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Abstract

Irregular applications that involve indirect memory accesses
were traditionally considered unsuitable for SIMD process-
ing. Though some progress has been made in recent years,
the existing approaches require either expensive data reor-
ganization or favorable input distribution to deliver good
performance. In this work, we propose a novel vectoriza-
tion approach called in-vector reduction that can efficiently
accelerate a class of associative irregular applications. This
approach exploits associativity in the irregular reductions
to resolve the data conflicts within SIMD vectors. We im-
plement in-vector reduction with the new conflict detecting
instructions that are supported in Intel AVX-512 instruc-
tion set and provide a programming interface to facilitate
the vectorization of such associative irregular applications.
Compared with previous approaches, in-vector reduction
eliminates a large part of the overhead of data reorganiza-
tion and achieves high SIMD utilization even under adverse
input distributions. The evaluation results show that our
approach is efficient in vectorizing a diverse set of irregular
applications, including graph algorithms, particle simula-
tion codes, and hash-based aggregation. Our vectorization
achieves 1.5x to 5.5x speedups over the original sequential
codes on a single core of Intel Xeon Phi and outperforms a
competing approach, conflict-masking based vectorization,
by 1.4x to 11.8x.

CCSConcepts •Computer systems organization→ Sin-
gle instruction, multiple data; • Software and its engi-
neering→Massively parallel systems;
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1 Introduction

SIMD or fine-grain parallelism has been a common feature in
popular processors for many years. Because of the require-
ments of aligned and continuous memory accesses, early
SIMD units were considered suitable only for accelerating
regular applications such as dense matrix multiplication and
pixel-wise image processing [4, 13]. As wider SIMD vectors
and more flexible SIMD instructions (e.g., gather/scatter for
indirect memory accesses) are being incorporated into pro-
cessors in recent years, there has been a growing interest
in exploiting SIMD features to accelerate irregular applica-
tions such as graph algorithms, particle simulation codes,
and certain types of database operations [1, 11, 17, 18, 25].
In this work, we focus on exploiting the recent SIMD

architectural advances to accelerate a class of irregular ap-
plications that involve associative irregular reductions. An
example of such applications is shown in Figure 1, which
is a code snippet of the inner loop of PageRank. Array n1
and n2 store the source and sink indices of all the edges in a
graph. In each iteration, the rank of a vertex is divided and
distributed to all of its neighbors. While the division of rank
can be safely conducted in SIMD, the summation is an irreg-
ular reduction. Because multiple SIMD lanes may write to
the same position in array sum, the conflicting updates have
to be conducted one-by-one to ensure correctness, which
will impede the vectorization performance. Similar to the
example of PageRank, a broad class of irregular applications
– including wave-frontier based graph algorithms [5, 11] and
particle simulations code [6] – have irregular reductions at
the core.
There are two existing approaches for vectorizing irreg-

ular reductions in existing works: inspector/executor and
conflict-masking. Inspector/executor, as the name suggests,
comprises two phases. The first or the inspector phase exam-
ines the memory access patterns of an irregular reduction
and reorganizes the data layout to ensure that no conflicts
will occur during SIMD processing. Then, the executor phase
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// iterate over all edges

for(int j=0;j<nedges;j++) {

// obtain vertex indices 

int nx = n1[j];

int ny = n2[j];

// add up rank values

sum[ny] += rank[nx] / nneighbor[nx];}

Figure 1. A code snippet of the inner loop of PageRank

performs the computations safely in SIMD. Applied to the
PageRank example, the edges are first reordered to ensure
that no 16 consecutive entries of n2 have identical values
(assuming the SIMD vector has 16 lanes). Then, the loop is
vectorized as DOALL with the assurance that no conflict-
ing writes to sum will occur. An example and realization of
inspector/executor is the tiling-and-grouping technique pro-
posed by Chen et al. [1, 11]. They tile the edges in a graph
to improve data locality and group the edges in each tile
to remove data conflicts for SIMD processing. While their
method is effective in resolving data conflicts, the overhead
of data reorganization is simply assumed to be amortizable
over the iterations.
Another approach to handling the data conflicts among

SIMD lanes is conflict-masking. Instead of resolving the data
conflicts by reordering the input data, conflict-masking iden-
tifies the non-conflicting lanes in SIMD vectors at runtime
and only writes these non-conflicting lanes in each round
of the execution. As an example, Polychroniou et al. [18]
utilize SIMD features to accelerate building of a hash table.
They first check if there are any conflicts among the multiple
insertions by a gather-after-scatter technique, and then only
write the key/value pairs on the non-conflicting lanes. The
conflicting lanes are masked as invalid during a particular
iteration and deferred to the next round of processing. To
facilitate conflict-masking, a conflict detection instruction
(vpconflict) has been even added in the new Intel AVX-512
instruction set [23]. However, the key to the performance
of conflict-masking is not the conflict detection itself but
the SIMD utilization, which is determined by the input dis-
tribution. In the worst case, when all (or most) of the lanes
in a SIMD vector are writing to a single memory location,
conflict-masking approach is (almost) the same as sequential
execution because the lanes have to be processed one-by-
one.

In this paper, we propose an in-vector reduction technique
that can efficiently vectorize a class of associative irregular
applications. The idea is that since the order of reduction
does not affect the correctness (due to associativity), we can
first perform a partial reduction within a SIMD vector, and
then write the non-conflicting lanes that hold the partial
reduction results safely to the main memory. We present
an efficient implementation of in-vector reduction by ex-
ploiting the conflict detection instruction (vpconflict) in the
Intel AVX-512 instruction set. Our approach greatly reduces

// iterate over all active edges
for(int j=0;j<active_vertices.size();j++) {

// obtain vertex indices 

int nx = n1[j];
int ny = n2[j];

float dx = dis[nx];
float w = weight[j];

// relax distance of ny

if(dis_new[ny] > dx + w) {
dis_new[ny] = dx + w;

active_vertices.add(ny);}}

Figure 2. The inner loop of Wave-frontier SSSP

the overhead of data reorganization compared with inspec-
tor/executor approach, and ensures high SIMD utilization
even under adverse input distributions (unlike the conflict-
masking approach).

We evaluate the efficiency of in-vector reduction in differ-
ent irregular applications including PageRank, wave-frontier
graph algorithms, Molecular Dynamics and Hash-based ag-
gregation, on a single core of Intel Xeon Phi Knight Land-
ing (KNL) processor. The results show that our approach
eliminates the overhead of data reorganization while keep-
ing/improving the the speedups by SIMD, and it outperforms
conflict-masking on these irregular applications by 1.4x to
11.8x.

2 Background

This section provides background on recent SIMD archi-
tectural advances, associative irregular applications, and a
commonly used technique for resolving data conflicts in
SIMD processing – conflict-masking.

2.1 Recent SIMD Architectural Advances

The methods we present in this paper are based on the AVX-
512 instruction set proposed by Intel in July 2013. The in-
struction set is currently supported in Intel Xeon Phi Knights
Landing and Xeon Skylake processors and will be supported
in future Skylake-X Core i7 and i9 models [19].

AVX-512 has a family of gather/scatter primitives for load-
ing/storing data at unaligned and non-continuous memory
addresses. It also supports a mask data type with a set of
mask operations, which allow computations on only a speci-
fied subset of lanes within a SIMD vector. Particularly, there
is a class of mask_gather/mask_scatter instructions that al-
low reading/writing data on specified lanes of a SIMD vector.
These features have enabled a broad class of irregular appli-
cations to benefit from SIMD [1, 10, 20, 21].

More important to our discussion in this paper is a set of
conflict detection instructions (vpconflict) in AVX-512 that
can detect conflicting updates among different lanes of a
SIMD vector. The instruction tests each element in the index
vector for equality with all preceding elements, starting from
the least significant bit. The output is a vector in which the
value of each lane represents whether that lane has conflicts
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idx = v_load(idx_arr);

mtodo = 0xFFFF;

do {

1.  old_val = v_gather(d_arr, idx); 

2.  compute mtodo
3.  msafe = get_conflict_free_subset(idx, 

mtodo);

4.  compute new_val

5.  v_mask_scatter(msafe, d_arr, idx, 

new_val);

6.  update idx based on msafe
} while (idx is valid);

Figure 3. Overview of conflict-masking approach

with other lanes. If the jth bit in the ith lane is set, it indicates
that the ith lane has the same value with the jth lane in the
index vector.

2.2 Associative Irregular Reductions

Chen et al. [1, 11] have recently shown that a broad class
of irregular applications follow a Sparse Matrix View. The
computation in these applications is (iteratively) conducted
on the non-zeros of the sparse matrix, and the processing
of each non-zero involves reading and updating values in
the row and/or column nodes. An important property is that
the updates in these nodes are associative in most cases. An
example is the inner loop of PageRank shown in Figure 1.
The loop iterates over all the edges in a graph that can be
seen as the non-zeros of a sparse matrix. In each iteration,
an edge is processed with memory accesses to array sum,
rank , and nneiдhbor indexed by its row and column number
nx and ny. The updates to array sum is a summation, which
is an associative operation.

2.3 Conflict-masking

Another example is the wave-frontier graph algorithms. Fig-
ure 2 shows the inner loop of wave-frontier SSSP. Here, n1
and n2 are indirection arrays that store the vertex indices for
the two end-points of each edge in a graph. The loop iterates
over all the active edges in the graph. In each iteration, it
first obtains the indices of x and y, the two end points, and
then accesses the current distances of x andy and the weight
of the edges. The program next checks if the distance of y
is greater than the sum of distance of x and the weight of
the edges. If so, the distance of y needs to be updated and
y should be added to the active_vertices list for the next
round of computation. The computation here also follows
the Sparse Matrix View, despite that the non-zeros in the
sparse matrix are the frontier vertices and constantly chang-
ing. The updates to array dis_new is a minimum operation
which is also associative.

In addition to the above two graph algorithms, there are
many other irregular applications that follow the Sparse
Matrix View and involve associative irregular reductions.
Such applications include many wave-frontier based graph
algorithms such as Weakly Connected Component (WCC)

conflictsum:

vny:
0 4 0 5

t[0] t[1] t[2] t[3]

scatter

vt:

=	sum[0]+t[0]+t[2]	=	sum[0]	+	(t[0]+t[2])	

0 1 2 3 4 5

Figure 4. One snapshot of SIMD processing of PageR-
ank in Figure 1: vt is a vector of intermediate results of
rank[nx]/nneiдhbor [nx]

and Single Source Widest Path (SSWP), particle simulation
applications such as Molecular Dynamics and unstructured
grid-based solver like Euler [6], and histogram applications
such as group-by aggregation used in databases and data
analytics.

Conflict-masking is a general solution to the data conflicts
problem in SIMD parallelization, and thus used as a base-
line to compare our approach against. Figure 3 shows the
general workflow of conflict-masking approach on irregu-
lar applications involving conflicting memory access among
SIMD lanes. The program iterates over all the input data.
In each iteration, it first gathers data from the data array
based on the index vector. Next, it determines which lanes
need to be updated, and identifies the conflict-free lanes in
the index vector among those lanes that need to be updated.
The method then computes the new values on these lanes
and writes their values to the conflict-free locations. Finally,
it fills the computed lanes of the index vector and the data
vector with new inputs for next iteration.

The vectorization performance of conflict-masking is de-
pendent on the input distribution. If conflicts arise frequently
in the input, conflict-masking will result in low SIMD uti-
lization and thus poor vectorization performance. Thus, it
can be beneficial to reorder the inputs to reduce data con-
flicts [1]. However, such data reorganization incurs over-
heads, and it is possible that the overhead can outweigh the
SIMD speedups [10].

3 Conflict-free Vectorization of
Associative Irregular Reductions

Instead of using conflict-masking, we propose an in-vector
reduction approach that can resolve data conflicts in SIMD
processing for associative irregular reductions.

3.1 Overview

Consider again the irregular reduction in PageRank (Fig-
ure 1). A straightforward vectorization of the loop involves
processingmultiple edges in the SIMD vector and then updat-
ing multiple values in the sum array simultaneously. Figure 4
shows one step of the SIMD processing and the memory ac-
cesses involved. For simplicity, we use vector width of 4 in
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Algorithm 1 Invector_Reduction (active , vindex , vdata)

1: mret ← v_дet_conf lict_f ree_subset (active,vindex )
2: msaf e ←mret
⊲ Iterates over all conflicting lanes

3: for each unset bit i inmsaf e do
⊲ Get the lanes that have an identical index with

vdata[i]
4: mreduce ← v_compare_eq(vdata,vdata[i])

⊲ Reduce these lanes
5: res ← v_horizontal_reduce (mreduce,vdata)

⊲ Find the first one of these lanes
6: res_pos ←mreduce&(˜mreduce + 1)

⊲ Store the reduction result to that first lane
7: vdata[res_pos]← res

⊲ Invalidate the reduced lanes
8: msaf e ←msaf e |mreduce
9: end for
10: returnmret

this illustration. Here, vny is one of the two index vectors
that store the indices of the end-points of edges. The calcu-
lations involved produce the result vector vt , which needs
to be updated to the array sum based on the indices in vny.
As shown in the figure, a simple scatter of vt will cause
conflict at sum[0] since both t[0] and t[2] need to be added
to sum[0]. However, using associative property, we can sum
up t[0] and t[2] first and add the result to sum[0] without
impacting correctness. More generally, for vectorizing asso-
ciative irregular reductions, we can reduce the values within
the SIMD vector first and scatter the reduced vector into the
main memory. We name this approach in-vector reduction.

Because the reduced vector contains only distinct indices
and is conflict free for writing, in-vector reduction resolves
the data conflicts among SIMD lanes without any data reorga-
nization. This makes the SIMD processing of the computation
part of these associative irregular applications (such as the
computation of vt in the above example) have high utiliza-
tion regardless of the input distribution. The only overhead
incurred is for performing the in-vector reduction. We next
give an efficient implementation of in-vector reduction based
on the new conflict detection instruction from AVX-512 and
discuss its overhead in Section 3.3.

3.2 Implementation of In-vector Reduction

We exploit the conflict detection and horizontal reduction in-
structions in Intel AVX-512 to implement in-vector reduction.
The implementation is shown in Algorithm 1. The algorithm
first obtains the non-conflicting subset of active lanes in the
index vector, which are represented by set bits in amaskmret .
These lanes will be used to store the partial reduction re-
sults from conflicting lanes, and then be updated to memory
without conflict. This step (v_дet_conf lict_f ree_subset ) is
implemented directly with the vpconflict instruction followed
by a comparison with a zero vector. The vpconflict instruc-
tion compares each lane in a vector with all of its preceding

0 1 1 1 2 2 2 2 5 0 1 1 1 5 5 5Index	vector:	

Data	vector:	

1st iteration:	

2nd iteration:	

3rd iteration:	

4th iteration:	

Final	result:

Non-conflicting	 lanes
Lanes	being	merged	

in	each	iteration
Reduced	lanes

Figure 5. A running example of Algorithm 1

lanes from the least significant bit. If a match is found, the
corresponding bit on that lane of the result vector will be
set to 1 (all the bits are initially set to 0). The lanes that
have the value zero in the result vector are the lanes that
have no conflicting lanes ahead of them, and thereby form
a non-conflicting subset. A safe mask that represents these
non-conflicting lanes is then obtained by comparing the re-
sult vector with a zero vector. Next, the algorithm iterates
over the unset bits of the safe mask, i.e., those representing
conflicting lanes. For each unset bit, it compares the value on
that particular lane with other lanes in the data vector and
returns a reduction mask. This mask represents the matching
lanes that have an identical index. Then, using the reduction
mask, the algorithm uses the horizontal reduction instruc-
tion to get the merged result for these matching lanes. This
is followed by calculating the position of the first lane among
these matching lanes (which is the first set bit inmreduce
from the least significant bit) and moving the reduced result
to that first lane in the data vector. Finally, the algorithm
sets the bits in safe mask that are set in reduction mask,
indicating that these reduced lanes are no longer useful.
As a demonstration, Figure 5 shows how Algorithm 1 is

executed on a data vector with an index vector. Suppose all
the SIMD lanes are active. Initially, the non-conflicting lanes
are identified, as shown by the shadowed cells. In the first
iteration, starting from the first conflicting lane, which is
the third lane, the algorithm identifies all the lanes with the
same index and merges them into the first one among them,
which is the second lane. The algorithm then inactivate all
the other merged lanes. In the second iteration, since the
fourth lane has been masked out, the next conflicting lane
is the sixth lane. The algorithm identifies all the lanes that
have an identical index with the sixth lane and merges their
values to the first one, which is the fifth lane. After four
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Algorithm 2 Invector_Reduction2 (active , vindex , vdata)

1: mret1← v_дet_conf lict_f ree_subset (active,vindex )
2: msaf e1←mret1
3: mret2← v_дet_conf lict_f ree_subset (active&˜msaf e1,

vindex )
4: msaf e2←mret2
⊲ Iterates over all conflicting lanes

5: for each unset bit i inmsaf e2 do
⊲ Get the lanes that have an identical index with

vdata[i], excluding those in the second subset
6: mreduce ← v_compare_eq(˜msaf e2,vdata,vdata[i])

⊲ Reduce these lanes
7: res ← v_horizontal_reduce (mreduce,vdata)

⊲ Find the first one of these lanes
8: res_pos ←mreduce&(˜mreduce + 1)

⊲ Store the reduction result to that first lane
9: vdata[res_pos]← res

⊲ Invalidate the reduced lanes
10: msaf e2←msaf e2 |mreduce
11: end for
⊲ Store part of the results into the auxiliary array

12: v_mask_scatter (aux_array,mret2,vindex ,vdata)
13: returnmret1

iterations, all of the conflicting lanes in the data vector have
been processed.

3.3 Overheads

As discussed in Section 3.1, in our approach, the SIMD pro-
cessing of the computation part of associative irregular ap-
plications is assured to have 100% SIMD utilization. Thus,
the key factor to the overall vectorization performance is
the overhead of in-vector reduction. In our implementation,
since we sum up all of the lanes with an identical index in
each iteration, the number of iterations for Algorithm 1 to
process all conflicting lanes is equal to the number of dis-
tinct conflicting lanes, which is no more than half of the
total number of lanes in the vector. According to the ac-
tual implementation, there are about eight instructions in
each iteration of Algorithm 1 and the first line takes two
instructions, so an invocation of Algorithm 1 takes no more
than 2 + 8 × D1 instruction where D1 is the number of dis-
tinct conflicting lanes. We will further evaluate and compare
the overheads of Algorithm 1 experimentally with a similar
functionality (reduce_by_key) provided by an optimized C++
library in Section 4.5.

3.4 Optimization

On an Intel Xeon Phi, a SIMD vector can accommodate 16
integers or single-precision floats. In the worst case, there
are up to eight distinct conflicting lanes in a vector, costing
Algorithm 1 eight iterations to complete an in-vector reduc-
tion, or up to 66 total instructions. This overhead may still

0 1 1 1 2 2 2 2 5 0 1 1 1 5 5 5Index	vector:	

Data	vector:	

1st iteration:	

2nd iteration:	

3rd iteration:	

Final	result:

Non-conflicting	subset1
Lanes	being	merged	

in	each	iteration

Reduced	lanesNon-conflicting	subset2

Figure 6. A running example of Algorithm 2

be high compared with the cost of actual computation. Al-
though the worst case rarely happens in practice, in general,
more iterations in Algorithm 1 incur more overhead.
The overhead of Algorithm 1 can be reduced at the cost

of more memory consumption, as we now describe. The
idea is to have an auxiliary reduction array. Then, instead
of resolving all of the conflicting lanes in a SIMD vector
by merging them with the non-conflicting lanes, we can
treat the subset of conflicting and non-conflicting lanes sep-
arately and reduce them to two different arrays. Algorithm 2
shows an optimized implementation of in-vector reduction.
It first obtains non-conflicting subset of lanes in the index
vector, represented by set bits inmsaf e1. Then, it gets non-
conflicting lanes within the subset of conflicting lanes ob-
tained in the first step and represent these non-conflicting
lanes as set bits in msaf e2. The two masks, msaf e1 and
msaf e2, represent two non-conflicting subsets of lanes that
will be updated to two different reduction arrays. The two
reduction arrays need to be merged later to achieve the final
results. The algorithm then iterates over the unset bits of
msaf e2, which represent the conflicting lanes in the conflict-
ing subset. These conflicting lanes are merged with other
lanes that have identical indices, excluding the lanes in the
subset of msaf e2 – the latter because otherwise some of
the lanes inmsaf e2 will be invalidated during the process.
The merged result is written to the first lane that is repre-
sented by the first bit inmreduce from the least significant
bit. Finally,msaf e2 is updated withmreduce to invalidate
the reduced lanes.
Figure 6 illustrates how Algorithm 2 works on the data

vector and index vector of Figure 5. Initially, the algorithm
identifies the non-conflicting subset of lanes in the entire
vector, as shown by the shadowed cells in Figure 6. It then
identifies the non-conflicting lanes among the conflicting
subset of the first step, as shown by the small-grid cells.
The remaining lanes are the lanes need to be merged to
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// iterate over all edges
for(int j=0;j<nedges;j+=16) {

// obtain vertex indices 

vint vnx, vny;
vnx.load(n1+j);

vny.load(n2+j);
// add up rank values 

vfloat vrankx, vnnx, vsumy, vadd;

vrankx.load(rank, vnx, 4);
vnnx.load(nneighbor, vnx, 4); 

vsumy.load(sum, vny, 4); 
vadd = vrankx / vnnx; 

// in-vector reduction of vadd,  

// m indicates the conflict-free lanes 
mask m = invec_add(0xFFFF, vny, vadd); 

vsumy += vadd; 
// store the conflict-free lanes safely

// to memory

Mask::set_mask(m, vzero); 
vsumy.mask().store(sum, vny); }

Figure 7. Vectorized inner loop of PageRank with our API

other lanes excluding the small-grid ones. As shown in the
figure, the merge can be done in three iterations, which is
one fewer than Algorithm 1. The final results are stored in
the shadowed and small-grid cells that will be updated to
two separate arrays.
Algorithm 2 ensures that the number of iterations is no

more than one-third of the total number of lanes in a vector.
Since the algorithm require onemoreдet_conf lict_f ree_subset
(two SIMD instructions) and three more instructions for
merging the two copies of reduction results, an invocation
of Algorithm 2 takes about 7 + 8 × D2 instructions where
D2 is the number of distinct conflicting lanes in the con-
flicting subset. When the number of lanes in a SIMD vector
is 16, Algorithm 2 takes no more than 47 instructions as
D2 <= ⌊16/3⌋. As an extreme example, if a vector has two
identical groups of eight distinct lanes, Algorithm 1 needs
8 iterations to finish the in-vector reduction, while Algo-
rithm 2 needs none since the two subsets of eight conflict
free lanes can be safely updated to two arrays.
In our framework, we decide the underlying implemen-

tation of in-vector reduction between Algorithm 1 and 2
based on the average number of distinct conflicting lanes in
the first few iterations of an application. Specifically, Algo-
rithm 2 is invoked only when 2 + 8 ∗ D1 > 7 + 8 ∗ D2 which
implies D1 > D2 + 0.625. Though the worst case D1 is 8, it
rarely happens in real applications. In our evaluation, the
graph applications have a very small D1 of 10

−4 in average.
Only for hash-based aggregation, D1 can reach 4, and in this
case, Algorithm 2 has clear advantage over Algorithm 1 and
achieves D2 of about 1. Overall, Algorithm 1 is more efficient
than Algorithm 2 in practice. So we use Algorithm 1 as de-
fault implementation and simply change the invocation to
Algorithm 2 when D1 is greater than 1.

3.5 Programming Interface

To facilitate the vectorization of associative irregular appli-
cations, we introduce an API to simplify the use of in-vector
reduction. The API is built on a framework1 for SIMD pro-
gramming on Intel Xeon Phi processors without explicitly
writing Intel Intrinsics [7].

Figure 7 shows the vectorized code of the inner loop of
PageRank with the API. Thevint andv f loat represent SIMD
vectors of integer and floating-points. The load methods load
or gather the data from main memory to SIMD vectors. The
store methods store or scatter the data from SIMD vectors
to memory. We embed our in-vector reduction as functions
in the framework. The functions have a prototype of

mask invec_op (mask active, vint idx , vtype data)

Here, op are different types of reduction operations, active is
the mask of active lanes, idx is the vector storing reduction
indices, and data are vectors of either integers or floating-
points that store the real data values, which are reduced
in-place by the function. The return value of the function is
a mask indicating the conflict-free lanes that store the partial
reduction results.
As shown in Figure 7, invec_add sums up the lanes in

vadd according to the indices in vny. The returned valuem
indicates the active lanes that need to be written to array
sum. Because the lanes indicated bym have distinct index
values, no conflicting writes to sum will occur. As the SIMD
lanes are fully utilized in computingvadd and the number of
iterations for the loop to finish processing all of the edges is
nedдes/16, we can see that the computation in the vectorized
code has 100% SIMD utilization.

The wave-frontier SSSP in Figure 2 can also be vectorized
with our API in a similar way. In each iteration, invec_min is
invoked to reduce the new distances in the SIMD vector and
then the minimum new distances of vertices are scattered
to memory without conflicts. As we will show in the next
section, a broad class of associative irregular applications
can be efficiently expressed and vectorized with our API.

4 Evaluation

In this section, we evaluate the efficiency of in-vector reduc-
tion with a diverse set of irregular applications, including
graph algorithms, particle simulation, and hash-based data
aggregation. We compare the performance of in-vector re-
duction with two existing approaches, an inspector/executor
approach (specifically one that uses tiling-and-grouping [1]),
and conflict-masking. Specifically, we focus on (1) the data
reorganization overhead saved by in-vector reduction and
how it affects the overall performance, and (2) how in-vector
reduction performs compared with conflict-masking.

Our experiments are conducted on an Intel Xeon Phi 7250
(Knight Landing) processor, which comprises 68 cores run-
ning at 1.4 GHz, each with four hardware threads. The main
memory is a traditional DDR4 RAM with 96GB. We use Intel

1h�ps://github.com/lcchen008/irreg-simd/tree/master/SSE_API_Package/
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ICC compiler 17.0.0 to compile all the codes, with -O3 opti-
mization enabled. Because our focus is on vectorization, all
programs are executed on a single-core of an Intel Xeon Phi
KNL. MIMD parallelization is a tangential issue and beyond
the scope of our current work.

4.1 Applications and Datasets

Table 1 lists the applications and datasets used in our ex-
periments. We select four graph algorithms: PageRank, Sin-
gle Source Shortest Path (SSSP), Single Source Widest Path
(SSWP), and Weakly Connected Component (WCC). The
essential computation in PageRank has been described in
Section 1. SSSP, SSWP, and WCC are all implemented in an
edge-centric manner with wave-frontiers. The computation
in SSSP was also discussed earlier in Section 2.2. SSWP is an
algorithm for finding paths between a source vertex to other
vertices in a weighted graph, maximizing the weight of the
minimum-weight edge in the paths. SSWP has a similar com-
putation pattern to SSSP, with the difference that it relaxes
the width of a vertex if an incoming edge adds a wider path
to that vertex. WCC is an algorithm for finding maximal
subgraphs in a directed graph such that for every pair of
vertices there is a path from one to another. The inner loop
of WCC iterates over all active edges in the graph. In each
iteration, it sends the index of the incoming vertex to the
outgoing vertex, and furthermore, adds the outgoing vertex
to the active list if the incoming index is smaller. The graphs
used in the four applications are from the SNAP [14] graph
datasets, and they are stored as sparse matrices.

Molecular Dynamics (Moldyn) is chosen as our test case of
particle simulation. It simulates the interaction and motion
of molecules in a period of time based on Newton’s law. The
simulation consists of a sequence of iterations. In each itera-
tion, the coordinates of the molecules are updated first, and
then the forces among the molecules are computed according
to their distances. Finally, the velocities are computed based
on the forces, which are then used in the next iteration for
updating the coordinates. The inputs are generated by the
program that was distributed with the original serial code of
Moldyn.

Aggregation is an important and expensive operation for
summarizing large amounts of data in databases, MapRe-
duce frameworks, and statistical languages. The input data is
usually in the form of key/value pairs. Aggregation involves
dividing the data into groups of identical keys and merging
the values in each group. We use Hash-based aggregation,
which is a commonly implemented algorithm for data aggre-
gation. The inputs in our evaluation are randomly generated
under three skewed data distributions [3]: heavy-hitter, Zipf,
and moving cluster. In the heavy hitter input (HHitter), one
value account for 50% of the group-by keys, while the other
values are chosen uniformly from the other group-by keys.
The Zipf uses an exponent of 0.5. In the moving cluster input
(MovCluster), the size of the window of data locality (which
gradually shifts) is 64.

Table 1. Applications and datasets used in the experiments

App Dataset Dimensions NNZ

Graph
Algorithms

PageRank
higgs-twitter 457K*457K 15M
soc-Pokec 1.6M*1.6M 31M
amazon0312 401K*401K 3.2M

SSSP
higgs-twitter 457K*457K 15M
soc-Pokec 1.6M*1.6M 31M
amazon0312 401K*401K 3.2M

SSWP
higgs-twitter 457K*457K 15M
soc-Pokec 1.6M*1.6M 31M
amazon0312 401K*401K 3.2M

WCC
higgs-twitter 457K*457K 15M
soc-Pokec 1.6M*1.6M 31M
amazon0312 401K*401K 3.2M

Particle
Simulation

Moldyn
16-3.0r 131K*131K 11M
32-3.0r 365K*365K 30M

Data
Aggregation

Hash-based
Aggregation

Zipf 1*32M 32M
heavy-hitter 1*32M 32M
move-cluster 1*32M 32M

For each of these applications, we implemented a serial
version as the baseline. For graph algorithms and particle
simulation, the serial version is executed on both original
data (nonTiling_serial) and tiled data (tiling_serial)
to show the benefit as well as overheads of tiling. To com-
pare the different vectorization approaches, we implemented
multiple vectorized versions for each application. One ver-
sion uses tiling-and-grouping (tiling_and_grouping), one
version uses conflict-masking (tiling_and_mask), and one
version uses our in-vector reduction (tiling_and_invec).
For hash-based aggregation, our implementations are based
on two types of hash tables: a linear probing hash table and
a bucketized hash table that is designed to mitigate the con-
flicts in SIMD vector [10]. We use the serial code based on
the linear probing hash table linear_serial as the base-
line, and compare the performance of conflict-masking on
both types of hash table implementations (linear_mask and
bucket_mask) and in-vector reduction on both types of hash
table (linear_invec and bucket_invec).

4.2 Results from Graph Algorithms

All of the four graph applications we evaluate have a termi-
nation condition. Since the ranks of the vertices converge
to a stable value in PageRank, we set the terminating crite-
ria as the change of rank values being less than 0.1%. SSSP,
SSWP and WCC stop when the there is no active vertex in
the graph.

Figure 8 shows the overall execution time of different ver-
sions of PageRank on different input graphs. The numbers
of iterations before convergence is also listed. As we can
see from the figure, tiling has a very tiny (almost unobserv-
able) overhead compared with the total execution time, and
yet tiling_serial runs 1.5x - 2.5x faster than nontiling_

serial, indicating that tiling is cost-effective in improv-
ing data locality. Among the vectorized versions, tiling_
and_grouping has the shortest computing time, which is
reasonable since the edges are processed with high SIMD
utilization and without conflicts, but the grouping overhead
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Figure 8. Overall performance of of different versions of PageRank on different inputs
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Figure 9. Overall performance of of different versions of SSSP on different inputs
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Figure 10. Overall performance of of different versions of SSWP on different inputs

incorporated is so high that it denies the benefit of vectoriza-
tion, ending up with an overall execution time even much
longer than the original serial version. The performance of
conflict-masking approach depends on the input distribution,
as tiling_and_mask achieves about 1.5x speedup against
tiling_serial on higgs-twitter and soc-pokec datasets but
runs slower than tiling_serial on amazon0312 due to
a relatively low SIMD utilization. Our approach tiling_

and_invec outperforms conflict-masking by 1.4x to 1.8x,

and achieves 1.5x and 2.3x speedups against tiling_serial,
which are close to the speedups from tiling_and_grouping

when the grouping overhead is ignored.
Figure 9 shows the overall execution time of different

versions of wave-frontier SSSP on different input graphs.
Note that because the grouping overhead is much larger
than the computing time in this case, the y-axis in this fig-
ure uses a base-2 log scale. The serial version nontiling_

serial, conflict-masking version nontiling_and_mask and
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Figure 11. Overall performance of of different versions of WCC on different inputs

in-vector reduction version nontiling_and_invec are all
evaluated with the original graphs without tiling for the com-
parison of SIMD performance, because the active edges in the
wave-frontier SSSP algorithm change over iterations and an
initial tiling does not work for following iterations. We can
see that due to the poor SIMD utilization, nontiling_and_
mask runs even slower than the serial code – only on the
higgs-twitter dataset, nontiling_and_mask has a similar
computing time with nontiling_serial. Our in-vector re-
duction nontiling_and_invec, on the other hand, achieves
2.2x - 2.7x speedups against the serial version, showing a
clear advantage over the conflict-masking approach – it out-
performs nontiling_and_mask by 2.3x to 11.8x. Another
version in our comparison is the tiling-and-grouping ap-
proach, which is a technique of reusing tiling-and-grouping
proposed by Jiang et al. [11]. Despite the huge amount of
overhead for grouping, the SIMD computation of this ver-
sion does not even have any speedups in our evaluation.
We also test the tiling_and_grouping code on a Knight
Corner coprocessor, and it does achieve 2x - 3x speedups
against the serial code on the older version of Intel Xeon Phi.
The performance difference may come from the significant
improvement of sequential performance from KNC to KNL.
The tiling overhead here is also larger than that for PageR-
ank, because an index building procedure is associated with
tiling in order to reuse the data reorganization [11].
Figure 10 and 11 show the execution time of SSWP and

WCC on different datasets. The execution time patterns are
similar to that of SSSP. Our in-vector outperforms the serial
code by 1.9x - 2.2x in SSWP and by 1.6x - 2.1x in WCC, and
it is the only one among the approaches we are comparing
that can deliver SIMD speedups to the wave-frontier graph
algorithms on the new Intel KNL processor.
From the performance results, we can see that our in-

vector reduction approach save a large part of the overhead
of data reorganization, and it outperforms conflict-masking
approach even when the SIMD utilization is more than 90%.
When the SIMD utilization becomes lower due to adverse in-
put distribution, in-vector reduction shows more advantage
over conflict-masking.
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Figure 12. Execution time of of different versions of Molec-
ular Dynamics running 20 iterations on different inputs

4.3 Results from Molecular Dynamics

Figure 12 shows the execution time of four versions of Molec-
ular Dynamics running 20 iterations. Note that the y-axis
here uses a log-2 scale. Because the neighbor list rebuilding
is set to take place in every 20 iterations and every neighbor
list rebuilding is associated with tiling in all of the four ver-
sions, we evaluate the computing time of 20 iterations. The
overhead of tiling once is added to the reported execution
times. As we can see from the figure, tiling_and_grouping
has the lowest computing time, achieving high SIMD uti-
lization, and obtaining 2.69x and 5.46x speedups against the
serial code on the two inputs. However, it requires a time-
consuming grouping procedure – the simulation needs to run
nearly 1000 iterations to amortize the overhead of an initial
grouping. Also, compared with other versions, tiling_and_
grouping takes a longer tiling time because it needs to up-
date the index data structure for reusing the initial grouping
information [11]. Conflict-masking tiling_and_mask runs
even slower than the serial code on both of the two inputs
due to the poor SIMD utilization. Our in-vector reduction
approach tiling_and_invec has a SIMD performance that
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is close to that of tiling_and_grouping, outperforming the
serial version by 2.59x and 4.43x, respectively, on the two
inputs.

4.4 Results from Hash-based Aggregation

The query we choose for evaluating aggregation perfor-
mance is "Select G,count(*),sum(V),sum(V*V) From R

GroupBy G" where R is a two-column table consisting of a
group-by key G and an aggregation value V. As is the common
practice in this domain, we report throughput and not the exe-
cution time – Figure 13 shows the throughput values of differ-
ent versions of hash-based aggregation computing this query
on different input data. For all the inputs, the straightforward
implementation of conflict-masking approach on a linear
probing hash table linear_mask has the lowest through-
put, even lower than the serial baseline linear_serial. For
most of the inputs, in-vector reduction on a bucket hash
table bucket_invec has the highest throughput, delivering
up to 3.26x speedups against the serial code. However, it
does not deliver speedup in certain cases when the group-
ing cardinality is getting close to the size of hash table and
bucket hash table requires more probing time. A bucket hash
table tends to have longer probing time than a linear probing
hash table of the same size because it has a smaller hash-
ing range. In these cases, linear_invec achieves the best
performance, obtaining speedups against the serial version
from 1.3x to 1.8x. Conflict-masking with the bucket hash
table bucket_mask does achieve some speedups in several
cases, but its performance is dominated by bucket_invec,
suggesting that our in-vector reduction is a better approach
to dealing with conflicts among SIMD lanes in irregular re-
ductions.

4.5 Comparison with reduce_by_key

Libraries such as Boost2 and Thrust3 have optimized imple-
mentations of reduce_by_key which has a similar function-
ality of in-vector reduction. The difference is that in-vector
reduction supports reductions on an arbitrary set of lanes
that are specified by the active mask, while the reduce_by_key
provided by these libraries have to reduce all of the array
elements. To further show the efficiency of our implementa-
tion, we compare its performance with the reduce_by_key
in the latest version of Thrust library (the function avail-
able in Boost could not be compiled with ICC on the Intel
Xeon Phi processor we target). Because not all of the irreg-
ular applications in our experiments have full active lanes
in each iteration, reduce_by_key cannot be directly used to
resolve data conflicts in these applications. To compare the
performance, we conduct a simulation of the reductions oc-
curring in many real graph algorithms, where reductions
are conducted on the columns of the sparse matrices of the
graphs. We test the performance on three graphs from SNAP
dataset that was also used in experiments reported earlier in

2h�p://www.boost.org/doc/libs/1_61_0/libs/compute/doc/html/boost/

compute/reduce_by_key.html
3h�ps://thrust.github.io/doc/group__reductions.html

Table 2. Execution time of 1000 iterations of reductions on
all edges of the graphs

In-vector Reduction Thrust

higgs-twitter 6.99s 57.97s
amazon0312 14.73s 123.77s
soc-pokec 1.52s 13.59s

the section. Table 2 lists the execution time of performing
1000 iterations of reductions on all edges of the graphs. Our
implementation is about 8.5 times faster than the optimized
reduce_by_key in Thrust library. The results suggest that,
besides it does not have the full functionality of in-vector
reduction, reduce_by_key is not likely to deliver speedups
for vectorizing the associative irregular applications.

5 Related Work

Due to the advances in SIMD architectures, exploiting SIMD
to accelerate different classes of irregular applications has
received considerable interest in recent years.
UnstructuredMesh andGraphApplications Thébault

et al. [25] vectorize unstructured 3D mesh computations on
an Intel Sandy Bridge and an Intel Xeon Phi KNC. They use
METIS to recursively bisect the input to improve data local-
ity and apply a coloring scheme to construct non-conflicting
groups for SIMD processing. Pennycook et al. [17] com-
pare the efficiency of different gather/scatter implementa-
tions (software and hardware) and accelerate Molecular Dy-
namics on an Intel Xeon Phi KNC. They focus on utiliz-
ing the gather/scatter instructions, but do not consider the
impact of memory locality to the performance. Saule and
Catalyurek [22] provided a preliminary evaluation on graph
applications on the Xeon Phi architecture, but without par-
ticular optimizations specific to the applications and the
hardware. Liu et al. [15] use ELLPACK sparse block format
to optimize SpMV kernel on the Intel Xeon Phi. Similarly,
Tang et al. [24] utilize a hybrid storage format with jagged
partitioning to optimize SpMV, also for the Intel Xeon Phi.
Chen et al. [1] target irregular applications that have static
memory access patterns. They use tiling-and-grouping to
improve memory locality for SIMD gather/scatter operations
and to remove the write conflicts among lanes in a SIMD
vector. They further propose a reusing technique to extend
tiling-and-grouping approach for irregular applications with
dynamic and adaptive memory access patterns [11]. Though
the computation in these irregular applications is success-
fully accelerated by SIMD, the work is based on the assump-
tion that the overhead can be amortized over iterations.

There are also many efforts put on GPUs for accelerating
these applications. For example, Merrill et al. [16] parallelize
breadth-first search on the GPUs by focusing on fine-grained
task management. CuSha [12] optimizes graph processing
on GPUs with intensive usage of shared memory by reorga-
nizing the graph data in shards. Choi et al. [2] propose a way
of optimizing SpMV on GPUs by storing sparse matrices into
small subblocks, each represented as a dense matrix.
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Figure 13. Overall performance of of different versions of hash-based aggregation on different inputs

Database Operations Polychroniou et al. [18] utilize the
SIMD instructions on an Intel Xeon Phi KNC to accelerate
most of the basic database operations. They propose a gather-
after-scatter technique to detect conflicts among SIMD lanes
and use it to vectorize hash table operations. Jha et al. [9]
vectorize hash join on an Intel Xeon Phi KNC, leveraging
the gather/scatter instructions and data prefetching features
on the coprocessor. However, they fall back to serial code
when dealing with the conflicts among SIMD lanes. Inoue
et al. [8] effectively reduce the branch mispredictions in
set intersection and accelerate the operation with SIMD.
Compared to these efforts, we have focused on a strategy that
can effectively resolve data conflicts for SIMD processing of
irregular reductions by exploiting new SIMD instructions.

6 Conclusion

In this paper, we propose an in-vector reduction technique
for vectorizing irregular applications with associative ir-
regular reductions. We implement in-vector reduction with
conflict detection and horizontal reduction instructions in
the new Intel AVX-512 instruction set. The evaluation re-
sults show that our in-vector reduction eliminates the expen-
sive grouping overhead and reduces the impact of adverse
input distributions while keeping/improving the speedups
by SIMD. Compared with serial code, in-vector reduction
achieves 1.5x to 2.5x speedups for graph applications, 2.7x to
5.5x for Moldyn, and 1.3x to 3.26x for hash-based aggregation
on a single core of Intel Xeon Phi KNL. It also outperforms
conflict-masking on these irregular applications by 1.4x to
11.8x.

A Artifact Description

A.1 Abstract

The artifact includes all of the programs that are needed
to reproduce the evaluation results in the paper "Conflict-
free Vectorization of Associative Irregular Applications with
Recent SIMD Architectural Advances". The programs should
be executed on an Intel Xeon Phi 7250 (Knight Landing)
processor. An Intel ICC compiler is required for compiling.

The artifact will print out the execution time or throughput
of different versions of the evaluated applications on different
datasets, which can be expected to be close to the results
reported. The artifact will also print out the SIMD utilizations
rate of different applications as reported in the paper.

A.2 Description

A.2.1 Checklist

• Program: (1) PageRank, (2) Single Source Shortest Path, (3)
Single Source Widest Path, (4) Weakly Connected Compo-
nent, (5) Molydn, (6) Hash-based Aggregation
• Compilation: Intel ICC compiler 17.0.0
• Data set: (1) three graphs from SNAP [14], (2) two generated
inputs for Moldyn, (3) generated key/value pairs of differ-
ent group-by cardinalities and distributions for hash-based
aggreagation
• Hardware: an Intel Xeon Phi 7250 Knight Landing processor
• Output: program results including the execution time or
throughputs are printed out to the console
• Experiment workflow: a bash script is provided in each
directory to automatically start the compilation and execu-
tion
• Publicly available?: Yes

A.2.2 How Software Can Be Obtained

The artifact is publicly available at https://github.com/
jiangohiostate/cgo2018_artifact.git. Use "git clone"
to download the package. The programs are about 12KB.

A.2.3 Hardware Dependencies

An Intel Xeon Phi 7250 (Knight Landing) processor is re-
quired.

A.2.4 Software Dependencies

Intel ICC compiler 17.0.0 is required.

A.2.5 Datasets

There is a ’get_data.sh’ script in the top directory. It will au-
tomatically download and initialize all the datasets described
above.
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A.3 Installation

In each of the directories, there is a ’run.sh’ script, which
builds the programs and runs the tests automatically. You
can also compile the programs with the Makefile provided
in each directory.

A.4 Experiment Workflow

There are three steps to conduct the experiments:
1) Download the datasets. This can be done by executing

the ’get_data.sh’ script in the top directory.
2) Compile the programs. This can be done by make in

each directory.
3) Execute the codes. Each of the application has a base-

line named "*_ serial", a tiling-and-grouping version named
"*_grouping", a conflict-masking version named "*_mask",
and our in-vector reduction version "*_invec". The programs
are executed with command line argument that specifies the
input files. Detailed usage can be found in the ’run.sh’ script
in the directory.
Alternatively, after downloading the datasets, you can

simply execute the ’run.sh’ script in each directory. It will
automatically compile the programs and execute the pro-
grams.

A.5 Evaluation and Expected Result

The execution time (or throughputs) of the programs will be
printed out in the console, and they should be very close to
those reported in the paper. The programs will also print out
the SIMD utilization for conflict-masking approach. They
should be the same as reported in the paper. Some of the
computation results (e.g. rank values in PageRank, shortest
distance in SSSP) are also printed out to check the correctness
of the programs. For hash-based aggregation, there might be
some discrepancy in the exact throughputs. This is because
the input data are generated randomly. However, the trend
and the relative performance of different versions should be
the same as reported in the paper.

A.6 Notes

The grouping procedure for some inputs can take as long as
one hour. Please be patient when the execution seems to be
stuck at these points.
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