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Motivation

Enable scalable out-of-core computations for data-intensive
computing.

Effectively integrate non-volatile random access memory into the HPC
node’s memory architecture.

Address data-intensive computing scalability challenges:
I Use node-local NVRAM to support larger working sets
I DRAM-cached NVRAM to extend main memory

Allow latency-tolerant applications to be oblivious to transitions from
dynamic to persistent memory when accessing out-of-core data.
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HPC Challenges and opportunities

I Data-intensive high-performance computing applications:
I processing of massive real-world graphs
I bioinformatics / computational biology
I streamline tracing (in-situ VDA)

I Creating data-intensive architecture is costly and power-intensive
I In traditional HPC architecture DRAM per core is going down
I DRAM is expensive: cost and power

I NVRAM technologies promise:
I lower latency
I higher density
I better concurrency
I minimal static power→ lower average power
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Data-Intensive High-Performance Computing

Data-Intensive Applications:
I large data sets
I large working sets that exceed capacity of main memory
I memory bound

I irregular data access
I latency sensitive
I minimal computation

Latency-tolerant algorithms:
I highly concurrent
I avoid bulk synchronous communication
I potentially asynchronous execution
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Integrating future NVRAM

Peripherally attached storage in near term

I 2-4 year horizon
I Existing PCIe-attached Flash storage

High-performance PCIe-attached NVRAM

I Low access latency
I Efficient random access
I Faster peripheral bus
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Challenges for HPC Runtime

Integrating high-performance storage requires:
I explicit out-of-core algorithms
I seamless integration of storage into memory hierarchy

I e.g. high-performance memory-map

Linux memory-map runtime does not:
I scale well with increased concurrency
I perform well when memory is not freely available

. . . optimize memory-map runtime for data-intensive computing
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Direct I/O or memory-mapped I/O

Direct I/O - direct access to NVRAM pages
I Avoids overheads of software stack
I Good for fetching multiple pages of data at once

Memory-Mapped I/O - map file/device into app’s virtual memory
I Good for word-level access
I Word access to cached pages is at memory speeds
I Eliminates dichotomy between storage and memory

I Data structures easily transition out-of-core
I Can sacrifice performance

Memory-mapped I/O can seamlessly extended the memory hierarchy
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Data-intensive memory-map runtime (DI-MMAP)

A high-performance alternative to Linux mmap:
I performance scales with increased concurrency
I performance does not degrade under memory pressure
I explicit assignment from data structures to buffers

DI-MMAP features:
I a fixed sized page buffer
I minimal dynamic memory allocation
I a simple FIFO buffer replacement policy
I preferential caching for frequently accessed pages
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Using DI-MMAP

The DI-MMAP device driver:
1. is loaded into a running Linux kernel
2. it allocates a fixed amount of main memory for page buffering
3. it creates a control interface file in the /dev filesystem

Once loaded:
1. the control file is then used to create pseudo-files in /dev

2. pseudo-files link (i.e. redirect) to block devices in the system
3. accesses to a pseudo-file are redirected to the linked block device
4. pseudo-file is memory mapped into the applications virtual

memory space
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Buffer Management

DI-MMAP Buffer

Primary FIFO?

Hotpage FIFO

Eviction Queue

is a hot page

remove from
Page Tables

page fault

page evicted Free Page List

TLB Flush / 
writeback page

DI-MMAP Buffer Page Location Table

page recovered

Minimize the amount of effort needed to find a page to evict:
I In the steady state a page is evicted on each page fault
I Track recently evicted pages to maintain temporal reuse
I Allow bulk TLB operations to reduce inter-processor interrupts
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Livermore random I/O testbench (LRIOT)
Currently lack tools to effectively measure and evaluate NVRAM

I high speed

I highly concurrency

I tolerate complex and unstructured access patterns

FIO: industry standard for benchmarking
I Does not scale well

I Cannot mix concurrency with both processes and threads

LRIOT: high concurrency / high throughput benchmarking tool
I Supports a mixture of processes and threads

I Multiple random and deterministic access patterns

I More deterministic timing measurements
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LRIOT system setup

Test platform:
I 16 core AMD 8356 Opteron system @ 2.3GHz
I 64 GiB of DRAM
I RHEL 6 2.6.32
I 3× 80 GiB SLC NAND Flash Fusion-io ioDrive PCIe 1.1 x4 cards

I striped RAID 0

Benchmark:
I uniform random I/O pattern
I 6.4 million reads (unique pages)→ 24 GiB working set
I 128 GiB file
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Read-only LRIOT benchmark

Linux mmap:
I Unconstrained performs well
I drops dramatically with 8GiB of

page cache

DI-MMAP:
I much better with fixed sized

buffer
I only loses 15% performance

from direct I/O with 1 GiB buffer
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Write-only LRIOT benchmark

DI-MMAP:
I on par with unconstrained Linux

mmap

I > 2× Linux mmap with 8GiB
page cache

I does not match performance of
direct I/O
(subject to further investigation)
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Microbenchmarks system setup

Test platform:
I 8 core AMD 2378 Opteron system @ 2.4GHz
I 16 GiB of DRAM
I 2× 200 GiB SLC NAND Flash Virident tachIOn Drive PCIe 1.1 x8

Benchmarks:
1. Binary search on sorted vector
2. Lookup on Ordered Map (Red-Black Tree)
3. Lookup on Unordered Map (Hash Table)

I database size ranged from ∼ 112GiB to ∼ 135GiB
I each micro-benchmark issued 220 queries
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Microbenchmarks: BST and Ordered Map
DI-MMAP:

I significantly exceeds the performance of Linux mmap when each is constrained to an
equal amount of buffering

I approaches the performance of mmap with no memory constraint
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Microbenchmarks: Unordered map
DI-MMAP:

I significantly exceeds the performance of Linux mmap when each is constrained to an
equal amount of buffering

I approaches the performance of mmap with no memory constraint
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Metagenomic Search & Classification

Metagenomics:
I sequencing of heterogenous genetic fragments
I fragments (aka reads) may be derived from many organisms

Application queries a database of genetic markers called k-mers:
I length k sequences out of a DNA, RNA, or protein alphabet
I k-mer database stored in Flash storage
I access patterns to the datasets are extremely random
I classification requires global view of reference database

Two tests:
I k-mer lookup
I sample classification
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Metagenomics Search & Classification system setup

Test platform:
I 4 socket, 40 core, Intel E7 4850 @ 2 GHz
I 1 TiB DRAM
I Linux kernel 2.6.32 (Red Hat Enterprise 6).
I 2× Fusion-io 1.2 TB ioDrive2 cards PCIe-2.0 x4

I RAID 0
I block sizes of 4 KiB

I 16 GiB DRAM available for buffer cache

Application:
I k = 18
I database size is 635 GiB
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K-mer lookup
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Metagenomic Sample Classification
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Conclusions

The data-intensive memory-map (DI-MMAP) runtime:
1. provides scalable, out-of-core performance for data-intensive applications

2. allows increased performance of algorithms with increased concurrency

3. performance does not significantly degrade with smaller buffer size

DI-MMAP:
I provides a viable solution for scalable out-of-core algorithms
I offloads the explicit buffering requirements from the application to the runtime
I allows the application to access its external data through a simple load/store

interface
I hides much of the complexity of data movement
I approaches the raw, peak performance of direct I/O
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Thank You!

Questions?

Open source release is in progress:

https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
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