
Cuckoo++ Hash Tables: High-Performance Hash
Tables for Networking Applications

Nicolas Le Scouarnec

Technicolor

ABSTRACT
Hash tables are an essential data-structure for numerous

networking applications (e.g., connection tracking, �rewalls,

network address translators). Among these, cuckoo hash

tables provide excellent performance by allowing lookups

to be processed with very few memory accesses (2 to 3 per

lookup). Yet, for large tables, cuckoo hash tables remain mem-

ory bound and each memory access impacts performance. In

this paper, we propose algorithmic improvements to cuckoo

hash tables allowing to eliminate some unnecessary mem-

ory accesses; these changes are conducted without altering

the properties of the original cuckoo hash table so that all

existing theoretical analysis remain applicable. On a single

core, our hash table achieves 37M lookups per second for

positive lookups (i.e., when the key looked up is present in

the table), and 60M lookups per second for negative lookups,

a 50 % improvement over the implementation included into

the DPDK. On a 18-core, with mostly positive lookups, our

implementation achieves 496M lookups per second, a 45%

improvement over DPDK.

1 INTRODUCTION
The increasing I/O performance of general purpose pro-

cessors (a dual-socket Xeon can accommodate up to 10

40Gbps network interface cards) as well as the availability

of frameworks for high-performance networking (DPDK [1],

Netmap [22], PFQ [4]...), allow replacing hardware-based

network middleboxes support by commodity servers. This

trend is supported by systems relying on software-based

implementation of network functions [17, 18, 29] that target

performance in the order of millions packets per seconds

(Mpps) per core. The applications running on top of these

include L2 (switches), L3 (routers) and L4 (load balancing,

stateful �rewalls, NAT, QoS, tra�c analysis). In order to sup-

port L4 applications, an important feature is the ability to

identify connections/�ows and to keep track of them.

More speci�cally, these applications require to associate

some state to each connection. For a load-balancer, the state is

the destination server to use; for a �rewall the state speci�es

whether the connection is allowed or not; for a NAT, the

state is the addresses and ports to use when translating from

one network to another; and for QoS or tra�c analysis the

state can contain packet counters. In the case of IP protocols

(UDP/TCP over IP), the connection tracking is achieved by

identifying the connection using its 5-tuple (protocol, source

address, destination address, source port and destination

port) and mapping an application-speci�c value to this 5-

tuple. As each connection has its own state, the number of

entries in the system grows with the number of �ows. As

each route sees many concurrent �ows going over it, the

scale is much higher: when routing and forwarding require

to consider tens of thousands of routes (L3 information),

connection tracking requires to track millions of �ows. To

deal with these requirements, the association is often stored

in a hash table to access it e�ciently.

High-performance hash tables often rely on bucketized

cuckoo hash-table [5, 8, 9, 14, 16, 19, 29] for they feature

excellent read performance by guaranteeing that the state

associated to some connection can be found in less than

three memory accesses. Bucketized cuckoo hash tables are

open-addressed hash tables where each value may be stored

into any slot of two buckets determined by hashing the key.

When used for networking applications (i.e., packet pro-

cessing), an important feature of these hash tables is their

ability to perform lookups in batches as supported by Cuck-

ooSwitch [29] or DPDK’s implementation [1] as it allows

to e�ciently prefetch the memory accesed for processor ef-

�ciency. As we discuss in Section 3, two implementation

choices are possible regarding these prefetches: (i) optimisti-

cally assume that the data will be in the primary bucket and

prefetch only this bucket as done in Cuckoo Switch [29],

or (ii) pessimistically assume that both buckets need to be

searched and prefetch both to avoid too late prefetching

and mis-predicted branches as done in DPDK [1]. Yet, as we

show in Section 3, none of these two strategies is optimal

for all situations. Moreover, this becomes more problematic

as boxes get exposed to uncontrolled tra�c (e.g., NAT or

�rewall exposed on the Internet are likely to receive packets

of unknown �ows that should be �ltered or could be subject

to a DoS attempt).

In this paper, we describe algorithmical changes to cuckoo

hash tables allowing a more e�cient implementation. More

precisely, our hash table adds a bloom �lter in each bucket

that allows to prune unnecessary lookups to the secondary

bucket. It has the following features: (i) high performance for

both positive and negative lookups with up to 37-60 Millions

lookups per second per core, so that performance does not

1

ar
X

iv
:1

71
2.

09
62

4v
1

 [
cs

.N
I]

 2
7

D
ec

 2
01

7

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

decrease with malicious or undesired tra�c, and (ii) builtin

timers to support the expiration of tracked connections.

Section 2 describes the background on packet processing

applications and their need in term of data-structure for con-

nection tracking; as well as the state of the art on cuckoo

hash tables. Section 3 studies the implementation choices of

cuckoo hash tables and analyze the performance of the vari-

ous alternatives. In Section 4, we introduce Cuckoo++ hash

tables, an improvement over bucketized cuckoo hash tables

that allows for universally more e�cient implementation. In

Section 5, we evaluate their performance. In Section 6, we

review related work and we conclude in Section 7.

2 BACKGROUND
Packet-processing networking applications are diverse: be-

side switching and routing well supported by standard net-

working hardware, they include more advanced applications

such as tra�c analysis (IDS/IPS), �rewalling, NATting, QoS,

or L4 load balancers. As a common characteristic, these ap-

plications often require to keep connection-related state.

These applications must store a very large number of en-

tries (i.e., one per connection or �ow), thus requiring a large

amount of memory (e.g., 32M �ow entries of 256 bits require

1GB of memory). ASICs dedicated to high-performance net-

working fail to meet these requirements as they are much

more limited in capacity : the largest TCAMs available to-

day are 80 Mb (or 10 MB) and Network Search Processors

that build on SRAM are limited to 1 Gb (or 128 MB). Hence,

while these ASICs are well-suited for L2/L3 processing (i.e.,

MAC learning or IP routing), software running on commod-

ity CPUs (e.g., Intel Xeon) that can address large amount of

DRAMs is a cost-e�cient alternative for high-performance

L4-L7 packet processing requiring connection tracking.

Software-based implementation of high-performance

packet processing is supported by the availability of ker-

nel bypass solutions [1, 4, 22] supporting millions of packets

per second per core. On a dense system, it is possible to put

up to 10 40 Gbps cards with 2 Intel Xeon processors (20-40

cores). Given standardly sized packets (i.e., Simple IMIX), it

means that 3.6-7.2 millions packets must be processed per

second per core. This requires highly optimized implementa-

tions, in which (i) the kernel is bypassed to avoid overhead,

(ii) I/O costs are amortized by sending and receiving batch of

packets (e.g., in DPDK the application receives batches of 32

packets from the NIC), (iii) a share-nothing architecture is

adopted to avoid synchronization overheads, and (iv) highly

e�cient algorithms and data-structures are used.

In share-nothing architecture, the network interface card

(NIC) steers the packets to several queues. Each core reads

and sends through its own set of queues; it shares no data-

structure with other cores to avoid sharing and synchroniza-

tion (even implicit) which reduces performance. This allows

v1 v3 v3 v4

k1 k3 k3 k4

v5 v6 v7 v8

k5 k6 k7 k8

B
u
ck
et
s

w
it
h
ke
y
s

an
d
va
lu
es

(a) small keys

Bucket metadata

h1 h2 h3 h4

Bucket metadata

h5 h6 h7 h8

B
u
ck
et
s

k1

k2

k3

k4

v1

v2

v3

v4

k5

k6

k7

k8

v5

v6

v7

v8

K
ey
s

&
V
al
u
es

(b) larger keys and values

Figure 1: Memory layout for cuckoo hash table

good scaling properties. Share-nothing architecture are well

supported by modern fast NIC that provide several facili-

ties for distributing packets to queues in a �ow-coherent

way (e.g., RSS, Intel Flow Director, ...). As a consequence,

data-structure for high performance packet processing ap-

plications don’t need to support multiple writer/multiple

reader. This allows to simplify them and focus on improving

their performance in a mono-threaded setting.

In software, the standard approach to store per-connection

state is to use a hash table. High-performance hash tables

often rely on open addressing hash schemes [7, 12, 16, 19].

Open addressing hash tables avoid pointer chasing, that gen-

erates many costly memory accesses. Among these, cuckoo

hash tables [16, 19] allow lookups to be performed in 2 to

3 memory accesses. Cuckoo hash tables achieve these re-

sults by moving complexity from lookup to insertion. The

insertion cost is thus increased, but this strategy is bene�cial

as lookups tend to dominate execution time. Consequently,

many high performance hash tables [1, 5, 9, 14, 27, 29] now

implement bucketized cuckoo hash tables [8] with 2 hashes

as this variant allows improved performance in practice and

higher load factors. These implementations target di�er-

ent context: some were designed for GPUs [5], others are

a shared data-structure for applications such as key-value

stores [9, 14, 27]. In high-performance networking, a de-

sirable feature is batched lookups as supported by Cuck-

ooSwitch [29] and DPDK [1]. Batched lookups match the

execution model of typical DPDK programs and allow opti-

mized implementation with improved performance on out-

of-order super-scalar CPUs (e.g., Intel Xeon): the di�erent

steps of the individual lookups that compose the batch are

interleaved so as to hide memory latency and increase the

instruction level parallelism

In bucketized cuckoo hash table, the memory is divided

in buckets of �xed size (4 or 8 slots): each bucket is sized to

2

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

�t a cacheline (i.e., the unit at which the processor accesses

memory). Each key hashes to a primary bucket (i.e., the

bucket indexed by the primary hash) and a secondary bucket

(i.e., the bucket indexed by the secondary hash). The value

associated to a key must be stored in one of the slots of these

two buckets. Two implementations choices are possible for

storing the values: (i) if the key and values are small enough

(e.g., less than 64 bit total), they can be stored directly into

the bucket as shown on Figure 1a; (ii) larger keys and values

do not allow the bucket to remain on a single cacheline, the

solution is thus to store only the hashes and an index/pointer

in the bucket : this allows the lookup to access the bucket

e�ciently to �nd the index, and once the index is found

one additional memory access is necessary to obtain the key

and value, as shown on Figure 1b. As our focus is on data

structures for connection tracking (128 bit keys), we do not

consider the restricted case of small keys and values and thus

adopt the second approach.

Using this data structure, looking up the value associated

to a key is immediate. The key is hashed, the two associated

buckets are accessed, the hash is compared to the hashes

stored into the slots of the buckets, and if some hash matches,

the corresponding entry in the key/value array is accessed.

Since the matching hash may be a false positive, the key of

the entry is compared to the searched key. If they match, the

lookup answers positively and the value is returned. If no

hash matches, or if no key matches, then the lookup answers

negatively. Thus, at most, 3 memory accesses (i.e., to the

primary bucket, to the secondary bucket and to the key and

value) are needed to answer lookups.

This e�cient lookup procedure is enabled by the cuckoo

insertion procedure that can re-structure the hash table to

ensure than an entry can always be inserted in either its

primary or its secondary bucket. If a free slot can be found in

the primary or secondary bucket, the hash is written to the

slot and the key/value is written at the corresponding index

in the key/value array. If no free slot is found (i.e., in case

of collision) the cuckoo insertion procedure makes up a free

slot by moving one of the entry to its alternative bucket (i.e.,

to its secondary bucket if it is stored in the primary bucket, or

the inverse). This procedure may apply recursively to make

up free space for the moved entry. This set of exchanges

between primary buckets and secondary buckets form a

cuckoo path, and is what allows cuckoo hash table to achieve

high load factor while guaranteeing that during lookup only

two buckets need to be read.

Improving lookup performance is a recurring concern in

open addressing hash tables [7, 12, 16]. The goal is to mini-

mize the number of memory accesses for all cases. Generally,

negative lookups are the worst case for it requires to check

all possible positions to ensure that it is not stored at any

position. On the contrary, positive lookups can stop early

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

load factor

r
a
t
i
o

i
n

s
e
c
o

n
d

a
r
y

8 slots

4 slots

2 slots

Figure 2: Fraction of entries stored in their secondary
bucket for a 32M-capacity cuckoo hash table.

without checking all positions as soon as the key is found.

Cuckoo hashing have been developed precisely to ensure

that even for the worst case the number of memory accesses

is small and bounded. While these theoretical developments

ensure that the number of memory accesses remains low,

they do not exploit the features of modern hardware. For

instance, modern processors access memory by chunks of 64

bytes (known as cachelines) and the memory latency varies

heavily depending on the ability to predict long in advance

memory accesses so as to prefetch the corresponding mem-

ory location. Taking these features into account leads to

large performance gains. In Section 3, we evaluate the per-

formance of optimized implementations that target modern

processors.

In the rest of this paper, we focus on hash tables targeted

at use in packet processing applications having the following

characteristics: (i) high performance on commodity (i.e., In-

tel Xeon) processors (10s of millions of lookups per second),

(ii) support for lookups in batches, as DPDK applications

process batches of packets from the hardware, (iii) support

for connection tracking applications (i.e., 128-bit keys and

values). The only implementation available supporting these

requirements is the cuckoo hash table implemented in DPDK.

As of version 17.05, DPDK implements a bucketized cuckoo

hash table, leveraging SIMD, having 8-slots per bucket, sup-

porting arbitrarily sized keys and 64-bit values. Note that

our context slightly di�ers from CuckooSwitch [29] or [14]

for the use of share-nothing architecture allows to avoid the

complexity and overheads related to synchronization

3 IMPLEMENTING CUCKOO TABLES
All high-performance implementations [1, 5, 9, 14, 29] rely

on bucketized cuckoo hash table [8] that have multiple slots

for storing entries (e.g., 4 or 8) in each bucket (Section 2). The

lookup procedure can stop early when it �nds the key: the

secondary bucket needs to be accessed only when the key is

stored in it, or for negative lookups. Figure 2 plots the fraction

of entries stored into their secondary bucket; the curve stop

on the x-axis at the load factor at which insertions start to fail.

3

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

0 0.2 0.4 0.6 0.8 1

0

20

40

negative lookup rate

M
o

p
/
s

Pessimistic Cuckoo

Optimistic Cuckoo

DPDK

Figure 3: Performance of batched lookup (32M-
capacity cuckoo hash table, load factor of 0.8).

Even for high-load factors, most entries (i.e., more than 80%)

remain stored in their primary bucket when using 8-slots per

buckets as in [1, 14]: when the hash table is �lled to less than

50%, almost no entry are in their secondary bucket, at 70%

of their capacity, 6% of entries are in their secondary bucket

and at 95% of its capacity, only 16% of the entries are in

their secondary bucket. This is an improvement over designs

with 4 slots per bucket (e.g., CuckooSwitch [29], MemC3 [9],

DPDK prior to version 16.10 [1]). Also note that 1 or 2 slots

per bucket are impractical for they don’t allow high load

factors without insertion errors in practical settings.

For super-scalar out-of-order CPUs (e.g., Intel Xeon), the

performance of implementations of cuckoo hash tables that

support batched lookups highly depends on the e�ectiveness

of prefetches
1

that hide the memory latency [1, 29]. Other

implementations, which do not support batching, are less

impacted by the prefetches as there are less opportunities for

hiding memory latency on a single lookup. Two prefetching

strategies are possible for implementing cuckoo hash tables.

The optimistic approach assumes that the key is stored in

the hash table and that it will be in the primary bucket: thus

only the primary bucket is prefetched, the secondary bucket

will be prefetched later only if the data is not found in the

primary bucket. This optimistic approach is adopted by Cuck-

ooSwitch [29], MemC3 [9], Mega-KV [27]. This approach is

supported by the previous observation (see Figure 2) that less

20% positive lookups need to access the secondary bucket.

This saves resources at the price of a few non-prefetched

memory accesses.

The pessimistic approach assumes that the key is not in the

hash table or that it could be in the secondary bucket: thus

both the primary and the secondary bucket are prefetched.

Beside hiding memory latency, this approach also avoids

1
Prefetch is an instruction that can be issued to inform the processor that

some memory location will be accessed in the future. It allows the processor

to "pre-load" a speci�c memory location into its cache thus avoiding long

memory latencies.

branch mispredictions, which are detrimental to perfor-

mance in out-of-order CPUs. This pessimistic approach is

adopted in DPDK [1] and [14, 23].

Intuitively, one can observe that this choice is highly de-

pendent on the workload: the optimistic choice should be fa-

vored for mostly-positive lookups, and the pessimistic choice

should be favored for mostly-negative lookups.

To study the actual impact on performance of these ap-

proaches, we implement optimistic cuckoo hash table and

pessimistic cuckoo hashtable with exactly the same memory

layout which is detailed in Section 4. The two implementa-

tions share a common code base which is highly optimized

and supports batching, a key enabler for high performance

in packet processing applications. Note that we can’t directly

rely on CuckooSwitch [29], and DPDK [1] for they di�er

greatly in what they support (e.g., size of keys, SIMD, hash

function, batching). Indeed, CuckooSwitch is tailored for L2

switching and thus only supports 48-bit keys (i.e., MAC ad-

dresses) and 16 bit values (port), DPDK supports larger keys

and batching but implements only the pessimistic approach.

To showcase the performance of our implementation, we use

DPDK’s highly-optimized cuckoo hash table as a baseline.

Figure 3 plots the number of lookups per second achieved

for batched lookups on a hash table with a capacity of 32M

entries using CityHash 64 [20] hash function. We vary the

load factor, and the ratio of negative lookups. As expected,

our pessimistic approach (pessimistic cuckoo) exhibits a sim-

ilar behavior to DPDK (which is also a pessimistic approach).

Our implementation slightly exceeds DPDK’s performance.

Optimistic cuckoo outperforms pessimistic cuckoo when

performing mostly positive lookups. This shows that it is

unnecessary and detrimental to systematically prefetch the

secondary bucket as, even for high load factors, entries are

stored into their secondary buckets in less than 20% of cases.

By contrast, when performing mostly negative lookups, pes-

simistic cuckoo outperforms optimistic cuckoo as prefetches

are more e�cient for they are issued in advance.

As a consequence, no implementation can be deemed as

ideal since the optimistic implementation will perform better

when most lookups are successful while the pessimistic im-

plementation will perform better in the opposite case. Hence,

a connection tracking system with an optimistic implemen-

tation will have a higher performance, yet its performance

will degrade in presence of invalid or malicious tra�c.

Thus, packet processing libraries need to o�er several im-

plementations of hash tables, and users need to know the

properties of each implementation to choose the one that

will perform best on their workload. This is not practical

as the workload may not be precisely characterized or may

be dynamic: for example, a �rewall/NAT system could see

a spike in unknown tra�c or a transiently increased num-

ber of connections (e.g., DoS attack). It is crucial that the

4

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

Bucket 1

Bucket 2

...

Key 1

Key 2

Key 3

Value 1

Value 2

Value 3

Key 9

Key 10

Key 11

Value 9

Value 10

Value 11

...

Key

Primary Hash

Secondary Hash

(a) Positive lookup

Bucket 1

Bucket 2

...

Key 1

Key 2

Key 3

Value 1

Value 2

Value 3

Key 9

Key 10

Key 11

Value 9

Value 10

Value 11

...

Key

Primary Hash

Secondary Hash

(b) Negative lookup (Cuckoo)

Bucket 1

Bucket 2

bloom

...

Key 1

Key 2

Key 3

Value 1

Value 2

Value 3

Key 9

Key 10

Key 11

Value 9

Value 10

Value 11

...

Key

Primary Hash

Secondary Hash

(c) Negative lookup (Cuckoo++)

Figure 4: Overall organization of the hashtable. The memory accessed during lookups is shaded.

performance of these network functions does not degrade

signi�cantly when facing unusual or malicious tra�c.

Our paper addresses this issue. To this end, we propose

algorithmic changes to bucketized cuckoo hash tables that

enable implementations o�ering a high performance in all

cases (i.e., all load factors and all negative lookup rates).

These algorithmic changes have as little impact on baseline

performance as possible so they can always be chosen in

place of standard bucketized cuckoo hash table.

4 CUCKOO++ HASH TABLES
Cuckoo++ hash tables build upon standard cuckoo hash ta-

bles: through this design choice, all theoretical guarantees

provided for cuckoo hash tables apply to Cuckoo++ hash

tables. Yet, to meet the requirements of high performance net-

working, Cuckoo++ o�ers several improvements that allow

avoiding: (i) many memory accesses to the secondary bucket

during lookups for improved performance (Section 4.1), (ii)
the overhead of triggering timeouts by implementing timers

directly into the hash table and the overhead of memory

accesses for deletion by relying on lazy deletion (i.e., delet-

ing only when an expired entry is accessed) (Section 4.2).

All these algorithmic changes are done under the constraint

of an e�cient execution on general purpose processors by

allowing an optimized memory layout (Section 4.3).

4.1 Avoid accesses to the secondary bucket
One of the main design goal of Cuckoo++ is to minimize the

number of cachelines accessed as the memory bandwidth

is a scarce resource that must be used parsimoniously. The

improvement over standard Cuckoo hash tables is illustrated

on Figure 4. This Figure depicts a typical hash table with a

�rst array of buckets storing metadata about entries and a

second array storing the complete keys and values.

For a positive lookup (Figure 4a), for both Cuckoo and

Cuckoo++ hash table, the key is hashed and the primary

bucket is accessed. The searched key is found in the bucket

and the index in the second array is determined. The value is

then accessed and recovered, thus answering most lookups

with only 2 memory accesses. In some cases, the secondary

bucket must be accessed but this remains rare.

For a negative lookup, Cuckoo and Cuckoo++ di�er. For

standard cuckoo hash tables (Figure 4b), the key is hashed,

the entry is not found in the primary bucket, the sec-

ondary bucket needs to be checked before deciding that

they searched key is not stored in the hash table. This second

memory access tends to be costly as it cannot be predicted

in advance (i.e., only after the searched key is not found

in the primary bucket). Thus, negative lookups require 2

memory accesses. For Cuckoo++ (Figure 4c), we add a bloom

�lter in the metadata of the primary bucket. This bloom �lter

contains all keys that could not be stored into this primary

bucket and that have been moved to their secondary bucket.

During lookup, before fetching the secondary bucket from

memory, the searched key is searched in the bloom �lter: two

hashes are derived from the secondary hash of the key/value,

and the bits of the bloom �lter indexed by these hashes are

tested. If the bloom �lter answers negatively (i.e., at least

one of the bit is zero), then the secondary bucket will not

contain the searched key. If the bloom �lter answers posi-

tively (i.e., all bits are ones), then the secondary bucket is

fetched: it may or may not contain the key since bloom �lters

have false positives. Thus, the bloom �lter acts as a hint that

allows to determine if a key could have been stored in its

secondary bucket. Thus, accesses to the secondary bucket

can be avoided in most cases ensuring that most negative

lookups can be answered in 1 memory access.

When a key and value is stored into its primary bucket,

the insertion procedure is identical to standard cuckoo hash

table. When a key and value is stored in its secondary bucket,

in addition to the insertion procedure of standard cuckoo

hash tables, the bloom �lter of the corresponding primary

bucket must be updated. Two hashes are derived from the

secondary hash of the key/value to be inserted, and the bits

5

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

of the bloom �lter indexed by these hashes are set. A counter

is associated to each bloom �lter; it counts the number of

insertions in the bloom �lter and is thus incremented for

each insertion in the bloom �lter.

When deleting a key from the hash table, the usual cuckoo

procedure applies. When the key was stored into its sec-

ondary bucket, the bloom �lter of the corresponding primary

bucket should be updated. Yet, bloom �lters are append-only

structures and values added to bloom �lters cannot be re-

moved. To deal with this constraint, we leverage the counter

associated to each bloom �lter. The counter is decremented

for each deletion of a value stored in its secondary bucket.

Whenever the counter reach zero, we can reset the bloom

�lter to its empty state (i.e., reset all bits to zero).

When collisions must be resolved during an insertion, a

chain of swaps (i.e., a cuckoo path) is computed. Key/values

moved from their primary bucket to their secondary bucket

modify the bloom �lter similarly to an insertion, whereas

keys/values moved from their secondary bucket to their pri-

mary bucket modify the bloom �lter similarly to a deletion.

In practice, most entries are stored in their primary posi-

tion (see Figure 2), it implies that occupancy of bloom �lters

remains low and that moved counter values remain low (see

Figure 5). As a consequence, over the lifetime of the hash

table, the counter is often equal to zero, ensuring that the

bloom �lter is often reset and remains useful. Note that even

for high load factor (0.95) more than 50% of buckets have a

moved counter value equal to zero.

Regarding the e�ciency of the bloom �lter for avoiding

accesses to the secondary bucket, we use a bloom �lter of

64 bits, with two hash functions. For such a bloom �lter,

given the number of entries inserted in the bloom �lter (see

Figure 5), the false positive rate of the bloom �lter remains

very low even for high load factor (e.g., 0.003 for a load factor

of 0.95 – other load factors are given in Table 2).

0 1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

moved counter values

P

Low load factor (l = 0.6)

Medium load factor (l = 0.8)

High load factor (l = 0.95)

Figure 5: Distribution of values of Moved Counter for
a 32M-capacity Cuckoo++ hash table.

4.2 Timer management
Applications such as connection tracking that dynamically

create entries require these entries to expire after some time.

For example, for connection tracking, an entry is created for

the �ow after a TCP SYN or an UDP packet is seen. If after

a few hours (for TCP) or after a few seconds (for UDP) no

packet has been seen on this �ow/connection, the connection

is assumed to be expired and closed. All entries related to

this connection should be deleted.

The strawman approach could rely on a timer, handled

by a dedicated component in the system (e.g., hashed or

hierarchical timer wheels [25] or a callout-like interface as

in DPDK [1]). Whenever the timer expires, a callback is called,

which accesses the hash table and deletes the corresponding

entry. This approach has several drawbacks: (i) the key to

pass as a parameter to the callback must be duplicated in the

timer data structure, thus increasing memory usage, (ii) the

timer must be updated/reset every time a new packet goes

through a given connection thus increasing code complexity

and computational cost, and (iii) on timer expiration, the

callback searches the corresponding key in the hash table to

delete it, thus generating memory accesses and consuming

memory bandwidth.

As our goal is to eliminate all unnecessary memory ac-

cesses, we integrate entry expiration in the hash table rather

than using an external timer component. We attach to each

entry of the hash table an expiration time. We extend the

API of the hash table to support setting/updating the expira-

tion time when inserting or looking up a key. When looking

up, only non-expired entries are considered. When insert-

ing, expired entries are overwritten as if the slot was free.

Thus, expired entries are lazily deleted by the next inser-

tion thus avoiding unnecessary memory accesses and the

computational overhead of executing callbacks.

The main issue with the integration of expiration times

in the hash table is that memory is very constrained. As

cachelines are 64 bytes on Intel Xeon processors, it is not

practical to rely on the usual 32 or 64-bit timestamps, so we

use 16-bit timestamps. Indeed, for 8-slots per bucket, 32-bits

timestamps would consume half of the cacheline, and 64-bits

timestamp would consume the entire cacheline. Using 16-bit

timestamps comes with several problems (i) the maximum

expiration time is short, and (ii) over�ows, which can revive

expired entries, cannot be ignored.

To solve the �rst issue, we don’t manage time is seconds

or milliseconds but we quantize it at a larger granularity. For

example, for connection tracking, where connections should

expire after some minutes of inactivity, we use a basic time

unit of 30 seconds (i.e., a entry with an expiration time of

t0 + 2 will expire 60 seconds after t0).
To solve the second issue, we don’t allow expiration times

to take any value between t0 and t0 + 65536 but restrict them

6

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

Main hash – 4x32 bits)

Main hash – 4x32 bits)

Index – 4x32 bits)

Index – 4x32 bits)

Alternative hash (4x32 bits)

Alternative hash (4x32 bits)

SIMD lane (SSE 128 bits)

cach
elin

e
(64

B
)

(a) DPDK’s layout

Tags (based on main hash – 8x16 bits)

Bloom filter Moved counter Busy bits & cie

Alternative hash (4x32 bits)

Alternative hash (4x32 bits)

SIMD lane (SSE 128 bits)

cach
elin

e
(64

B
)

(b) Cuckoo++ layout (without timers)

Tags (based on main hash – 8x16 bits)

Expiration time (8x16 bits)

Bloom filter Moved counter Busy bits & cie

Alternative hash (4x32 bits)

Alternative hash (4x32 bits)

SIMD lane (SSE 128 bits)

cach
elin

e
(64

B
)

(c) Cuckoo++ layout (with timers)

Figure 6: Bucket Memory layout

to the range t0 to t0 + 1024. This still allows expiration times

of up to 8 hours in the future. This restriction allows us

to distinguish valid entries, expired entries and over�owed

(i.e., expired) entries : assuming unsigned 16-bit integers,

an entry is non-expired if an only if the di�erence between

the expiration time and the current time is lower than the

maximum allowed expiration delay (i.e., 1024). Yet, even

with this restriction, a timer could still be revived due to

over�ow after 64512 = 65536−1024 time units. To avoid this,

the hash table must be scanned every 537 hours (≈ 64512

time units) and any expired entry detected during this scan

must be marked as deleted so that they are not revived. This

remains very infrequent ensuring that the computational

cost associated with this operation is low.

4.3 Memory Layout
The memory is managed by the processor by cachelines.

Accessing a never-accessed cacheline is expensive compared

to accessing a value to an already-accessed cacheline (cached

in the L1 cache). Indeed, the latency to the L1 cache is 4-

5 cycles while the latency to the RAM, when data is not

cached, is 150-300 cycles on Intel Xeon processors. It is thus

crucial to minimize the number of cachelines accessed when

performing a lookup. As a consequence, we organize our

structures so that all �elds accessed when looking up a bucket

are in the same cacheline. This in�uenced design choices

such as the use of a relatively small 64-bit bloom �lter, or

the use of 16-bit timers with limited precision.

Modern processors support SIMD instructions that per-

form an identical operation on multiple data elements in a

single instruction. We leverage this to read the memory, com-

pare hashes and check timers. The SIMD unit (SSE instruc-

tions) performs operations on 128-bit registers. As shown

on Figure 2, cuckoo hash table with 8 slots per bucket allow

higher load factors, and better performance. We thus use 8

16-bits tags (128 bits), and 8 16-bits timers (128 bits).

The memory layout we use for Cuckoo++ with or with-

out timers is shown on Figure 6. The data accessed during

lookups is shaded. Each bucket stores 8 entries. We store 8

16-bits tags derived from the main hashes, 8 16-bit values

corresponding to the expiration time, a bloom �lter with a

counter, a few 8-bit masks that are used to mark an entry as

free or busy, or that are used temporarily when searching

for a cuckoo path during insertion.

When timers are used, the alternative hashes cannot all be

stored on the same cacheline. Yet, these hashes are seldomly

used. They are needed only for inserts when the primary

and the secondary bucket are full, to search a cuckoo path

that can free space in buckets. Thus this has no impact on

lookup performance.

Figure 6 also shows the memory layout used in DPDK

17.05 hash tables, a widespread hash table implementation

supporting large keys and values, and batched lookups. No-

table di�erences between Cuckoo++ and DPDK are: (i) the

use of only 16-bit tags rather than complete 32-bit main

hashes allowing to save room in the cacheline and to use

128-bit SIMD instructions, (ii) the use of an implicit index

(derived from the bucket index and the position of the bucket)

rather than an explicit index for accessing the keys and val-

ues which allows to save a lot of room from the cacheline,

room which we use for storing timers and the bloom �lter.

Cuckoo++ memory layout can be reused for implementing

other variants of high-performance Cuckoo hash-table sup-

porting large keys and values on general purpose processors.

Our pessimistic cuckoo and optimistic cuckoo implementa-

tions used in the study of Section 3 use the same memory

layout as Cuckoo++ with padding instead of bloom �lters

and moved counters. Horton tables introduced in Section 5

do not need the bloom �lter nor the moved counter but these

are replaced by the remap array which is 63 bits long.

5 EVALUATION
Hardware. Our experiments are carried out on a dual-

socket Dell R630 server equipped with two Intel Xeon E5-

2640 v4 (10 cores per socket, 2.4 Ghz). The memory installed

in the server is DDR4 2133Mhz, with 4 DIMMS per socket

for a total of 128 GB (i.e., 8 x 16 GB allowing the processor to

operate in quad-channel mode). The server is con�gured in

performance mode, hyper-threading is disabled, and memory

snoop mode is set to home snooping. For all experiments,

7

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

memory is allocated on the local NUMA node, and the cores

are allocated alternately on each socket.

Common parameters. We use CityHash 64 [20] which

outputs 64-bit hashes. All keys are randomly generated.

To match the behavior of realistic applications, for mixed

lookups (e.g., negative lookup rate of 0.2), the number and

the position of negative keys in a batch are not constant: the

negative lookup rate is the average. We evaluate implemen-

tations with 128-bit keys and 128-bit values (32 bytes).

Implementations evaluated. .

DPDK (version 17.05) We used the hash table implementa-

tion of DPDK [1], the de-facto standard library for high per-

formance packet processing, and the only general-purpose

hash table implementation that supports batched lookups.

To support our use cases, we increased the amount of data

that can be stored in the hash table from 64 bits to 128 bits

so as to store data and avoid storing a pointer to data in the

hash table with data stored externally. This change has no

impact on the implementation’s performance as the key and

the data (256 bits) still �t a single cache line. This implemen-

tation takes a pessimistic approach and always prefetch both

the primary and the secondary bucket.

Cuckoo++ Our implementation of Cuckoo++ as described

in Section 4 with optional timers disabled.

Cuckoo++ w/ timer Our implementation of Cuckoo++ as

described in Section 4 with optional timers enabled.

Optimistic Cuckoo We cannot compare directly against

CuckooSwitch [29] for it is tailored for small keys (48 bits)

and very small values (16 bits). We however implement a

batching strategy similar to CuckooSwitch. To allow a pre-

cise evaluation of the bene�ts of the algorithmic changes,

this implementation shares most of its code with Cuckoo++.

This ensures that the performance di�erences come mostly

from the algorithmic changes we introduce and not from

di�erences in implementation. It allows to determine the

gains obtained from the sole introduction of the bloom �lter.

Pessimistic Cuckoo Our implementation of a pessimistic

strategy similar to DPDK’s one. Similarly to optimistic

cuckoo, this implementation shares most of its code with

Cuckoo++.

Horton Horton tables [5] are a modi�cation of bucketized

cuckoo hash tables that also aims at improving the perfor-

mance for negative lookups. In Horton tables, buckets are

augmented with a remap array indexed by a tag. If an entry

is not stored in its primary bucket, it might be stored in one

of its several secondary buckets as determined by the value

stored in the remap array at position tag. If this value is zero,

we know that no entry with such tag has been remapped,

so we can avoid reading a secondary bucket. Horton hash

tables have been designed for small keys (32 bits) and val-

ues (31 bits). They were implemented and evaluated only on

GPUs, while networking applications run mostly on CPUs.

Thus, we cannot compare against standard Horton tables.

In order to evaluate the algorithmic changes introduced in

Horton tables and compare them to the ones we introduce

with Cuckoo++, we implement a variant of Horton tables for

CPUs that leverages the optimized code-base and memory

layout of Cuckoo++ (see Figure 6) and that stores the Horton

remap array in place of the bloom �lter. Since our memory

layout is less constrained in term of memory usage, we drop

the notion of type A (8 slots) and type B buckets (7 slots) [5]

so as to avoid branching which is detrimental to performance

on CPUs. We also implement lookup in batches as required

by packet processing applications. To our knowledge, this

is the �rst design and evaluation of Horton tables on CPUs,

for larger keys and values, and supporting batching.

Hash table capacity. We evaluate the performance for dif-

ferent hash table capacities.

Small Tables (512K entries) Our implementation is de-

signed for large tables and thus the minimal capacity sup-

ported is 524288 entries (24 MB at 48 bytes per entry). Such

table is small enough to remain partially in the L3 cache.

Large Tables (32M entries) Larger tables will not �t the L3

cache anymore. The accesses to the bucket will thus generate

L3 cache misses and will have to access the memory with

longer latency and lower bandwidth

Very Large Tables (128M entries) The last con�guration

we evaluate considers very large tables. These tables exceed

4GB, the maximum amount of memory that can be addressed

by Intel Xeons without generating TLB misses.

Metrics. The two metrics of interests are: (i) insert per-

formance since hash tables used for connection tracking

are dynamic and evolve over time, (ii) batched lookup per-

formance since high-performance networking applications

process batches of packets.

Our primary focus is on improving batched lookup per-

formance. Indeed, we expect lookups to dominate in many

workloads, and to become increasingly dominant in the fu-

ture. Indeed, the number of packets per �ow is increasing

due to the trend of having longer lived connections through

the adoption of HTTP 2.0 and the increase in video traf-

�c [21]. In 1997, 20 packets per �ow were observed [24]; in

2000-2005, 26 to 32 packets per �ow were observed [13, 15];

and in recent years 2014 to 2016, 81 to 114 packets per �ow

were observed [3, 26].

Beside these performance metrics, we also consider imple-

mentation complexity (measured in number of lines of code)

and the overhead in memory usage.

5.1 Implementation complexity
We evaluate the implementation complexity by measuring

the number of lines of codes (excluding comments and white

8

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

0.6 0.8 0.95

0

10

20

load factor

M
o

p
/
s

(a) Small table (512k capacity)

0.6 0.8 0.95

0

10

20

load factor

M
o

p
/
s

(b) Large table (32M capacity)

0.6 0.8 0.95

0

10

20

load factor

M
o

p
/
s

(c) Very large table (128M capacity)

Pessimistic Cuckoo Optimistic Cuckoo DPDK Horton Cuckoo++ Cuckoo++ w/ timers

Figure 7: Performance for insertions up to the given load factor for various table sizes.

lines). In Table 1, we report the number of lines for each

variant. The algorithmic changes in Cuckoo++ add 5% of

code to the baseline implementation to implement the bloom

�lter, its maintenance, and its use to prune accesses to the

secondary bucket. When comparing to optimistic cuckoo,

which is the implementation having the best performance

for positive lookups, the addition code is only 2%. When

compared to Horton, Cuckoo++ require more than twice

less additional code, thanks to the simpler algorithm. Timer

management is also a minor complexity increase with less

than 5% increase in code size. Overall, all improvements can

easily be integrated into existing cuckoo hash tables, except

for Horton because it alters the way the secondary bucket is

indexed.

Table 1: Number of lines of codes per implementation

No timer Timer

Pessimistic-Cuckoo 850 881 (+31)

Optimistic-Cuckoo 871 (+21) 902 (+52)

Horton 954 (+94) 985 (+135)

Cuckoo++ 892 (+42) 923 (+73)

5.2 Evaluation of insert performance
Figure 7 plots the number of insertions performed per second

in a hash table for a given load factor. We show results for

the di�erent hash table capacities.

For small tables, our implementations of optimistic cuckoo

and pessimistic cuckoo achieve the highest performance

together with DPDK. Cuckoo++ has a slight overhead due

to the management of the bloom �lter. Cuckoo++ with timer

pays an additional overhead for timer management. Yet, this

overhead remains negligible and is easily o�set as it avoids

to manage timers externally.

For large and very large tables, the performance of

Cuckoo++ and DPDK is similar and just slightly lower than

pessimistic cuckoo and optimistic cuckoo. It decreases only

slightly as the load factor increases.

For all table sizes, Horton table performance decreases

signi�cantly as the load factor increases. Indeed, the insertion

procedure in Horton tables is much more complex, especially

as the primary bucket is full, since it requires additional

hash computations and cacheline accesses to search the least

loaded among several potential secondary buckets.

5.3 Evaluation of lookup performance
We evaluate the performance of batched lookups, for di�er-

ent hash table capacity, for di�erent load factors, and for

di�erent ratio of negative lookups. The results are reported

in Figure 8.

5.3.1 Design choices. Our design goal was to o�er the

best of the two alternatives: having good performance for

positive and negative lookups. We thus compare the perfor-

mance of Cuckoo++ to optimistic cuckoo and pessimistic

cuckoo. Cuckoo++ outperforms both, thus achieving our de-

sign goal. It performs similarly to optimistic cuckoo for low

negative lookup rate. Indeed, by construction, both generate

the same number of memory accesses, and the cost of using

the bloom �lter is negligible. It outperforms both optimistic

and pessimistic cuckoo for high negative lookup rate: for

negative lookups, Cuckoo++ generate a single memory ac-

cess to the primary bucket, while standard cuckoo generate

two memory accesses to the primary and secondary buckets,

with more or less e�cient prefetches.

The behavior of Cuckoo++ tends not to be impacted by

the load factor. However, Cuckoo++ behaves quite di�er-

ently depending on the size of the tables. For small tables,

performance is higher (as for DPDK, optimistic cuckoo and

pessimistic cuckoo). This is because memory accesses have

a relatively low latency since the table can persist in the L3

cache. We also observe that for mixed workload (0.5 negative

lookup rate), the performance is lower. This is because in

this case, the branch predictor of the processor is unable to

9

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

negative lookup rate

M
o

p
/
s

(a) Small table - 0.6 load factor

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

negative lookup rate

M
o

p
/
s

(b) Small table - 0.8 load factor

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

negative lookup rate

M
o

p
/
s

(c) Small table - 0.95 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(d) Large table - 0.6 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(d) Large table - 0.8 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(d) Large table - 0.95 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(g) Very large table - 0.6 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(g) Very large table - 0.8 load factor

0 0.2 0.4 0.6 0.8 1

20

30

40

50

60

negative lookup rate

M
o

p
/
s

(g) Very large table - 0.95 load factor

Pessimistic Cuckoo Optimistic Cuckoo DPDK Horton Cuckoo++ Cuckoo++ w/ timers

Figure 8: Performance for lookups on a single core with di�erent capacities (rows) and di�erent load factors
(columns).

predict correctly the code to execute. For larger tables (32M

and 128M capacity), the performance is similar, interestingly

there is little di�erences between 32M capacity tables (which

do not generate TLB misses) and 128M capacity tables (which

do generate TLB misses). Also, for both sides, the branch

prediction failures are amortized by the memory latency and

thus we don’t have U-shaped curves.

5.3.2 Comparison with alternatives. First, the baseline per-

formance of our implementation is improved over DPDK,

even when using the same prefetch strategy as DPDK (i.e.,

pessimistic cuckoo). This is enabled by our optimized mem-

ory layout that is more compact and that allows leverag-

ing SSE to match hashes. Second, Cuckoo++ outperforms

DPDK for all con�gurations, similarly to the way cuckoo++

outperforms pessimistic cuckoo. Indeed, by avoiding the

un-necessary prefetch of the secondary bucket for positive

lookups, the performance is improved since this prefetch is

useless more than 80% of the time. Similarly, for negative

lookups, the performance is also improved signi�cantly as

only the primary bucket needs to be accessed.

We evaluate the e�ectiveness of Horton tables on CPUs

(the original paper targeted GPUs and restricted keys/values

sizes). Horton tables perform reasonably for low load fac-

tors providing performance just below optimistic cuckoo for

positive lookups. Yet, as the load factor increases, the per-

formance gap increases and Horton tables are outperformed

by optimistic cuckoo. Thus, horton tables cannot be used

as a universal replacement for all settings. Cuckoo++ out-

performs horton tables for all settings (all tables sizes and

all load factors). Also note that contrary to horton tables,

cuckoo++ does not alter the theoretical guarantees of cuckoo

tables, and cuckoo++ is simpler to implement than Horton

(see Table 1).

To explain the improved performance with Cuckoo++,

we compute the expected false positive rate (i.e., when the

10

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

Table 2: False Positive Rate (FPR) with Bloom Filter
(Cuckoo++) and Remap Array (Horton tables)

Load factor FPR (Cuckoo++) FPR (Horton)

l = 0.6 0.0002 0.004

l = 0.8 0.001 0.02

l = 0.95 0.003 0.05

bloom �lter falsely indicates that the secondary bucket needs

to be checked) for various load factors for a hash table of

capacity 32M. Horton tables also provide a hint that allows

to avoid accessing the secondary bucket (i.e., whenever the

remap array entry is set to zero). Thus, we also compute

the false positive rate associated with the remap array of

Horton tables for the same setting. The false positive rates

are reported in Table 2.

For all load factors, the false positive rate for Cuckoo++

is low (less than 0.3%) ensuring good pruning performance

and avoiding most unnecessary accesses to the secondary

bucket. Interestingly, due to the di�erences in structures

the false positive rate for Cuckoo++ is much lower than for

Horton tables. This, combined with the more complex code,

explains the di�erence in performance between Cuckoo++

and Horton tables especially as the load factor increases.

As a conclusion, Cuckoo++ is a good alternative to both

optimistic and pessimistic cuckoo hash table implementa-

tions (including DPDK). Contrary to Horton tables, it con-

sistently improves performance even for high load factors.

Cuckoo++ is the only implementation that o�ers excellent

batched lookup performance in all cases without signi�cantly

decreasing the insert performance. Moreover, Cuckoo++ has

a moderate implementation complexity and very moderate

memory overhead.

5.3.3 Overhead of timer management. Figure 8 also plots

the performance of Cuckoo++ with timers alongside the

performance of Cuckoo++ (without timers). For all settings,

the impact on performance remains low (< 5%). This is much

lower than relying on external timers and performing explicit

deletions in the hash table. Even with the timer functionality

enabled, Cuckoo++ remains among the best implementations

in term of performance.

5.4 Performance in a Multi Core Setting
While our hash table is designed for use in a share nothing

architecture (i.e., with each core running its own thread

with its private hash table), it is important to evaluate its

performance in a multi-core setting. Indeed, hash tables are

memory-intensive and put a lot of pressure on the shared

hardware resources of the CPU such as the L3 cache, or the

memory controller.

1 2 4 8 10 14 16 18

0

200

400

600

cores

M
o

p
/
s

Pess. Cuckoo Opt. Cuckoo DPDK

Horton Cuckoo++ Cuckoo++ w/ timers

Figure 9: Performance for lookups on multiple cores.
Capacity of 32M entries per core, load factor of 0.8
and negative lookup rate of 0.2. The grey dashed line
shows ideal (i.e., linear) scaling relative to Cuckoo++.

We evaluate their performance from 1 to 18 threads run-

ning on the 20 cores of our dual socket Xeon E5-2640v4 (we

leave one core on each socket for the OS). We show the re-

sults on Figure 9. The scaling is good, which is coherent with

our design to adopt a share-nothing architecture. Yet, even

if the data structures are independent and the cores do not

synchronize, we observe that the scaling is not linear due

to the pressure on shared units of the CPU such as the L3

cache and the memory controller. Cuckoo++ achieves 490M

operations per second on 18 cores. The total capacity of the

hash tables is 576M (18 x 32M).

5.5 Memory usage
Memory usage derives directly from the memory layout

we use. Since all our implementations (Horton, Optimistic

Cuckoo, Pessimistic Cuckoo and Cuckoo++) share the same

memory layout, they all have the same memory require-

ments. We compare it to Cuckoo++ with timer and DPDK.

Notice that buckets are aligned to cachelines which means

that padding is added to the structures depicted in Figure 6.

Despite the additional metadata needed for Cuckoo++ (i.e.,

the bloom �lter), Cuckoo++ has a lower memory overhead

than the implementation of DPDK.

Variant Bytes/Entry Overhead

Cuckoo++ 48 50%

Cuckoo++ with timer 64 100%

DPDK 64 100%

6 RELATEDWORK
Optimizing the performance for negative lookups is a re-

curring concern for open addressing hash tables [6, 7, 12].

Cuckoo hash tables [16, 19], especially BCHT [8] represent

a breakthrough by moving most complexity related to colli-

sions to the insert procedure allowing for e�cient lookups:

11

Technicolor Technical Report, December 2017, Rennes, France Nicolas Le Scouarnec

they lower the total number of memory accesses, in both av-

erage and worst case. Our goal, similarly to Horton tables [5],

is to go beyond these, exploiting the fact that modern CPUs

manage the memory by 64B chunks allowing buckets to

store metadata (i.e., the bloom �lter) in addition to the slots.

Doing so, we have been able to reduce the number of mem-

ory accesses from 2 to 1, resulting in improved performance.

Horton tables [5] have a similar approach, but they are less

e�cient at pruning accesses (see FPR reported in Table 2),

and the computational cost of the changes o�sets the bene�ts

for high load factors.

In our design, we use bloom �lters [2] instead of counting

bloom �lters [11] or cuckoo �lters [10] that support deletion

or have improved FPR. We needed a a probabilistic �lter

with very simple lookup procedure : lookups in bloom �lters

can be implemented with an equal and a bitwise and. Also, a

bloom �lter extended with a global counter is a more compact

solution than counting bloom �lters supporting deletion. As

shown on Figure 5, the occupancy remains low, allowing

the bloom �lter to be reset often enough even if it does not

support deletion: we thus favored computational cost and

compacity in our design.

MemC3 [9] integrates additional functions into the hash

table data structure. In the context of memcached, they re-

place two inter-dependant data structures, the �rst man-

aging key/value association, and the second keeping track

of entries for providing LRU replacement by a single hash

table integrating a CLOCK-based LRU eviction. The goal

of this integration is to simplify software and to improve

performance by reducing overhead, similarly to what we

achieve by integrating timers directly into the hash table.

Note that, entries are over-written thus providing a form of

lazy deletion. Yet, this lazy deletion di�ers from lazy deletion

in open-addressing hash table [6] where entries are marked

with a tombstone, which still required a memory access. In

open addressing hash tables predating cuckoo hash table,

these tombstones were useful to avoid costly restructuration

of hash tables upon deletion.

Recent works [14, 29] consider concurrent read/write ac-

cesses to cuckoo hash tables. When implemented, these re-

quire additional hardware support or instructions to check

coherency. Our application, which leverages the multi-queue

capabilities of modern NICs to run in a share-nothing setting

can drop this functionality for improved performance. Yet,

our modi�cations to cuckoo hash table are orthogonal to

these works, and thus both could be integrated together for

improved performance with concurrent accesses.

An alternative solution to store association between con-

nections and state is perfect hashing, as used in Scale-

Bricks [28]. Perfect hashing allows a compact memory repre-

sentation and very e�cient lookups. The downsides are that

it does not answers negatively to lookups but gives a random

value, and that insert are more costly. In the context of high-

performance packet processing, ScaleBricks [28] achieves

520M lookups per second on 16 cores. Thus, Cuckoo++, at

460M lookups per second on 16 cores, provides an inter-

esting, more �exible, alternative to ScaleBricks whenever

the insertion/update rate is higher, or when perfect hashing

does not satisfy the requirements of the application (e.g.,

�rewall/NAT must identify non-existing connection, and

require to frequently create new associations).

7 CONCLUSION
We implemented an highly e�cient cuckoo hash table sup-

porting several strategies (i.e., optmisitic or pessimistic) and

evaluate it to show that none is ideal for all workloads. We

thus propose Cuckoo++ which adds a bloom �lter in the pri-

mary bucket, allowing to prune unnecessary accesses to the

secondary bucket without requiring expensive computation.

Cuckoo++ hash tables have a uniformly good performance

when compared to both pessimistic and optimistic imple-

mentation, and an improved performance over DPDK and

Horton tables for all cases.

We also describe a variant of Cuckoo++ that integrate sup-

port for entry expiration directly in the hash table, avoiding

the need for external management of timers and the associ-

ated overheads. This relies on a new memory layout more

compact than DPDK’s original one, and on the use of 16-bit

timestamp.

Overall, Cuckoo++ hash tables are a good alternative to

existing implementation such as DPDK, and can be used for a

wide range of settings (i.e., all capacities, load factor and neg-

ative lookup rate). Their support of batched lookups, entry

expiration, and good performance for negative lookup rate,

makes them well suited for packet processing applications

requiring connection tracking.

ACKNOWLEDGMENTS
The author is very grateful to Fabien André for insightful

discussions, comments on the manuscript and support for

evaluation.

REFERENCES
[1] . Dpdk: Data plane development kit. http://dpdk.org.

[2] Bloom, B. H. Space/time trade-o�s in hash coding with allowable

errors. Commun. ACM 13, 7 (July 1970), 422–426.

[3] Bocchi, E., Khatouni, A. S., Traverso, S., Finamore, A., MunafÃš,

M., Mellia, M., and Rossi, D. Statistical network monitoring: Method-

ology and application to carrier-grade nat. Computer Networks 107
(2016), 20 – 35. Machine learning, data mining and Big Data frame-

works for network monitoring and troubleshooting.

[4] Bonelli, N., Giordano, S., and Procissi, G. Network tra�c process-

ing with pfq. IEEE Journal on Selected Areas in Communications 34, 6

(June 2016), 1819–1833.

12

http://dpdk.org

Cuckoo++ Hash Tables Technicolor Technical Report, December 2017, Rennes, France

[5] Breslow, A. D., Zhang, D. P., Greathouse, J. L., Jayasena, N., and

Tullsen, D. M. Horton tables: Fast hash tables for in-memory data-

intensive computing. In Proceedings of the 2016 USENIX Conference
on Usenix Annual Technical Conference (Berkeley, CA, USA, 2016),

USENIX ATC ’16, USENIX Association, pp. 281–294.

[6] Celis, P., and Franco, J. The analysis of hashing with lazy deletions.

Tech. Rep. 260, Computer Science Departement Indiana University,

1989.

[7] Celis, P., Larson, P.-A., and Munro, J. I. Robin hood hashing. In

Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science (Washington, DC, USA, 1985), SFCS ’85, IEEE Computer

Society, pp. 281–288.

[8] Dietzfelbinger, M., and Weidling, C. Balanced allocation and

dictionaries with tightly packed constant size bins. Theor. Comput. Sci.
380, 1-2 (July 2007), 47–68.

[9] Fan, B., Andersen, D. G., and Kaminsky, M. Memc3: Compact and

concurrent memcache with dumber caching and smarter hashing.

In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA, 2013), nsdi’13, USENIX

Association, pp. 371–384.

[10] Fan, B., Andersen, D. G., Kaminsky, M., and Mitzenmacher, M. D.

Cuckoo �lter: Practically better than bloom. In Proceedings of the 10th
ACM International on Conference on Emerging Networking Experiments
and Technologies (New York, NY, USA, 2014), CoNEXT ’14, ACM,

pp. 75–88.

[11] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary cache: a

scalable wide-area web cache sharing protocol. IEEE/ACMTransactions
on Networking 8, 3 (Jun 2000), 281–293.

[12] Herlihy, M., Shavit, N., and Tzafrir, M. Hopscotch hashing. In Pro-
ceedings of the 22Nd International Symposium on Distributed Computing
(Berlin, Heidelberg, 2008), DISC ’08, Springer-Verlag, pp. 350–364.

[13] Kim, M.-S., Won, Y. J., and Hong, J. W. Characteristic analysis of

internet tra�c from the perspective of �ows. Comput. Commun. 29,

10 (June 2006), 1639–1652.

[14] Li, X., Andersen, D. G., Kaminsky, M., and Freedman, M. J. Algorith-

mic improvements for fast concurrent cuckoo hashing. In Proceedings
of the Ninth European Conference on Computer Systems (New York, NY,

USA, 2014), EuroSys ’14, ACM, pp. 27:1–27:14.

[15] Muscariello, L. On Internet Tra�c Measurements, Characterization
and Modelling. PhD thesis, Politecnico Di Torino, 2006.

[16] Pagh, R., and Rodler, F. F. Cuckoo hashing. J. Algorithms 51, 2 (May

2004), 122–144.

[17] Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S.,

Rizzo, L., and Shenker, S. E2: A framework for nfv applications. In

Proceedings of the 25th Symposium on Operating Systems Principles
(New York, NY, USA, 2015), SOSP ’15, ACM, pp. 121–136.

[18] Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., and Shenker,

S. Netbricks: Taking the v out of nfv. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Berkeley,

CA, USA, 2016), OSDI’16, USENIX Association, pp. 203–216.

[19] Panigrahy, R. E�cient hashing with lookups in two memory accesses.

In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (Philadelphia, PA, USA, 2005), SODA ’05, Society for

Industrial and Applied Mathematics, pp. 830–839.

[20] Pike, G., and Alakuijala, J. Introducing cityhash. https://opensource.

googleblog.com/2011/04/introducing-cityhash.html, April 2011.

[21] Qian, L., and Carpenter, B. E. A �ow-based performance analysis

of tcp and tcp applications. In 2012 18th IEEE International Conference
on Networks (ICON) (Dec 2012), pp. 41–45.

[22] Rizzo, L. Netmap: A novel framework for fast packet i/o. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference
(Berkeley, CA, USA, 2012), USENIX ATC’12, USENIX Association,

pp. 9–9.

[23] Ross, K. A. E�cient hash probes on modern processors. In 2007
IEEE 23rd International Conference on Data Engineering (April 2007),

pp. 1297–1301.

[24] Thompson, K., Miller, G. J., andWilder, R. Wide-area internet tra�c

patterns and characteristics. Netwrk. Mag. of Global Internetwkg. 11, 6

(Nov. 1997), 10–23.

[25] Varghese, G., and Lauck, T. Hashed and hierarchical timing wheels:

Data structures for the e�cient implementation of a timer facility.

In Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles (New York, NY, USA, 1987), SOSP ’87, ACM, pp. 25–38.

[26] Velan, P., Medková, J., Jirsík, T., and ?eleda, P. Network tra�c char-

acterisation using �ow-based statistics. In NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium (April 2016), pp. 907–

912.

[27] Zhang, K., Wang, K., Yuan, Y., Guo, L., Lee, R., and Zhang, X. Mega-

kv: A case for gpus to maximize the throughput of in-memory key-

value stores. Proc. VLDB Endow. 8, 11 (July 2015), 1226–1237.

[28] Zhou, D., Fan, B., Lim, H., Andersen, D. G., Kaminsky, M., Mitzen-

macher, M., Wang, R., and Singh, A. Scaling up clustered network

appliances with scalebricks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (New York, NY, USA,

2015), SIGCOMM ’15, ACM, pp. 241–254.

[29] Zhou, D., Fan, B., Lim, H., Kaminsky, M., and Andersen, D. G. Scal-

able, high performance ethernet forwarding with cuckooswitch. In

Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies (New York, NY, USA, 2013), CoNEXT

’13, ACM, pp. 97–108.

13

https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html

	Abstract
	1 Introduction
	2 Background
	3 Implementing Cuckoo Tables
	4 Cuckoo++ Hash Tables
	4.1 Avoid accesses to the secondary bucket
	4.2 Timer management
	4.3 Memory Layout

	5 Evaluation
	5.1 Implementation complexity
	5.2 Evaluation of insert performance
	5.3 Evaluation of lookup performance
	5.4 Performance in a Multi Core Setting
	5.5 Memory usage

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

