Lecture 2:
Morse Code to Huffman Coding

Lecturer: Travis Gagie

January 15th, 2015

Morse Code

AR

designed in the USA in the 1840s
redesigned in Germany a few years later
in common use for well over 100 years
uses dots, dashes and 3 lengths of pauses

assigns short codes for common characters,
long codes for uncommon ones

NI W
ol N BN

HELLO WORLD

SrXCc_IOTMmMmUNwW>

10111000
111010101000
11101011101000
1110101000
1000
101011101000
111011101000
1010101000
101000
1011101110111000
111010111000
101110101000
1110111000

SPAC

< XS<cCcHLIOTOZ=

m N

11101000
11101110111000
10111011101000
1110111010111000
1011101000
10101000

111000
1010111000
101010111000
101110111000
11101010111000
1110101110111000
11101110101000
0000

Ee e Wil Milo MG
Y00 O
0

Q
Q
®] O Q
oo Q @) 0
0QO Q (OO O
D M
gQQ Q o 0 Q0
0QoOQO 0QDQ
B |K G
g QQ Q00
O 0Q 0)0J)
X C Z |0
@) Q
@) O

v

G

“Improved” Morse

A 10110 N 11100

B 11101010 O 111111

C 11101110 P 10111110
D 1110100 Q 11111011
E 100 R 1011100
F 1010111 S 1010100
G 1111100 T 110

H 10101010 U 1010110
| 10100 V 10101011
J 10111111 W 1011110
K 1110110 X 11101011
L 1011101 Y 11101111

M 11110 Z 11111010

SPACE 0

O=

O

O
S
P
& a O
E
O Q O Q
E T
(2 @ @ @)
O Q O 0 O @) O O
I A N M
@ @) ON® @ @) @

101010101001011101101110111111101011110111111101110010111011110100

SrXc_IOmTMmMUNwW>

7.19
1.31
2.45
3.74
11.18
1.96
177
5.36
6.13
0.13
0.68
3.54
2.12

SPAC

< XS<cCcHLIOTOZ=

m N

5.94
6.61
1.70
0.08
5.27
5.57
7.97
2.43
0.86
2.08
0.13
1.74
0.07
11.97

O 0O 00O 000 O OO0 OO0
5.57 | 2.431.969-27 _2.08 3.74 | | 0.68 1.77

ole 354 db oo o0b OO0
5.36 0.86 1.70 0.13 1.310.132.451.740.07 0.08

M has weight 2.12 and it's codeword 11110 has length 5.
O has weight 6.61 and it's codeword 111111 has length 6.

Therefore, swapping the leaves for M and O reduces the weighted

path length by
6.61 —2.12 =4.49.

Some conditions for optimality:
» The tree should not contain any node with exactly 1 child.

> No leaf with lower weight should appear strictly above
another leaf with higher weight.

Some conditions for optimality:
» The tree should not contain any node with exactly 1 child.

> No leaf with lower weight should appear strictly above
another leaf with higher weight.

» No node with lower weight should appear strictly above
another node with higher weight.

1/2—€¢ € € 1/2—¢

Huffman Coding

1. published in 1952

2. still used for many purposes today
(often in combination with other techniques)

3. assigns short codes for common characters,
long codes for uncommon ones — optimally

Huffman’s Algorithm:
1. For each weight create a tree consisting of a single node,
assigned that weight.
2. If there is only one tree left, stop. Otherwise, make the roots
of the two lightest tree the children of a new node, whose
weight is the sum of theirs.

3. Go back to Step 2.

ES Gom e e
i oL ok L
& 5 8 5 2

=

0000000000000

5.94

T
= 3
1
3

©
5

ES Gom e e
i oL ok L
& 5 8 5 2

=

0000000000000

5.94

T
= 3
1
3

©
5

0.15
Oﬂg

O os6

O 196
O 208
O 22
O 23
O 215
O 3
O sm
O s
O 536
O a7
O sm
O s
O 66
O 710
O 197
O s
O 1o

@
5
2

o

5
&

v
5
v
5

w
@
-

o
&
=

@

&

=

o
©
B

©

b

ES
>

o
I

~
°

-
<
S

3

©
5

O os6

@ o
[S.
g &

[- T I
S T = T~ S - S S)
s S8 2 5 2 3 85

0000000000 OOOOOOOOOOO

°
5

O oss

o w
e
3 2

w
S

%

5.5

=

O
O
O
O
(OF:
O
0594
O
O
O
O
O
O

O oss

G oo g
[R
g 5 =

%

o
o

6.13

O
O
O
O
(OF:
O
0594
O
O
O
O
O
O

O 1.31
O
O
O

o
S

5.57

& R

o
=

[
= 5
3

©
5

O
O
O
O
O
O
O
O
O
O

O oss O O v
O 1 O 17
O 1n
O m

@
5
=

v

=
&
5

w
S
o
S
&

o
&
=
o
&
3

=

9

= o o
© s =
5 2 =
e 2
= = =
z 2 =

=
=

O
O
O
O
(OF:
O
0594
O
O
O
O
O
O

©

5
©
5

000000000 0C
000000000000

() 1015 O 245

() 21.08 O s
...-..E. 536
O 557

() 4423

() 100.16 O 131
(" 25.38 (= ..
o 1.70
- (O 1714
() 1331 O
E O 1
O 661
55.93
ok O 719
@) Eﬁ. O 35
O 37
(O 797
30.55
Q058 (O 086
() 007
(3 195 o (O 0.08
O 16.08 (Y041 O 013
(3 3.91 O o) 0.13
O o068
Qsn O 1.96
() 208
Q

O 212

M W F

=

X J Q 2z

T A O

D L

G Y P B

I N

qovds ()

= O

S H R

c U

Proof of correctness:

> Let W=wq,...,w,.
» Without loss of generality, assume w; and wy are the smallest
weights in W.

> Let W =wi +wo,ws, ..., w,.

Proof of correctness:
> Let W=wq,...,w,.
» Without loss of generality, assume w; and wy are the smallest
weights in W.
> Let W =wi +wo,ws, ..., w,.
» There exists an optimal tree for W in which wy and w» are
assigned to leaves that are siblings. Why?

Proof of correctness:

>

>

Let W =wy,...,w,.

Without loss of generality, assume wy and ws are the smallest
weights in W.

Let W' = wy + wo, w3, ..., w,.

There exists an optimal tree for W in which wy and wy are
assigned to leaves that are siblings. Why?

If we remove the leaves with weights w; and wy from any
such optimal tree for W and assign weight w; + wy to their
parent, then:

> the weighted path length decreases by wy + ws;

» we obtain an optimal tree for W’/. Why?

Proof of correctness:

>

>

Let W =wy,...,w,.

Without loss of generality, assume wy and ws are the smallest
weights in W.

Let W' = wy + wo, w3, ..., w,.

There exists an optimal tree for W in which wy and wy are
assigned to leaves that are siblings. Why?

If we remove the leaves with weights w; and wy from any

such optimal tree for W and assign weight w; + wy to their
parent, then:

> the weighted path length decreases by wy + ws;

» we obtain an optimal tree for W’/. Why?
If we attach leaves with weights wy and ws as children to the
leaf with weight wq + ws in any optimal tree for W/, then:

> the weighted path length increases by wy + ws;

» we obtain an optimal tree for W. Why?

Theorem (Kraft Inequality, 1949)

If there exists a binary tree T whose leaves (in any order) have
depths (1,..., Ly, then >, 27% < 1 with equality if and only if the
tree is strictly binary. Conversely, if {1,...,4, is a sorted sequence
of integers with 3".27% < 1, then there exists a binary tree T
whose leaves (from left to right) have depths (1, ..., {5.

First suppose we have a binary tree T whose leaves (in any order)
have depths /1, ..., 0,. Let {nax = max;{{;}. For 1 <i <o, we
attach a complete binary tree of height {max — £; to the leaf with
depth #;. This does not change the height /.2« of the tree, so the
number of leaves 3. 2fm=—*i is at most 2/m, with equality if an
only if the original tree was strictly binary. Dividing both sides of

Z 2 lmax—L; < 2 fmax
i

by 2fm, we have >, 27% < 1 with equality if an only if the
original tree was strictly binary.

Now suppose we have a sorted sequence #1, ..., £, of integers such
that Z,-2_£i < 1. Again, let lmax = max;{¢;}. We build a
complete binary tree T’ of height /. and perform an in-order
traversal on it. For 1 < i < g, we find the next unvisited node with
depth #; and remove its proper descendants. After this, either
there is at least one more unvisited node with depth ¢;, or there
are no more unvisited leaves. In the first case, we can continue if

necessary and
S ot <
j<i

so J.<I.2*4' < 1. In the second case,
Z 2émax_gj — 2emax
J<i

s0) ;2 W=1landi=o0.

Definition
The Oth-order empirical entropy of a string s[1..n] over an alphabet
of size ¢ is defined as

Ho(s) = Z occ(na, s) log

acs

occ(a,s)’

where a € s means character a occurs in s and occ(a, s) is the
number of its occurrences.

Theorem (Katona and Nemetz, 1978)

If a character has probability at least 1/¢%, where ¢ ~ 1.618 is the
golden ratio, then no Huffman code can assign it a codeword of
length more than .

Theorem (Katona and Nemetz, 1978)

If a character has probability at least 1/¢%, where ¢ ~ 1.618 is the
golden ratio, then no Huffman code can assign it a codeword of
length more than .

Therefore, if a character occurs in s, then no Huffman code can
assign it a codeword of length more than [log, n| ~ 1.44log n. So,
in the word RAM model, any codeword fits in O(1) machine words.

We can easily encode each character in O(1) time by table look-up.

How can we decode each character quickly?

With the Kraft Inequality, we can rebuild the code-tree such that
the leaves, from right to left, are in non-decreasing order by depth.
This takes linear time...

M W F

=

X J Q z

G Y P B

@ @) @ @)
O O O O O @) @)
o

HOVdS

A HI N ORS T

C DL U

B F GMP WY

Vv

-

J Q X z

@ @) @ @)
O O O O O @) @)
o

HOVdS

AHI N ORS T

C DL U

B F GMP WY

Vv

-

J Q X z

[E, SPACE, A, H,I,N,O,R, S, T,C,D,L,U B, F,G, M P, W, Y, VK, J QX Z

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)

000
001
0100
0101
0110
0111
1000
1001
1010
1011
11000
11001
11010

—_
N~

15

[e e
O © 00 N O

N
[y
~— N N N N N N

N NN
B w N

NN DN
~N O O

11011
111000
111001
111010
111011
111100
111101
111110
1111110
11111110
1111111100
1111111101
1111111110
1111111111

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)

000
001
0100
0101
0110
0111
1000
1001
1010
1011
11000
11001
11010

—_
N~

15

[e e
O © 00 N O

N
[y
~— N N N N N N

N NN
B w N

NN DN
~N O O

11011
111000
111001
111010
111011
111100
111101
111110
1111110
11111110
1111111100
1111111101
1111111110
1111111111

(111101); — (111000); = 20 — 15

We store in a predecessor data structure the lexicographically first
codeword of each length, together with its rank as auxiliary
information, which takes O(o log n) bits:

(000, 1),
(0100, 3),
(11000, 11),
(111000, 15),
(1111110, 22),
(11111110, 23),
(1111111100, 24)

Given an encoding that starts 1111011001011100. . .,

Given an encoding that starts 1111011001011100. . .,

1. we use our data structure to find its lexicographic predecessor
111000 in the set

{(000,1),...,(1111111100, 24) } ;

Given an encoding that starts 1111011001011100. . .,

1. we use our data structure to find its lexicographic predecessor
111000 in the set

{(000,1),...,(1111111100, 24) } ;

2. we truncate all but the first [111000| = 6 bits 111101 of the
encoding;

Given an encoding that starts 1111011001011100. . .,

1. we use our data structure to find its lexicographic predecessor
111000 in the set

{(000,1),...,(1111111100, 24) } ;

2. we truncate all but the first [111000| = 6 bits 111101 of the
encoding;

3. we add (111101), — (111000)2 =5 to 111000's rank 15 to
obtain 111101's rank 20;

Given an encoding that starts 1111011001011100. . .,

1. we use our data structure to find its lexicographic predecessor
111000 in the set

{(000,1),...,(1111111100, 24) } ;

2. we truncate all but the first [111000| = 6 bits 111101 of the
encoding;

3. we add (111101), — (111000)2 =5 to 111000's rank 15 to
obtain 111101's rank 20;

4. finally, we return the 20th character in the array [E, SPACE,
..., Q X, Z], which is W.

If we use binary search to find the predecessor then, since the
maximum codeword length is O(log n) bits, we use a total of
O(log log n) time to decode each character.

If we use binary search to find the predecessor then, since the
maximum codeword length is O(log n) bits, we use a total of
O(log log n) time to decode each character.

If we use a (completely impractical) data structure called a fusion
tree, then we use O(1) time to decode each character.

If we use binary search to find the predecessor then, since the
maximum codeword length is O(log n) bits, we use a total of
O(log log n) time to decode each character.

If we use a (completely impractical) data structure called a fusion
tree, then we use O(1) time to decode each character.

If we use doubling search then, for a character a with codeword
c(a), we use O(log |c(a)] + 1) time.

How can we bound O (i (Iog ‘c(s[i]) + 1)> ?
i=1

Theorem (Jensen's Inequality)

If f(x) is a concave function, P = p1,...,ps is a probability
distribution and xq, ..., x, are values in the domain of f(x), then

f (Z PiXi> < Zpif(xi)-

T4

T3

)

|

Since log is a concave function, if P = pi1,...,p, and each p; is
again the number occ(aj, s) of occurrences of the jth distinct
character a;j in s, then

n

> (logle(s[)| +1)

i=1

— 0" pllogle(a)| +1)

j=1

< nlog)_|c(aj)+n
j=1
< nlog(Ho(s) +2).

Theorem

Given the sorted frequencies of characters in a string s of length n,
we can build a canonical Huffman code for s in O(o) time. We
can then encode s in fewer than nHy(s) + n bits (plus O(o log n)
bits to store the code) in O(n) time on a word RAM. Later, we
can decode s in O(nlog(Hp(s) + 2)) time.

