
1www.wandb.ai • contact@wandb.ai

Current Best
Practices
for Training LLMs
from Scratch
Authors: Rebecca Li, Andrea Parker, Justin Tenuto

2www.wandb.ai • contact@wandb.ai

Table of Contents

Introduction

Build vs. Buy Pre-trained LLM Models

The Scaling Laws

Hardware

Memory vs. Compute Efficiency

Techniques for Parallelization

Dataset Collection

Dataset Pre-processing

Dataset Handling

Tokenization

Pre-training Steps

Model Evaluation

Bias and Toxicity

Instruction Tuning

Reinforcement Learning through Human Feedback (RLHF)

Conclusion

References

Appendix

LLM Overview

Transformer Model Architecture

The Original LLM Scaling Laws

03

03

05

06

06

06

08

08

08

09

13

15

16

17

19

20

20

21

21

21

23

3www.wandb.ai • contact@wandb.ai

Introduction
Although we’re only a few years removed from the transformer
breakthrough, LLMs have already grown massively in
performance, cost, and promise. At W&B, we’ve been fortunate
to see more teams try to build LLMs than anyone else. But many
of the critical details and key decision points are often passed
down by word of mouth.

The goal of this white paper is to distill the best practices for
training your own LLM for scratch. We’ll cover everything from
scaling and hardware to dataset selection and model training,
letting you know which tradeoffs to consider and flagging some
potential pitfalls along the way. This is meant to be a fairly
exhaustive look at the key steps and considerations you’ll make
when training an LLM from scratch.

The first question you should ask yourself is whether training
one from scratch is right for your organization. As such, we’ll
start there:

Before starting LLM pre-training, the first question you need to
ask is whether you should pre-train an LLM by yourself or use an
existing one. There are three basic approaches:

•	 Option 1: Use the API of a commercial LLM, e.g. GPT-3
(OpenAI, 2020), Cohere APIs, AI21 J-1

•	 Option 2: Use an existing open-sourced LLM, e.g. GPT-J
(EleutherAI, 2021), GPT-NeoX (EleutherAI, 2022), Galactica
(Meta AI), UL2 (Google, 2022), OPT (Meta AI, 2022), BLOOM
(BigScience, 2022), Megatron-LM (NVIDIA, 2021), CodeGen
(Salesforce, 2022)

•	 Option 3: Pre-train an LLM by yourself or with consultants:
You can either manage your own training or hire LLM
consultants & platforms. For example, Mosaic ML provides
training services focusing on LLMs.

That said, there are a lot of details to consider when making
your choice. Here are the pros, cons, and applicable scenarios
for each option:

BUILD VS. BUY PRE-TRAINED LLM MODELS

Option 1
Use the API of a commercial LLM

Option 2
Use an existing open-sourced LLM

Option 3
Pre-train an LLM by yourself
or with consultants

Pros

•	 Requires the least LLM
training technical skills.

•	 Minimum upfront training /
exploration cost, given main cost
incurs at inference time.

•	 The least data-demanding option.
Only a few examples (or no examples)
are needed for models to perform
inference.

•	 Can leverage the best-performing
LLMs in the market and build a
superior experience.

•	 Reduce time-to-market of your
apps and de-risk your project with
a working LLM model.

•	 A good way to leverage what LLMs
have learned from a vast amount of
internet data and build on top of it
without paying for the IP at inference.

•	 Compared to option one, you are less
dependent on the future direction of
LLM service providers and thus have
more control regarding roadmap &
backwards compatibility.

•	 Compared to option three, you have
a much faster time-to-value given you
are not building LLMs from scratch,
also leading to less data, training
time, training budget needed.

•	 Compared to options one and two,
you have the most control of your
LLM’s performance and future
direction, giving you lots of flexibility
to innovate on techniques and/or
customize to your downstream tasks.

•	 Gain full control of training datasets
used for the pre-training, which
directly impacts model quality, bias,
and toxicity issues. In comparison,
those issues are less controllable in
option one or two.

•	 Training your own LLM also gives
you a deep moat: superior LLM
performance either across horizontal
use cases or tailored to your vertical,
allowing you to build a sustaining
advantage especially if you create a
positive data/feedback loop with LLM
deployments.

4www.wandb.ai • contact@wandb.ai

Cons

•	 Commercial LLM services can get
expensive with a high volume of fine-
tuning or inference tasks. It comes
down to LLM total-cost-of-ownership
(TCO) amortized to each inference.

•	 Many industries / use cases forbid
the use of commercial LLM services
as sensitive data / PII data cannot be
seen by the service for compliance
(healthcare use cases, for example).

•	 If building external apps, you’ll need
to find other moats and de-risk your
business if you’re highly reliant on
external LLM service technology.

•	 Less flexible downstream: doesn’t
support edge inference, limited
ability to customize the model (fine-
tuning gets expensive), limited ability
for ongoing model improvements.

•	 Not as demanding as building
your own, but still requires lots of
domain expert skills to train, fine-
tune, and host an open-sourced
LLM. LLM reproducibility is still a
significant issue so the amount of
time and work needed cannot be
underestimated.

•	 Slower time-to-market and less agile
if you are building downstream apps,
due to a more vertical tech stack.

•	 Open-sourced models typically
lag performance compared to
commercial models by months/
years. If your competitor leverages
commercial models, they have an
advantage on LLM tech and you’ll
need to find other competitive
advantages.

•	 Very expensive endeavor with
high risks. Need cross-domain
knowledge spanning from NLP/ML,
subject matter expertise, software
and hardware expertise. If not done
well, you could end up in a situation
where you’ve spent thousands
or even millions of dollars with
a suboptimal model. Mistakes,
especially late into training stages,
are hard to fix / unwind.

•	 Less efficient than option two.
Option two leverages existing LLMs,
learning from an entire internet’s
worth of data and can provide a
solid starting point. With option 3,
you start from scratch and need lots
of high-quality / diverse datasets
for your models to gain generalized
capabilities.

When to consider each option

•	 Best if you either have less technical
teams but want to leverage LLM
techniques to build downstream
apps, or you want to leverage the
best-in-class LLMs for performance
reasons (outsourcing the LLM tech).

•	 Good if you have very limited training
datasets and want to leverage an
LLM’s capability to do zero/few-shot
learning.

•	 Good for prototyping apps and
exploring what is possible with LLMs.

•	 Between options two and three,
if you aren’t trying to change the
model architecture, it is almost
always better to either directly take
an existing pre-trained LLM and
fine-tune it or take the weights of an
existing pre-trained LLM as a starting
point and continue pre-training. The
reason is because a good pre-trained
LLM like GPT-NeoX has already seen
a vast amount of data and thus has
learned general capabilities from the
data. You can leverage that learning
especially if your training dataset is
not huge or diverse.

•	 Another typical scenario is that you
operate in a regulatory environment
or have user / sensitive data that
cannot be fed to commercial
LLM services. Or you need edge
deployment of the model for latency
or locational reasons.

•	 Best if you need to change model
architecture or training dataset
from existing pre-trained LLMs.
For example, if you want to use
a different tokenizer, change the
vocabulary size, or change the
number of hidden dimensions,
attention heads, or layers.

•	 Typically, in this case the LLM is a
core part of your business strategy &
technological moat. You are taking
on some or a lot of innovations
in LLM training, and have a large
investment appetite to train and
maintain expensive models on an
ongoing basis.

•	 Typically, you have or will have lots
of proprietary data associated with
your LLM to create a continuous
model improvement loop for
sustainable competitive advantage.

Option 1
Use the API of a commercial LLM

Option 2
Use an existing open-sourced LLM

Option 3
Pre-train an LLM by yourself
or with consultants

It is also worth mentioning that if you only have a very targeted set of use cases and don’t need the general-purpose capabilities or
generative capabilities from LLMs, you might want to consider training or fine-tuning a much smaller transformer or other much simpler
deep learning models. That could result in much less complexity, less training time, and less ongoing costs.

5www.wandb.ai • contact@wandb.ai

Before you dive into training, it’s important to cover how LLMs
scale. Understanding scaling lets you effectively balance the size
and complexity of your model and the size of the data you’ll use
to train it.

Some relevant history here: OpenAI originally introduced “the
LLM scaling laws” in 2020. They suggested that increasing model
size was more important than scaling data size. This held for
about two years before DeepMind suggested almost the polar
opposite: that previous models were significantly undertrained
and that increasing your foundational training datasets actually
leads to better performance.

That changed in 2022. Specifically, DeepMind put forward
an alternative approach in their Training Compute-Optimal
Large Language Models paper. They found that current LLMs
are actually significantly undertrained. Put simply: these large
models weren’t trained on nearly enough data.

Deepmind showcased this with a model called Chinchilla, which
is a fourth the size of the Gopher model above but trained on
4.6x more data. At that reduced size but with far more training
data, Chinchilla outperformed Gopher and other LLMs.

DeepMind claims that the model size and the number of
training tokens* should instead increase at roughly the same
rate to achieve optimal performance. If you get a 10x increase
in compute, you should make your model 3.1x times bigger and
the data you train over 3.1x bigger; if you get a 100x increase in
compute, you should make your model 10x bigger and your data
10x bigger.

*Note: Tokenization in NLP is an essential step of separating a piece
of text into smaller units called tokens. Tokens can be either words,
characters, or subwords. The number of training tokens is the size of
training data in token form after tokenization. We will dive into detailed
tokenization methods a little later.

To the left of the minima on each curve, models are too small -- a larger
model trained on less data would be an improvement. To the right of the
minima on each curve, models are too large -- a smaller model trained on
more data would be an improvement. The best models are at the minima.

DeepMind provides the following chart showing how much
training data and compute you’d need to optimally train models
of various sizes.

THE SCALING LAWS

Estimated optimal training FLOPs and training tokens for various model sizes,
Training Compute-Optimal Large Language Models

That said, most existing LLMs are still undertrained:

Data/compute-optimal (Chinchilla) heatmap, Chinchilla
data-optimal scaling laws: In plain English

In summary, the current best practices in choosing the size
of your LLM models are largely based on two rules:

•	 Decide on your dataset and find the Chinchilla-optimal
model size based on data size (or close to Chinchilla-optimal
within the boundary of your data collection limitation)

•	 Determine the data and model size combination that’s best
for your model, based on your training compute budget and
inference latency requirements

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/pdf/2203.15556.pdf
https://lifearchitect.ai/chinchilla/
https://lifearchitect.ai/chinchilla/

6www.wandb.ai • contact@wandb.ai

HARDWARE

It should come as no surprise that pre-training LLMs is a
hardware-intensive effort. The following examples of current
models are a good guide here:

•	 PaLM (540B, Google): 6144 TPU v4 chips used in total,
made of two TPU v4 Pods connected over data center
network (DCN) using a combination of model and data
parallelism

•	 OPT (175B, Meta AI): 992 80GB A100 GPUs, utilizing
fully shared data parallelism with Megatron-LM tensor
parallelism

•	 GPT-NeoX (20B, EleutherAI): 96 40GB A100 GPUs in total

•	 Megatron-Turing NLG (530B, NVIDIA & MSFT): 560 DGX
A100 nodes, each cluster node has 8 NVIDIA 80-GB
A100 GPUs

Training LLMs is challenging from an infrastructure perspective
for two big reasons. For starters, it is simply no longer possible
to fit all the model parameters in the memory of even the largest
GPU (e.g. NVIDIA 80GB-A100), so you’ll need some parallel
architecture here. The other challenge is that a large number of
compute operations can result in unrealistically long training
times if you aren’t concurrently optimizing your algorithms,
software, and hardware stack (e.g. training GPT-3 with 175B
parameters would require about 288 years with a single V100
NVIDIA GPU).

Memory efficiency

Training a LLM requires terabytes of aggregate memory for
model weights, gradients, and optimizer states - far beyond what
is available on a single GPU. One typical mitigation strategy is
gradient accumulation, in which the full training batch is split
into micro-batches that are processed in sequence with their
resulting gradients accumulated before updating the model
weights. That means your training batch size can scale without
increasing the peak resident activation memory.

Compute efficiency

While large GPU clusters can have thousands of high-throughput
GPUs, achieving high compute efficiency at this scale is
challenging. A large batch size can be an effective way to increase
compute efficiency, because it increases the arithmetic intensity
of a GPU kernel and helps amortize the time spent stalled on
communication and synchronization. However, using too large of
a batch size can have negative effects on the model quality.

While parallelization is paramount, there are many different
ways to do it. We’ll get into the most common in our next section.

Data Parallelism

Data parallelism is the best and most common approach for
dealing with large datasets that cannot fit into a single machine
in a deep learning workflow.

More specifically, data parallelism divides the training data into
multiple shards (partitions) and distributes them to various
nodes. Each node first works with its local data to train its sub-
model, and then communicates with the other nodes to combine
their results at certain intervals in order to obtain the global
model. The parameter updates for data parallelism can be either
asynchronous or synchronous.

The advantage of this method is that it increases compute
efficiency and that it is relatively easy to implement. The biggest
downside is that during the backward pass you have to pass the
whole gradient to all other GPUs. It also replicates the model and
optimizer across all workers which is rather memory inefficient.Memory vs. Compute Efficiency

Techniques for Parallelization

To achieve the full potential of thousands of distributed GPUs,
it is crucial to design parallelism into your architecture to
balance memory and compute efficiency.

Parallelization refers to splitting up tasks and distributing
them across multiple processors or devices, such as GPUs,
so that they can be completed simultaneously. This allows for
more efficient use of compute resources and faster completion
times compared to running on a single processor or device.
Parallelized training across multiple GPUs is an effective way to
reduce the overall time needed for the training process.

There are several different strategies that can be used to
parallelize training, including gradient accumulation, micro-
batching, data parallelization, tensor parallelization and pipeline
parallelization, and more. Typical LLM pre-training employs a
combination of these methods. Let’s define each:

7www.wandb.ai • contact@wandb.ai

As mentioned at the start of this section, it’s not uncommon
for teams to leverage a combination of parallelism techniques
during training. For example, PaLM (Google Brain, 2022) and
OPT (Meta AI, 2022) both used a combination of tensor model
parallelism and data parallelism.

NVIDIA approached things a little differently in the Efficient
Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM paper. They proposed a PTD-P technique that
combines pipeline, tensor, and data parallelism to achieve
state-of-the-art computational performance (52% of peak device
throughput) on 1000s of GPUs.

Specifically, PTD-P leverages a combination of pipeline
parallelism across multi-GPU servers, tensor parallelism within
a multi-GPU server, and data parallelism to practically train
models with a trillion parameters. The method also employs
graceful scaling in an optimized cluster environment with high-
bandwidth links between GPUs on the same server and across
servers.

Using these techniques to train LLMs requires not only the
highest-performing GPUs to be efficient, but also needs high-
bandwidth networking for optimal communication––InfiniBand
is often used to move data between nodes.

But this of course comes with a cost. Leveraging thousands
of high-performing GPUs and high-bandwidth networks to
train LLMs is infrastructure-intensive. For example, a back-of-
the-envelope calculation estimated that the cost of the PaLM
model (540B, Google) might be as high as $23MM (see detailed
analysis).

To implement distributed deep learning training systems,
software toolkits such as Distributed TensorFlow, Torch
Distributed, Horovod, and libraries such as DeepSeed and
Megatron are often needed. There is implementation complexity
here so it requires system expertise if you’re going to be
successful.

In addition, the following techniques and strategies are
commonly employed to achieve parallelism:

Tensor Parallelism

Tensor parallelism divides large matrix multiplications into
smaller submatrix calculations which are then executed
simultaneously using multiple GPUs.

This allows for faster training times due to its asynchronous
nature and the ability to reduce communication overhead
between nodes. The benefit of this method is that it is
memory-efficient. The downside, however, is that it
introduces additional communication of activations in
each forward & backward propagation, and therefore
requires high communication bandwidth to be efficient.

Pipeline parallelism and model parallelism

Pipeline parallelism improves both the memory and compute
efficiency of deep learning training by partitioning the layers
of a model into stages that can be processed in parallel.

This helps with overall throughput speeds significantly while
adding the smallest communication overhead. You can think of
pipeline parallelism as “inter-layer parallelism” (where tensor
parallelism can be thought of as “intra-layer parallelism”).
Similar to pipeline parallelism, model parallelism is when you
split the model among GPUs and use the same data for each
model; so each GPU works on a part of the model rather than a
part of the data. The downside of pipeline and model parallelism
is that it cannot scale infinitely given that the degree of pipeline
parallelism is bounded by the depth of the model.

Gradient accumulation

Gradient accumulation involves adding up gradients from
multiple batches before performing one weight update step on
all accumulated gradients at once.

This approach reduces communication overhead between
GPUs by allowing them to work independently on their own
local batch of data until they have synchronized with each
other again, after accumulating enough gradients for a single
optimization step.

Asynchronous stochastic gradient descent optimization

Asynchronous stochastic gradient descent optimization methods
can also be employed when performing model optimization over
multiple GPUs.

https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://blog.heim.xyz/palm-training-cost/
https://blog.heim.xyz/palm-training-cost/

8www.wandb.ai • contact@wandb.ai

•	 Prose: BookCorpus2, Bibliotik, Project Gutenberg

•	 Dialog: YouTube subtitles, Ubuntu IRC, OpenSubtitles,
Hacker News, Europarl

•	 Miscellaneous: GitHub, the DeepMind Mathematics dataset,
Enron emails

Note that The Pile dataset is one of the very few large-scale
text datasets that is free for the public. For most of the existing
models like GPT-3, PaLM, and Galactica, their training and
evaluation datasets are not publicly available. Given the large
scale effort it takes to compile and pre-process these datasets
for LLM training, most companies have kept them in-house
to maintain competitive advantage. That makes datasets like
The Pile and a few datasets from AllenAI extremely valuable for
public large-scale NLP research purposes.

Another thing worth mentioning is that, during dataset
collection, general data can be collected by non-experts but
data for specific domains normally needs to be collected
or consulted by subject matter experts (SMEs), e.g. doctors,
physicists, lawyers, etc. SMEs can flag thematic or conceptual
gaps that NLP engineers might miss. NLP engineers should also
be heavily involved at this stage given their knowledge of how
a LLM “learns to represent data” and thus their abilities to flag
any data oddities or gaps in the data that SMEs might miss.

Once you’ve identified the dataset(s) you’ll be using, you’ll want
to prepare that data for your model. Let’s get into that now:

This method uses small subsets (microbatches) of data from
each node instead of loading all data at once, which helps reduce
memory requirements while still allowing for fast convergence
rates due to its asynchronous nature. It works like this:

•	 First, we fetch the most up-to-date parameters of the
model needed to process the current mini-batch from the
parameter servers.

•	 We then compute gradients of the loss with respect to
these parameter

•	 Finally, these gradients are sent back to the parameter
servers, which then updates the model accordingly.

Micro-batching

Micro-batching combines small mini-batches into larger ones so
that more batches can be processed in less time and with fewer
synchronization points between devices during backpropagation
operations. It has become increasingly popular for training
very large models across many GPUs due to its ability to reduce
memory consumption and improve scalability. Overall, micro-
batching is an effective way to leverage distributed deep learning
techniques when dealing with very large datasets or models that
require significant amounts of processing power.

Now that we’ve gone through scaling, hardware, and some
techniques for parallelizing your training runs, let’s look at what
your LLM will actually learn from: data.

Bad data leads to bad models. But careful processing of
high-quality, high-volume, diverse datasets directly
contributes to model performance in downstream tasks
as well as model convergence.

Dataset diversity is especially important for LLMs. That’s because
diversity improves the cross-domain knowledge of the model,
as well as its downstream generalization capability. Training on
diverse examples effectively broadens the ability of your LLM to
perform well on myriad nuanced tasks.

A typical training dataset is comprised of textual data from
diverse sources, such as crawled public data, online publication
or book repositories, code data from GitHub, Wikipedia, news,
social media conversations, etc.

For example, consider The Pile. The Pile is a popular text corpus
created by EleutherAI for large-scale language modeling. It
contains data from 22 data sources, coarsely broken down into
five broad categories:

•	 Academic Writing: PubMed Abstracts and PubMed Central,
arXiv, FreeLaw, USPTO Backgrounds, PhilPapers, NIH
Exporter

•	 Online or Scraped Resources: CommonCrawl,
OpenWebText2, Stack Exchange, Wikipedia

In this section, we’ll cover both data adjustments (like
deduplication and cleaning) and the pros and cons of various
tokenization strategies. Let’s start with the former:

Dataset Handling

To ensure training data is high-quality and diverse, several
pre-processing techniques can be used before the pre-training
steps:

Data sampling:

Certain data components can be up-sampled to obtain a more
balanced data distribution. Some research down-samples
lower-quality dataset such as unfiltered web crawl data.
Other research up-samples data of a specific set of domains
depending on the model objectives.

There are also advanced methods to filter high-quality
data such as using a trained classifier model applied to the
dataset. For example, the model Galactica by Meta AI is built
purposefully for science, specifically storing, combining and
reasoning about scientific knowledge.

DATASET COLLECTION

DATASET PRE-PROCESSING

http

9www.wandb.ai • contact@wandb.ai

Due to its goals, the pre-training dataset is composed of high-
quality data mainly from science resources such as papers,
textbooks, lecture notes, encyclopedias. The dataset is also
highly curated, for example, with task-specific datasets to
facilitate composition of this knowledge into new task contexts.

Data cleaning

Normally, data cleaning and reformatting efforts are applied
before training. Examples include removing boilerplate text and
removing HTML code or markup. In addition, for some projects,
fixing misspellings, handling cross-domain homographs, and/
or removing biased / harmful speech are performed to improve
model performance. For other projects, these techniques
are not used under the idea that models should see the
fair representation of the real world and learn to deal with
misspellings and toxicity as a part of the model capabilities.

Tokenization is the process of encoding a string of text into transformer-readable token ID integers. Most state-of-the-art LLMs
use subword-based tokenizers like byte-pair encoding (BPE) as opposed to word-based approaches. We’ll present the strengths and
weaknesses of various techniques below, with special attention to subword strategies as they’re currently the most popular versus
their counterparts.

Tokenization

Non-standard textual components handling

In some cases, it is important to convert non-standard textual
components into texts, e.g. converting emoji into their text
equivalent: becomes “snowflake.”This conversion can be
done programmatically, of course.

Data deduplication

Some researchers see significant benefits from deduplicating
training data. Fuzzy deduplication methods such as locality
sensitive hashing (LSH) are commonly used here. See
Deduplicating Training Data Makes Language Models Better
paper to understand details regarding deduplication.

Downstream task data removal

Data leakage happens when the data you are using to train
happens to have the information you are trying to predict.
Downstream task data removal methods (such as n-grams)
are needed to remove training data also present in the
evaluation dataset.

Summary of the most used tokenization methods,
Two minutes NLP — A Taxonomy of Tokenization Methods

9www.wandb.ai • contact@wandb.ai

https://arxiv.org/abs/2107.06499
https://medium.com/nlplanet/two-minutes-nlp-a-taxonomy-of-tokenization-methods-60e330aacad3

10www.wandb.ai • contact@wandb.ai

Tokenization Methods Word-based tokenization Character-based tokenization Subword-based tokenization

Example Tokenizers Space tokenization (split
sentences by space); rule-based
tokenization (e.g. Moses, spaCy)

Character tokenization (simply
tokenize on every character)

Byte-Pair Encoding (BPE);
WordPiece; SentencePiece;
Unigram (tokenizing by parts of
a word vs. the entirety of a word;
see table above)

Considerations •	 Downside: Generates
a very large vocabulary
leading to a huge
embedding matrix as the
input and output layer;
large number of out-of-
vocabulary (OOV) tokens;
and different meanings of
very similar words

•	 Transformer models
normally have a
vocabulary of less than
50,000 words, especially if
they are trained only on a
single language

•	 Lead to much smaller
vocabulary; no OOV (out
of vocabulary) tokens
since every word can be
assembled from individual
characters

•	 Downside: Generates
very long sequences
and less meaningful
individual tokens, making
it harder for the model to
learn meaningful input
representations. However,
if character-based
tokenization is used on
non-English language, a
single character could be
quite information rich (like
“mountain” in Mandarin).

•	 Subword-based
tokenization methods
follow the principle that
frequently used words
should not be split
into smaller subwords,
but rare words should
be decomposed into
meaningful subwords

•	 Benefit: Solves the
downsides faced by
word-based tokenization
and character-based
tokenization and
achieves both reasonable
vocabulary size with
meaningful learned
context-independent
representations.

In other words, the choice of tokenization technique depends on the specific task and language being analyzed.

•	 Word-based tokenization is simple and efficient but can be limited in its ability to handle complex languages.

•	 Character-based tokenization can be useful for languages without distinct word boundaries.

•	 Subword-based tokenization, including BPE, wordpiece tokenization, sentencepiece tokenization, and unigram tokenization,
is particularly useful for handling complex morphology and out-of-vocabulary words.

11www.wandb.ai • contact@wandb.ai

Subword-based
Tokenization
Methods

Byte-Pair Encoding
(BPE)

WordPiece Unigram SentencePiece

Description One of the most popular
subword tokenization
algorithms. The
Byte-Pair-Encoding
works by starting
with characters, while
merging those that are
the most frequently
seen together, thus
creating new tokens. It
then works iteratively to
build new tokens out of
the most frequent pairs
it sees in a corpus.

BPE is able to build
words it has never
seen by using multiple
subword tokens, and
thus requires smaller
vocabularies, with less
chances of having “unk”
(unknown) tokens.

Very similar to BPE.
The difference is that
WordPiece does not
choose the highest
frequency symbol
pair, but the one
that maximizes the
likelihood of the training
data once added to the
vocabulary (evaluates
what it loses by merging
two symbols to ensure
it’s worth it)

In contrast to BPE /
WordPiece, Unigram
initializes its base
vocabulary to a large
number of symbols
and progressively trims
down each symbol
to obtain a smaller
vocabulary. It is often
used together with
SentencePiece.

The left 3 tokenizers
assume input text uses
spaces to separate
words, and therefore are
not usually applicable
to languages that don’t
use spaces to separate
words (e.g. Chinese).
SentencePiece treats
the input as a raw input
stream, thus including
the space in the set of
characters to use. It then
uses the BPE / Unigram
algorithm to construct
the appropriate
vocabulary.

Considerations BPE is particularly
useful for handling rare
and out-of-vocabulary
words since it can
generate subwords for
new words based on the
most common character
sequences.

Downside: BPE can
result in subwords that
do not correspond to
linguistically meaningful
units.

WordPiece can be
particularly useful for
languages where the
meaning of a word can
depend on the context
in which it appears.

Unigram tokenization
is particularly useful for
languages with complex
morphology and can
generate subwords
that correspond to
linguistically meaningful
units. However,
unigram tokenization
can struggle with rare
and out-of-vocabulary
words.

SentencePiece can be
particularly useful for
languages where the
meaning of a word can
depend on the context
in which it appears.

Transformers
using this
tokenization
method

GPT-2, GPT3, Roberta BERT, DistilBERT, Electra Unigram is not used
directly for any of
the transformer
models. Instead, it’s
used together with
SentencePiece.

ALBERT, XLNet,
Marian, T5

Let’s look at those subword-based methods in a little more detail:

12www.wandb.ai • contact@wandb.ai

Note: there is an inherent limitation for subword tokenizer-
based LLMs that is directly related to the tokenizer technique.
Due to that subword-based tokenizer’s token granularity is
between word and character, LLMs don’t see letters and words
as humans do. Instead, it sees “tokens,” which are chunks of
characters. An example due to this inherent limitation is that
they have trouble merging characters.

Note: there is also recent work proposing a token-free model
(ByT5) that learns from raw bytes. The benefit is that these
models can process text in any language out of the box, that
they work better with corpora with a large quantity of OOV
(out-of-vocabulary) words/tokens and are more robust to noise,
and that they minimize technical debt by removing complex
and error-prone text preprocessing pipelines. The downside is
that they are in general less accurate than tokenization-based
models. More research in this area is needed to determine how
promising this direction is.

After tokenization, we usually want to consider a few extra steps,
namely padding and truncation. Padding is a strategy to ensure
tensors are rectangular by adding a special padding token to
shorter sentences so all inputs have a uniform tensor shape. In
contrast, truncation shortens the length of sequences for the
ones that are too long for a model to handle.

Example from Peter Welinder

https://arxiv.org/abs/2104.04473
https://twitter.com/npew/status/1525900849888866307

13www.wandb.ai • contact@wandb.ai

PRE-TRAINING STEPS

Training a multi-billion parameter LLM is usually a highly
experimental process with lots of trial and error. Normally, the
team would start with a much smaller model size, make sure
it’s promising, and scale up to more and more parameters.
Keep in mind that as you scale, there will be issues that require
addressing which simply won’t be present when training on
smaller data sizes.

Let’s look at some common pre-training steps, starting with
architecture.

Model Architecture

To reduce risk of training instabilities, practitioners often start
with the model architecture and hyperparameters of a popular
predecessor such as GPT-2 and GPT-3 and make informed
adjustments along the way to improve training efficiency, scale
the size of the models (in both depth and width), and improve
performance. Two examples:

GPT-NeoX-20B (20B, EleutherAI) originally took GPT-3’s
architecture and made these changes:

•	 Rotary embedding used for the first 25% of embedding
vector dimensions instead of learned positional
embeddings, to balance performance and computational
efficiency.

•	 Parallel attention combined with feed forward layers
instead of running them in series, primarily for computing
efficiency purposes.

•	 While GPT-3 uses alternating dense and sparse layers,
GPT-NeoX exclusively uses dense layers to reduce
implementation complexity.

OPT-175B (175B, Meta AI) also built on GPT-3 and adjusted:

•	 Batch size for increased computational efficiency.

•	 Learning rate schedule. Specifically, it follows a linear
learning rate (LR) schedule, warming up from 0 to the
maximum learning rate over the first 2000 steps in OPT-
175B, or over 375M tokens in the smaller baselines, then
decaying down to 10% of the maximum LR over 300B
tokens. A number of mid-flight changes to LR were also
required.

•	 Token amount. OPT-175B, despite the same model size as
GPT-3 (175B) was trained on a much smaller dataset of 180B
tokens (as compared to the 300B tokens by GPT-3).

Experiments and Hyperparameter Search

As we mentioned above, typical pre-training involves lots of
experiments to find the optimal setup for model performance.
Experiments can involve any or all of the following: weight
initialization, positional embeddings, optimizer, activation,
learning rate, weight decay, loss function, sequence length,
number of layers, number of attention heads, number of
parameters, dense vs. sparse layers, batch size, and dropout.

A combination of manual trial and error of those hyperparameter
combinations and automatic hyperparameter optimization
(HPO) are typically performed to find the optimal set of
configurations to achieve optimal performance. Typical
hyperparameters to perform automatic search on: learning rate,
batch size, dropout, etc.

Hyperparameter search is an expensive process and is often too
costly to perform at full scale for multi-billion parameter models.
It’s common to choose hyperparameters based on a mixture of
experiments at smaller scales and by interpolating parameters
based on previously published work instead of from scratch.

In addition, there are some hyperparameters that need to be
adjusted even during a training epoch to balance learning
efficiency and training convergence. Some examples:

•	 Learning rate: can increase linearly during the early stages,
then decay towards the end.

•	 Batch size: it’s not uncommon to start with smaller batch
sizes and gradually ramp up to larger ones.

14www.wandb.ai • contact@wandb.ai

You’ll want to do a lot of this early in your pre-training process.
This is largely because you’ll be dealing with smaller amounts of
data, letting you perform more experiments early versus when
they’ll be far more costly down the line.

Before we continue, it’s worth being clear about a reality here:
you will likely run into issues when training LLMs. After all:
these are big projects and like anything sufficiently large and
complicated, things can go wrong..

Hardware Failure

During the course of training, a significant number of hardware
failures can occur in your compute clusters, which will require
manual or automatic restarts. In manual restarts, a training run is
paused, and a series of diagnostics tests are conducted to detect
problematic nodes. Flagged nodes should then be cordoned off
before you resume training from the last saved checkpoint.

Training Instability

Training stability is also a fundamental challenge. While training
the model, you may notice that hyperparameters such as
learning rate and weight initialization directly affect model
stability. For example, when loss diverges, lowering the learning
rate and restarting from an earlier checkpoint might allow the
job to recover and continue training.

Additionally, the bigger the model is, the more difficult it is to
avoid loss spikes during training. These spikes are likely to occur
at highly irregular intervals, sometimes late into training.

There hasn’t been a lot of systematic analysis of principled
strategy to mitigate spikes. Here are some best practices we have
seen from the industry to effectively get models to converge:

•	 Batch size: in general, using the biggest batch size that your
GPU allows you to use is the best policy here.

•	 Batch Normalization: Normalizing the activations within a
mini-batch can speed up convergence and improve model
performance.

•	 Learning Rate Scheduling: A high learning rate can cause
the loss to oscillate or diverge, leading to loss spikes.
By scheduling the learning rate to decrease over time,
you can gradually decrease the magnitude of updates to
the model’s parameters and improve stability. Common
schedules include step decay, where the learning rate is
decreased by a fixed amount after a fixed number of steps,
and exponential decay, where the learning rate is decreased
by a fixed factor each step. Note that it is not really possible
to know ahead of time what LR to use, but you can use
different LR schedules to see how your model responds.
See more details here.

•	 Weight Initialization: Properly initializing the weights can
help the model converge faster and improve performance.
For example, it is common to use small Gaussian noise

or, in the case of Transformers, the T-Fixup initialization.
Techniques that can be used for weight initialization
include random initialization, layer-wise initialization,
and initialization using pretrained weights.

•	 Model training starting point: Using a pretrained model
that is trained on related tasks as a starting point can help
the model converge faster and improve performance.

•	 Regularization: Regularization techniques, such as
dropout, weight decay, and L1/L2 regularization, can help
the model converge better by reducing overfitting and
improving generalization.

•	 Data Augmentation: Augmenting the training data by
applying transformations can help the model generalize
better and reduce overfitting.

•	 Hot-swapping during training: Hot-swapping of optimizers
or activation functions are sometimes used during LLM
training to fix issues as they appear during the process. It
sometimes requires a team on it almost 24/7 trying various
heuristics to train further.

•	 Other simple strategies mitigating the instability issue
when encountered: Restart training from a previous
checkpoint; skip some data batches that were seen during
the spike (the intuition is that pikes occur due to the
combination of specific data batches with a particular
model parameter state).

Note: most of the above model convergence best practices not
only apply to transformer training, but also apply in a broader
deep learning context across architectures and use cases.

Finally, after your LLM training is completed, it is very important
to ensure that your model training environment is saved and
retained in that final state. That way, if you need to re-do
anything or replicate something in the future you can because
you have the training state preserved.

A team could also try some ablation studies. This allows
you to see how pulling parts of the model out might impact
performance. Ablation studies can allow you to massively reduce
the size of your model, while still retaining most of a model’s
predictive power.

15www.wandb.ai • contact@wandb.ai

MODEL EVALUATION

Typically, pre-trained models are evaluated on a diverse
language model datasets to assess their ability to perform
logical reasoning, translation, natural language inference,
question answering, and more.

Machine learning practitioners coalesced around a variety
of standard evaluation benchmarks. A few popular
examples include:

•	 Open-Domain Question Answering tasks: TriviaQA, Natural
Questions, Web Questions

•	 Cloze and Completion tasks: LAMBADA, HellaSwag,
StoryCloze

•	 Winograd-style tasks: Winograd, WinoGrande

•	 Common Sense Reasoning: PIQA, ARC, OpenBookQA

•	 In-context Reading Comprehension: DROP, CoQA , QuAC,
SQuADv2, RACE, SuperGLUE

Another evaluation step is n-shot learning. It’s a task-agnostic
dimension, and refers to the number of supervised samples
(demonstrations) you provide to the model right before asking
it to perform a given task. N-shots are normally provided via a
technique called prompting. You’ll often see n-shot bundled into
the following three categories:

•	 Zero-shot: refers to evaluation on any tasks without
providing any supervised samples to the model at
inference time.

•	 Natural Language Inference (NLI): SNLI, QNLI

•	 Reasoning tasks: Arithmetic reasoning tasks

•	 Code tasks: HumanEval, MBPP (text-to-code); TransCoder
(code-to-code)

•	 Translation tasks: Translation BLEU score on WMT
language pairs

•	 BIG-bench: A collaborative benchmark aimed at
producing challenging tasks for large language models,
including 200+ tasks covering diverse textual tasks and
programmatic tasks.

•	 LM Evaluation Harness: A library for standardized evaluation
of autoregressive LLMs across 200+ tasks released
by EleutherAI. It has gained popularity because of its
systematic framework approach and robustness.

•	 One-shot: similar to few-shot but with n=1, evaluation
where one supervised sample is provided to the model
at inference time.

•	 Few-shot: refers to evaluation where a few supervised
samples are provided to the model at inference time
(e.g. 5 samples provided -> 5-shot).

Datasets and task clusters in NLP, Finetuned Language Models are Zero-Shot Learners

Here is a summary of typical language tasks (NLU tasks in blue; NLG tasks in teal):

https://en.wikipedia.org/wiki/Winograd_schema_challenge
https://github.com/google/BIG-bench
https://github.com/EleutherAI/lm-evaluation-harness
https://arxiv.org/pdf/2109.01652.pdf

16www.wandb.ai • contact@wandb.ai

An example of few-shot learning:

Task: sentiment analysis

Prompt:

Tweet: “I hate it when my phone battery dies.”

Sentiment: Negative

Tweet: “My day has been ”

Sentiment: Positive

Tweet: “This is the link to the article”

Sentiment: Neutral

Tweet: “This new music video was incredible”

Sentiment:

Answer:______

Evaluation typically involves both looking at benchmarking
metrics of the above tasks and more manual evaluation by
feeding the model with prompts and looking at completions for
human assessment. Typically, both NLP Engineers and subject
matter experts (SMEs) are involved in the evaluation process and
assess the model performance from different angles:

NLP engineers: people with a background in NLP, computational
linguistics, prompt engineering, etc., who can probe and assess
the model’s semantic and syntactic shortcomings and come up
with model failure classes for continuous improvement. A failure
class example would be “the LLM does not handle arithmetic
with either integers (1, 2, 3, etc.) nor their spelled-out forms: one,
two, three.”

Subject matter experts (SMEs): In contrast to the NLP
engineers, the SMEs are asked to probe specific classes
of LLM output, fixing errors where necessary, and “talking aloud”
while doing so. The SMEs are required to explain
in a step-by-step fashion the reasoning and logic behind
their correct answer versus the incorrect
machine-produced answer.

BIAS AND TOXICITY

There are potential risks associated with large-scale, general
purpose language models trained on web text. Which is to say:
humans have biases, those biases make their way into data, and
models that learn from that data can inherit those biases. In
addition to perpetuating or exacerbating social stereotypes, you
want to ensure your LLM doesn’t memorize and reveal private
information.

It’s essential to analyze and document such potential
undesirable associations and risks through transparency
artifacts such as model cards.

Similar to performance benchmarks, a set of community-
developed bias and toxicity benchmarks are available for
assessing the potential harm of LLM models. Typical benchmarks
include:

Hate speech detection: The ETHOS dataset can help measure
the ability of LLM models to identify whether or not certain
English statements are racist or sexist

Social bias detection: CrowSPairs is a benchmark aiming to
measure intrasentence level biases in 9 categories: gender,
religion, race/color, sexual orientation, age, nationality,
disability, physical appearance, and socioeconomic status;
StereoSet benchmark measure stereotypical bias across 4

Toxic language response: The RealToxicityPrompts dataset
helps evaluate if and how models use toxic language.

Dialog safety evaluations: The SaferDialogues benchmark
measures how unsafe a model’s response is, stratified across
four levels: safe, realistic, unsafe, and adversarial.

To date, most analysis on existing pre-trained models indicate
that internet-trained models have internet-scale biases. In
addition, pre-trained models generally have a high propensity
to generate toxic language, even when provided with a relatively
innocuous prompt, and adversarial prompts are trivial to find.

Bias and Toxicity Mitigation

So how do we fix this? Here are a few ways to mitigate biases
during and after the pre-training process:

Training set filtering: Here, you want to analyze the elements of
your training dataset that show evidence of
bias and simply remove them from the training data

Training set modification: This technique doesn’t filter your
training data but instead modifies it to reduce bias. This could
involve changing certain gendered words (from policeman to
policewoman or police officer, for example) to help mitigate bias.

Additionally, you can mitigate bias after pre-training as well:

Prompt engineering: The inputs to the model for each query are
modified to steer the model away from bias (more on this later).

Fine-tuning: Take a trained model and retrain it to unlearn
biased tendencies.

Output steering: Adding a filtering step to the inference
procedure to re-weigh output values and steer the output away
from biased responses.

17www.wandb.ai • contact@wandb.ai

It enables pre-trained LLMs to respond better to instructions and
reduces the need for few-shot examples at prompting stage (i.e.
drastically improves zero-shot performance).

Instruction tuning has gained huge popularity in 2022, given
that the technique considerably improves model performance
without hurting its ability to generalize. Typically, a pre-trained
LLM is tuned on a set of language tasks and evaluated on its
ability to perform another set of language tasks unseen at tuning
time, proving its generalizability and zero-shot capability. See
illustration below:

INSTRUCTION TUNING

At this point, let’s assume we have a pre-trained, general-
purpose LLM. If we did our job well, our model can already be
used for domain-specific tasks without tuning for few-shot
learning and zero-shot learning scenarios. That said, zero-shot
learning is in general much worse than its few-shot counterpart
in plenty of tasks like reading comprehension, question
answering, and natural language inference. One potential reason
is that, without few-shot examples, it’s harder for models to
perform well on prompts that are not similar to the format of the
pretraining data.

To solve this issue, we can use instruction tuning. Instruction
tuning is a state-of-the-art fine-tuning technique that fine-tunes
pre-trained LLMs on a collection of tasks phrased as instructions.

Comparing instruction tuning with pretrain–finetune and prompting,
Finetuned Language Models are Zero-Shot Learners

17www.wandb.ai • contact@wandb.ai

http://Finetuned Language Models are Zero-Shot Learners

18www.wandb.ai • contact@wandb.ai

purpose model serving multiple downstream tasks. It often
comes down to whether you have the instruction dataset
available and training budget to perform instruction tuning.

•	 Instruction tuning is universally effective on tasks naturally
verbalized as instructions (e.g., NLI, QA, translation), but it is
a little trickier for tasks like reasoning. To improve for these
tasks, you’ll want to include chain-of-thought examples
during tuning.

A few things to keep in mind about instruction tuning:

•	 Instruction tuning tunes full model parameters as opposed
to freezing a part of them in parameter-efficient fine tuning.
That means it doesn’t bring with it the cost benefits that
come with parameter-efficient fine tuning. However, given
that instruction tuning produces much more generalizable
models compared to parameter-efficient fine tuning,
instruction-tuned models can still serve as a general-

18www.wandb.ai • contact@wandb.ai

Instruction tuning both with and without exemplars (i.e., zero-shot and few-shot) and with and without chain-of-thought, enabling
generalization across a range of evaluation scenarios from Scaling Instruction-Finetuned Language Models

https://arxiv.org/pdf/2210.11416.pdf

19www.wandb.ai • contact@wandb.ai

More granularly, RLHF generally works like this:

•	 Step 1: Instruction tuning – just collect a dataset of labeler
demonstrations of the desired model behavior, and use
them to fine-tune the pre-trained LLM using supervised
learning.

•	 Step 2: Collect a dataset of comparisons between model
outputs, where labelers indicate which output they prefer
for a given input. Then, train a reward model to predict the
human-preferred output.

•	 Step 3: Take the trained reward model and optimize a policy
against the reward mode using reinforcement learning.

Steps 2 and 3 can be iterated continuously. More comparison
data is collected on the current best policy, which is used to train
a new reward model and then a new policy. See below for RLHF
process demonstration.

Surge, and Label Studio offer RLHF as a service so you don’t
have to handle this yourself if you’re interested in going down
this path. But research has shown promising results using
RLHF techniques to minimize the alignment cost to increase its
adoption, so it’s absolutely worth considering.

REINFORCEMENT LEARNING THROUGH HUMAN FEEDBACK (RLHF)

RLHF is an extension of instruction tuning, with more steps
added after the instruction tuning step to further incorporate
human feedback.

As discussed above, pre-trained LLMs often express unintended
behaviors such as making up facts, generating biased or toxic
responses, or simply not following user instructions. This is
because the objective for many recent large LMs – i.e. predicting
the next token on a webpage from the internet – is rather
different from the objective “follow the user’s instructions
safely.”

RLHF behaves how its name suggests it would. Here, we
incorporate human feedback about a model’s outputs given
certain prompts. Those opinions about whether the quality of
the outputs are then used as additional data points to improve
the model’s overall performance.

OpenAI has had some recent success here with InstructGPT. It’s
essentially a pre-trained model GPT-3, fine tuned with RLHF. In
fact, their recent ChatGPT model also leverages RLHF on a more
advanced GPT model series (referred to as GPT-3.5).

To date, RLHF has shown very promising results with InstructGPT
and ChatGPT, bringing improvements in truthfulness and
reductions in toxic output generation while having minimal
performance regressions compared to the pre-trained GPT.

Note that the RLHF procedure does come with the cost of slightly
lower model performance in some downstream tasks - referred
to as the alignment tax. Companies like Scale AI, Labelbox,

19www.wandb.ai • contact@wandb.ai

A diagram illustrating the three steps of our
method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement
learning via proximal policy optimization (PPO)
on this reward model, Training language models
to follow instructions with human feedback

https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2203.02155.pdf

20www.wandb.ai • contact@wandb.ai

Conclusion

References

Whether it’s OpenAI, Cohere, or open-source projects like
EleutherAI, cutting-edge large language models are built on
Weight & Biases. Our platform enables collaboration across
teams performing the complex, expensive work required to
train and push these models to production, logging key metrics,
versioning datasets, enabling knowledge sharing, sweeping
through hyperparameters, and a whole lot more. LLM training
is complex and nuanced and having a shared source of truth
throughout the lifecycle of a model is vital for avoiding common
pitfalls and understanding performance every step of the way.

•	 What Language Model Architecture and pre-training
Objective Work Best for Zero-Shot Generalization?

•	 GPT 3 Paper - Language Models are Few-Shot Learners

•	 GPT-NeoX-20B: An Open-Source Autoregressive
Language Model

•	 OPT: Open Pre-trained Transformer Language Models

•	 PaLM: Scaling Language Modeling with Pathways

•	 Efficient Large-Scale Language Model Training on GPU
Clusters Using Megatron-LM

•	 Scalable Deep Learning on Distributed Infrastructures:
Challenges, Techniques and Tools

•	 New Scaling Laws for Large Language Models by DeepMind

•	 New Scaling Laws for Large Language Models

•	 Understanding the Difficulty of Training Transformers

We’d like to also send a hearty thanks to OpenAI, Deepmind,
Meta, and Google Brain. We referenced their research and
breakthroughs frequently in this white paper and their
contributions to the space are already invaluable.

If you’re interested in learning more about how W&B can help,
please reach out and we’ll schedule some time. And if you have
any feedback we’d love to hear those too.

•	 How To Build an Efficient NLP Model

•	 Emergent Abilities of Large Language Models

•	 Beyond the Imitation Game benchmark (BIG-bench)

•	 Talking About Large Language Models

•	 Galactica: A Large Language Model for Science

•	 State of AI Report 2022

•	 Finetuned Language Models are Zero-Shot Learners

•	 Scaling Instruction-Fine Tuned Language Models

•	 Training language models to follow instructions with
human feedback

Weights & Biases is the premier, developer-first MLOps platform. We help ML teams unlock their productivity by optimizing, visualizing,
collaborating on, and standardizing their model and data pipelines – regardless of framework, environment, or workflow.

ABOUT WEIGHTS & BIASES

www.wandb.ai • contact@wandb.ai

https://arxiv.org/pdf/2204.05832v1.pdf
https://arxiv.org/pdf/2204.05832v1.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/2204.06745.pdf
https://arxiv.org/pdf/2204.06745.pdf
https://arxiv.org/pdf/2205.01068v4.pdf
https://arxiv.org/pdf/2204.02311v5.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/pdf/2104.04473.pdf
https://arxiv.org/pdf/1903.11314.pdf
https://arxiv.org/pdf/1903.11314.pdf
https://arxiv.org/pdf/2203.15556.pdf
https://www.lesswrong.com/posts/midXmMb2Xg37F2Kgn/new-scaling-laws-for-large-language-models
https://arxiv.org/pdf/2004.08249.pdf
https://wandb.ai/darek/fbck/reports/How-To-Build-an-Efficient-NLP-Model--VmlldzoyNTE5MDEx#pre-training-our-model
https://openreview.net/pdf?id=yzkSU5zdwD#page=18&zoom=100,62,165
https://arxiv.org/pdf/2206.04615v2.pdf
https://arxiv.org/pdf/2212.03551.pdf
https://arxiv.org/pdf/2211.09085.pdf
https://docs.google.com/presentation/d/1WrkeJ9-CjuotTXoa4ZZlB3UPBXpxe4B3FMs9R9tn34I/edit#slide=id.g164b1bac824_0_2748
https://arxiv.org/pdf/2109.01652.pdf
https://arxiv.org/pdf/2210.11416.pdf
https://arxiv.org/pdf/2203.02155.pdf
https://arxiv.org/pdf/2203.02155.pdf

21www.wandb.ai • contact@wandb.ai

Appendix

Large pre-trained transformer language models, or simply large
language models (LLM), are a recent breakthrough in machine
learning that have vastly extended our capabilities in natural
language processing (NLP).

Based on transformer architectures, with as many as hundreds
of billions of parameters, and trained on hundreds of terabytes
of textual data, recent LLMs such as GPT-3 (OpenAI, 2020), GPT-
NeoX (EleutherAI, 2022), PaLM (Google Brain,2022), OPT (Meta AI,
2022), and Macaw (Allen Institute) have demonstrated significant
improvements in the ability to perform a wide range of NLP
tasks. Here’s a brief introduction to the model architecture at
play here:

Modern LLMs are based on the transformer architecture. The
main architectural unit is a transformer block, which consists of
(at a minimum) multi-headed self attention, layer normalization,
a dense two-layer feedforward network, and residual

LLM OVERVIEW

TRANSFORMER MODEL ARCHITECTURE

connection. A transformer stack is a sequence of such blocks.
The below graph shows a typical transformer architecture with
an encoder-decoder structure:

Large language models are computer programs that open new possibilities
of text understanding and generation in software systems, CohereAI Large
Language Models

The transformer model architecture.
Source: Attention Is All You Need

21www.wandb.ai • contact@wandb.ai

https://docs.cohere.ai/docs/introduction-to-large-language-models
https://docs.cohere.ai/docs/introduction-to-large-language-models
https://arxiv.org/pdf/1706.03762.pdf

22www.wandb.ai • contact@wandb.ai

Since the advent of transformers, many architectural variants
have been proposed. These can vary by architecture (e.g.
decoder-only models, encoder-decoder models), by pre-
training objectives (e.g. full language modeling, prefix language
modeling, masked language modeling), and other factors.

While the original transformer included a separate encoder that
processes input text and a decoder that generates target text
(encoder-decoder models), the most popular LLMs like GPT-3,
OPT, PaLM, GPT-NeoX are causal decoder-only models trained
to autoregressively predict a text sequence. In contrast with this
trend, there is some research showing that encoder-decoder
models outperform decoder-only LLMs for transfer learning (i.e.
where a pre-trained model is finetuned on a single downstream
task). For detailed architecture types and comparison, see What
Language Model Architecture and pre-training Objective Work
Best for Zero-Shot Generalization.

Here are a few of the most popular pre-training architectures:

•	 Encoder-decoder models: As originally proposed, the
transformer consists of two stacks: an encoder and a
decoder. The encoder is fed the sequence of input tokens
and outputs a sequence of vectors of the same length as
the input. Then, the decoder autoregressively predicts the
target sequence, token by token, conditioned on the output
of the encoder. Representative models of this type include
T5 and BART.

The graph below shows recent pre-trained LLMs:

•	 Causal decoder-only models: these are decoder-only
models trained to autoregressively predict a text sequence.
“Casual” means that the model is just concerned with the
left context (next-step-prediction). Representative examples
of this type include GPT-3, GPT-J, GPT-NeoX, OPT, etc.

•	 Non-causal decoder-only models: to allow decoder-only
models to build richer non-causal representations of the
input text, the attention mask has been modified so that the
region of the input sequence corresponding to conditioning
information has a non-causal mask (i.e. not restricted to
past tokens). Representative PLM models include: UniLM
1-2, ERNIE-M.

•	 Masked language models: these are normally encoder-
only models pre-trained with a masked language modeling
objective, which predict masked text pieces based on
surrounding context. Representative MLM models include
BERT and ERNIE.

Community-driven open sourcing of GPT et al., State of AI Report 2022

https://arxiv.org/pdf/2204.05832v1.pdf
https://arxiv.org/pdf/2204.05832v1.pdf
https://arxiv.org/pdf/2204.05832v1.pdf
https://docs.google.com/presentation/d/1WrkeJ9-CjuotTXoa4ZZlB3UPBXpxe4B3FMs9R9tn34I/edit#slide=id.g164b1bac824_0_2748

23www.wandb.ai • contact@wandb.ai

The chart below outlines this trend, showing models built and
trained during 2020-2022:

THE ORIGINAL LLM SCALING LAWS

The LLM Scaling Laws (first introduced by OpenAI) tries to
answer questions like “Given a certain quantity of compute, how
large of a model should I train in order to get the best possible
performance?”

The answer is essentially a trade-off between model size and
data size. For example, for models at GPT-3 scale, the trade-off is
somewhere between:

•	 (a) training a 20-billion parameter model on 40% of an
archive of the Internet, or

•	 (b) training a 200-billion parameter model on 4% of an
archive of the Internet

In 2020, OpenAI published the Scaling Laws for Neural Language
Models. The paper suggests that increasing model size is more
important than increasing data size for compute-optimal
training. If you get ten times more compute, you should increase
your model size by about five times and double your data size.
Another 10x in compute, and model size is twenty-five times
bigger and data size is only 4x bigger.

Many researchers took this philosophy to heart and focused on
how to engineer larger and larger models rather than training
comparatively smaller models with more data.

23www.wandb.ai • contact@wandb.ai

Weights & Biases is the premier, developer-first MLOps platform. We help ML teams unlock their productivity by optimizing, visualizing,
collaborating on, and standardizing their model and data pipelines – regardless of framework, environment, or workflow.

ABOUT WEIGHTS & BIASES

23www.wandb.ai • contact@wandb.ai

Allocate more compute between increasing model size and training with
more data, Scaling Laws for Neural Language Models

Figure x: Current LLMs and their sizes, Training Compute-Optimal Large Language Models

https://arxiv.org/pdf/2001.08361v1.pdf
https://arxiv.org/pdf/2203.15556.pdf

