. Inter-
estingly, the provided implementation only imple-
ments the functionality of a hash set (unable to
retrieve/update stored data). Therefore, we had to
adapt some tests to account for that (insert∼=put

and find∼=contains).

LeaHash H This hash table is designed by Lea
[16] as part of Java’s Concurrency Package. We
have obtained a C++ implementation which was
published together with the hopscotch table. It was
previously used during for experiments by Herlihy
et al. [13] and Shun and Blelloch [34]. LeaHash uses
hashing with chaining and the implementation that
we use has the same hash set interface as hopscotch.

As previously described, we used hash set imple-
mentations for Hopscotch hashing, as well as Lea-
Hash (they were published like this). They should
easily be convertible into common hash map imple-
mentations, without loosing too much performance,
but probably using quite a bit more memory.

8.1.4 Sequential Variants

To report absolute speedup numbers, we imple-
mented sequential variants of growing and fixed size
tables. They do not use any atomic instructions
or similar slowdowns. They outperform popular
choices like google’s dense hash map significantly
(80% increased insert throughput), making them a
reasonable approximation for the optimal sequen-
tial performance.

8.1.5 Color/Marker Choice

For practicality reasons, we chose not to print a
legend with all of our figures. Instead, we use this
section to explain the color and marker choices for
our plots (see Section 8.1 and Table 1), hopefully
making them more readable.

Some of the tested hash tables are part of the
same library. In these cases, we use the same
marker, for all hash tables within that library. The
different variants of the hash table are then dif-
ferentiated using the line color (and filling of the
marker).

For our own tables, we mostly use and for
uaGrow and usGrow respectively.

8.2 Hardware Overview

Most of our Experiments were run on a two socket
machine, with Intel Xeon E5-2670 v3 processors
(previously codenamed Haswell-EP). Each proces-
sor has 12 cores running at 2.3 Ghz base frequency.
The two sockets are connected by two Intel QPI-
links. Distributed to the two sockets there are
128 GB of main memory (64 GB each). The pro-
cessors support Intel Hyper-Threading, AVX2, and
TSX technologies.

This system runs a Ubuntu distribution with the
kernel number 3.13.0-91-generic. We compiled all
our tests with gcc 5.2.0 – using optimization level
-O3 and the necessary compiler flags (e.g. -mcx16,
-msse4.2 among others).

Additionally we executed some experiments on a
32-core 4-socket Intel Xeon E5-4640 (SandyBridge-
EP) machine, with 512 GB main memory (using
the same operating system and compiler), to verify
our findings, and show improved scalability even on
4-socket machines.

8.3 Test Methodology

Each test measures the time it takes, to execute 108

hash table operations (strong scaling). Each data
point was computed by taking the average, of five
separate execution times. Different tests use dif-
ferent hash table operations and key distributions.
The used keys are pre-computed before the bench-
mark is started. Each speedup given in this section
is computed as the absolute speedup over our hand-
optimized sequential hash table.

The work is distributed between threads dynam-
ically. While there is work to do, threads re-
serve blocks of 4096 operations to execute (using an
atomic counter). This ensures a minimal amount
of work imbalance, making the measurements less
prone to variance.

Two executions of the same test will always use
the same input keys. Most experiments are per-
formed with uniformly random generated keys (us-
ing the Mersenne twister random number generator
[20]). Since real world inputs may have recurring
elements, there can be contention which can po-
tentially lead to performance issues. To test hash

15

Table 1: Overview over Table Functionalities.

name plot std. interface growing atomic updates deletion arbitrary types

xyGrow
uaGrow using handles X X X
usGrow ” X X X
paGrow ” X X X
psGrow ” X X X

Junction
linear qsbr function X only overwrite X
grampa ” X ” X
leapfrog ” X ” X

TBB
hash map F X X X X X
unordered F X X X unsafe X

Folly + X const factor X
Cuckoo X slow X X X
RCU

urcu × register thread very slow X X X
qsbr × qsbr function ” X X X

Folklore X X
Phase � sync phases only overwrite X
Hopscotch N X set interface X
Lea Hash H X set interface X

table performance under contention, we use Zipf’s
distribution to create skewed key sequences. Using
the Zipf distribution, the probability for any given
key k is P (k) = 1

ks·HN,s
, where HN,s is the N -th

generalized harmonic number
∑N

k=1
1
ks (normaliza-

tion factor) and N is the universe size (N = 108).
The exponent s can be altered to regulate the con-
tention. We use the Zipf distribution, because it
closely models some real world inputs like natural
language, natural size distributions (e.g. of firms
or internet pages), and even user behavior ([2], [4],
[1]). Notice that key generation is done prior to
the benchmark execution as to not influence the
measurements unnecessarily (this is especially nec-
essary, for skewed inputs).

As a hash function, we use two CRC32C x86 in-
structions with different seeds, to generate the up-
per and lower 32 bits of each hash value. Their
hardware implementation minimizes the computa-
tional overhead.

8.4 Experiments

The most basic functionality of each hash table is
inserting and finding elements. The performance of

many parallel algorithms depends on the scalability
of parallel insertions and finds. Therefore, we begin
our experiments with a thorough investigation into
the scalability of these basic hash table operations.

Insert Performance We begin with the very ba-
sic test of inserting 108 different uniformly random
keys, into a previously empty hash table. For this
first test, all hash tables have been initialized to
the final size making growing unnecessary. The re-
sults presented in Figure 2a show clearly, that the
folklore solution is optimal in this case. Since
there is no migration necessary, and the table can
be initialized large enough, such that long search
distances become very improbable. The large dis-
crepancy between the folklore solution, and all
previous growable hash tables is what motivated
us, to work with growable hash tables in the first
place. As shown in the plot, our growing hash table
uaGrow looses about 10% of performance over
folklore (9.6× Speedup vs. 8.7×). This perfor-
mance loss can be explained with some overheads
that are necessary for eventually growing the table
(e.g. estimating the number of elements). All hash
tables that have a reasonable performance (> 50%

16

1 4 8 12 16 24 36 48
number of threads p

0

50

100

150

200

250

300

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0

1

2

3

4

5

6

7

8

9

absolute speedup
(a) Insert into pre-initialized table

1 4 8 12 16 24 36 48
number of threads p

0

20

40

60

80

100

120

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0
1
2
3
4
5
6
7
8
9
10

absolute speedup

(b) Insert into growing table

Figure 2: Throughput while inserting 108 elements into a previously empty table (Legend see Table 1).

of folklore performance), are variants of open ad-
dressing (junction leapfrog 4.4 at p = 12, folly +
5.1, phase � 8.3) that have similar restrictions on
key and value types. All hash tables that can han-
dle generic data types are severely outclassed (F,
F, , ×, and ×).

After this introductory experiment, we take a
look at the growing capability of each table. We
again insert 108 elements into a previously empty
table. This time, the table has only been initial-
ized, to hold 4092 elements (5 · 107 for all semi
growing tables). We can clearly see from the plots
in Figure 2b, that our hash table variants are signif-
icantly faster than any comparable tables. The dif-
ference becomes especially obvious once two sock-
ets are used (> 12 cores). With more than one
socket, none of our competitors could achieve any
significant speedups. On the contrary, many tables
become slower when executed on more cores. This
effect, does not happen for our table.

Junction grampa is the only growing hash table
– apart from our growing variants – which achieves
absolute speedups higher than 2. Overall, it is still
severely outperformed by our hash table uaGrow

(factor 2.5×). Compared to all other tables, we
achieve at least seven times the performance (de-
scending order; using 48 threads) folly + (7.4×),
junction leapfrog (7.7×), tbb hm F (9.6×), tbb
um F (10.7×), junction linear (22.6×), cuckoo

(61.3×), rcu × (63.2×), and rcu with qsbr ×
(64.5×).

The speedup in this growing instance is even
better than the speedup in our non-growing tests.
Overall we reach absolute speedups of > 9× com-
pared to the sequential version (also with growing).
This is slightly better then the absolute speedup in
the non-growing test (≈ 8.5), suggesting that our
migration is at least as scalable as hash table ac-
cesses. Overall the insert performance of our im-
plementation behaves as one would have hoped. It
performs similar to folklore in the non-growing
case, while performing similarly well in tests where
growing is necessary.

Find Performance When looking for a key in a
hash table there are two possible outcomes, either
it is in the table or it is not. For most hash tables
not finding an element takes longer than finding
said element. Therefore, we present two distinct
measurements for both cases Figure 3a and Fig-
ure 3b. The measurement for successful finds has
been made by looking for 108 elements, that have
previously been inserted into a hash table. For the
unsuccessful measurement, 108 uniformly random
keys are searched in this same hash table.

All the measurements made for these plots were
done on a preinitialized table (preinitialized before
insertion). This does not make a difference for our
implementation, but it has an influence on some of
our competitors. All tables that grow by allocat-
ing additional tables (namely cuckoo and folly
+) have significantly worse find performance on a

17

1 4 8 12 16 24 36 48
number of threads p

0

100

200

300

400

500

600

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0

2

4

6

8

10

12

absolute speedup
(a) Successful finds

1 4 8 12 16 24 36 48
number of threads p

0

100

200

300

400

500

600

700

800

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0

3

6

9

12

15

18

21

24

absolute speedup

(b) Unsuccessful finds

Figure 3: Performance and scalability calling 108 unique find operations, on a table, containing 108

unique keys (Legend see Table 1).

grown table, as they can have multiple active tables
at the same time (all of them have to be checked).

Obviously, find workloads achieve bigger
throughputs than insert heavy workloads – no
memory is changed and no coordination is neces-
sary between processors (i.e. atomic operations).
It is interesting that find operations seem to
scale better with multiple processors. Here, our
growable implementations achieve speedups of 12.8
compared to 9 in the insertion case.

When comparing the find performance between
different tables, we can see that other implemen-
tations with open addressing narrow the gap to-
wards our implementation. Especially, the hop-
scotch hashing N and the phase concurrent ap-
proach � seem to perform well when finding ele-
ments. Hopscotch hashing N performs especially
well in the unsuccessful case, here it outperforms
all other hash tables, by a significant margin. How-
ever, this has to be taken with a grain of salt,
because the tested implementation only offers the
functionality of a hash set (contains instead of find).
Therefore, less memory is needed per element and
more elements can be hashed into one cache line,
making lookups significantly more cache efficient.

For our hash tables, the performance reduction
between successful and unsuccessful finds is around
20 to 23 % The difference of absolute speedups be-
tween both cases is relatively small – suggesting
that sequential hash tables suffer from the same

performance penalties. The biggest difference has
been measured for folly + (51 to 55 % reduced per-
formance). Later we see that the reason for this
is likely that folly + is configured to use only rela-
tively little memory (see Figure 10). When initial-
ized with more memory, its performance gets closer
to the performance of other hash tables using open
addressing.

Performance under Contention Up to this
point, all data sets we looked at contained uni-
formly random keys sampled from the whole key
space. This is not necessarily the case in real world
data sets. For some data sets one keys might ap-
pear many times. In some sets one key might even
dominate the input. Access to this key’s element
can slow down the global progress significantly, es-
pecially if hash table operations use (fine grained)
locking, to protect hash table accesses.

To benchmark the robustness of the compared
hash tables onthese degenerated inputs, we con-
struct the following test setup. Before the execu-
tion, we compute a sequence of skewed keys using
the Zipf distribution described in Section 8.3 (108

keys from the range 1..108). Then the table is filled
with all keys from the same range 1..108.

For the first benchmark we execute an update
operation for each key of the skewed key se-
quence, overwriting its previously stored element
(Figure 4a). These update operations will create

18

contending write accesses to the hash table. Note
that updates perform simple overwrites, i.e., the re-
sulting value of the element is not dependent on the
previous value. The hash table will remain at a con-
stant size for the whole execution, making it easy
to compare different implementations independent
of effects introduced through growing. In the sec-
ond benchmark, we execute find operations instead
of updates, thus creating contending read accesses.

For sequential hash tables, contention on some
elements can have very positive effects. When one
cell is visited repeatedly, its contents will be cached
and future accesses will be faster. The sequential
performance is shown in our figures using a dashed
black line. For concurrent hash tables, contention
has very different effects.

Unsurprisingly, the effects experienced from con-
tention are different between writing and reading
operations. The reason is that multiple threads
can read the same value simultaneously, but only
one thread at a time can change a value (on cur-
rent CPU architecture). Therefore, read accesses
can profit from cache effects – much like a sequen-
tial hash table, while write accesses are hindered by
the contention. This goes so far, that for workloads
with high contention no concurrent hash table can
achieve the performance of a sequential table.

Appart from slowdown because of exclusive write
accesses, there is also the additional problem of
cache invalidation. When a value is repeatedly
changed by different cores of a multi-socket archi-
tecture, then cached copies have to be invalidated
whenever this value is changed. This leads to bad
cache efficiency and also to high traffic on QPI
Links (connections between sockets).

From the update measurement shown in Fig-
ure 4a it is clearly visible, that the serious impact
through contention begins between s = 0.85 and
0.95. Up until that point contention has a positive
effect even on update operations. For a skew be-
tween s = 0.85 and 0.95, about 1 % to 3 % of all
accesses go to the most common element (key k1).
This is exactly the point where 1/p ≈ P (k1), there-
fore, on average there will be one thread changing
the value of k1.

It is noteworthy that the usGrow version of
our hash table is more efficient when updating than
the uaGrow version. The reason for this is that
usGrow uses 128 bit CAS operations to update el-
ements while simultaneously making sure, that the

marked bit of the element has not been set before
the change. This can be avoided using the usGrow

variant by specializing the update method to use
atomic operations on the data part of the element.
This is possible because updates and grow routines
cannot overlap in this variant.

The plot in Figure 4b shows that concurrent hash
tables achieve performance improvements similar
to sequential ones when repeatedly accessing the
same elements. Our hash table can even increase
its speedups over uniform access patterns, the high-
est speedup of uaGrow is 17.9 at s = 1.25. Since
the speedup is this high, we also included scaled
plots showing 5× and 10× the throughput of the se-
quential variant. Unfortunately, our growable vari-
ants cannot improve as much, with contention as
the non-growing folklore and phase concurrent �
tables (both 23.2 at s = 1.25). This is probably
due to minor overheads compared to the folklore

implementation which get pronounced since the
overall function execution time is reduced.

Overall, we see that our folklore implementa-
tion which our growable variants are based upon,
outperforms all other competitors. Our growable
variant usGrow is consistently close to folklore’s
performance – outperforming all hash tables that
have the ability to grow.

Aggregation – a common Use Case Hash ta-
bles are often used for key aggregation. The idea
is that all data elements connected to the same
key are aggregated using a commutative and as-
sociative function. For our test, we implemented
a simple key count program. To implement the
key count routine with a concurrent hash table,
an insert-or-increment function is necessary. For
some tables, we were not able to implement an up-
date function, where the resulting value depends
on the previous value, within the given interface
(junction tables, rcu tables, phase concurrent, hop-
scotch, and leahash). This was mainly a problem of
the used interfaces, therefore, it could probably be
solved by reimplementing a more functional inter-
face. For our table this can easily be achieved with
the insertOrUpdate interface using an increment
as update function (see Section 4).

The aggregation benchmark uses the same Zipf
key distribution as the other contention tests. For
108 skewed keys, the insert-or-increment function

19

0.25 0.50 0.75 1.00 1.25 1.50 2.00
contention parameter s

0

100

200

300

400

500

600

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(a) Update (Overwrite)

0.25 0.50 0.75 1.00 1.25 1.50 2.00
contention parameter s

0k

1k

2k

3k

4k

5k

6k

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(b) Successful Finds (1×, 5× and 10× seq.)

Figure 4: Throughput executing 108 operations using a varying amount of skew in the key sequence
(all keys were previously inserted; using 48 threads; Legend see Table 1). The sequential performance is
indicated using dashed lines.

is called. Contrary to the previous contention test,
there is no pre-initialization. Therefore, the num-
ber of distinct elements in the hash table is depen-
dent on the contention of the key sequence (given
by s). This makes growable hash tables even more
desirable, because the final size can only be guessed
before the execution.

Like in previous tests, we make two distinct mea-
surements. One with growing (Figure 5a) and one
without (Figure 5b). In the test without growing,
we initialize the table with a size of 108 to ensure
that there is enough room for all keys, even if they
are distinct. We excluded the semi-growing tables
from Figure 5b as approximating the number of
unique keys can be difficult. To set the growing per-
formance into relation, we show some non-growing
tests. Growing actually costs less in the presence
of contentious updates, because the resulting table
will be smaller than without contention, therefore,
fewer growing steps can be amortized over the same
number of operations.

The result of this measurement is clearly related
to the result of the contentious overwrite test shown
in Figure 4a. However, changing a value by incre-
ment has some slight differences to overwriting it,
since the updated value of an insert-or-increment is
dependent on its previous value. In the best case,
this increment can be implemented using an atomic
fetch-and-add operation (i.e. usGrow , folklore ,

and folly +). However this is not possible for in
all hash tables, sometimes dependent updates are
implemented using a read-modify-CAS cycle (i.e.
uaGrow) or fine grained locking (i.e. tbb hash
map F or cuckoo).

Until s = 0.85, uaGrow seems to be the more
efficient option, since it has an increased writing
performance and the update cycle will be success-
ful most of the time. From that point on, usGrow
is clearly more efficient because fetch-and-add be-
haves better under contention. For highly skewed
workloads, it comes really close to the performance
of our folklore implementation which again per-
forms the best out of all implementations.

Deletion Tests As described in Section 5.4, we
use migration, not only to implement an efficiently
growing hash table, but also to clean up the ta-
ble after deletions. This way all tombstones are
removed, and thus freed cells are reclaimed. But
how does this fare against different ways of remov-
ing elements. This is what we investigate with the
following benchmark.

The test starts on a prefilled table (107 elements)
and consists of 108 insertions – each immediately
followed by a deletion. Therefore, the table remains
at approximately the same size throughout the test
(±p elements). All keys used in the test are gener-
ated before the benchmark execution (uniform dis-

20

0.25 0.50 0.75 1.00 1.25 1.50 2.00
contention parameter s

0
50

100
150
200
250
300
350
400
450

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(a) Aggregation using a pre-initialized size of 108 (⇒
size = |operations|).

0.25 0.50 0.75 1.00 1.25 1.50 2.00
contention parameter s

0

50

100

150

200

250

300

350

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(b) Aggregation with growing. Dashed plots (and)
indicate non-growing performance.

Figure 5: Throughput of an aggregation executing 108 insert-or-increment operations using skewed
key distributions (using 48 threads; Legend see Table 1). The dashed black line indicates sequential
performance. Some tables are not shown because their interface does not support insert-or-increment in
a convenient way.

tribution). As described in Section 8.3, all keys
are stored in one array. Each insert uses an entry
from this array distributed in blocks of 4096 from
the beginning. The corresponding deletion uses the
key that is 107 elements prior to the corresponding
insert. The keys stored within the hash table are
contained in a sliding window of the key array.

We constructed the test to keep a constant ta-
ble size, because this allows us to test non-growing
tables without significantly overestimating the nec-
essary capacity. All hash tables are initialized
with 1.5 × 107 capacity, therefore, it is necessary
to reclaim deleted cells to successfully execute the
benchmark.

The measurements shown in Figure 6 indicate,
that only the phase concurrent hash table � by
Shun and Blelloch [34] can outperform our table.
The reason for this is pretty simple. Their table
performs linear probing comparable to our tech-
nique, but it does not use any tombstones for dele-
tion. Instead, deleted cells are reclaimed immedi-
ately (possibly moving elements). This is only pos-
sible, because the table does not allow concurrent
lookup operations, thus, removing the possibility
for the so called ABA problem (a lookup of an ele-
ment while it is deleted returns wrong data, if there
is also a concurrent insert into the newly freed cell).

From all remaining hash tables that support fully
concurrent access, ours is clearly the fastest, even
though there are other hash tables like cuckoo

and hopscotch N that also get around full table
migrations.

Mixed Insertions and Finds It can be argued
that some of our tests are just micro-benchmarks
which are not representative of real world work-
loads that often mix insertions with lookups. To
address these concerns, we want to show that mixed
function workloads (i. e. combined find and insert
workloads) behave similarly.

As in previous tests, we generate a key sequence
for our test. Each key of this sequence is used for
an insert or a find operation. Overall, we generate
108 keys for our benchmark. For each key, insert
or find is chosen at random according to the write
percentage wp. In addition to the keys used in the
benchmark, we generate a small number of keys
(pre = 8192 ·p = 2 blocks ·p) that are inserted prior
to the benchmark. This ensures that the table is
not empty and there are keys that can be found
with lookups.

The keys used for insertions are drawn uniformly
from the key space. Our goal for find keys is to pre-
construct the find keys in a way that makes find op-
erations successful and is also fair to all data struc-
tures. If all find operations were executed to the
pre-inserted keys then linear probing hash tables
would have an unfair advantage, because elements
that are inserted early have very short probing dis-

21

12 24 48
number of threads p

0

20

40

60

80

100

120

140

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

Figure 6: Throughput in a test using deletion.
Some tables have been left out of this test, because
they do not support deletion with memory reclama-
tion (Legend see Table 1). By alternating between
insertions and deletions, we keep the number of el-
ements in the table at approximately 107 elements.
For the purpose of computing the throughput, 108

such alternations are executed, each counting as
one operation (1 Op = insert + delete).

tances, while later elements can take much longer
to find. Therefore any find will look for a random
key, that is inserted at least 8192 ·p elements earlier
in the key sequence. This key is usually already in
the table when the find operation is called. Look-
ing for a random inserted element is representative
of the overall distribution of probing distances in
the table.

Notice that this method does not strictly en-
sure that all search keys are already inserted. In
our practical tests we found, that the number of
keys which were not found was negligible for per-
formance purposes (usually below 1000).

Comparable to previous tests, we test all hash
tables with and without the necessity to grow the
table. In the non-growing test the size of each table
is pre-initialized to be c = pre+ (wp · 108). In the
growing tests semi-growing hash tables are initial-
ized with half that capacity.

Similar to previous tests it, is obvious that our
non-growing linear probing hash table folklore
outperforms most other tables especially on find-
heavy workloads. Overall, our hash tables behave
similar to the sequential solution with a constant
speedup around a factor of 10×. Interestingly, the
running time does not seem to be a linear function
(over wp). Instead, performance decreases super-

linearly. One reason for this could be that for find-
heavy workloads, the table remains relatively small
for most of the execution. Therefore, cache ef-
fects and similar influences could play a role, since
lookups only look for a small sample of elements
that is already in the table.

Using Dedicated Growing Threads In Sec-
tion 5.3.2 and 7 we describe the possibility, to use
a pool of dedicated migration threads which grow
the table cooperatively. Usually the performance of
this method does not differ greatly from the perfor-
mance of the enslavement variant used throughout
our testing. This can be seen in Figure 8. There-
fore, we omitted these variants from most plots.

In Figure 8a one can clearly see the similarities
between the the variants using a thread pool and
their counterparts (uaGrow ∼= paGrow and us-
Grow ∼= psGrow). The biggest consistent dif-
ference we found between the two options has been
measured during the deletion benchmark in Fig-
ure 8b. During this benchmark, insert and delete
are called alternately. This keeps the actual table
size constant. For our implementation, this means
that there are frequent migrations on a relatively
small table size. This is difficult when using ad-
ditional migration threads, since the threads have
to be awoken regularly, introducing some operating
system overhead (scheduling and notification).

Using Intel TSX Technology As described in
Section 6, concurrent linear probing hash tables can
be implemented using Intel TSX technology to re-
duce the number of atomic operations. Figure 9
shows some of the results using this approach.

The implementation used in these tests changes
only the operations within our bounded hash table
(folklore) to use TSX-transactions. Atomic fallback
implementations are used, when a transaction fails.
We also instantiated our growing hash table vari-
ants, to use the TSX-optimized table as underlying
hash table implementation.

We tested this variant with a uniform insert
workload (see “Insert Performance”), because the
lookup implementation does not actually need a
transaction. We also show the non-TSX variant,
using dashed lines, to indicate the relative perfor-
mance benefits.

In Figure 9a one can clearly see that TSX-

22

0 10 20 30 40 50 60 70 80
percentage of insertions wp in [%]

0

100

200

300

400

500

600

700

800

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(a) Mixed insertions and finds on a pre-initialized table
(wp · 108 + pre).

0 10 20 30 40 50 60 70 80
percentage of Insertions wp in [%]

0

100

200

300

400

500

600

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]
(b) Mixed insertions and finds on a growing table.

Figure 7: Executing 108 operations mixed between insertions and finds (using 48 threads; Legend see
Table 1). Dashed lines indicate sequential performance (1× and 10×). Find keys are generated in a fair
way, that ensures that most find operations are successful.

optimized hash tables offer improved performance
as long, as growing is not necessary. Unfortunately,
Figure 9b paints a different picture for instances
where growing is necessary. While TSX can be used
to improve the usGrow variant of our hash table
especially when using hyperthreading, it offers no
performance benefits in the uaGrow variant. The
reason for this is that the running time in these
measurements is dominated by the table migration
which is not optimized for TSX-transactions.

In theory, the migration algorithm can make use
of transactions similarly to single operations. It
would be interesting whether an optimized migra-
tion could further improve the growing instances of
this test. We have not implemented such a migra-
tion, as it introduces the need for some complex
parameter optimizations – partitioning the migra-
tion into smaller blocks or executing each block-
migration into multiple transactions. We estimate
that a well optimized TSX-migration can gain per-
formance increases on the order of those witnessed
in the non-growing case.

Memory Consumption One aspect of paral-
lel hash tables, that we did not talk about until
now is memory consumption. Overall, a low mem-
ory consumption is preferable, but having less cells
means that there will be more hash collisions. This

leads to longer running times especially for non-
successful find operations.

Most hash tables do not allow the user to set a
specific table size directly. Instead they are initial-
ized using the expected number of elements. We
use this mechanism to create tables of different
sizes. Using these different hash tables with differ-
ent sizes, we find out how well any one hash table
scales when it is given more memory. This is inter-
esting for applications where the hash table speed is
more important than its memory footprint (lookups
to a small or medium sized hash table within an ap-
plication’s inner loop).

The values presented in the follow-
ing plot are aquired by initializing the
hash tables with different table capacities
(4096, 0.5×, 1.0×, 1.25×, 1.5×, 2.0×, 2.5×, 3.0×108

expected elements; semi- and non-growing hash
tables start at 0.5× and 1× respectively). During
the test, the memory consumption is measured
by logging the size of each allocation, and deal-
location during the execution (done by replacing
allocation methods, e.g. malloc and memalign).
Measurements with growing (initial capacity
< 108) are marked with dashed lines. Afterwards
the table is filled with 108 elements. The plotted
measurements show the throughput that can be
achieved when doing 108 unsuccessful lookups on

23

1 4 8 12 16 24 36 48
number of threads p

0

20

40

60

80

100

120

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0
1
2
3
4
5
6
7
8
9
10

absolute speedup

(a) Insertions into Growing Table.

12 24 48
number of threads p

0

10

20

30

40

50

60

70

80

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(b) Alternating Insertions and Deletions.

Figure 8: Comparison between our regular implementation and the variant using a dedicated migration
thread pool (dashed lines mark variants enslaving user-threads; Legend see Table 1).

1 4 8 12 16 24 36 48
number of threads p

0

50

100

150

200

250

300

350

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0
1
2
3
4
5
6
7
8
9
10
11

absolute speedup

(a) Without growing (pre-initialized).

1 4 8 12 16 24 36 48
number of threads p

0

20

40

60

80

100

120

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0
1
2
3
4
5
6
7
8
9
10

absolute speedup

(b) Insertions with growing.

Figure 9: Comparison between our regular implementation and the variant using TSX-transactions in
place of atomics (dashed lines are regular variants without TSX).

the preinitialized table. This throughput is plotted
over the amount of allocated memory each hash
table used.

The minimum size for any hash table should be
around 1.53 GiB ≈ 108 · (8 B + 8 B) (Key and Value
each have 8 B). Our hash table uses a number of
cells equal to the smallest power of 2 that is at
least two times as large as the expected number
of elements. In this case this means we use 228 ≈
2.7 ·108, therefore, the table will be filled to ≈ 37 %
and use exactly 4GiB. We believe that this memory
usage is reasonable, especially for heavily accessed
tables where the performance is important. This is
supported by our measurements as all hash tables
that use less memory have bad performance.

Most hash tables round the number of cells in

some convenient way. Therefore, there are of-
ten multiple measurement points using the same
amount of memory. As expected, using the same
amount of memory will usually achieve a compa-
rable performance. Out of the tested hash tables
only the folly + hash table grows linearly with the
expected final size. It is also the hash table, that
gains the most performance by increasing its mem-
ory. This makes a lot of sense considering that it
uses linear probing and is by default configured to
use more than 50 % of its cells.

The plot also shows that some hash tables do not
gain any performance benefits from the increased
size. Most notable for this are cuckoo , all varia-
tions of junction and the urcu hash tables ×.
The TBB hash tables F and F seem to use a con-

24

stant amount of memory, independently from the
preinitialized number of elements. This might be
a measurement error, caused by the fact that they
use different memory allocation methods (not not
logged in our test).

There are also some things that can be learned
about growing hash tables from this plot. Our mi-
gration technique ensures, that our hash table has
the exact same size when growing is required as
when it is preinitialized using the same number
of elements. Therefore, lookup operations on the
grown table take the same time as they would on
a preinitialized table. This is not true, for many of
our competitors. All Junction tables and RCU pro-
duce smaller tables when growing was used, they
also suffer from a minor slowdown, when using
lookups on these smaller tables. Using Folly is even
worse, it produces a bigger table – when growing is
needed – and still suffers from significantly worse
performance.

Scalability on a 4-Socket Machine Bad per-
formance on multi-socket workloads is recurring
theme throughout our testing. This is especially
true for some of our competitors where 2-Socket
running times are often worse than 1-Socket run-
ning times. To further expand the understanding
of this problem we made some tests on the 4-Socket
machine described in Section 8.2.

The used test instances are generated similar
to the insert/find tests described in the beginning
of this section (108 executed operations with uni-
formly random keys). The results can be seen in
Figure 11a (Insertions) and Figure 11b (unsuccess-
ful finds).

Our competitor’s hash tables seem to be a lot
more effective when using only one of the four sock-
ets (compared to one of two sockets on the two-
socket machine). This is especially true for the
Lookup workload where the junction hash tables
start out more efficient than our implementation.
However this effect seems to invert once multiple
sockets are used.

In the test using lookups, there seems to be a per-
formance problem using our hash table. It seems to
scale sub-optimally on one socket. On two sockets
however, the hash table seems to scale significantly
better.

Overall the four-socket machine reconfirms our

observations. None of our competitors scale well
when a growing hash table is used over multiple
sockets. On the contrary, using multiple sockets
will generally reduce the throughput. This is not
the case for our hash table. The efficiency is re-
duced when using more then two sockets but the
absolute throughput at least remains stable.

8.5 The Price of Generality

Having looked at many detailed measurements, let
us now try to get a bigger picture by asking which
hash table performs well for specific requirements
and how much performance has to be sacrificed for
additional flexibility. This will give us an intuition,
where performance is sacrificed on our way to a
fully general hash table. Seeing that all tested hash
tables fail to scale linearly on multi-socket machines
we try to answer the question if concurrent hash
tables are worth their overhead at all.

At the most restricted level – no grow-
ing/deletions and word sized key and value types
– we have shown that common linear probing hash
tables offer the best performance (over a number of
operations). Our implementation of this “folklore”
solution outperforms different approaches consis-
tently, and performs at least as good as other simi-
lar implementations (i.e. the phase concurrent ap-
proach). We also showed, that this performance
can be improved by using Intel TSX technology.
Furthermore, we have shown that our approach to
growing hash tables does not affect the performance
on known input sizes significantly (preinitialized ta-
ble to the correct size).

Sticking to fixed data types but allowing dynamic
growing, the best data structures are our growing
variants ({ua,us,pa,ps}Grow). The difference in
our measurements between pool growing (pxGrow)
and the corresponding variants with enslavement
(uxGrow) are not very big. Growing with marking
performs better than globally synchronized grow-
ing except for update heavy workloads. The price
of growing compared to a fixed size is less than
a factor of two for insertions and updates (aggre-
gation) and negligible for find-operations. More-
over, this slowdown is comparable to the slowdown
experienced in sequential hash tables when grow-
ing is necessary. None of the other data structures
that support growing comes even close to our data
structures. For insertions and updates we are an or-

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
size in GiB

0

100

200

300

400

500

600

700

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

(a) Performance of unsuccessful
find operations over the size of
the data structure.

Figure 10: For these tests 108 keys are searched (unsuccessfully) on a hash table containing 108 elements.
Prior to the setup of the benchmark, the tables were initialized with different sizes (there can be many
points on one (x-)coordinate) (Legend see Table 1).

1 4 8 16 24 32 64
number of threads p

0

10

20

30

40

50

60

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0
1
2
3
4
5
6
7

absolute speedup

(a) Insertions into a growing hash table.

1 4 8 16 24 32 64
number of threads p

0

50

100

150

200

250

th
ro

ug
hp

ut
 in

 [M
O

ps
/s

]

0

3

6

9

12

15

18

21

absolute speedup

(b) Unsuccessful Lookups into the filled table.

Figure 11: Basic tests made on our 4-Socket machine, consisting of four eight core E5-4640 processors
with 2.4 GHz each (codenamed Sandybridge) and 512 GB main memory (Legend see Table 1).

der of magnitude faster then many of our competi-
tors. Furthermore, only one competitor achieves
speedups above one when inserting into a growing
table (junction grampa).

Among the tested hash tables, only TBB,
Cuckoo, and RCU have the ability to store arbi-
trary key-/value-type combinations. Therefore, us-
ing arbitrary data objects with one of these hash
tables can be considered to cost at least an order
of magnitude in performance (TBB[arbitrary] ≤
TBB[word sized] ≈ 1/10 · xyGrow). In our opin-
ion, this restricts the use of these data structures to
situations where hash table accesses are not a com-
putational bottleneck. For more demanding appli-

cations the only way to go is to get rid of the general
data types or the need for concurrent hash tables
altogether. We believe that the generalizations we
have outlined in Section 5.7 will be able to close
this gap. Actual implementations and experiments
are therefore interesting future work.

Finally let us consider the situation where we
need general data types but no growing. Again, all
the competitors are an order of magnitude slower
for insertion than our bounded hash tables. The
single exception is cuckoo, which is only five times
slower for insertion and six times slower for suc-
cessful reads. However, it severely suffers from con-
tention being an almost record breaking factor of

26

5 600 slower under find-operations with contention.
Again, it seems that better data structures should
be possible.

9 Conclusion

We demonstrate that a bounded linear probing
hash table specialized to pairs of machine words
has much higher performance than currently avail-
able general purpose hash tables like Intel TBB,
Leahash, or RCU based implementations. This
is not surprising from a qualitative point of view
given previous publications [36, 14, 34]. However,
we found it surprising how big the differences can
be in particular in the presence of contention. For
example, the simple decision to require a lock for
reading can decrease performance by almost four
orders of magnitude.

Perhaps our main contribution is to show that
integrating an adaptive growing mechanism into
that data structure has only a moderate perfor-
mance penalty. Furthermore, the used migration
algorithm can also be used to implement deletions
in a way that reclaims freed memory. We also ex-
plain how to further generalize the data structure
to allowing more general data types.

The next logical steps are to implement these
further generalizations efficiently and to integrate
them into an easy to use library that hides most of
the variants from the user, e.g., using programming
techniques like partial template specialization.

Further directions of research could be to look
for a practical growable lock-free hash table.

Acknowledgments We would like to thank
Markus Armbruster, Ingo Müller, and Julian Shun
for fruitful discussions.

References

[1] Lada A. Adamic and Bernardo A. Huberman.
Zipf’s law and the internet. Glottometrics,
3(1):143–150, 2002.

[2] Robert L. Axtell. Zipf distribution of us firm
sizes. Science, 293(5536):1818–1820, 2001.

[3] Holger Bast, Stefan Funke, Domagoj Matije-
vic, Peter Sanders, and Dominink Schultes. In

transit to constant time shortest-path queries
in road networks. In Proceedings of the Meet-
ing on Algorithm Engineering & Expermi-
ments (ALENEX), pages 46–59, 2007.

[4] Lee Breslau, Pei Cao, Li Fan, Graham Phillips,
and Scott Shenker. Web caching and zipf-
like distributions: evidence and implications.
In INFOCOM ’99. Eighteenth Annual Joint
Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol-
ume 1, pages 126–134 vol.1, Mar 1999.

[5] Shimin Chen, Anastassia Ailamaki, Phillip B
Gibbons, and Todd C Mowry. Improving hash
join performance through prefetching. ACM
Transactions on Database Systems (TODS),
32(3):17, 2007.

[6] Roman Dementiev, Lutz Kettner, Jens Mehn-
ert, and Peter Sanders. Engineering a sorted
list data structure for 32 bit keys. In 6th
Workshop on Algorithm Engineering & Exper-
iments, pages 142–151, New Orleans, 2004.

[7] Martin Dietzfelbinger, Torben Hagerup, Jyrki
Katajainen, and Martti Penttonen. A reli-
able randomized algorithm for the closest-pair
problem. Journal of Algorithms, 25(1):19–51,
1997.

[8] Martin Dietzfelbinger and Christoph Wei-
dling. Balanced allocation and dictionar-
ies with tightly packed constant size bins.
Theoretical Computer Science, 380(1–2):47–
68, 2007.

[9] Facebook. folly version 57:0. https://

github.com/facebook/folly, 2016.

[10] Hui Gao, Jan Friso Groote, and Wim H.
Hesselink. Lock-free dynamic hash tables
with open addressing. Distributed Computing,
18(1), 2005.

[11] Torben Hagerup and Christine Rüb. Optimal
merging and sorting on the EREW-PRAM.
Information Processing Letters, 33:181–185,
1989.

[12] Maurice Herlihy and Nir Shavit. The Art of
Multiprocessor Programming, Revised Reprint.
Elsevier, 2012.

27

https://github.com/facebook/folly
https://github.com/facebook/folly

[13] Maurice Herlihy, Nir Shavit, and Moran
Tzafrir. Hopscotch hashing. In Distributed
Computing, pages 350–364. Springer, 2008.

[14] Euihyeok Kim and Min-Soo Kim. Performance
analysis of cache-conscious hashing techniques
for multi-core CPUs. International Journal of
Control & Automation (IJCA), 6(2), 2013.

[15] Donald E. Knuth. The Art of Computer
Programming—Sorting and Searching, vol-
ume 3. Addison Wesley, 2nd edition, 1998.

[16] Doug Lea. Hash table util. concurrent.
concurrenthashmap, revision 1.3. JSR-166,
the proposed Java Concurrency Package.
http://gee. cs. oswego. edu/cgi-bin/viewcvs.
cgi/jsr166/src/main/java/util/concurrent,
2003.

[17] Xiaozhou Li, David G. Andersen, Michael
Kaminsky, and Michael J. Freedman. Al-
gorithmic improvements for fast concurrent
cuckoo hashing. In Proceedings of the Ninth
European Conference on Computer Systems,
EuroSys ’14. ACM, 2014.

[18] Tobias Maier, Peter Sanders, and Roman
Dementiev. Concurrent hash tables: Fast
and general?(!). In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP
’16, pages 34:1–34:2, New York, NY, USA,
2016. ACM.

[19] Tobias Maier, Peter Sanders, and Roman De-
mentiev. Concurrent hash tables: Fast and
general?(!). CoRR, abs/1601.04017, 2016.

[20] Makoto Matsumoto and Takuji Nishimura.
Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random
number generator. ACMTMCS: ACM
Transactions on Modeling and Computer
Simulation, 8:3–30, 1998. http://www.math.

keio.ac.jp/~matumoto/emt.html.

[21] Edward M. McCreight. A space-economical
suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, April 1976.

[22] Paul E. McKenney and John D. Slingwine.
Read-copy update: Using execution history to

solve concurrency problems. Parallel and Dis-
tributed Computing and Systems, pages 509–
518, 1998.

[23] Kurt Mehlhorn and Peter Sanders. Algorithms
and Data Structures — The Basic Toolbox.
Springer, 2008.

[24] Scott Meyers. Effective C++: 55 specific ways
to improve your programs and designs. Pear-
son Education, 2005.

[25] Ingo Müller, Peter Sanders, Arnaud Lacurie,
Wolfgang Lehner, and Franz Färber. Cache-
efficient aggregation: Hashing is sorting. In
Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data,
pages 1123–1136. ACM, 2015.

[26] Rajesh Nishtala, Hans Fugal, Steven Grimm,
Marc Kwiatkowski, Herman Lee, Harry C Li,
Ryan McElroy, Mike Paleczny, Daniel Peek,
Paul Saab, et al. Scaling memcache at face-
book. In 10th USENIX Symposium on Net-
worked Systems Design and Implementation
(NSDI), volume 13, pages 385–398, 2013.

[27] Philippe Oechslin. Making a faster cryptana-
lytic time-memory trade-off. In Dan Boneh,
editor, Advances in Cryptology - CRYPTO
2003: 23rd Annual International Cryptology
Conference, pages 617–630, Berlin, Heidel-
berg, 2003. Springer Berlin Heidelberg.

[28] Jong Soo Park, Ming-Syan Chen, and Philip S.
Yu. An effective hash-based algorithm for min-
ing association rules. In ACM SIGMOD Con-
ference on Management of Data, pages 175–
186, 1995.

[29] Mathieu Desnoyers Paul E. McKenney and Lai
Jiangshan. LWN: URCU-protected hash ta-
bles. http://lwn.net/Articles/573431/, 2013.

[30] Chuck Pheatt. Intel R©; Threading Building
Blocks. J. Comput. Sci. Coll., 23(4):298–298,
April 2008.

[31] Jeff Preshing. Junction. https://github.

com/preshing/junction, 2016.

[32] Jeff Preshing. New concurrent hash maps
for c++. http://preshing.com/20160201/

28

http://gee
http://www.math.keio.ac.jp/~matumoto/emt.html
http://www.math.keio.ac.jp/~matumoto/emt.html
http://lwn.net/Articles/573431/
https://github.com/preshing/junction
https://github.com/preshing/junction
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/

new-concurrent-hash-maps-for-cpp/,
2016.

[33] Ori Shalev and Nir Shavit. Split-ordered lists:
Lock-free extensible hash tables. J. ACM,
53(3):379–405, May 2006.

[34] Julian Shun and Guy E. Blelloch. Phase-
concurrent hash tables for determinism. In
26th ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA), pages 96–
107. ACM, 2014.

[35] Julian Shun, Guy E. Blelloch, Jeremy T.
Fineman, Phillip B. Gibbons, Aapo Kyrola,
Harsha Vardhan Simhadri, and Kanat Tang-
wongsan. Brief announcement: the problem
based benchmark suite. In 24th ACM Sympo-
sium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 68–70. ACM, 2012.

[36] Alex Stivala, Peter J. Stuckey, Maria Garcia
de la Banda, Manuel Hermenegildo, and An-
thony Wirth. Lock-free parallel dynamic pro-
gramming. Journal of Parallel and Distributed
Computing, 70(8), 2010.

[37] Tony Stornetta and Forrest Brewer. Imple-
mentation of an efficient parallel bdd package.
In 33rd Design Automation Conference, pages
641–644. ACM, 1996.

29

http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Concurrent Hash Table Interface and Folklore Implementation
	5 Generalizations and Extensions
	5.1 Storing Thread-Local Data
	5.2 Approximating the Size
	5.3 Table Migration
	5.3.1 Eliminating Unnecessary Contention from the Migration
	5.3.2 Hiding the Migration from the Underlying Application

	5.4 Deletions
	5.5 Bulk Operations
	5.6 Restoring the Full Key Space
	5.7 Complex Key and Value Types

	6 Using Hardware Memory Transactions
	7 Implementation Details
	8 Experimental Evaluation
	8.1 Competitors
	8.1.1 Efficiently Growing Hash Tables
	8.1.2 Hash Tables with Limited Growing Capabilities
	8.1.3 Non-Growing Hash Tables
	8.1.4 Sequential Variants
	8.1.5 Color/Marker Choice

	8.2 Hardware Overview
	8.3 Test Methodology
	8.4 Experiments
	8.5 The Price of Generality

	9 Conclusion

