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Abstract

We show that the thresholg for appearance of k-core in a randonm-partiter-uniform hypergraplG, , , is the same as for a
randomr-uniform hypergraph witten/r edges without the-partite restriction, wherg k > 2. In both cases, the average degree
is c. This is an important problem in the analysis of the alganifiresented in [2]. The algorithm constructs a family of mmial
perfect hash functions based on randoypartite r-uniform hypergraphs with an empkycore subgraph, fok > 2. The above
claim was not proved but was provided with strong experimeztidence. For an input key s&twith m keys, the algorithm was
the first one capable of constructing a simple affitient family of minimal perfect hash functions that can et inO(m) bits,
where the hidden constant is within a factor of two from thetimation theoretical lower bound. The cask = 2 was analyzed

in [3] but the general cage> 3,k > 2 was still open.
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1. Introduction not proved but was provided with strong experimental evigen
] ~ Thealgorithm constructs a family of minimal perfect hastdu
The study of random graphs started with &dind Rnyi  tions based on randompartiter-uniform hypergraphs with an
[6, 7,9, 8]. Amodern treatment is given in [1, 13]. Many emptyk-core subgraph, fok > 2. The idea of basing mini-
results describing statistical properties of random gsapére  mga| perfect hashing on random hypergraphs was not new, see
obtained [10, 11, 12, 16, 17, 19, 20, 21]. For instance, idistr e.g. [14], but Botelho, Pagh and Ziviani proceedefiedéntly
bution of component sizes, existence and size of a giant comp, [2] to construct near-optimal space functions that aoeest
ponent, vertex degree distributions, arising of cyclessterce O(m) bits rather thar®(mlog m) bits. The case, k = 2 was
and size of specific subgraphs, among others. analyzed in [3] but the general case 3,k > 2 was still open.
We now introduce the following definitions: In Section 1.1 we present some basic concepts and defini-

o . ) tions. In Section 1.2 we outline our results and contrimgio
Definition 1 LetG nm = (V, E) be a random r-partite r-uniform

hypergraph where V is a disjoint union of ther partg U.,U,,  1.1. Preliminaries
Ul =nfori=1...,r,]El=m=cn,r>2andc> 0. The

edges are inserted into,Gn one at a time, each being picked
at random from the all hpossible edges, allowing repetitions.

In this section we introduce some definitions found in [4]
in order to use the same approach to prove the results summa-
rized in Section 1.2. The first determination of the threghol

L . of existence of &-core in a random graph was given by Pittel,
Definition 2 The k-core of a hypergraph is the largest S“b'Spencer and the second author [18].

graph of minimum degree at least k. As shown in [4] there is a connection between independent

Poisson random variables and multinomials. Meiti (n, s) be
the probability space of nonnegative integer vect¥is.(. ., Xn)
whose entries sum & such that for any vectody, . . ., d,) with

The objective of this paper is to prove that the threstopd (e Same sum restriction, we have:
for appearance of ecore inG; i is the same as for a random ) gl
r-uniform hypergraph witlen/r edges without the-partite re- P(Xi=dforl<i<n = =m0y
.. n HI:l 1
striction, wherer,k > 2. In both cases, the average degree _ . . . _
of the hypergraph is. This problem came up in the analysis ~ We will be interested in vertices with degrees at léasind
of the algorithm presented in [2], where the above claim wagccordingly define

Hnsk := {(hs,...,hp) : Z hi = sandh; > kforalli}, (1)

Definition 3 A minimal perfect hash function is a bijection from
a static key set S of size m{1,...,m-1} = [m].

Email addressesfabiano@decom. cefetmg.br (Fabiano C. Botelho), . . .
nwormald@uwaterloo.ca (Nicholas Wormald)nivio@dcc.ufmg.br and letMulti (na S)|2k be the prObablllty Space obtained by re-

(Nivio Ziviani) stricting Multi (n, s) to elements oH,sx. Fork > 0, denote
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by Z(k, 2) a random variable which haskatruncated Poisson
distribution with parametet, that is:

A .
. — j=k
P(Z(k ) = j) =4 i'fk(d) 2)
0 j<k
wherefy is defined as:
k=1 i
A A
f=e'- 7=,
i=0 i~k
Let 2, denote the positive root of the equation
Afi1(A)
EZ(k, 1) = = 3
It is easily seen thaty, exists provided thab > k. Let hy(u) =
m and define:
Ck = inf{h(u) : u > O} (4)

Takek > 3. Thency is a positive real becausg(u) tends to
oo if u tends to 0 oro. It is easily checked that for > ¢
the equatiorhy(u) = ¢ has two positive roots (and just one for
€ = ¢). Defineyy . to be the larger one. Also defireg = 1.

Fork > 2 andr > 3, we are interested ik-cores of the ran-
domr-partiter-uniform hypergraph as presented in Definition
1. LetG,nm denote the uniform probability space epartite
r-uniform rn-vertexm-edge hypergraphs, as in that definition.
Note that thek-cores ofG; ,m form a probability space, which
we denote byK: nmk. Then, we can generalize the definition of
ck to

Crk = infihy () > O,

whereh, k(1) = t As for hi(u), hex(u) tends toco if p

[
e fiea(u) 1

Although it was not mentioned in [2], the version of the al-
gorithm presented there f@&;,,m can be sped up by allowing a
single cycle with length multiple of four per connected camp
nent. This happens because the probability of gener&ting,
over the condition that it does not have any cycle with a lengt
that is not a multiple of four is 58% higher than the probayili
of generating it when cycles are not permitted (see Sectlbns
and 3) and the runtime of the algorithm is inversely proori
to this probability. To analyze this version of the algomitit is
required the following theorem.

Theorem 2 LetG,nm = (V, E) be arandom bipartite 2-uniform
hypergraph with2n vertices and m= cn edges. Then, if &
m/n holds for ce (0, 1) and n— oo, the probability that G
has no cycle of length congruent to 2 (mod 4), fepno, is:

Vi-c?

= - = . 6
(1-chi ©)

Pl’b
We remark that foc > 1 there are a.a.s.(asymptotically almost
surely) many cycles of all short even lengths.

We now consider the case wheandk are not both 2. Note
that in Grnm, Multiple edges, and edges containing repeated
vertices, are permitted. However, even if they were forbidd
the same results would hold: it is well known by standard meth
ods that the probability that there are no repeated venidbm
any edge, and no multiple edges, is bounded away from O (see,
e.g., [4, 14]). Hence, once we prove the theorem for this defin
tion of G, it follows also for the other variations where multiple
edges or repetitions of vertices within edges are forbidden

Theorem 3 Let ¢ > 0 and integers r> 2, k > 2 be fixed,
where r and k are not both 2. Suppose that-nen, and Ge

Grnm- FOr c < ¢k, G has empty k-core a.a.s. Forsccy, the
k-core of G a.a.s. has &< fy(urkc)rn(1 + o(1)) vertices and

tends to 0 oro, sOC; i IS a positive real (and this applies even gy ce7#e fi_; (ur kc)N(1+0(1)) hyperedges. Moreover, letyj k

whenk = 2). Defineu, k¢ to be the larger solution df k(1) = ¢
for ¢ > ¢ k. We note that; x is the threshold of appearance of

be fixed, and assume € c;x. Then the_number of vertices
of degree j inK(r,n,mK) is a.a.s. rne*u!/j! + o(n), where

ak-core in a randonn-partiter-uniform hypergraph that liesin -y = k.

gr,n,m-

1.2. Results

The threshold:; « for appearance of k-core for a random
r-uniform hypergraph witken/r edges was first analyzed in [5].
In this paper we instead analyze it fopartiter-uniform hyper-
graphs. So these results will finish the analysis of the &lyor
presented in [2].

We first consider the case wher= 2 andk = 2, which has

2. Proof of Theorem 1

LetGanm = (V, E) be a bipartite random graph, whevé =
2n and|E| = m = cn, wherec = m/n is the average degree
of Gonm- To build G, each edge is independently taken at
random with probabilityp from all n? possible edges. As there
are A vertices, and each is connected to an averageedfjes,
then we can conclude that = ¢/n = 2¢/|V|. LetCy be the

been analyzed in [3] and is added here for completeness. Theet of cycles of lengthl2in the complete bipartite grapi,n,

result is summarized in Theorem 1.

Theorem 1 ([3], Theorem 3.5)Let G;nm = (V, E) be a ran-
dom bipartite 2-uniform hypergraph witbn vertices and m-=
cn edges. Then, if & m/n holds for ce (0,1) and n — oo,
the probability that G, m has an emptp-core component, for

n— oo, is
Pr,= V1-c2 (5)

for | > 1 and eactn. A cycle inC, can be represented as a
sequence of I2distinct vertices inK,, by choosing a starting
point. Therefore, the cardinality 8f, is given by
1 2
Cal = ()7, ()
2
where @) = n(n—-1)...(n -1+ 1). As each edge iG,nmn IS
selected independently of the others and with probalpligy ¢,



then, each cycle ifiz occurs with probability From Eqg. (12) we know that:

Pra(c) = p™- ® o= Y S@e Y S@=-lin(1-d)
. 1=1.357,... 1=2.468,...
Let Ca(G,nm) be a random variable that measures the number 1 1
of cycles of length Rin Gz, m. LetCe(G2nm) be a random vari- B o= -5 In (l - 02) - Ecz'
able that measures the number of cycles of any even length in 1=2,468....
Gaznm. The probability distribution o€ (G2,n,m) andCe(Gz,n,m) 1 N I 1,2
converges to a Poisson distribution with parametgrand i, = 73 In (1 -C ) 3 Z 2 (C )
respectively. For a more detailed proof of a similar statetme I=1
see [11, Page 16]._ To end the proof we are going to show how _ 1 In (1 _ 02) " 1 In (1 _ c“)
to getdy andAe, which represents the average number of cycles 2 4

of length 2 in Gz,m and the average number of cycles of evenTherefore, the probability tha@, ., has no bad cycle is given
length inG,nm, respectively. It is easy to see that fors o by:

. V1-¢?
ta=Pu@xal= (S 2@12=5¢ @ PRCHG) =0 = e = T oF

and Note thafc is restricted to be in the range, . 1
- - Forc = 2.09 we have Ry = 0.458. Experimentally, we
te= A= 1o, 14, 3 1ea- Yiha-@. @o) obtained Ry = 0.463 by generating,DOO random bipartite 2-
- 2 4 — 2 2 graphs witm = 107 edges, which is very close to the theoretical
value.
As in [11] we useY,>; 2 X = —3In(1 - X) — x— $x2, where
x = ¢ Therefore, the probability th&®,,m is a forest and,

consequently, has an empty 2-core is: 4. Proof of Theorem 3

- — Analogous results were proved for ordinary (not multipar-
*=Vi-c (11) tite) hypergraphs in [4, 5, 15]. We will assume the reader is
Note thatc is restricted to be in the range, @ and, therefore, familiar with [4], and point out the s_imple modificat_ions l
Gr=1. 1 proof so as to cover the prese_n_t settlng]e!ki_vyvertex is one of
22 degree at lea¥, and a vertex ifight otherwise. In the present
This matches the experimental results presented in [2]. Fogetting, we have to pay attention to the number and totakgegr
instance, where = 2/2.09 we have Rr= 0.29. This is very  of the heavy vertices in each of the parts. Sojjferd,...,r, let
close to (294 that is the value obtained in [2] by generatingt; denote the number of heavy verticesun, let s; denote the
1,000 random bipartite 2-graphs with= 10’ edges. sum of their degrees, and I&t denote the sum of the degrees
of the light vertices irJ;.
Given the vectors = (t1,...,%),s = (S1,...,S) ande =

Pra(Ce(GZ n, m) = O)

3. Proof of Theorem 2

I\J||_\

(€1,...,¢4), we consider a dierent model, called the hybrid
Let Gonm, Ce(G2nm) andc > 0 be defined as in the proof of model®. This has vertex set¥y,...,V; with |Vj| = t;, and
Theorem 1 presented in Section 2. From there we now that thalSo separate vertex sdts, ..., Ly with |[L;| = £;. Now select
random variables(G,m) that measures the number of cycles themedges randomly by choosing for each edge one vertex in
of any even length i5,,, converges to a Poisson distribution each ofL; UVj, j = 1,...,r, conditioning on the total degree
with parameter: of vertices inV; beings;, for eachj, and each vertex ih; hav-
ing degree exactly 1, and also conditioning on all verticeg;i
i _ 1 In 1- cz) (12) receiving degreg at Ie_atst(for eachj). _This model represents
a hypergraplG, in which each vertex ihj corresponds to the
=1 end of an edge at a light vertex. The model does not record
Corresponding results hold for cycles with lengths in a give Which of the light vertices iiG, the edges are actually incident
subset 0f2,4,6, ...}, as can be derived from the results of [11]. with.
Those cycles with a length that is not a multiple of four canno ~ The k-core of G has the same distribution as G nm,
be used to build MPHFs in the algorithm presented in [2]. Ac-conditioning ort, sande. (For a detailed proof of the analogous
cordingly, we let define such cycles to bad and letCp,(G) be ~ Statement in the general setting, see [4]; the proof is gxact
the random variable that measures the number of bad cycles the same in the present setting. The same reasoning gives the
Ganm. This converges to a Poisson distribution with parameteffollowing claims.) Moreover, under the same conditionitig
distribution of vertex degrees in the verticesMpis precisely
A = _Cz| (13) multinomial conditioned on all degrees being at Idast/e call
2 this distribution truncated multinomial.

1=1,357....



The process of iteratively deleting light vertices fr@nm

e is suficiently small, then a randompartite hypergraph with

corresponds to the process appliedse whereby the vertices c¢cn+ o(n) edges a.a.s. has thecore of size less thaen. This
inthe setd ; and their incident edges are iteratively deleted, anccomes from a simple first moment calculation, which shows

any vertex inV; whose degree reduces kb < k immediately
transforms intdk’ new vertices irL;. The degree distribution
in Vj, conditioned on the values sf andt; at each step of the
process, is always truncated multinomial, which can be@ppr
imated by independent truncated Poisson.

Suppose that at each step of the process appli€gtone
light vertex is randomly selected from each of the §gis. ., L,
and deleted along with its incident edge. Sgt andT;; denote
the random values o andt; respectively after steps of this
process. Then deleting the edge containing a light vertéx in
will have an dfect on each of the other— 1 parts of the par-
tition, in each part either deleting one light vertex or reidg

that the expected number of sets of at mwstertices that con-
tain at leasken/r hyperedges tendsto 0 as— c. 1§
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the degree of a heavy vertex by 1. If in such a step, the deReferences
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