Critique Of
Microkernel Architectures

I’'m not interested in making devices look like
user-level. They aren’t, they shouldn'’t, and
microkernels are just stupid.

Linus Torvalds

NEW SOUTH WALES
Bl

E THE UNIVERSITY OF IS Linus right? 1

Microkernel Performance

* First generation p-kernel systems exhibited poor
performance when compared to monolithic UNIX
Implementations.

— particularly Mach, the best-known example

* Reasons are investigated by [Chen & Bershad,
1993]:

— instrumented user and system code to collect execution
traces

— run on DECstation 5000/200 (25MHz R3000)
— run under Ultrix and Mach with Unix server

— traces fed to memory system simulator

— analyse MCPI (memory cycles per instruction)
— baseline MCPI (i.e. excluding idle loops)

ST THE UNIVERSITY OF
@R NEW SOUTH WALES

sed+-1
|

egrep+L
E-I'EP+M
yacctL
+M

aadl
g M

compress+L
+M

abeel]
+M

cspmswu
+41

lisp+UJ
+M

erynioti+L]
+M

foppp+-Ll
+Ivl
dodac+1]
+M

liw==LT1
+M

tomcaty+L
+ vl

ULTRIX VS. MACH MCPI

B 0690

syatem I-cache misses
system d-cache misses
system whufler stalls
svstem uncached reads
user 1-cache misses
user d-cache misses

l—---u-:«.l:r whuffer sralls

MCFI

Interpretation

Observations:

» Mach memory penalty (i.e. cache missess or
write stalls) higher

 Mach VM system executes more instructions
than Ultrix (but has more functionality).

Claim:

» Degraded performance is (intrinsic?) result of
OS structure.

* IPC cost (known to be high in Mach) is not a
major factor [Bershad, 1992].

S T UNIVERSITY OF
BB NEW SOUTH WALES

Assertions

1. OS has less instruction and data locality than
user code.
— System code has higher cache and TLB miss rates.
— Particularly bad for instructions.

5
THE UNIVERSITY OF
NEW SOUTH WALES
Bl

Assertions

2. System execution is more dependent on instruction
cache behaviour than is user execution

— MCPIls dominated by system i-cache misses.
— Note: most benchmarks were small, i.e. user code fits in cache.

instruction cache data cache
Ultrix Mach Ultrix Mach
workload SYS USer | Sys user | sys USer | sys user

sed | 0.129 0.005(0.283 0.0050.041 0.001{0.132 0.003
egrep | 0.014 0.001|0.046 0.001/0.010 0.000(0.023 0.000
yacc | 0.028 0.004(0.069 0.003{0.011 0.011(0.029 0.012
gce | 0.103 0.145]0.294 0.123|0.027 0.034 (0.094 0.039
compress | 0.060 0.002]0.157 0.005|0.042 0.106|0.101 0.102
ab | 0.139 0.130/0.261 0.098|0.091 0.024{0.121 0.020
espresso | (.009 0.0120.026 0.011|0.003 0.007 (0,011 0.008
lisp | 0.002 0.001/0.013 0.011{0.003 0.0040.006 0.003
eqntott | 0.001 0.000/0.063 0.000/0.005 0.147|0.006 0.147
fpppp | 0.050 0.184[0.040 0.173[0.002 0.005{0.005 0.005
doduc | 0.014 0.277|0.020 6.270(0.002 0.023]0.006 0.022
liv | 0.013 0.000(0.045 0.000/0.010 0.001(0.018 0.000
B T UNIVERSITY OF tomcatv | 0.000 0.000]0.002 0.000;0.005 0.634|0.005-0.634 6

II NEW SOUTH WALES

Assertions

Instruction Data

sed+U

+M

3. Competition between user and cgrepsl
system code is not a problem i

— Few conflicts between user and
system caching.

— TLB misses are not a relevant factor cmpressii-
- Note: the hardware used has direct- abr Ui
mapped physical caches.
= Split system/user caches wouldn’t
help.

espresso+U
+M

lisp+U
p+M

THE UNIVERSITY OF
NEW SOUTH WALES

Self-Interference

Only examine system cache

misses. iy —
Shaded: System cache misses =i
removed by associativity. e iR
MCPI for system-only, using g
R3000 direct-mapped cache. ™
Reductions due to associativitymw
were obtained by running ==

system on a simulator and
using a two-way associative
cache of the same size.

=M e UNIVERSITY OF
B NEW SOUTH WALES

liwv+ U] AR
009 : e
tomeaty+ LI B s (X3 R R
+Mh SRS EERARRS ILXLY) R

Assertions...

4. Self-interference is a problem in system instruction
reference streams.

— High internal conflicts in system code.
— System would benefit from higher cache associativity.
5. System block memory operations are responsible for a
large percentage of memory system reference costs.
— Particularly true for I/O system calls.
6. Write buffers are less effective for system references.
— write buffer allows limited asynch. writes on cache misses
7. Virtual to physical mapping strategy can have significant
impact on cache performance
— Unfortunate mapping may increase conflict misses.

— “Random” mappings (Mach) less likely to exhibit consistently poor
performance.

SEN e UNIVERSITY OF
BEE NFW SOUTH WALES

Other Experience With Microkernel
Performance

» System call costs are (inherently?) high.
— Typically hundreds of cycles, 900 for Mach/i486.

» Context (address-space) switching costs are
(inherently?) high.
— Getting worse (in terms of cycles) with increasing
CPU/memory speed ratios [Ousterhout, 1990].

— |IPC (involving system calls and context switches)
IS inherently expensive.

] 10
Ll THE UNIVERSITY OF

B # NEW SOUTH WALES

S0, What’s Wrong?

* The MCPI for Mach is significantly
higher than Ultrix

 U-kernels heavily depend on IPC

* |IPC is expensive
— |Is the y-kernel idea flawed?

— Should some code never leave the kernel?

— Do we have to buy flexibility with
performance?

b 1 1
LRl THE UNIVERSITY OF
G| NEW SOUTH WALES

_——
A Critique Of The Critique

- Data presented earlier:
— are specific to one (or a few) system,

— results cannot be generalised without thorough
analysis,

— no such analysis has been done.
= Cannot trust the conclusions [Liedkte, 1995].

b 12
Ll THE UNIVERSITY OF
el NEW SOUTH WALES

Re-analysis Of Chen &
Bershad’s Data

................................... thl]'l_‘l. MOCPI
‘ | system cache miss MCPI

sed U (.02 7

M 0.495
egrep UCH0.035
M) (X]
vacc UM 0.067
M (). 129
ace U I () 4134
MI I, (). 2O0)
compress U I (.2 50
MI - [IEIR
ab U I (. 427
MI N, (). >34
espresso U 0.041
M. 0,068

MCPI for Ultrix and Mach

13

L THE UNIVERSITY OF

II NEW SOUTH WALES

ﬂe-analysus Bl E”en E

Bersh_gd’s Data...

...... o~ — conflict misses
‘ o - capacity misses

sed U I 10,170]

NV I 10.415]

egrep UL 0.024 I
MEL_10.069]

yacc UM0.039 N
VI 10,008]

gec UM 10.130 ——
v 10.388 I
compress U NN 170,102 I
M I 1 (.258]

ab U I 10.230 I
e______ 10.382]
espresso UND(0).012 I
ME__10.037 I

MCPI caused by cache misses: conflict (black) vs capacity (white)

— 14
B THE UNIVERSITY OF
@ NEW SOUTH WALES

Conclusion

* Mach system (kernel + UNIX server +
emulation library) is too big!

* UNIX server is essentially same.

- Emulation library is irrelevant (according
to Chan & Bershad).

= Mach u-kernel working set is too big

Can we build y-kernels which avoid
these problems?

15

.!l! THE UNIVERSITY OF
I'. II NEW SOUTH WALES

Requirements For
Microkernels:

» Fast (system call costs, IPC costs)
« Small (big = slow)

= Must be well designed, providing a
minimal set of operations.

Can this be done?

16

Ll THE UNIVERSITY OF
. II NEW SOUTH WALES

—_—
Are High System Costs

Essential?

« Example: kernel call cost on 1486
— Mach kernel call: 900 cycles
— Inherent (hardware-dictated cost): 107 cycles.
= 800 cycles kernel overhead.
— L4 kernel call: 123—-180 cycles (15—73 cycles
overhead).

= Mach’s performance is a result of design and
Implementation not the u-kernel concept!

b 17
Ll THE UNIVERSITY OF
el NEW SOUTH WALES

_——
Microkernel Design Principles

(Liedtke)

- Minimality: If it doesn’t have to be in the kernel, it
shouldn’t be in the kernel

— Security is the only case for must be in the kernel

- Appropriate abstractions which can be made fast
and allow efficient implementation of services

* Well written: It pays to shave a few cycles off TLB
refill handler or the IPC path

* Unportable: must be targeted to specific hardware
— no problem if it's small, and higher layers are portable

— Example: Liedtke reports significant rewrite of memory
management when porting from 486 to Pentium

= “abstract hardware layer” is too costly

18
3| THE UNIVERSITY OF

B~ NEW SOUTH WALES

]

s
NON-PORTABILITY EXAMPLE:

1486 VS PENTIUM:

* Size and associativity of TLB

* Size and organisation of cache (larger
line size - restructured IPC)

* Segment regs in Pentium used to
simulate tagged TLB

= different trade-offs

19

!—l! THE UNIVERSITY OF
e II NEW SOUTH WALES

=
WHAT must A p-KERNEL PROVIDE?

 Virtual memory/address spaces

* threads,

 fast IPC,

 unique identifiers (for IPC addressing).

u-KERNEL DOES not HAVE TO PROVIDE:
* file system
— use user-level server (as in Mach)

* device drivers
— user-level driver invoked via interrupt (= IPC)

» page-fault handler
— use user-level pager

b 20
Ll THE UNIVERSITY OF
- NEW SOUTH WALES

T THE UNIVERSITY OF

L4 Implementation Techniques

Appropriate system calls to reduce number of kernel invocations
— e.g., reply & receive next

Rich message structure
— value and reference parameters in message

Copy message only once (i.e. not userlkernelluser)

Short messages in registers

As many syscall parameters in registers as possible

One kernel stack (for interrupt handling) per thread (in TCB)

TCBs in (mapped) VM, cache-friendly layout

Thread UIDs (containing thread ID)

“Hottest” kernel code is shortest

Kernel IPC code on single page, critical data on single page

Many H/W specific optimisations

21

BB NEw SOUTH WALES

R

Performance

System CPU MHz | RPC us| cyc/IPC | semantics
L4 R4600 100 1.7 s 100 full
L4 Alpha 433 0.2 us 45 full
L4 Pentium 166 1.5 s 121 full
L4 486 50 10 s 250 full
QNX 486 33 76 s 1254 full
Mach R2000 16.7 190 s 1584 full
SCR RPC CVAX 12.5 464 s 2900 full
Mach 486 50 230 s 5750 full
Amoeba 68020 15 800 pis 6000 full
Spin Alpha 21064 133 102 iis 6783 full
Mach Alpha 21064 133 104 s 6916 full
Exo-tirpc R2000 116.7 6 jis 53 | restricted
Spring SparcV8 40 11 s 220 | restricted
DP-Mach 486 66 16 s 528 | restricted
LRPC CVAX 12.5 157 us 981 | restricted

THE UNIVERSITY OF
NEW SOUTH WALES

22

T THE UNIVERSITY OF

e ——
Case In Point: LALinux

[Hartig et al., 1997]

» Port of Linux kernel to L4 (like Mach Unix server)
— single-threaded (for simplicity, not performance)
— is pager of all Linux user processes
— maps emulation library and signal-handling code into AS
— server AS maps physical memory (& Linux runs within)
— copying between user and server done on physical memory
— use software lookup of page tables for address translation

» Changes to Linux restricted to architecture-
dependent part

« Duplication of page tables (L4 and Linux server)

* Binary compatible to native Linux via trampoline
mechanism
— but also modified libc with RPC stubs

23

BB NEw SOUTH WALES

R

THE UNIVERSITY OF
NEW SOUTH WALES

L4Linux Overview

USET process

user process

user process

= /=

Linux server

RARARRARRANNN

initial space o, (physical memory)

24

Server Internals

L4 threads used to

— receive device interrupts
— Emulated Linux’s bottom half handling
— Receive system calls from applications

Linux Server
e
maln | eeen~e==o Wakeup | | o interrupt
thread) == - = = { bottom half thread)= - - - = {__ threads
---------- s
: Y dnterupt TR g

Device :—=: L4 ;

r
.. - L swn s rr¥ Ve e
iiiiiiiiiiiii

— 25
| THE UNIVERSITY OF
B NEW SOUTH WALES

Signal Delivery In L*Linux

« Separate signal-handler thread in each user process
— server IPCs signal-handler thread
— handler thread ex regs main user thread to save state
— user thread IPCs Linux server
— server does signal processing
— server |IPCs user thread to resume

=M e UNIVERSITY OF
B NEW SOUTH WALES

Linux User Process

Liser

manipulate thread (2)

T ==

signal
! thlgead

!

(3

Enter Lfnuxl T resume (4) forward signal (1)

Linux Server

main

3

L4Linux Performance
Microbenchmarks:

System Time [us] Cycles
Linux 1.68 223
L'Linux 3.95 026
L*'Linux (trampoline) 5.66 753
MKLinux in-kernel 15.66 2050
MKLinux server 110.60 14710

getpid () on 133MHz Pentium

— 27
LIl] THE UNIVERSITY OF

R NEW SOUTH WALES

LI
S

R

THE UNIVERSITY OF
NEW SOUTH WALES

Cycle Breakdown

Client Cycles Server
enter emulation lib 20
send syscall message 168 | wait for msg
131 | Linux kernel
receive reply 188 | send reply
leave emulation lib 19

Hardware cost: 82 cycles

28

write /dev/null [far]

null process [hn]

simple process [lai
'bin/sh process [hrfﬁ
mmap [/ar]

2-proc context switch [far
8-proc context switch [.fufl
pipe [faf]

UDP [/at]

RPC/UDP [faf]

TCP [lat]

RPC/TCP |lat]

pipe [bu~"

TCP [w!

file reread [bu—"]

mmap reread [pw—']

THE UNIVERSITY OF
NEW SOUTH WALES

i
o

29

e ———
Macrobenchmarks: Kernel

Compile
Linux 476 s
[*Linux B 506s (+6.3%)
L*Linux (trampo) B 509s (+6.9%)
MkLinux (kernel) 3555 s (+16.6%)

MkLinux (user) 605s (+27.1%)

30
THE UNIVERSITY OF
NEW SOUTH WALES

R

Conclusion

« Mach sux = microkernels suck

* L4 shows that performance might be
deliverable

— L4Linux gets close to monolithic kernel
performance

— need real multi-server system to evaluate y-kernel
potential

* Jury is still out!
* Mach has prejudiced community (see

Linus...)
— It'll be an uphill battle!

b= 31
gl | THE UNIVERSITY OF
el NEW SOUTH WALES

Implementations
APl | Kernel Who Language | CPU
V2 | L4/x86 Liedtke asm X86
L4/MIPS | UNSW asm/C R4k
_4/Alpha | UNSW/Dres | PAL/C 21x64
Fiasco Dresden C++ X86
X.0 | L4/x86 _iedtke asm X86
Hazelnut | Karlsruhe C x86, ARM
V4 | Pistachio | Karlsruhe C++ x86, |A-64
PPC-32
UNSW MIPS, Alpha
ARM, PPC-64
SPARC (i.p.)

