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Introduction
Although we’re only a few years removed from the transformer 
breakthrough, LLMs have already grown massively in 
performance, cost, and promise. At W&B, we’ve been fortunate 
to see more teams try to build LLMs than anyone else. But many 
of the critical details and key decision points are often passed 
down by word of mouth. 

The goal of this white paper is to distill the best practices for 
training your own LLM for scratch. We’ll cover everything from 
scaling and hardware to dataset selection and model training, 
letting you know which tradeoffs to consider and flagging some 
potential pitfalls along the way. This is meant to be a fairly 
exhaustive look at the key steps and considerations you’ll make 
when training an LLM from scratch. 

The first question you should ask yourself is whether training 
one from scratch is right for your organization. As such, we’ll 
start there:

Before starting LLM pre-training, the first question you need to 
ask is whether you should pre-train an LLM by yourself or use an 
existing one. There are three basic approaches:

•	 Option 1: Use the API of a commercial LLM, e.g. GPT-3 
(OpenAI, 2020), Cohere APIs, AI21 J-1

•	 Option 2: Use an existing open-sourced LLM, e.g. GPT-J 
(EleutherAI, 2021), GPT-NeoX (EleutherAI, 2022), Galactica 
(Meta AI), UL2 (Google, 2022), OPT (Meta AI, 2022), BLOOM 
(BigScience, 2022), Megatron-LM (NVIDIA, 2021), CodeGen 
(Salesforce, 2022)

•	 Option 3: Pre-train an LLM by yourself or with consultants: 
You can either manage your own training or hire LLM 
consultants & platforms. For example, Mosaic ML provides 
training services focusing on LLMs.

That said, there are a lot of details to consider when making  
your choice. Here are the pros, cons, and applicable scenarios  
for each option:

BUILD VS. BUY PRE-TRAINED LLM MODELS

Option 1  
Use the API of a commercial LLM

Option 2  
Use an existing open-sourced LLM

Option 3  
Pre-train an LLM by yourself  
or with consultants

Pros

•	 Requires the least LLM  
training technical skills.

•	 Minimum upfront training / 
exploration cost, given main cost 
incurs at inference time.

•	 The least data-demanding option. 
Only a few examples (or no examples) 
are needed for models to perform 
inference.

•	 Can leverage the best-performing 
LLMs in the market and build a 
superior experience.

•	 Reduce time-to-market of your  
apps and de-risk your project with  
a working LLM model.

•	 A good way to leverage what LLMs 
have learned from a vast amount of 
internet data and build on top of it 
without paying for the IP at inference.

•	 Compared to option one, you are less 
dependent on the future direction of 
LLM service providers and thus have 
more control regarding roadmap & 
backwards compatibility.

•	 Compared to option three, you have 
a much faster time-to-value given you 
are not building LLMs from scratch, 
also leading to less data, training 
time, training budget needed.

•	 Compared to options one and two, 
you have the most control of your 
LLM’s performance and future 
direction, giving you lots of flexibility 
to innovate on techniques and/or 
customize to your downstream tasks.

•	 Gain full control of training datasets 
used for the pre-training, which 
directly impacts model quality, bias, 
and toxicity issues. In comparison, 
those issues are less controllable in 
option one or two.

•	 Training your own LLM also gives 
you a deep moat: superior LLM 
performance either across horizontal 
use cases or tailored to your vertical, 
allowing you to build a sustaining 
advantage especially if you create a 
positive data/feedback loop with LLM 
deployments.
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Cons

•	 Commercial LLM services can get 
expensive with a high volume of fine-
tuning or inference tasks. It comes 
down to LLM total-cost-of-ownership 
(TCO) amortized to each inference.

•	 Many industries / use cases forbid 
the use of commercial LLM services 
as sensitive data / PII data cannot be 
seen by the service for compliance 
(healthcare use cases, for example).

•	 If building external apps, you’ll need 
to find other moats and de-risk your 
business if you’re highly reliant on 
external LLM service technology.

•	 Less flexible downstream: doesn’t 
support edge inference, limited 
ability to customize the model (fine-
tuning gets expensive), limited ability 
for ongoing model improvements.

•	 Not as demanding as building 
your own, but still requires lots of 
domain expert skills to train, fine-
tune, and host an open-sourced 
LLM. LLM reproducibility is still a 
significant issue so the amount of  
time and work needed cannot be 
underestimated.

•	 Slower time-to-market and less agile 
if you are building downstream apps, 
due to a more vertical tech stack.

•	 Open-sourced models typically 
lag performance compared to 
commercial models by months/
years. If your competitor leverages 
commercial models, they have an 
advantage on LLM tech and you’ll 
need to find other competitive 
advantages.

•	 Very expensive endeavor with 
high risks. Need cross-domain 
knowledge spanning from NLP/ML, 
subject matter expertise, software 
and hardware expertise. If not done 
well, you could end up in a situation 
where you’ve spent thousands 
or even millions of dollars with 
a suboptimal model. Mistakes, 
especially late into training stages, 
are hard to fix / unwind. 

•	 Less efficient than option two. 
Option two leverages existing LLMs, 
learning from an entire internet’s 
worth of data and can provide a 
solid starting point. With option 3, 
you start from scratch and need lots 
of high-quality / diverse datasets 
for your models to gain generalized 
capabilities.

When to consider each option

•	 Best if you either have less technical 
teams but want to leverage LLM 
techniques to build downstream 
apps, or you want to leverage the 
best-in-class LLMs for performance 
reasons (outsourcing the LLM tech).

•	 Good if you have very limited training 
datasets and want to leverage an 
LLM’s capability to do zero/few-shot 
learning.

•	 Good for prototyping apps and 
exploring what is possible with LLMs.

•	 Between options two and three, 
if you aren’t trying to change the 
model architecture, it is almost 
always better to either directly take 
an existing pre-trained LLM and 
fine-tune it or take the weights of an 
existing pre-trained LLM as a starting 
point and continue pre-training. The 
reason is because a good pre-trained 
LLM like GPT-NeoX has already seen 
a vast amount of data and thus has 
learned general capabilities from the 
data. You can leverage that learning 
especially if your training dataset is 
not huge or diverse. 

•	 Another typical scenario is that you 
operate in a regulatory environment 
or have user / sensitive data that 
cannot be fed to commercial 
LLM services. Or you need edge 
deployment of the model for latency 
or locational reasons.

•	 Best if you need to change model 
architecture  or training dataset 
from existing pre-trained LLMs. 
For example, if you want to  use 
a different tokenizer, change the 
vocabulary size, or change the 
number of hidden dimensions, 
attention heads, or layers.

•	 Typically, in this case the LLM is a 
core part of your business strategy & 
technological moat. You are taking 
on some or a lot of innovations 
in LLM training, and have a large 
investment appetite to train and 
maintain expensive models on an 
ongoing basis. 

•	 Typically, you have or will have lots 
of proprietary data associated with 
your LLM to create a continuous 
model improvement loop for 
sustainable competitive advantage.

Option 1  
Use the API of a commercial LLM

Option 2  
Use an existing open-sourced LLM

Option 3  
Pre-train an LLM by yourself  
or with consultants

It is also worth mentioning that if you only have a very targeted set of use cases and don’t need the general-purpose capabilities or 
generative capabilities from LLMs, you might want to consider training or fine-tuning a much smaller transformer or other much simpler 
deep learning models. That could result in much less complexity, less training time, and less ongoing costs.
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Before you dive into training, it’s important to cover how LLMs 
scale. Understanding scaling lets you effectively balance the size 
and complexity of your model and the size of the data you’ll use 
to train it. 

Some relevant history here: OpenAI originally introduced “the 
LLM scaling laws” in 2020. They suggested that increasing model 
size was more important than scaling data size. This held for 
about two years before DeepMind suggested almost the polar 
opposite: that previous models were significantly undertrained 
and that increasing your foundational training datasets actually 
leads to better performance.

That changed  in 2022. Specifically, DeepMind put forward 
an alternative approach in their Training Compute-Optimal 
Large Language Models paper. They found that current LLMs 
are actually significantly undertrained. Put simply: these large 
models weren’t trained on nearly enough data. 

Deepmind showcased this with a model called Chinchilla, which 
is a fourth the size of the Gopher model above but trained on 
4.6x more data. At that reduced size but with far more training 
data, Chinchilla outperformed Gopher and other LLMs.

DeepMind claims that the model size and the number of 
training tokens* should instead increase at roughly the same 
rate to achieve optimal performance. If you get a 10x increase 
in compute, you should make your model 3.1x times bigger and 
the data you train over 3.1x bigger; if you get a 100x increase in 
compute, you should make your model 10x bigger and your data 
10x bigger. 

*Note: Tokenization in NLP is an essential step of separating a piece 
of text into smaller units called tokens. Tokens can be either words, 
characters, or subwords. The number of training tokens is the size of 
training data in token form after tokenization. We will dive into detailed 
tokenization methods a little later.

To the left of the minima on each curve, models are too  small -- a larger 
model trained on less data would be an improvement. To the right of the 
minima on each curve, models are too large -- a smaller model trained on 
more data would be an improvement. The best models are at the minima. 

DeepMind provides the following chart showing how much 
training data and compute you’d need to optimally train models 
of various sizes.

THE SCALING LAWS

Estimated optimal training FLOPs and training tokens for various model sizes, 
Training Compute-Optimal Large Language Models

That said, most existing LLMs are still undertrained:

Data/compute-optimal (Chinchilla) heatmap, Chinchilla 
data-optimal scaling laws: In plain English

In summary, the current best practices in choosing the size  
of your LLM models are largely based on two rules:

•	 Decide on  your dataset and find the Chinchilla-optimal 
model size based on data size (or close to Chinchilla-optimal 
within the boundary of your data collection limitation)

•	 Determine the data and model size combination that’s best 
for your model, based on your training compute budget and 
inference latency requirements

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/pdf/2203.15556.pdf
https://lifearchitect.ai/chinchilla/
https://lifearchitect.ai/chinchilla/
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HARDWARE

It should come as no surprise that pre-training LLMs is a 
hardware-intensive effort. The following examples of current 
models are a good guide here: 

•	 PaLM (540B, Google): 6144 TPU v4 chips used in total, 
made of two TPU v4 Pods connected over data center 
network (DCN) using a combination of model and data 
parallelism

•	 OPT (175B, Meta AI): 992 80GB A100 GPUs, utilizing 
fully shared data parallelism with Megatron-LM tensor 
parallelism

•	 GPT-NeoX (20B, EleutherAI): 96 40GB A100 GPUs in total

•	 Megatron-Turing NLG (530B, NVIDIA & MSFT):  560 DGX 
A100 nodes, each cluster node has 8 NVIDIA 80-GB  
A100 GPUs

Training LLMs is challenging from an infrastructure perspective 
for two big reasons. For starters, it is simply no longer possible 
to fit all the model parameters in the memory of even the largest 
GPU (e.g. NVIDIA 80GB-A100), so you’ll need some parallel 
architecture here. The other challenge is that a large number of 
compute operations can result in unrealistically long training 
times if you aren’t concurrently optimizing your algorithms, 
software, and hardware stack (e.g. training GPT-3 with 175B 
parameters would require about 288 years with a single V100 
NVIDIA GPU). 

Memory efficiency 

Training a LLM requires terabytes of aggregate memory for 
model weights, gradients, and optimizer states - far beyond what 
is available on a single GPU. One typical mitigation strategy is 
gradient accumulation, in which the full training batch is split 
into micro-batches that are processed in sequence with their 
resulting gradients accumulated before updating the model 
weights. That means your training batch size can scale without 
increasing the peak resident activation memory.

Compute efficiency 

While large GPU clusters can have thousands of high-throughput 
GPUs, achieving high compute efficiency at this scale is 
challenging. A large batch size can be an effective way to increase 
compute efficiency, because it increases the arithmetic intensity 
of a GPU kernel and helps amortize the time spent stalled on 
communication and synchronization. However, using too large of 
a batch size can have negative effects on the model quality. 

While parallelization is paramount, there are many different 
ways to do it. We’ll get into the most common in our next section. 

Data Parallelism 

Data parallelism is the best and most common approach for 
dealing with large datasets that cannot fit into a single machine 
in a deep learning workflow. 

More specifically, data parallelism divides the training data into 
multiple shards (partitions) and distributes them to various 
nodes. Each node first works with its local data to train its sub-
model, and then communicates with the other nodes to combine 
their results at certain intervals in order to obtain the global 
model. The parameter updates for data parallelism can be either 
asynchronous or synchronous. 

The advantage of this method is that it increases compute 
efficiency and that it is relatively easy to implement. The biggest 
downside is that during the backward pass you have to pass the 
whole gradient to all other GPUs. It also replicates the model and 
optimizer across all workers which is rather memory inefficient.Memory vs. Compute Efficiency

Techniques for Parallelization 

To achieve the full potential of thousands of distributed GPUs,  
it is crucial to design parallelism into your architecture to 
balance memory and compute efficiency.

Parallelization refers to splitting up tasks and distributing 
them across multiple processors or devices, such as GPUs, 
so that they can be completed simultaneously. This allows for 
more efficient use of compute resources and faster completion 
times compared to running on a single processor or device. 
Parallelized training across multiple GPUs is an effective way to 
reduce the overall time needed for the training process. 

There are several different strategies that can be used to 
parallelize training, including gradient accumulation, micro-
batching, data parallelization, tensor parallelization and pipeline 
parallelization, and more. Typical LLM pre-training employs a 
combination of these methods. Let’s define each: 
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As mentioned at the start of this section, it’s not uncommon 
for teams to leverage a combination of parallelism techniques 
during training. For example, PaLM (Google Brain, 2022) and 
OPT (Meta AI, 2022) both used a combination of tensor model 
parallelism and data parallelism. 

NVIDIA approached things a little differently in the Efficient 
Large-Scale Language Model Training on GPU Clusters Using 
Megatron-LM paper. They proposed a PTD-P technique that 
combines pipeline, tensor, and data parallelism to achieve 
state-of-the-art computational performance (52% of peak device 
throughput) on 1000s of GPUs. 

Specifically, PTD-P leverages a combination of pipeline 
parallelism across multi-GPU servers, tensor parallelism within 
a multi-GPU server, and data parallelism to practically train 
models with a trillion parameters. The method also employs 
graceful scaling in an optimized cluster environment with high-
bandwidth links between GPUs on the same server and across 
servers. 

Using these techniques to train LLMs requires not only the 
highest-performing GPUs to be efficient, but also needs high-
bandwidth networking for optimal communication––InfiniBand 
is often used to move data between nodes. 

But this of course comes with a cost. Leveraging thousands 
of high-performing GPUs and high-bandwidth networks to 
train LLMs is infrastructure-intensive. For example, a back-of-
the-envelope calculation estimated that the cost of the PaLM 
model (540B, Google) might be as high as $23MM (see detailed 
analysis).

To implement distributed deep learning training systems, 
software toolkits such as Distributed TensorFlow, Torch 
Distributed, Horovod, and libraries such as DeepSeed and 
Megatron are often needed. There is implementation complexity 
here so it requires system expertise if you’re going to be 
successful.

In addition, the following techniques and strategies are 
commonly employed to achieve parallelism: 

Tensor Parallelism

Tensor parallelism divides large matrix multiplications into 
smaller submatrix calculations which are then executed 
simultaneously using multiple GPUs. 

This allows for faster training times due to its asynchronous 
nature and the ability to reduce communication overhead 
between nodes. The benefit of this method is that it is  
memory-efficient. The downside, however, is that it  
introduces additional communication of activations in  
each forward & backward propagation, and therefore  
requires high communication bandwidth to be efficient. 

Pipeline parallelism and model parallelism

Pipeline parallelism improves both the memory and compute 
efficiency of deep learning training by partitioning the layers  
of a model into stages that can be processed in parallel. 

This helps with overall throughput speeds significantly while 
adding the smallest communication overhead. You can think of 
pipeline parallelism as “inter-layer parallelism” (where tensor 
parallelism can be thought of as “intra-layer parallelism”). 
Similar to pipeline parallelism, model parallelism is when you 
split the model among GPUs and use the same data for each 
model; so each GPU works on a part of the model rather than a 
part of the data. The downside of pipeline and model parallelism 
is that it cannot scale infinitely given that the degree of pipeline 
parallelism is bounded by the depth of the model.

Gradient accumulation

Gradient accumulation involves adding up gradients from 
multiple batches before performing one weight update step on 
all accumulated gradients at once. 

This approach reduces communication overhead between 
GPUs by allowing them to work independently on their own 
local batch of data until they have synchronized with each 
other again, after accumulating enough gradients for a single 
optimization step.

Asynchronous stochastic gradient descent optimization

Asynchronous stochastic gradient descent optimization methods 
can also be employed when performing model optimization over 
multiple GPUs. 

https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://blog.heim.xyz/palm-training-cost/
https://blog.heim.xyz/palm-training-cost/
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•	 Prose: BookCorpus2, Bibliotik, Project Gutenberg

•	 Dialog: YouTube subtitles, Ubuntu IRC, OpenSubtitles, 
Hacker News, Europarl

•	 Miscellaneous: GitHub, the DeepMind Mathematics dataset, 
Enron emails

Note that The Pile dataset is one of the very few large-scale 
text datasets that is free for the public. For most of the existing 
models like GPT-3, PaLM, and Galactica, their training and 
evaluation datasets are not publicly available. Given the large 
scale effort it takes to compile and pre-process these datasets 
for LLM training, most companies have kept them in-house 
to maintain competitive advantage. That makes datasets like 
The Pile and a few datasets from AllenAI extremely valuable for 
public large-scale NLP research purposes.

Another thing worth mentioning is that, during dataset 
collection, general data can be collected by non-experts but 
data for specific domains normally needs to be collected 
or consulted by subject matter experts (SMEs), e.g. doctors, 
physicists, lawyers, etc. SMEs can flag thematic or conceptual 
gaps that NLP engineers might miss. NLP engineers should also 
be heavily involved at this stage given their knowledge of how 
a LLM “learns to represent data” and thus their abilities to flag 
any data oddities or gaps in the data that SMEs might miss.

Once you’ve identified the dataset(s) you’ll be using, you’ll want 
to prepare that data for your model. Let’s get into that now: 

This method uses small subsets (microbatches) of data from 
each node instead of loading all data at once, which helps reduce 
memory requirements while still allowing for fast convergence 
rates due to its asynchronous nature. It works like this:

•	 First, we fetch the most up-to-date parameters of the 
model needed to process the current mini-batch from the 
parameter servers.

•	 We then compute gradients of the loss with respect to  
these parameter

•	 Finally, these gradients are sent back to the parameter 
servers, which then updates the model accordingly.

Micro-batching

Micro-batching combines small mini-batches into larger ones so 
that more batches can be processed in less time and with fewer 
synchronization points between devices during backpropagation 
operations. It has become increasingly popular for training 
very large models across many GPUs due to its ability to reduce 
memory consumption and improve scalability. Overall, micro-
batching is an effective way to leverage distributed deep learning 
techniques when dealing with very large datasets or models that 
require significant amounts of processing power.

Now that we’ve gone through scaling, hardware, and some 
techniques for parallelizing your training runs, let’s look at what 
your LLM will actually learn from: data. 

Bad data leads to bad models. But careful processing of  
high-quality, high-volume, diverse datasets directly  
contributes to model performance in downstream tasks  
as well as model convergence.

Dataset diversity is especially important for LLMs. That’s because 
diversity improves the cross-domain knowledge of the model, 
as well as its downstream generalization capability. Training on 
diverse examples effectively broadens the ability of your LLM to 
perform well on myriad nuanced tasks.

A typical training dataset is comprised of textual data from 
diverse sources, such as crawled public data, online publication 
or book repositories, code data from GitHub, Wikipedia, news, 
social media conversations, etc. 

For example, consider The Pile. The Pile is  a popular text corpus 
created by EleutherAI for large-scale language modeling. It 
contains data from 22 data sources, coarsely broken down into 
five broad categories:

•	 Academic Writing: PubMed Abstracts and PubMed Central, 
arXiv, FreeLaw, USPTO Backgrounds, PhilPapers, NIH 
Exporter

•	 Online or Scraped Resources: CommonCrawl, 
OpenWebText2, Stack Exchange, Wikipedia

In this section, we’ll cover both data adjustments (like 
deduplication and cleaning) and the pros and cons of various 
tokenization strategies. Let’s start with the former: 

Dataset Handling 

To ensure training data is high-quality and diverse, several 
pre-processing techniques can be used before the pre-training 
steps:

Data sampling: 

Certain data components can be up-sampled to obtain a more 
balanced data distribution. Some research down-samples 
lower-quality dataset such as unfiltered web crawl data. 
Other research up-samples data of a specific set of domains 
depending on the model objectives. 

There are also advanced methods to filter high-quality 
data such as using a trained classifier model applied to the 
dataset. For example, the model Galactica by Meta AI is built 
purposefully for science, specifically storing, combining and 
reasoning about scientific knowledge. 

DATASET COLLECTION

DATASET PRE-PROCESSING

http
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Due to its goals, the pre-training dataset is composed of high-
quality data mainly from science resources such as papers, 
textbooks, lecture notes, encyclopedias. The dataset is also 
highly curated, for example, with task-specific datasets  to 
facilitate composition of this knowledge into new task contexts.

Data cleaning 

Normally, data cleaning and reformatting efforts are applied 
before training. Examples include removing boilerplate text and 
removing HTML code or markup. In addition, for some projects, 
fixing misspellings, handling cross-domain homographs, and/
or removing biased / harmful speech are performed to improve 
model performance. For other projects, these techniques 
are not used under the idea that models should see the 
fair representation of the real world and learn to deal with 
misspellings and toxicity as a part of the model capabilities.

Tokenization is the process of encoding a string of text into transformer-readable token ID integers. Most state-of-the-art LLMs 
use subword-based tokenizers like byte-pair encoding (BPE)  as opposed to word-based approaches. We’ll present the strengths and 
weaknesses of various techniques below, with special attention to subword strategies as they’re currently the most popular versus  
their counterparts. 

Tokenization

Non-standard textual components handling 

In some cases, it is important to convert non-standard textual 
components into texts, e.g. converting emoji into their text 
equivalent:          becomes “snowflake.”This conversion can be 
done programmatically, of course. 

Data deduplication 

Some researchers see significant benefits from deduplicating 
training data. Fuzzy deduplication methods such as locality 
sensitive hashing  (LSH) are commonly used here. See 
Deduplicating Training Data Makes Language Models Better 
paper to understand details regarding deduplication. 

Downstream task data removal 

Data leakage happens when the data you are using to train 
happens to have the information you are trying to predict. 
Downstream task data removal methods (such as n-grams)  
are needed to remove training data also present in the 
evaluation dataset.

Summary of the most used tokenization methods,  
Two minutes NLP — A Taxonomy of Tokenization Methods
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https://arxiv.org/abs/2107.06499
https://medium.com/nlplanet/two-minutes-nlp-a-taxonomy-of-tokenization-methods-60e330aacad3
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Tokenization Methods Word-based tokenization Character-based tokenization Subword-based tokenization

Example Tokenizers Space tokenization (split 
sentences by space); rule-based 
tokenization (e.g. Moses, spaCy)

Character tokenization (simply 
tokenize on every character)

Byte-Pair Encoding (BPE); 
WordPiece; SentencePiece; 
Unigram (tokenizing by parts of 
a word vs. the entirety of a word; 
see table above)

Considerations •	 Downside: Generates 
a very large vocabulary 
leading to a huge 
embedding matrix as the 
input and output layer; 
large number of out-of-
vocabulary (OOV) tokens; 
and different meanings of 
very similar words

•	 Transformer models 
normally have a 
vocabulary of less than 
50,000 words, especially if 
they are trained only on a 
single language 

•	 Lead to much smaller 
vocabulary; no OOV (out 
of vocabulary) tokens 
since every word can be 
assembled from individual 
characters

•	 Downside: Generates 
very long sequences 
and less meaningful 
individual tokens, making 
it harder for the model to 
learn meaningful input 
representations. However, 
if character-based 
tokenization is used on 
non-English language, a 
single character could be 
quite information rich (like 
“mountain” in Mandarin). 

•	 Subword-based 
tokenization methods 
follow the principle that 
frequently used words 
should not be split 
into smaller subwords, 
but rare words should 
be decomposed into 
meaningful subwords

•	 Benefit: Solves the 
downsides faced by 
word-based tokenization 
and character-based 
tokenization and 
achieves both reasonable 
vocabulary size with 
meaningful learned 
context-independent 
representations.

In other words, the choice of tokenization technique depends on the specific task and language being analyzed. 

•	 Word-based tokenization is simple and efficient but can be limited in its ability to handle complex languages. 

•	 Character-based tokenization can be useful for languages without distinct word boundaries. 

•	 Subword-based tokenization, including BPE, wordpiece tokenization, sentencepiece tokenization, and unigram tokenization,  
is particularly useful for handling complex morphology and out-of-vocabulary words. 
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Subword-based 
Tokenization 
Methods

Byte-Pair Encoding 
(BPE)

WordPiece Unigram SentencePiece

Description One of the most popular 
subword tokenization 
algorithms. The 
Byte-Pair-Encoding 
works by starting 
with characters, while 
merging those that are 
the most frequently 
seen together, thus 
creating new tokens. It 
then works iteratively to 
build new tokens out of 
the most frequent pairs 
it sees in a corpus.

BPE is able to build 
words it has never 
seen by using multiple 
subword tokens, and 
thus requires smaller 
vocabularies, with less 
chances of having “unk” 
(unknown) tokens.

Very similar to BPE. 
The difference is that 
WordPiece does not 
choose the highest 
frequency symbol 
pair, but the one 
that maximizes the 
likelihood of the training 
data once added to the 
vocabulary (evaluates 
what it loses by merging 
two symbols to ensure 
it’s worth it)

In contrast to BPE / 
WordPiece, Unigram 
initializes its base 
vocabulary to a large 
number of symbols 
and progressively trims 
down each symbol 
to obtain a smaller 
vocabulary. It is often 
used together with 
SentencePiece.

The left 3 tokenizers 
assume input text uses 
spaces to separate 
words, and therefore are 
not usually applicable 
to languages that don’t 
use spaces to separate 
words (e.g. Chinese). 
SentencePiece treats 
the input as a raw input 
stream, thus including 
the space in the set of 
characters to use. It then 
uses the BPE / Unigram 
algorithm to construct 
the appropriate 
vocabulary.

Considerations BPE is particularly 
useful for handling rare 
and out-of-vocabulary 
words since it can 
generate subwords for 
new words based on the 
most common character 
sequences.

Downside: BPE can 
result in subwords that 
do not correspond to 
linguistically meaningful 
units.

WordPiece can be 
particularly useful for 
languages where the 
meaning of a word can 
depend on the context 
in which it appears.

Unigram tokenization 
is particularly useful for 
languages with complex 
morphology and can 
generate subwords 
that correspond to 
linguistically meaningful 
units. However, 
unigram tokenization 
can struggle with rare 
and out-of-vocabulary 
words.

SentencePiece can be 
particularly useful for 
languages where the 
meaning of a word can 
depend on the context 
in which it appears.

Transformers 
using this 
tokenization 
method

GPT-2, GPT3, Roberta BERT, DistilBERT, Electra Unigram is not used 
directly for any of 
the transformer 
models. Instead, it’s 
used together with 
SentencePiece.

ALBERT, XLNet,  
Marian, T5

Let’s look at those subword-based methods in a little more detail:
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Note: there is an inherent limitation for subword tokenizer-
based LLMs that is directly related to the tokenizer technique. 
Due to that subword-based tokenizer’s token granularity is 
between word and character, LLMs don’t see letters and words 
as humans do. Instead, it sees “tokens,” which are chunks of 
characters. An example due to this inherent limitation is that 
they have trouble merging characters. 

Note: there is also recent work proposing a token-free model 
(ByT5) that learns from raw bytes. The benefit is that these 
models can process text in any language out of the box, that 
they work better with corpora with a large quantity of OOV 
(out-of-vocabulary) words/tokens and are more robust to noise, 
and that they minimize technical debt by removing complex 
and error-prone text preprocessing pipelines. The downside is 
that they are in general less accurate than tokenization-based 
models. More research in this area is needed to determine how 
promising this direction is.

After tokenization, we usually want to consider a few extra steps, 
namely padding and truncation. Padding is a strategy to ensure 
tensors are rectangular by adding a special padding token to 
shorter sentences so all inputs have a uniform tensor shape. In 
contrast, truncation shortens the length of sequences for the 
ones that are too long for a model to handle.

Example from Peter Welinder

https://arxiv.org/abs/2104.04473
https://twitter.com/npew/status/1525900849888866307
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PRE-TRAINING STEPS

Training a multi-billion parameter LLM is usually a highly 
experimental process with lots of trial and error. Normally, the 
team would start with a much smaller model size, make sure 
it’s promising, and scale up to more and more parameters. 
Keep in mind that as you scale, there will be issues that require 
addressing which simply won’t be present when training on 
smaller data sizes. 

Let’s look at some common pre-training steps, starting with 
architecture. 

Model Architecture

To reduce risk of training instabilities, practitioners often start 
with the model architecture and hyperparameters of a popular 
predecessor such as GPT-2 and GPT-3 and make informed 
adjustments along the way to improve training efficiency, scale 
the size of the models (in both depth and width), and improve 
performance. Two examples:

GPT-NeoX-20B (20B, EleutherAI) originally  took GPT-3’s 
architecture and made these changes: 

•	 Rotary embedding used for the first 25% of embedding 
vector dimensions instead of learned positional 
embeddings, to balance performance and computational 
efficiency.

•	 Parallel attention combined with feed forward layers 
instead of running them in series, primarily for computing 
efficiency purposes.

•	 While GPT-3 uses alternating dense and sparse layers, 
GPT-NeoX exclusively uses dense layers to reduce 
implementation complexity.

OPT-175B (175B, Meta AI) also built on GPT-3 and adjusted: 

•	 Batch size for increased computational efficiency.

•	 Learning rate schedule. Specifically, it follows a linear 
learning rate (LR) schedule, warming up from 0 to the 
maximum learning rate over the first 2000 steps in OPT-
175B, or over 375M tokens in the smaller baselines, then 
decaying down to 10% of the maximum LR over 300B 
tokens. A number of mid-flight changes to LR were also 
required.

•	 Token amount. OPT-175B, despite the same model size as 
GPT-3 (175B) was trained on a much smaller dataset of 180B 
tokens (as compared to the 300B tokens by GPT-3).

Experiments and Hyperparameter Search

As we mentioned above, typical pre-training involves lots of 
experiments to find the optimal setup for model performance. 
Experiments can involve any or all of the following: weight 
initialization, positional embeddings, optimizer, activation, 
learning rate, weight decay, loss function, sequence length, 
number of layers, number of attention heads, number of 
parameters, dense vs. sparse layers, batch size, and dropout.

A combination of manual trial and error of those hyperparameter 
combinations and automatic hyperparameter optimization 
(HPO) are typically performed to find the optimal set of 
configurations to achieve optimal performance. Typical 
hyperparameters to perform automatic search on: learning rate, 
batch size, dropout, etc. 

Hyperparameter search is an expensive process and is often too 
costly to perform at full scale for multi-billion parameter models. 
It’s common to choose hyperparameters based on a mixture of 
experiments at smaller scales and by interpolating parameters 
based on previously published work instead of from scratch.

In addition, there are some hyperparameters that need to be 
adjusted even during a training epoch to balance learning 
efficiency and training convergence. Some examples:

•	 Learning rate: can increase linearly during the early stages, 
then decay towards the end.

•	 Batch size: it’s not uncommon to start with smaller batch 
sizes and gradually ramp up to larger ones.
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You’ll want to do a lot of this early in your pre-training process. 
This is largely because you’ll be dealing with smaller amounts of 
data, letting you perform more experiments early versus when 
they’ll be far more costly down the line. 

Before we continue, it’s worth being clear about a reality here: 
you will likely run into issues when training LLMs. After all: 
these are big projects and like anything sufficiently large and 
complicated, things can go wrong.. 

Hardware Failure

During the course of training, a significant number of hardware 
failures can occur in your compute clusters, which will require 
manual or automatic restarts. In manual restarts, a training run is 
paused, and a series of diagnostics tests are conducted to detect 
problematic nodes. Flagged nodes should then be cordoned off 
before you resume training from the last saved checkpoint.

Training Instability

Training stability is also a fundamental challenge. While training 
the model, you may notice that hyperparameters such as 
learning rate and weight initialization directly affect model 
stability. For example, when loss diverges, lowering the learning 
rate and restarting from an earlier checkpoint might allow the 
job to recover and continue training.

Additionally, the bigger the model is, the more difficult it is to 
avoid loss spikes during training. These spikes are likely to occur 
at highly irregular intervals, sometimes late into training. 

There hasn’t been a lot of systematic analysis of principled 
strategy to mitigate spikes. Here are some best practices we have 
seen from the industry to effectively get models to converge:

•	 Batch size: in general, using the biggest batch size that your 
GPU allows you to use is the best policy here.

•	 Batch Normalization: Normalizing the activations within a 
mini-batch can speed up convergence and improve model 
performance.

•	 Learning Rate Scheduling: A high learning rate can cause 
the loss to oscillate or diverge, leading to loss spikes. 
By scheduling the learning rate to decrease over time, 
you can gradually decrease the magnitude of updates to 
the model’s parameters and improve stability. Common 
schedules include step decay, where the learning rate is 
decreased by a fixed amount after a fixed number of steps, 
and exponential decay, where the learning rate is decreased 
by a fixed factor each step. Note that it is not really possible 
to know ahead of time what LR to use, but you can use 
different LR schedules to see how your model responds.  
See more details here.

•	 Weight Initialization: Properly initializing the weights can 
help the model converge faster and improve performance. 
For example, it is common to use small Gaussian noise 

or, in the case of Transformers, the T-Fixup initialization. 
Techniques that can be used for weight initialization  
include random initialization, layer-wise initialization, 
and initialization using pretrained weights.

•	 Model training starting point: Using a pretrained model 
that is trained on related tasks as a starting point can help 
the model converge faster and improve performance.

•	 Regularization: Regularization techniques, such as 
dropout, weight decay, and L1/L2 regularization, can help 
the model converge better by reducing overfitting and 
improving generalization.

•	 Data Augmentation: Augmenting the training data by 
applying transformations can help the model generalize 
better and reduce overfitting.

•	 Hot-swapping during training: Hot-swapping of optimizers 
or activation functions are sometimes used during LLM 
training to fix issues as they appear during the process. It 
sometimes requires a team on it almost 24/7 trying various 
heuristics to train further.

•	 Other simple strategies mitigating the instability issue 
when encountered: Restart training from a previous 
checkpoint; skip some data batches that were seen during 
the spike (the intuition is that pikes occur due to the 
combination of specific data batches with a particular 
model parameter state). 

Note: most of the above model convergence best practices not 
only apply to transformer training, but also apply in a broader 
deep learning context across architectures and use cases.

Finally, after your LLM training is completed, it is very important 
to ensure that your model training environment is saved and 
retained in that final state. That way, if you need to re-do 
anything or replicate something in the future you can because 
you have the training state preserved.

A team could also try some ablation studies. This allows 
you to see how pulling parts of the model out might impact 
performance. Ablation studies can allow you to massively reduce 
the size of your model, while still retaining most of a model’s 
predictive power. 



15www.wandb.ai  •  contact@wandb.ai

MODEL EVALUATION

Typically, pre-trained models are evaluated on a diverse 
language model datasets to assess their ability to perform  
logical reasoning, translation, natural language inference, 
question answering, and more. 

Machine learning practitioners coalesced around a variety  
of standard evaluation benchmarks. A few popular  
examples include:

•	 Open-Domain Question Answering tasks: TriviaQA, Natural 
Questions, Web Questions

•	 Cloze and Completion tasks: LAMBADA, HellaSwag, 
StoryCloze

•	 Winograd-style tasks: Winograd, WinoGrande

•	 Common Sense Reasoning: PIQA, ARC, OpenBookQA

•	 In-context Reading Comprehension: DROP, CoQA , QuAC, 
SQuADv2, RACE, SuperGLUE

Another evaluation step is n-shot learning. It’s a task-agnostic 
dimension, and refers to the number of supervised samples 
(demonstrations) you provide to the model right before asking 
it to perform a given task. N-shots are normally provided via a 
technique called prompting. You’ll often see n-shot bundled into 
the following three categories: 

•	 Zero-shot: refers to evaluation on any tasks without 
providing any supervised samples to the model at  
inference time.

•	 Natural Language Inference (NLI): SNLI, QNLI

•	 Reasoning tasks: Arithmetic reasoning tasks

•	 Code tasks: HumanEval, MBPP (text-to-code); TransCoder 
(code-to-code)

•	 Translation tasks: Translation BLEU score on WMT  
language pairs

•	 BIG-bench: A collaborative benchmark aimed at  
producing challenging tasks for large language models, 
including 200+ tasks covering diverse textual tasks and 
programmatic tasks.

•	 LM Evaluation Harness: A library for standardized evaluation 
of autoregressive LLMs across 200+ tasks released 
by EleutherAI. It has gained popularity because of its 
systematic framework approach and robustness.

•	 One-shot: similar to few-shot but with n=1, evaluation 
where one supervised sample is provided to the model  
at inference time.

•	 Few-shot: refers to evaluation where a few supervised 
samples are provided to the model at inference time  
(e.g. 5 samples provided -> 5-shot).

Datasets and task clusters in NLP, Finetuned Language Models are Zero-Shot Learners

Here is a summary of typical language tasks (NLU tasks in blue; NLG tasks in teal):

https://en.wikipedia.org/wiki/Winograd_schema_challenge
https://github.com/google/BIG-bench
https://github.com/EleutherAI/lm-evaluation-harness
https://arxiv.org/pdf/2109.01652.pdf
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An example of few-shot learning:

Task: sentiment analysis

Prompt:

Tweet: “I hate it when my phone battery dies.”

Sentiment: Negative

Tweet: “My day has been      ”

Sentiment: Positive

Tweet: “This is the link to the article”

Sentiment: Neutral

Tweet: “This new music video was incredible”

Sentiment:

Answer:______

Evaluation typically involves both looking at benchmarking 
metrics of the above tasks and more manual evaluation by 
feeding the model with prompts and looking at completions for 
human assessment. Typically, both NLP Engineers and subject 
matter experts (SMEs) are involved in the evaluation process and 
assess the model performance from different angles:

NLP engineers: people with a background in NLP, computational 
linguistics, prompt engineering, etc., who can probe and assess 
the model’s semantic and syntactic shortcomings and come up 
with model failure classes for continuous improvement. A failure 
class example would be “the LLM does not handle arithmetic 
with either integers (1, 2, 3, etc.) nor their spelled-out forms: one, 
two, three.”

Subject matter experts (SMEs): In contrast to the NLP 
engineers, the SMEs are asked to probe specific classes  
of LLM output, fixing errors where necessary, and “talking aloud” 
while doing so. The SMEs are required to explain  
in a step-by-step fashion the reasoning and logic behind  
their correct answer versus the incorrect  
machine-produced answer.

BIAS AND TOXICITY

There are potential risks associated with large-scale, general 
purpose language models trained on web text. Which is to say: 
humans have biases, those biases make their way into data, and 
models that learn from that data can inherit those biases. In 
addition to perpetuating or exacerbating social stereotypes, you 
want to ensure your LLM doesn’t memorize and reveal private 
information. 

It’s essential to analyze and document such potential 
undesirable associations and risks through transparency 
artifacts such as model cards.

Similar to performance benchmarks, a set of community-
developed bias and toxicity benchmarks are available for 
assessing the potential harm of LLM models. Typical benchmarks 
include:

Hate speech detection: The ETHOS dataset can help measure 
the ability of LLM models to identify whether or not certain 
English statements are racist or sexist

Social bias detection: CrowSPairs is a benchmark aiming to 
measure intrasentence level biases in 9 categories: gender, 
religion, race/color, sexual orientation, age, nationality, 
disability, physical appearance, and socioeconomic status; 
StereoSet benchmark measure stereotypical bias across 4 

Toxic language response: The RealToxicityPrompts dataset 
helps evaluate if and how models use toxic language.

Dialog safety evaluations: The SaferDialogues benchmark 
measures how unsafe a model’s response is, stratified across 
four levels: safe, realistic, unsafe, and adversarial.

To date, most  analysis on existing pre-trained models indicate 
that internet-trained models have internet-scale biases. In 
addition, pre-trained models generally have a high propensity 
to generate toxic language, even when provided with a relatively 
innocuous prompt, and adversarial prompts are trivial to find. 

Bias and Toxicity Mitigation

So how do we fix this? Here are a few ways to mitigate biases 
during and after the pre-training process:

Training set filtering: Here, you want to analyze the elements of 
your training dataset that show evidence of  
bias and simply remove them from the training data

Training set modification: This technique doesn’t filter your 
training data but instead modifies it to reduce bias. This could 
involve changing certain gendered words (from policeman to 
policewoman or police officer, for example) to help mitigate bias. 

Additionally, you can mitigate bias after pre-training as well: 

Prompt engineering: The inputs to the model for each query are 
modified to steer the model away from bias (more on this later).

Fine-tuning: Take a trained model and retrain it to unlearn 
biased tendencies.

Output steering: Adding a filtering step to the inference 
procedure to re-weigh output values and steer the output away 
from biased responses.
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It enables pre-trained LLMs to respond better to instructions and 
reduces the need for few-shot examples at prompting stage (i.e. 
drastically improves zero-shot performance).

Instruction tuning has gained huge popularity in 2022, given 
that the technique considerably improves model performance 
without hurting its ability to generalize. Typically, a pre-trained 
LLM is tuned on a set of language tasks and evaluated on its 
ability to perform another set of language tasks unseen at tuning 
time, proving its generalizability and zero-shot capability. See 
illustration below:

INSTRUCTION TUNING

At this point, let’s assume we have a pre-trained, general-
purpose LLM. If we did our job well, our model can already be 
used for domain-specific tasks without tuning for few-shot 
learning and zero-shot learning scenarios. That said, zero-shot 
learning is in general much worse than its few-shot counterpart 
in plenty of tasks like reading comprehension, question 
answering, and natural language inference. One potential reason 
is that, without few-shot examples, it’s harder for models to 
perform well on prompts that are not similar to the format of the 
pretraining data. 

To solve this issue, we can use instruction tuning. Instruction 
tuning is a state-of-the-art fine-tuning technique that fine-tunes 
pre-trained LLMs on a collection of tasks phrased as instructions. 

Comparing instruction tuning with pretrain–finetune and prompting,  
Finetuned Language Models are Zero-Shot Learners
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http://Finetuned Language Models are Zero-Shot Learners
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purpose model serving multiple downstream tasks. It often 
comes down to whether you have the instruction dataset 
available and training budget to perform instruction tuning.

•	 Instruction tuning is universally effective on tasks naturally 
verbalized as instructions (e.g., NLI, QA, translation), but it is 
a little trickier for tasks like reasoning. To improve for these 
tasks, you’ll want to include chain-of-thought examples 
during tuning.

A few things to keep in mind about instruction tuning:

•	 Instruction tuning tunes full model parameters as opposed 
to freezing a part of them in parameter-efficient fine tuning. 
That means it doesn’t bring with it the cost benefits that 
come with parameter-efficient fine tuning. However, given 
that instruction tuning produces much more generalizable 
models compared to parameter-efficient fine tuning, 
instruction-tuned models can still serve as a general-
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Instruction tuning both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought, enabling 
generalization across a range of evaluation scenarios from Scaling Instruction-Finetuned Language Models

https://arxiv.org/pdf/2210.11416.pdf
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More granularly, RLHF generally works like this:

•	 Step 1: Instruction tuning – just collect a dataset of labeler 
demonstrations of the desired model behavior, and use 
them to fine-tune the pre-trained LLM using supervised 
learning. 

•	 Step 2: Collect a dataset of comparisons between model 
outputs, where labelers indicate which output they prefer 
for a given input. Then, train a reward model to predict the 
human-preferred output.

•	 Step 3: Take the trained reward model and optimize a policy 
against the reward mode using reinforcement learning.

Steps 2 and 3 can be iterated continuously. More comparison 
data is collected on the current best policy, which is used to train 
a new reward model and then a new policy. See below for RLHF 
process demonstration.

Surge, and Label Studio offer RLHF as a service so you don’t 
have to handle this yourself if you’re interested in going down 
this path. But research has shown promising results using 
RLHF techniques to minimize the alignment cost to increase its 
adoption, so it’s absolutely worth considering. 

REINFORCEMENT LEARNING THROUGH HUMAN FEEDBACK (RLHF)

RLHF is an extension of instruction tuning, with more steps 
added after the instruction tuning step to further incorporate 
human feedback.

As discussed above, pre-trained LLMs often express unintended 
behaviors such as making up facts, generating biased or toxic 
responses, or simply not following user instructions. This is 
because the objective for many recent large LMs – i.e. predicting 
the next token on a webpage from the internet – is rather 
different from the objective “follow the user’s instructions 
safely.” 

RLHF behaves how its name suggests it would. Here, we 
incorporate human feedback about a model’s outputs given 
certain prompts. Those opinions about whether the quality of 
the outputs are then used as additional data points to improve 
the model’s overall performance. 

OpenAI has had some recent success here with InstructGPT.  It’s 
essentially a pre-trained model GPT-3, fine tuned with RLHF. In 
fact, their recent ChatGPT model also leverages RLHF on a more 
advanced GPT model series (referred to as GPT-3.5).

To date, RLHF has shown very promising results with InstructGPT 
and ChatGPT, bringing improvements in truthfulness and 
reductions in toxic output generation while having minimal 
performance regressions compared to the pre-trained GPT.

Note that the RLHF procedure does come with the cost of slightly 
lower model performance in some downstream tasks - referred 
to as the alignment tax. Companies like Scale AI, Labelbox, 
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A diagram illustrating the three steps of our 
method: (1) supervised fine-tuning (SFT), (2) 
reward model (RM) training, and (3) reinforcement 
learning via proximal policy optimization (PPO) 
on this reward model, Training language models 
to follow instructions with human feedback

https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2203.02155.pdf
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Appendix

Large pre-trained transformer language models, or simply large 
language models (LLM), are a recent breakthrough in machine 
learning that have vastly extended our capabilities in natural 
language processing (NLP). 

Based on transformer architectures, with as many as hundreds 
of billions of parameters, and trained on hundreds of terabytes 
of textual data, recent LLMs such as GPT-3 (OpenAI, 2020), GPT-
NeoX (EleutherAI, 2022), PaLM (Google Brain,2022), OPT (Meta AI, 
2022), and Macaw (Allen Institute) have demonstrated significant 
improvements in the ability to perform a wide range of NLP 
tasks. Here’s a brief introduction to the model architecture at 
play here: 

Modern LLMs are based on the transformer architecture. The 
main architectural unit is a transformer block, which consists of 
(at a minimum) multi-headed self attention, layer normalization, 
a dense two-layer feedforward network, and residual 

LLM OVERVIEW

TRANSFORMER MODEL ARCHITECTURE

connection. A transformer stack is a sequence of such blocks. 
The below graph shows a typical transformer architecture with 
an encoder-decoder structure:

Large language models are computer programs that open new possibilities 
of text understanding and generation in software systems, CohereAI Large 
Language Models

The transformer model architecture. 
Source: Attention Is All You Need
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https://docs.cohere.ai/docs/introduction-to-large-language-models
https://docs.cohere.ai/docs/introduction-to-large-language-models
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Since the advent of transformers, many architectural variants 
have been proposed. These can vary by architecture (e.g. 
decoder-only models, encoder-decoder models), by pre- 
training objectives (e.g. full language modeling, prefix language 
modeling, masked language modeling), and other factors. 

While the original transformer included a separate encoder that 
processes input text and a decoder that generates target text 
(encoder-decoder models), the most popular LLMs like GPT-3, 
OPT, PaLM, GPT-NeoX are causal decoder-only models trained 
to autoregressively predict a text sequence. In contrast with this 
trend, there is some research showing that encoder-decoder 
models outperform decoder-only LLMs for transfer learning (i.e. 
where a pre-trained model is finetuned on a single downstream 
task). For detailed architecture types and comparison, see What 
Language Model Architecture and pre-training Objective Work 
Best for Zero-Shot Generalization. 

Here are a few of the most popular pre-training architectures:

•	 Encoder-decoder models: As originally proposed, the 
transformer consists of two stacks: an encoder and a 
decoder. The encoder is fed the sequence of input tokens 
and outputs a sequence of vectors of the same length as 
the input. Then, the decoder autoregressively predicts the 
target sequence, token by token, conditioned on the output 
of the encoder. Representative models of this type include 
T5 and BART.

The graph below shows recent pre-trained LLMs:

•	 Causal decoder-only models: these are decoder-only 
models trained to autoregressively predict a text sequence. 
“Casual” means that the model is just concerned with the 
left context (next-step-prediction). Representative examples 
of this type include GPT-3, GPT-J, GPT-NeoX, OPT, etc.

•	 Non-causal decoder-only models: to allow decoder-only 
models to build richer non-causal representations of the 
input text, the attention mask has been modified so that the 
region of the input sequence corresponding to conditioning 
information has a non-causal mask (i.e. not restricted to 
past tokens). Representative PLM models include: UniLM 
1-2, ERNIE-M. 

•	 Masked language models: these are normally encoder-
only models pre-trained with a masked language modeling 
objective, which predict masked text pieces based on 
surrounding context. Representative MLM models include 
BERT and ERNIE.

Community-driven open sourcing of GPT et al., State of AI Report 2022

https://arxiv.org/pdf/2204.05832v1.pdf
https://arxiv.org/pdf/2204.05832v1.pdf
https://arxiv.org/pdf/2204.05832v1.pdf
https://docs.google.com/presentation/d/1WrkeJ9-CjuotTXoa4ZZlB3UPBXpxe4B3FMs9R9tn34I/edit#slide=id.g164b1bac824_0_2748
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The chart below outlines this trend, showing models built and 
trained during 2020-2022:

THE ORIGINAL LLM SCALING LAWS

The LLM Scaling Laws (first introduced by OpenAI) tries to 
answer questions like “Given a certain quantity of compute, how 
large of a model should I train in order to get the best possible 
performance?” 

The answer is essentially a trade-off between model size and 
data size. For example, for models at GPT-3 scale, the trade-off is 
somewhere between:

•	 (a) training a 20-billion parameter model on 40% of an 
archive of the Internet, or

•	 (b) training a 200-billion parameter model on 4% of an 
archive of the Internet

In 2020, OpenAI published the Scaling Laws for Neural Language 
Models. The paper suggests that increasing model size is more 
important than increasing data size for compute-optimal 
training. If you get ten times more compute, you should increase 
your model size by about five times and double your data size. 
Another 10x in compute, and model size is twenty-five times 
bigger and data size is only 4x bigger. 

Many researchers took this philosophy to heart and focused on 
how to engineer larger and larger models rather than training 
comparatively smaller models with more data. 
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Allocate more compute between increasing model size and training with 
more data, Scaling Laws for Neural Language Models

Figure x: Current LLMs and their sizes, Training Compute-Optimal Large Language Models

https://arxiv.org/pdf/2001.08361v1.pdf
https://arxiv.org/pdf/2203.15556.pdf

