
1

Critique Of
Microkernel Architectures

I’m not interested in making devices look like
user-level. They aren’t, they shouldn’t, and

microkernels are just stupid.
Linus Torvalds

Is Linus right?



2

Microkernel Performance

• First generation µ-kernel systems exhibited poor 
performance when compared to monolithic UNIX 
implementations.
– particularly Mach, the best-known example

• Reasons are investigated by [Chen & Bershad, 
1993]:
– instrumented user and system code to collect execution 

traces
– run on DECstation 5000/200 (25MHz R3000)
– run under Ultrix and Mach with Unix server
– traces fed to memory system simulator
– analyse MCPI (memory cycles per instruction)
– baseline MCPI (i.e. excluding idle loops)



3

ULTRIX VS. MACH MCPI



4

Interpretation

Observations:
• Mach memory penalty (i.e. cache missess or 

write stalls) higher
• Mach VM system executes more instructions 

than Ultrix (but has more functionality).
Claim:
• Degraded performance is (intrinsic?) result of 

OS structure.
• IPC cost (known to be high in Mach) is not a 

major factor [Bershad, 1992].



5

Assertions

1. OS has less instruction and data locality than 
user code.
– System code has higher cache and TLB miss rates.
– Particularly bad for instructions.



6

Assertions

2. System execution is more dependent on instruction 
cache behaviour than is user execution

– MCPIs dominated by system i-cache misses.
– Note: most benchmarks were small, i.e. user code fits in cache.



7

Assertions
3. Competition between user and 

system code is not a problem
– Few conflicts between user and 

system caching.
– TLB misses are not a relevant factor
– Note: the hardware used has direct-

mapped physical caches.
⇒ Split system/user caches wouldn’t 
help.



8

Self-Interference
• Only examine system cache 

misses.
• Shaded: System cache misses 

removed by associativity.
• MCPI for system-only, using 

R3000 direct-mapped cache.
• Reductions due to associativity 

were obtained by running 
system on a simulator and 
using a two-way associative 
cache of the same size.



9

Assertions…

4. Self-interference is a problem in system instruction 
reference streams.
– High internal conflicts in system code.
– System would benefit from higher cache associativity.

5. System block memory operations are responsible for a 
large percentage of memory system reference costs.
– Particularly true for I/O system calls.

6. Write buffers are less effective for system references.
– write buffer allows limited asynch. writes on cache misses

7. Virtual to physical mapping strategy can have significant 
impact on cache performance
– Unfortunate mapping may increase conflict misses.
– “Random” mappings (Mach) less likely to exhibit consistently poor 

performance. 



10

Other Experience With Microkernel 
Performance

• System call costs are (inherently?) high.
– Typically hundreds of cycles, 900 for Mach/i486.

• Context (address-space) switching costs are 
(inherently?) high.
– Getting worse (in terms of cycles) with increasing 

CPU/memory speed ratios [Ousterhout, 1990].
– IPC (involving system calls and context switches) 

is inherently expensive.



11

So, What’s Wrong?

• The MCPI for Mach is significantly 
higher than Ultrix

• µ-kernels heavily depend on IPC
• IPC is expensive

– Is the µ-kernel idea flawed?
– Should some code never leave the kernel?
– Do we have to buy flexibility with 

performance?



12

A Critique Of The Critique

• Data presented earlier:
– are specific to one (or a few) system,
– results cannot be generalised without thorough 

analysis,
– no such analysis has been done.

⇒ Cannot trust the conclusions [Liedkte, 1995].



13

Re-analysis Of Chen & 
Bershad’s Data



14

Re-analysis Of Chen & 
Bershad’s Data…



15

Conclusion

• Mach system (kernel + UNIX server + 
emulation library) is too big!

• UNIX server is essentially same.
• Emulation library is irrelevant (according 

to Chan & Bershad).
⇒ Mach µ-kernel working set is too big
Can we build µ-kernels which avoid 

these problems?



16

Requirements For 
Microkernels:

• Fast (system call costs, IPC costs)
• Small (big ⇒ slow)
⇒ Must be well designed, providing a 

minimal set of operations.

Can this be done?



17

Are High System Costs 
Essential?

• Example: kernel call cost on i486
– Mach kernel call: 900 cycles
– Inherent (hardware-dictated cost): 107 cycles.
⇒ 800 cycles kernel overhead.

– L4 kernel call: 123–180 cycles (15–73 cycles 
overhead).

⇒ Mach’s performance is a result of design and 
implementation not the µ-kernel concept!



18

Microkernel Design Principles 
(Liedtke)

• Minimality: If it doesn’t have to be in the kernel, it 
shouldn’t be in the kernel
– Security is the only case for must be in the kernel

• Appropriate abstractions which can be made fast 
and allow efficient implementation of services

• Well written: It pays to shave a few cycles off TLB 
refill handler or the IPC path

• Unportable: must be targeted to specific hardware
– no problem if it’s small, and higher layers are portable
– Example: Liedtke reports significant rewrite of memory 

management when porting from 486 to Pentium
⇒ “abstract hardware layer” is too costly



19

NON-PORTABILITY EXAMPLE: 
I486 VS PENTIUM:

• Size and associativity of TLB
• Size and organisation of cache (larger 

line size - restructured IPC)
• Segment regs in Pentium used to 

simulate tagged TLB
⇒ different trade-offs



20

WHAT must A µ-KERNEL PROVIDE?
• Virtual memory/address spaces
• threads,
• fast IPC,
• unique identifiers (for IPC addressing).

µ-KERNEL DOES not HAVE TO PROVIDE:
• file system

– use user-level server (as in Mach)
• device drivers

– user-level driver invoked via interrupt (= IPC)
• page-fault handler

– use user-level pager



21

L4 Implementation Techniques

• Appropriate system calls to reduce number of kernel invocations
– e.g., reply & receive next

• Rich message structure
– value and reference parameters in message

• Copy message only once (i.e. not user!kernel!user)
• Short messages in registers
• As many syscall parameters in registers as possible
• One kernel stack (for interrupt handling) per thread (in TCB)
• TCBs in (mapped) VM, cache-friendly layout
• Thread UIDs (containing thread ID)
• “Hottest” kernel code is shortest
• Kernel IPC code on single page, critical data on single page
• Many H/W specific optimisations



22

Performance



23

Case In Point: L4Linux 
[Härtig et al., 1997]

• Port of Linux kernel to L4 (like Mach Unix server)
– single-threaded (for simplicity, not performance)
– is pager of all Linux user processes
– maps emulation library and signal-handling code into AS
– server AS maps physical memory (& Linux runs within)
– copying between user and server done on physical memory
– use software lookup of page tables for address translation

• Changes to Linux restricted to architecture-
dependent part

• Duplication of page tables (L4 and Linux server)
• Binary compatible to native Linux via trampoline 

mechanism
– but also modified libc with RPC stubs



24

L4Linux Overview



25

Server Internals

• L4 threads used to
– receive device interrupts
– Emulated Linux’s bottom half handling
– Receive system calls from applications



26

Signal Delivery In L4Linux

• Separate signal-handler thread in each user process
– server IPCs signal-handler thread
– handler thread ex regs main user thread to save state
– user thread IPCs Linux server
– server does signal processing
– server IPCs user thread to resume



27

L4Linux Performance
Microbenchmarks:



28

Cycle Breakdown



29

Macrobenchmarks: LMBENCH



30

Macrobenchmarks: Kernel 
Compile



31

Conclusion

• Mach sux ; microkernels suck
• L4 shows that performance might be 

deliverable
– L4Linux gets close to monolithic kernel 

performance
– need real multi-server system to evaluate µ-kernel 

potential
• Jury is still out!
• Mach has prejudiced community (see 

Linus...)
– It’ll be an uphill battle!



32

Implementations


