
582487
Data Compression Techniques

Lecture 4: Integer Codes II

Simon J. Puglisi
(puglisi@cs.helsinki.fi)

University of Helsinki
Department of Computer Science

Books (again)…

Remember how Google works?

•  Crawl the web, gather a collection of documents

•  For each word t in the collection, store a list of all documents containing t:

•  Query: blue mittens

blue

blunt

mittens

…

1 2 4 11 31 45 173

1 2 4 5 6 16 57 132 173 …

…

174

lexicon lists

…

…

mint 2 31 54 101

1 4 5 11 31 45 174 288

Inverted Index

•  The key idea for compressing inverted lists is to observe
that elements of L are monotonically increasing, so we
can transform the list by taking differences (gaps):

 L = 3,7,11,23,29,37,41,…

 D(L) = 3,4,4,12,6,8,4,…

•  The advantage of doing this is to make the integers
smaller, and suitable for integer codes
–  Remember we said smaller integers get smaller codes

•  We can easily “degap” the list during intersection
–  Adding items together as we scan the lists adds little overhead

Outline

•  Tuesday: three classic integer codes
–  Unary
–  Elias codes (gamma, delta)
–  Golomb codes (Rice, general)

•  Today: three modern flavours
–  Interpolative binary codes
–  Variable-byte codes
–  Word-aligned binary codes (simple, relative, carryover)

Interpolative codes…

Interpolative codes

•  Invented by Moffat and Stuiver, 2000

•  Suitable for a list of increasing integers
–  Like the lists in an inverted index we were discussing last time

•  Treats the list of integers to be encoded holistically

•  Capable of exploiting clustering present in the input

•  Input: array of integers
•  Output: a sequence of bits

Interpolative codes

•  Consider the following list of integers

 L = 2,9,12,14,19,21,31,32,33

•  Interpolative coding compresses this list by encoding its
–  length (9), and
–  its first element L[1] = 2, and
–  Its last elements and L[9] = 33,
–  using some other method, say γ coding.

 γ(9), γ(2), γ(33)

•  It then proceeds to encode the middle item: L[5] = 19

•  However, when encoding L[5] it exploits that L[1] and
L[9], and the length are already known to the decoder

Interpolative codes

 L = 2,9,12,14,19,21,31,32,33

•  Our integers are stored in increasing order:
 2 = L[1] < L[2] < … < L[5] < … L[8] < L[9] = 33.

•  Therefore, based on the the values of L[1] and L[9],
L[5] must lie in the interval [2,33]

•  In fact, because there are 9 elements in the list we can
say something stronger about L[5]… it is in [6,29].

•  This interval contains 24 distinct values, of which L[5]
is the 13th (counting from 0).

•  So we encode L[5]=13 using 2ceil(log(24)) = 5 bits as 01101.

Interpolative codes

 L = 2,9,12,14,19,21,31,32,33

•  We then proceed recursively… to encode L[3]

•  L[3] can be coded with the knowledge that the decoder
now knows about L[5], which forces L[3]’s value to be
in the range [4,17]

•  It is the 8th of those 14 numbers, so we encode 8 in
2ceil(log(14)) = 4 bits.

Original
order

Encoding
order

Bits Description

n=9 n=9 1110001 γ(9)
2 2 100 γ(2)
9 33 111101111 γ(33)
12 19 01101 13=19-6 in 5 bits
14 12 1000 8=12-4 in 4 bits
19 9 0110 6=9-3 in 4 bits
21 14 001 1=14-13 in 3 bits
31 31 1010 10=31-21 in 4 bits
32 21 0001 1=21-20 in 4 bits
33 32

Interpolative codes

★L[8] = 32 is encoded using 0 bits

Nice things about Interpolative codes

•  Interpolative coding effectively exploits clustering

present in the integers being encoded

•  To encode f integers all in the range [1,N], in the worst
case interpolative coding uses

 f � (2.58 + log (N/f)) bits.

•  This compares nicely with the best case for Golomb
coding: f � (1.44 + log (N/f)) bits

•  … and interpolative coding is parameter free.

Digression: clustering in Search Engines

•  There are (at least) two ways in which document ids

can become clustered inside the term lists

•  Firstly, we can try to induce it before building the
index by, for example, ordering the documents by URL
–  Within a domain (say helsinki.fi, ford.com) documents use a

similar vocabulary

•  Secondly, it can be natural.
–  Think of trending terms on Twitter.

•  The methods we have discussed so far all involve
examining lots of individual bits
–  esp. the Elias and Golomb codes from last time, both of which

involve unary codes

•  Such “bit fiddling” limits the rate of decoding

•  Next we look at two methods that are specifically
designed with high decoding throughput in mind

Moving away from bits…

Variable byte codes…

Variable byte (VB) code

•  Developed by Scholer et al., 2002

•  Used by many commercial/research systems

•  Good blend of variable-length coding and sensitivity to
memory alignment (bit-level codes, see last week).

•  Input: array of integers
•  Output: array of bytes

Variable byte (VB) code

•  Dedicate 1 bit in each byte we output (high bit) to be a
continuation bit c.
–  00000000

•  If the int G fits within 7 bits, binary-encode it in the 7 available
bits and set c = 0.
–  Eg. Integer 29 = 11101 fits in 7 bits so we output: 00011101
–  Eg. integer 117 = 1110101 fits in 7 bits so we output: 01110101

•  Else: set c = 1, encode lower-order 7 bits and then use additional
bytes to encode the higher order bits using same algorithm.
–  Eg. integer 767 = 1011100101 > 7 bits so:
–  Put lower 7 bits (1100101) in first byte and set the c bit: 11100101
–  We now have the bits 101 to deal with, < 7 bits so output 00000101

•  At the end, the continuation bit of the last byte is 0 (c = 0) and the
other bytes is 1 (c = 1). We know when we have decoded an item!

Variable byte (VB) code

•  Another example:
•  214577
•  110100011000110001
•  0110001 → 10110001
•  0001100 → 10001100
•  1101 → 00001101

•  10110001
•  10001100
•  00001101
•  000110100011000110001 = 214577

VB code examples

docIDs 824 829 215406

gaps 824 5 214577

in binary 1100111000 101 1101000110
00110001

VB codes 10111000
00000110

00000101 10110001
10001101
00001100

VB encoded list:

101110000000011000000101101100011000110100001100

101110000000011000000101101100011000110100001100

VB code encoding algorithm

VBEncodeNumber(n)
1 bytes ← {}, i ← 0
2 while n >= 128 do
3 bytes[i] ← 128 + (n mod 128)
6 n ← n div 128
7 i ← i + 1
8 end while
9 bytes[i] ← n
0 return bytes

VB code decoding algorithm

VBDecodeNumber(bytes)
1 n ← 0, i ← 0
2 d ← 1
3 while bytes[i] ≥ 128 do
4 n ← n + d * (bytes[i] – 128)
5 d ← d * 128
6 i ← i + 1
7 end while
8 n ← n + d * bytes[i]
9 return n

VB code decoding algorithm (with bit shifting)

VBDecodeNumber(bytes)
1 n ← 0, i ← 0
2 d ← 1
3 while bytes[i] ≥ 128 do
4 n ← n + ((bytes[i] & 127) << shift)
5 shift ← shift + 7
6 i ← i + 1
7 end while
8 n ← n + (bytes[i] << shift)
9 return n

Other variable length codes

•  Instead of bytes, we could use a smaller “unit of
alignment”: e.g., 4 bits (nibbles), two per byte.

•  Variable byte alignment wastes space if you have many
small gaps – nibbles do better on those.

•  Of course we can also try to make use of larger units of
alignment, such as words…

Word-aligned binary codes…

Word-aligned binary code

•  Invented by Ahn & Moffat in 2005

•  Very vague idea is to have a hybrid between bit-aligned
and byte-aligned codes

•  Allows code words as short as one bit, but forces a
regular pattern within each compressed word
–  This greatly reduces decoding costs compared to bit-level codes

•  Sensitive to local clustering present in the input stream
–  (As interpolative coding is)

•  Input: array of integers; output: array of 32-bit words

Simple-9: our first word-aligned binary code

•  Philosophy: try to assign the maximum possible of
number of integers from the input to each output word.

•  Each 32-bit word stores a number of integers

•  Different words store different numbers of integers, but
within each word each integer is represented using
exactly the same number of bits.

Simple-9: our first word-aligned binary code

•  In the Simple-9 scheme, 28 out of the 32 bits in a word
are reserved for holding integers.

 00000000000000000000000000000000

•  e.g., if the next 28 integers in the list are all 1 or 2,
then 28 codes of 1-bit each can be used to code them
–  (recall we’re assuming the integers are all strictly > 1)

•  At the other extreme, if the next integer is > 214, then it
must be coded into a single word as a 28-bit binary code
–  No room in 28 bits for more than one integer > 214.
–  Between these extremes, seven 4-bit codes, four 7-bits, et c.

•  Remaining four selector bits tell us how the 28 “data
bits” are partitioned

Nine different ways of using 28 bits for flat binary
codes (method Simple-9)

Selector Number of
 codes

Length of each
code (bits)

Number of
unused bits

a 28 1 0
b 14 2 0
c 9 3 1
d 7 4 0
e 5 5 3
f 4 7 0
g 3 9 1
h 2 14 0
i 1 28 0

Simple-9 in action (1)

•  To see this process in action, consider the following ints

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20)

•  If applicable, row a yields the most compact
representation, but because there is a value > 2 = 21 in
the first 28 ints to be coded, row a cannot be used.
(For similar reasons we can’t use row b either)

Simple-9 in action (2)

•  To see this process in action, consider the following ints

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20)

•  But none of the first 9 entries are greater than 8 = 23, so

we can use row c to drive the first word of output

Simple-9 in action (3)

•  To see this process in action, consider the following ints

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20)

•  But none of the first 9 entries are greater than 8 = 23, so

we can use row c to drive the first word of output

•  Each of the first 9 entries go into the word with 3-bit codes

 c, 011, 101, 000, 000, 010, 100, 000, 110, 000, .,

 (an integer of 1 maps to a code of 000)

Simple-9 in action (4)

•  To see this process in action, consider the following ints

 (4,6,1,1,3,5,1,7,1,13,20,1,12,20)

•  The remaining values (starting at 13, with five further

values to be coded) yields a second output word:

 e, 01100, 10011, 00000, 01011, 10011, ...,

•  where now three bits are unused in the 32-bit code

•  Overall: 64 bits for 14 ints. A Golomb code would use 58.

Simple-9: Compression Performance

Addressing Simple-9’s shortcomings

•  Simple-9’s use of 4 bits for the selector means 7 of 16
possible selector combinations are unused – a loss of
almost 1 bit per word

•  One way to recover this loss would be to eliminate a
row in the table (row e?) and choose among 8
possibilities for each word with a 3 bit selection code.

–  Would allow 29 bits of data in each word… but 29 is prime L

•  We could introduce a variable length selector…
–  2 bit selector => 2 x 15-bit codes
–  3 bit selector => 9 x 3-bit codes, et c.

•  …but this reintroduces bit fiddling.

Relative-10: improving on Simple-9

•  A more interesting approach is the shrink the selector
to just 2 bits, leaving 30 data bits.
–  30 has many factors -> a wider range of partitionings than 28

Different ways of using 30 bits for flat binary codes
(method Relative-10)

Selector Number of
 codes

Length of each
code (bits)

Number of
unused bits

a 30 1 0
b 15 2 0
c 10 3 0
d 7 4 2
e 6 5 0
f 5 6 0
g 4 7 2
h 3 10 0
i 2 15 0
j 1 30 0

Relative-10: improving on Simple-9

•  A more interesting approach is the shrink the selector
to just 2 bits, leaving 30 data bits.
–  30 has many factors -> a wider range of partitionings than 28

•  The problem now is the selector.
–  With only 2 bits we are restricted to just 4 choices for each

word

•  To make the most of those 4 combinations, they are
interpreted relative to the selector of the previous
word: one row less; same row; one row more; last row

Relative-10: improving on Simple-9

•  i.e. if the previous row make use of row r, then the 2
bit selector of the current word indicates on of row r-1,
r, r+1, and row j.
–  At the extremities of the table (r=a and r=j) choices are altered

to always provide 4 viable alternatives

•  Encoder and decoder must agree on an initial value of
the “current selector”

Transfer matrix for selectors in Relative-10

Current
Selector

a

b

c

d

e

f

g

h

i

j

a 0 1 2 3

b 0 1 2 3

c 0 1 2 3

d 0 1 2 3

e 0 1 2 3

f 0 1 2 3

g 0 1 2 3

h 0 1 2 3

i 0 1 2 3

j 0 1 2 3

Possible next selector values

Relative-10: improving on Simple-9

•  If the set of integers being coded is homogeneous, the
bulk of integers will get coded using an appropriate row

•  The occasional large int may result in a sudden shift to
row j, and the consequent use of some long code
words, but the current state can then migrate back up
the table to the natural position for the list

Relative-10: Compression Performance

A final squeeze and then goodbye

•  Look again at the table of selectors used by Relative-10

Selector table for Relative-10 (again)

Selector Number of
 codes

Length of each
code (bits)

Number of
unused bits

a 30 1 0
b 15 2 0
c 10 3 0
d 7 4 2
e 6 5 0
f 5 6 0
g 4 7 2
h 3 10 0
i 2 15 0
j 1 30 0

Carryover-12: A final squeeze and then goodbye

•  When 7-bit and when 4-bit codewords are in use, there
are two spare bits in each word.

•  Our next method – Carryover-12 – uses those spare bits
to store the selector value for the next word of codes,
thereby allowing that next word to use 32 rather than
30 data bits

 01000000000000000000000000000010
 00000000000000000000000000000000

Selector indicates 4 x 7-bit
codes, leaving two bits
spare at the word end

Use those spare
bits for the next
word’s selector

Next output word
can use full 32
bits for data

Carryover-12: two more tweaks

•  Also, because the selector in relative-10 is relative, we
are free to add rows to the table, to improve the
precision of the code words assigned…

Selector table for Relative-10 (again)

Selector # of codes Code length Unused bits

a 30 1 0
b 15 2 0
c 10 3 0
d 7 4 2
e 6 5 0
f 5 6 0
g 4 7 2
h 3 10 0
i 2 15 0
j 1 30 0

Selector table for Relative-10 (again)

Selector # of codes Code length Unused bits

a 30 1 0
b 15 2 0
c 10 3 0
d 7 4 2
e 6 5 0
f 5 6 0
g 4 7 2
h 3 10 0
i 2 14 2
j 2 15 0
k 1 30 0

Carryover-12: two more tweaks

•  Similarly, if we’re in the situation where 32 bits are
being used for data, but we allocate two 15 bit codes,
then we have 2 bits free for the next selector

•  Likewise, five 6 bits codes (in the 32-bit situation)
leaves room for the selector of the next word

•  …and there are other combinations.

•  i.e., in Carryover-12, each word contains either
–  32 data bits, if the selector can be fitter in previous word, or
–  A selector + 30 data bits if it cannot

Relative-10: Compression Performance

Decoding speed

Relative-10: Compression Performance

Summary

•  Integer codes are used in many many high-performance
industrial software systems
–  Whenever throughput is important they can usually be found.

•  Having integer codes respect memory alignment can
lead to significant speed savings, usually at the cost of
some loss in compression, but even this can be kept
quite small, as we have seen.

•  We will encounter integer codes again when we look at
compressed data structures.

End

Next lecture…

 13/01 Shannon’s Theorem
 15/01 Huffman Coding
 20/01 Integer Codes I
 22/01 Integer Codes II
 27/01 Dynamic Prefix Coding
 29/01 Arithmetic Coding
 03/02 Text Compression
 05/02 No Lecture
 10/02 Text Compression
 12/02 Compressed Data Structures
 17/02 Compressed Data Structures
 19/02 Compressed Data Structures
 24/02 Compressed Data Structures

