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Books (again)… 





Remember how Google works? 

•  Crawl the web, gather a collection of documents 

•  For each word t in the collection, store a list of all documents containing t: 

•  Query: blue mittens 

blue 

blunt 

mittens 

… 

1 2 4 11 31 45 173 

1 2 4 5 6 16 57 132 173 … 

… 

174 

lexicon lists 

… 

… 

mint 2 31 54 101 

1 4 5 11 31 45 174 288 

Inverted Index 



•  The key idea for compressing inverted lists is to observe 
that elements of L are monotonically increasing, so we 
can transform the list by taking differences (gaps): 

 L = 3,7,11,23,29,37,41,… 

 D(L) = 3,4,4,12,6,8,4,… 

•  The advantage of doing this is to make the integers 
smaller, and suitable for integer codes 
–  Remember we said smaller integers get smaller codes 

•  We can easily “degap” the list during intersection 
–  Adding items together as we scan the lists adds little overhead 



Outline 

•  Tuesday: three classic integer codes 
–  Unary 
–  Elias codes (gamma, delta) 
–  Golomb codes (Rice, general) 

•  Today: three modern flavours 
–  Interpolative binary codes 
–  Variable-byte codes 
–  Word-aligned binary codes (simple, relative, carryover) 



Interpolative codes… 



Interpolative codes 

•  Invented by Moffat and Stuiver, 2000 

•  Suitable for a list of increasing integers 
–  Like the lists in an inverted index we were discussing last time 

•  Treats the list of integers to be encoded holistically 

•  Capable of exploiting clustering present in the input 
 
•  Input:  array of integers 
•  Output:  a sequence of bits  



Interpolative codes 

•  Consider the following list of integers 
 

 L = 2,9,12,14,19,21,31,32,33 

•  Interpolative coding compresses this list by encoding its  
–  length (9), and  
–  its first element L[1] = 2, and  
–  Its last elements and L[9] = 33, 
–  using some other method, say γ coding. 

  γ(9), γ(2), γ(33) 

•  It then proceeds to encode the middle item: L[5] = 19 

•  However, when encoding L[5] it exploits that L[1] and 
L[9], and the length are already known to the decoder 



Interpolative codes 

 L = 2,9,12,14,19,21,31,32,33 

•  Our integers are stored in increasing order: 
 2 = L[1] < L[2] < … < L[5] < … L[8] < L[9] = 33. 

•  Therefore, based on the the values of L[1] and L[9], 
L[5] must lie in the interval [2,33] 

•  In fact, because there are 9 elements in the list we can 
say something stronger about L[5]… it is in [6,29]. 

•  This interval contains 24 distinct values, of which L[5] 
is the 13th (counting from 0). 

•  So we encode L[5]=13 using 2ceil(log(24)) = 5 bits as 01101. 



Interpolative codes 

 L = 2,9,12,14,19,21,31,32,33 

•  We then proceed recursively… to encode L[3] 

•  L[3] can be coded with the knowledge that the decoder 
now knows about L[5], which forces L[3]’s value to be 
in the range [4,17] 

•  It is the 8th of those 14 numbers, so we encode 8 in 
2ceil(log(14)) = 4 bits. 



Original 
order 

Encoding 
order 

Bits Description 

n=9 n=9 1110001 γ(9) 
2 2 100 γ(2) 
9 33 111101111 γ(33) 
12 19 01101 13=19-6 in 5 bits 
14 12 1000 8=12-4 in 4 bits 
19 9 0110 6=9-3 in 4 bits 
21 14 001 1=14-13  in 3 bits 
31 31 1010 10=31-21 in 4 bits 
32 21 0001 1=21-20 in 4 bits 
33 32 

Interpolative codes 

 
★L[8] = 32 is encoded using 0 bits 



Nice things about Interpolative codes 

 
•  Interpolative coding effectively exploits clustering 

present in the integers being encoded 

•  To encode f integers all in the range [1,N], in the worst 
case interpolative coding uses 

 f � (2.58 + log (N/f)) bits. 

•  This compares nicely with the best case for Golomb 
coding: f � (1.44 + log (N/f)) bits 

•  … and interpolative coding is parameter free. 



Digression: clustering in Search Engines 

 
•  There are (at least) two ways in which document ids 

can become clustered inside the term lists 

•  Firstly, we can try to induce it before building the 
index by, for example, ordering the documents by URL 
–  Within a domain (say helsinki.fi, ford.com) documents use a 

similar vocabulary 

•  Secondly, it can be natural.  
–  Think of trending terms on Twitter. 



•  The methods we have discussed so far all involve 
examining lots of individual bits 
–  esp. the Elias and Golomb codes from last time, both of which 

involve unary codes 

•  Such “bit fiddling” limits the rate of decoding 

•  Next we look at two methods that are specifically 
designed with high decoding throughput in mind  

Moving away from bits… 



Variable byte codes… 



Variable byte (VB) code 

•  Developed by Scholer et al., 2002 

•  Used by many commercial/research systems 

•  Good blend of variable-length coding and sensitivity to 
memory alignment (bit-level codes, see last week). 

•  Input:  array of integers 
•  Output:  array of bytes  



Variable byte (VB) code 

•  Dedicate 1 bit in each byte we output (high bit) to be a 
continuation bit c. 
–  00000000 

•  If the int G fits within 7 bits, binary-encode it in the 7 available 
bits and set c = 0. 
–  Eg. Integer 29 = 11101 fits in 7 bits so we output: 00011101 
–  Eg. integer 117 = 1110101 fits in 7 bits so we output: 01110101 

•  Else: set c = 1, encode lower-order 7 bits and then use additional 
bytes to encode the higher order bits using same algorithm. 
–  Eg. integer 767 = 1011100101 > 7 bits so: 
–  Put lower 7 bits (1100101) in first byte and set the c bit: 11100101 
–  We now have the bits 101 to deal with, < 7 bits so output 00000101 

•  At the end, the continuation bit of the last byte is 0 (c = 0) and the 
other bytes is 1 (c = 1). We know when we have decoded an item! 



Variable byte (VB) code 

•  Another example: 
•  214577 
•  110100011000110001 
•                     0110001  →  10110001 
•         0001100    →  10001100 
•  1101     →  00001101 

•                          10110001 
•              10001100 
•  00001101 
•    000110100011000110001 = 214577 



VB code examples 

docIDs 824 829 215406 

gaps 824 5 214577 

in binary 1100111000  101 1101000110
00110001  

VB codes 10111000 
00000110 

00000101 10110001 
10001101 
00001100 

VB encoded list: 

101110000000011000000101101100011000110100001100 

101110000000011000000101101100011000110100001100 



VB code encoding algorithm 

VBEncodeNumber(n) 
1   bytes ← {}, i ← 0 
2   while n >= 128 do 
3    bytes[i] ← 128 + (n mod 128) 
6    n ← n div 128 
7    i ← i + 1 
8   end while 
9   bytes[i] ← n 
0   return bytes 



VB code decoding algorithm 

VBDecodeNumber(bytes) 
1    n ← 0, i ← 0 
2   d ← 1 
3   while bytes[i] ≥ 128 do 
4    n ← n + d * (bytes[i] – 128) 
5    d ← d * 128 
6     i ← i + 1  
7   end while 
8   n ← n + d * bytes[i] 
9   return n 



VB code decoding algorithm (with bit shifting) 

VBDecodeNumber(bytes) 
1    n ← 0, i ← 0 
2   d ← 1 
3   while bytes[i] ≥ 128 do 
4    n ← n + ((bytes[i] & 127) << shift) 
5    shift ← shift + 7 
6     i ← i + 1 
7   end while 
8   n ← n + (bytes[i] << shift) 
9   return n 



Other variable length codes 

•  Instead of bytes, we could use a smaller “unit of 
alignment”: e.g., 4 bits (nibbles), two per byte. 

•  Variable byte alignment wastes space if you have many 
small gaps – nibbles do better on those. 

•  Of course we can also try to make use of larger units of 
alignment, such as words… 



Word-aligned binary codes… 





Word-aligned binary code 

•  Invented by Ahn & Moffat in 2005 

•  Very vague idea is to have a hybrid between bit-aligned 
and byte-aligned codes 

•  Allows code words as short as one bit, but forces a 
regular pattern within each compressed word 
–  This greatly reduces decoding costs compared to bit-level codes 

•  Sensitive to local clustering present in the input stream 
–  (As interpolative coding is) 

•  Input: array of integers; output: array of 32-bit words 



Simple-9: our first word-aligned binary code 

•  Philosophy: try to assign the maximum possible of 
number of integers from the input to each output word. 

•  Each 32-bit word stores a number of integers 

•  Different words store different numbers of integers, but 
within each word each integer is represented using 
exactly the same number of bits. 



Simple-9: our first word-aligned binary code 

•  In the Simple-9 scheme, 28 out of the 32 bits in a word 
are reserved for holding integers. 

 00000000000000000000000000000000 

•  e.g., if the next 28 integers in the list are all 1 or 2, 
then 28 codes of 1-bit each can be used to code them 
–  (recall we’re assuming the integers are all strictly > 1) 

•  At the other extreme, if the next integer is > 214, then it 
must be coded into a single word as a 28-bit binary code 
–  No room in 28 bits for more than one integer > 214. 
–  Between these extremes, seven 4-bit codes, four 7-bits, et c. 

•  Remaining four selector bits tell us how the 28 “data 
bits” are partitioned 



Nine different ways of using 28 bits for flat binary 
codes (method Simple-9) 

Selector Number of 
 codes 

Length of each 
code (bits) 

Number of  
unused bits 

a 28 1 0 
b 14 2 0 
c 9 3 1 
d 7 4 0 
e 5 5 3 
f 4 7 0 
g 3 9 1 
h 2 14 0 
i 1 28 0 



Simple-9 in action (1) 

•  To see this process in action, consider the following ints 

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20) 

•  If applicable, row a yields the most compact 
representation, but because there is a value > 2 = 21 in 
the first 28 ints to be coded, row a cannot be used. 
(For similar reasons we can’t use row b either) 



Simple-9 in action (2) 

•  To see this process in action, consider the following ints 

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20) 
 
•  But none of the first 9 entries are greater than 8 = 23, so 

we can use row c to drive the first word of output 



Simple-9 in action (3) 

•  To see this process in action, consider the following ints 

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20) 
 
•  But none of the first 9 entries are greater than 8 = 23, so 

we can use row c to drive the first word of output 

•  Each of the first 9 entries go into the word with 3-bit codes 

 c, 011, 101, 000, 000, 010, 100, 000, 110, 000, ., 

 (an integer of 1 maps to a code of 000) 



Simple-9 in action (4) 

•  To see this process in action, consider the following ints 

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20) 
 
•  The remaining values (starting at 13, with five further 

values to be coded) yields a second output word: 

 e, 01100, 10011, 00000, 01011, 10011, ..., 

•  where now three bits are unused in the 32-bit code 

•  Overall: 64 bits for 14 ints. A Golomb code would use 58. 



Simple-9: Compression Performance 



Addressing Simple-9’s shortcomings 

•  Simple-9’s use of 4 bits for the selector means 7 of 16 
possible selector combinations are unused – a loss of 
almost 1 bit per word 

•  One way to recover this loss would be to eliminate a 
row in the table (row e?) and choose among 8 
possibilities for each word with a 3 bit selection code. 

–  Would allow 29 bits of data in each word… but 29 is prime L 

•  We could introduce a variable length selector… 
–  2 bit selector => 2 x 15-bit codes 
–  3 bit selector => 9 x 3-bit codes, et c. 

•  …but this reintroduces bit fiddling. 



Relative-10: improving on Simple-9 

•  A more interesting approach is the shrink the selector 
to just 2 bits, leaving 30 data bits. 
–  30 has many factors -> a wider range of partitionings than 28 



Different ways of using 30 bits for flat binary codes 
(method Relative-10) 

Selector Number of 
 codes 

Length of each 
code (bits) 

Number of  
unused bits 

a 30 1 0 
b 15 2 0 
c 10 3 0 
d 7 4 2 
e 6 5 0 
f 5 6 0 
g 4 7 2 
h 3 10 0 
i 2 15 0 
j 1 30 0 



Relative-10: improving on Simple-9 

•  A more interesting approach is the shrink the selector 
to just 2 bits, leaving 30 data bits. 
–  30 has many factors -> a wider range of partitionings than 28 

•  The problem now is the selector. 
–  With only 2 bits we are restricted to just 4 choices for each 

word 

•  To make the most of those 4 combinations, they are 
interpreted relative to the selector of the previous 
word: one row less; same row; one row more; last row  



Relative-10: improving on Simple-9 

•  i.e. if the previous row make use of row r, then the 2 
bit selector of the current word indicates on of row r-1, 
r, r+1, and row j. 
–  At the extremities of the table (r=a and r=j) choices are altered 

to always provide 4 viable alternatives 

•  Encoder and decoder must agree on an initial value of 
the “current selector” 



Transfer matrix for selectors in Relative-10 

Current 
Selector 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

 
g 

 
h 

 
i 

 
j 

a 0 1 2 3 

b 0 1 2 3 

c 0 1 2 3 

d 0 1 2 3 

e 0 1 2 3 

f 0 1 2 3 

g 0 1 2 3 

h 0 1 2 3 

i 0 1 2 3 

j 0 1 2 3 

Possible next selector values 



Relative-10: improving on Simple-9 

•  If the set of integers being coded is homogeneous, the 
bulk of integers will get coded using an appropriate row  

•  The occasional large int may result in a sudden shift to 
row j, and the consequent use of some long code 
words, but the current state can then migrate back up 
the table to the natural position for the list 



Relative-10: Compression Performance 



A final squeeze and then goodbye 

•  Look again at the table of selectors used by Relative-10 



Selector table for Relative-10 (again) 

Selector Number of 
 codes 

Length of each 
code (bits) 

Number of  
unused bits 

a 30 1 0 
b 15 2 0 
c 10 3 0 
d 7 4 2 
e 6 5 0 
f 5 6 0 
g 4 7 2 
h 3 10 0 
i 2 15 0 
j 1 30 0 



Carryover-12: A final squeeze and then goodbye 

•  When 7-bit and when 4-bit codewords are in use, there 
are two spare bits in each word. 

•  Our next method – Carryover-12 – uses those spare bits 
to store the selector value for the next word of codes, 
thereby allowing that next word to use 32 rather than 
30 data bits 

 01000000000000000000000000000010 
 00000000000000000000000000000000 

 
Selector indicates 4 x 7-bit 
codes, leaving two bits 
spare at the word end 

Use those spare 
bits for the next 
word’s selector 

Next output word 
can use full 32 
bits for data 



Carryover-12: two more tweaks 

•  Also, because the selector in relative-10 is relative, we 
are free to add rows to the table, to improve the 
precision of the code words assigned… 



Selector table for Relative-10 (again) 

Selector # of codes Code length Unused bits 

a 30 1 0 
b 15 2 0 
c 10 3 0 
d 7 4 2 
e 6 5 0 
f 5 6 0 
g 4 7 2 
h 3 10 0 
i 2 15 0 
j 1 30 0 



Selector table for Relative-10 (again) 

Selector # of codes Code length Unused bits 

a 30 1 0 
b 15 2 0 
c 10 3 0 
d 7 4 2 
e 6 5 0 
f 5 6 0 
g 4 7 2 
h 3 10 0 
i 2 14 2 
j 2 15 0 
k 1 30 0 



Carryover-12: two more tweaks 

•  Similarly, if we’re in the situation where 32 bits are 
being used for data, but we allocate two 15 bit codes, 
then we have 2 bits free for the next selector 

•  Likewise, five 6 bits codes (in the 32-bit situation) 
leaves room for the selector of the next word 

•  …and there are other combinations. 

•  i.e., in Carryover-12, each word contains either 
–  32 data bits, if the selector can be fitter in previous word, or 
–  A selector + 30 data bits if it cannot  



Relative-10: Compression Performance 



Decoding speed 



Relative-10: Compression Performance 



Summary 

•  Integer codes are used in many many high-performance 
industrial software systems 
–  Whenever throughput is important they can usually be found. 

•  Having integer codes respect memory alignment can 
lead to significant speed savings, usually at the cost of 
some loss in compression, but even this can be kept 
quite small, as we have seen. 

•  We will encounter integer codes again when we look at 
compressed data structures. 



End 
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