
Chapter 7:  Naïve Bayes and Text

Classifying 
unstructured text

In previous chapters  we've looked at recommendation systems that have people explicitly 
rate things with star systems (5 stars for Phoenix), thumbs-up/thumbs-down (Inception-- 
thumbs-up!), and numerical scales. We've looked at implicit things like the behavior of 
people—did they buy the item, did they click on a link.  We have also looked at classification 
systems that use attributes like height, weight,  how people voted on a particular bill. In all 
these cases the information in the datasets can easily be represented in a table.

 

age glucose
level

blood 
pressure

diabetes?

26 78 50 1

56 111 72 1

23 81 78 0

mpg
cylinders HP

sec. 0-60
30

4
68

19.5
45

4
48

21.7
20

8
130

12



This type of data  is called “structured data”—data where instances (rows in the tables above) 
are described by a set of attributes (for example, a row in a table might describe a car by a set 
of attributes including miles per gallon, the number of cylinders and so on). Unstructured 
data includes things like email messages, twitter messages, blog posts, and newspaper 
articles. These types of things (at least at first glance) do not seem to be neatly represented in 
a table. 

For example, suppose we are interested in determining whether various movies are good or 
not good and we want to analyze Twitter messages:

We, as speakers of English can see that Andy Gavin likes Gravity, since he said “puts the 
thrill back in thriller” and “good acting.”  We know that Debra Murphy seems not so excited 
about the movie since she said “save your $$$.” And if someone writes “I wanna see Gravity 
sooo bad, we should all go see it!!!” that person probably likes the movie even though they 
used the word bad. 

Suppose I am at my local food co-op and see something called Chobani Greek Yogurt. It looks 
interesting but is it any good?  I get out my iPhone, do a google search and find the following 
from the blog  “Woman Does Not Live on Bread Alone”:
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Chobani nonfat greek yogurt.

Have you ever had greek yogurt? If not, stop reading, gather your keys (and a coat if 
you live in New York) and get to your local grocery. Even when nonfat and plain, greek 
yogurt is so thick and creamy, I feel guilty whenever I eat it. It is definitely what yogurt 
is MEANT to be. The plain flavor is tart and fantastic. Those who can have it, try the 
honey version. There's no sugar, but a bit of honey for a taste of sweetness (or add your 
own local honey-- local honey is good for allergies!). I must admit, even though I'm not 
technically supposed to have honey, if I've had a bad day, and just desperately need 
sweetness, I add a teaspoon of honey to my yogurt, and it's SO worth it. The fruit 
flavors from Chobani all have sugar in them, but fruit is simply unnecessary with this 
delicious yogurt. If your grocery doesn't carry the Chobani brand, Fage (pronounced 
Fa-yeh) is a well known, and equally delicious brand.

Now, for Greek yogurt, you will pay about 50 cents to a dollar more, and there are 
about 20 more calories in each serving. But it's worth it, to me, to not feel deprived and 
saddened over an afternoon snack!

http://womandoesnotliveonbreadalone.blogspot.com/2009/03/sugar-free-yogurt-reviews.html

Is that a positive or negative review for Chobani? Even based on the second sentence: If not, 
stop reading, gather your keys … and get to your local grocery store, it seems that this will 
be a positive review. She describes the flavor as fantastic and calls the yogurt delicious.  It 
seems that I should buy it and check it out.  I will be right back...
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An automatic system for determining positive and negative texts.

Let's imagine an automatic system that can read some text and decide whether it is a positive 
or negative report about a product.  Why would we want such a system? Suppose there is a 
company that sells health monitors, they might want to know about what people are saying 
about their products. Are what people say mostly positive or negative? They release an ad 
campaign for a new product. Are people favorable about the product (Man, I sooo want this!)  
or negative (looks like crap). Apple has a press conference to talk about the iPhone problems.  
Is the resulting press coverage positive? A Senate candidate delivers a major policy speech—
do the political bloggers view it favorably? So an automatic system does sound useful.
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John, that looks like a positive 
tweet for Gravity!

So how can I create an automatic text 
classification system?



Let's say I want to create a system that can tell whether a person likes or dislikes various food 
products.  We might come up with an idea of having a list of words that would provide 
evidence that a person likes the product and another list of words that provides evidence that  
the person doesn't like the product.

If we are trying to determine if a particular reviewer likes Chobani yogurt or not, we can just 
count the number of ‘like’ words and  the number of ‘dislike’ words in their text. We will 
classify the text based on which number is higher. We can do this for other classification 
tasks. For example, if we want to decide whether someone is pro-choice or pro-life, we can 
base it on the words and phrases they use. If they use the phrase 'unborn child' then chances 
are they are pro-life; if they use fetus they are more likely to be pro-choice. It's not surprising 
that we can use the occurrence of words to classify text. 

NAIVE BAYES AND TEXT
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‘Like’ words:
delicious
tasty
good
love
smooth

‘Dislike’ words:
awful
bland
bad
hate
gritty

Rather than just using raw counts to 
classify text, let’s use the naïve Bayes!! 

hMAP = argmaxh∈H P(D | h)P(h)

Let’s dissect that formula!



We will use the naïve Bayes methods that were introduced in the previous chapter.  We start 
with a training data set and, since we are now interested in unstructured text this data set is 
called the training corpus. Each entry in the corpus we will call a document even if it is a 
140 character Twitter post. Each document is labeled with its class. So, for example, we 
might have a corpus of Twitter posts that rated movies. Each post is labeled in some way as a 
‘favorable’ review or ‘unfavorable’ and we are going to train our classifier using this corpus of 
labeled documents. The P(h) in the formula above is the probability of these labels. If we 
have 1,000 documents in our training corpus and 500 of them are favorable reviews and 500 
unfavorable then

P( favorable) = 0.5                    P(unfavorable)= 0.5

hMAP = argmaxh∈H P(D | h)P(h)

7-6

I am going to go 
through all the hypotheses 
and pick the one with the 
maximum probability 

 The probability of that 
hypotheses 

The probability of the data 
given the hypothesis ( for example, 
the probability of seeing specific 

words in the text given the text 

For each hypothesis, h, in the 
set of hypotheses, H...



Okay, back to 

Now let's examine the P(D|h) part of the formula—the probability of seeing some evidence, 
some data D given the hypothesis h. The data D we are going to use is the words in the text. 
One approach would be to start with the first sentence of a document, for example, Puts the 
Thrill back in Thriller. And compute things like the probability that a 'like' document starts 
with the word Puts; what's the probability of a 'like' document having a second word of the; 
and the probability of the third word of a like document being Thrill and so on. And then 
compute the probability of a dislike document starting with the word Puts, the probability of 
the second word of a dislike document being the  and so on.

hMAP = argmaxh∈H P(D | h)P(h)

NAIVE BAYES AND TEXT
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When we start with labeled 
training data it is called ‘supervised 
learning.’ Text classification is an 
example of supervised learning.

Learning from unlabeled text is 
called unsupervised learning. One 
example of unsupervised learning is 
clustering which we will cover in the 

next chapter.

There is also semi-supervised learning where 
the system learns from both labeled and unlabeled 
data.  Often the system is bootstrapped using 
labeled data and then in subsequent learning makes 
use of unlabeled data.



Hmm. yeah. That is a huge number of probabilities which makes this approach unworkable. 
And, fortunately,  there is a better approach. We are going to simplify things a bit by treating 
the documents as bags of unordered words. Instead of asking things like What's the 
probability that the third word is thrill given it is a 'like' document we will ask What's the 
probability that the word thrill occurs in a 'like' document. Here is how we are going to 
compute those probabilities.

Training Phase
First, we are going to determine the vocabulary—the unique words—of all the documents 
(both like and dislike documents).  So, for example, even though the may occur thousands of 
times in our training corpus it only occurs once in our vocabulary. Let

 Vocabulary

denote the number of words in the vocabulary.  Next, for each word wk in the vocabulary we 
are going to compute the probability of that word occurring given each hypothesis: P(wk |hi).
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Google estimates that 
there are about 1 million 
words in the English language. 

If a Twitter message 
has about 14 words, we 
would need to compute...

1,000,000 x 1,000,000 x 1,000,000 x ,
1,000,000 x 1,000,000 x 1,000,000 x ,1,000,000 x 
1,000,000 x 1,000,000 x 1,000,000 x 1,000,000 x 

1,000,000 x 1,000,000 x 1,000,000 probabilities

That’s a huge number of 
probabilities to compute!

There must be a better approach!



We are going to compute this as follows. For each hypothesis (in this case 'like' and dislike')

1. combine the documents tagged with that hypothesis into one text file.

2. count how many word occurrences there are in the file. This time, if there are 500 
occurrences of the we are going to count it 500 times. Let’s call this n.

3. For each word in the vocabulary wk, count how many times that word occurred in the 
text. Call this nk

4. For each word in the vocabulary wk, compute

Naïve Bayes Classification Phase
Once we have completed the training phase we can classify documents using the formula that  
was already presented:

 

hMAP = argmaxh∈H P(D | h)P(h)

NAIVE BAYES AND TEXT
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P(wk | hi ) =
nk +1

n + Vocabulary

That seems 
simple enough. Let’s 
work through an 
example!



Let’s say our training corpus consisted of 500 Twitter messages with positive reviews of 
movies and 500 negative. So 

P(like)= 0.5                     P(dislike) = 0.5

After training the probabilities are as follows:

We are going to compute

P(like)× P(I | like)× P(am | like)× P(stunned | like)× ...

and

P(dislike)× P(I | dislike)× P(am | dislike)× P(stunned | dislike)× ...

and chose the hypothesis associated with the highest probability.
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word P(word|like) P(word|dislike)

am 0.007 0.009

by 0.012 0.012

good 0.002 0.0005

gravity 0.00001 0.00001

great 0.003 0.0007

hype 0.0007 0.002

I 0.01 0.01

over 0.005 0.0047

stunned 0.0009 0.002

the 0.047 0.0465

How should we classify:

I am stunned by the hype over 
gravity



So the probabilities are

like     0.000000000000000000000622

dislike  0.000000000000000000004720

The probability of dislike is larger than 
that for like so we classify the tweet as a 
dislike. 

word P(word|like) P(word|dislike)

P(like) = 0.5 P(dislike) =0.05

I 0.01 0.01

am 0.007 0.009

stunned 0.0009 0.002

by 0.012 0.012

the 0.047 0.0465

hype 0.0007 0.002

over 0.005 0.0047

gravity 0.00001 0.00001

∏ 6.22E-22 4.72E-21

NAIVE BAYES AND TEXT
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Just a reminder:

That e notation means how many places to move 
the decimal point. If the number is positive we 
move the decimal to the right, negative means 
move it to the left. So

1.23e-1  = 0.123
1.23e-2 = 0.0123
1.23e-3 = 0.00123

and so on



Here’s an illustration of the problem. Let’s say we have a 100 word document and the average  
probability of each word is 0.001 (words like tell, reported, average, morning, and am have 
a probability of around 0.001). If I multiply those probabilities in Python we get zero:

>>> 0.0001**100
0.0

However, if we add the log of the probabilities we do get a non-zero value:

>>> import math
>>> p = 0
>>> for i in range(100):
! p += math.log(0.0001)

>>> p
-921.034037197617
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wow. those are 
pretty small numbers!

Yes. If we multiply 
the word probabilities for 
even  a short document of 
100 words we are going 
to get a very, very, very 
small number.

Right. But Python 
can’t handle very small 
numbers. They’ll just end 
up being zero.

Exactly. We can fix 
this using logs. Instead of 
multiplying the proba-
bilities we will add the logs 
of the probabilities!!



Newsgroup Corpus
We will first investigate how this algorithm works by using a standard reference corpus of 
usenet newsgroup posts. The data consists of posts from 20 different newsgroups:

comp.graphics misc.forsale soc.religion.christian alt.atheism

comp.os.ms-windows-misc rec.autos talk.politics.guns sci.space

comp.sys.ibm.pc.hardware rec.motorcycles talk.politics.mideast sci.crypt

comp.sys.mac.hardware rec.sport.baseball talk.politics.misc sci.electronics

comp.windows.x rec.sport.hockey talk.religion.misc sci.med

in case you forgot ...      bn = x

The logorithm (or log) of a number (the x above) is the exponent (the n above) 
that you need to raise a base (b) to equal that number.  For example, suppose 
the base is 10, 

log10(1000) = 3   since 1000 equals 103 

The base of the Python log function is the mathematical constant e.  We don’t 
really need to know about e. What is of interest to us is:

1. logs compress the scale of a number ( with logs we can represent smaller 
numbers in Python)
for ex., 
.0000001 x .000005  = .000000000005
the logs of those numbers are:
-16.11809 + -9.90348 = -26.02157

2. instead of multiplying the probabilities we are going to add the logs of the 
probabilities (as shown above). 

NAIVE BAYES AND TEXT
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We would like to build a classifier that can correctly determine what group the post came 
from. For example, we would like to classify this post

as being from rec.motorcycles

Notice the misspellings (accesories and 
ussually). This might be challenging for 
a classifier!

The data is available  at http://qwone.com/~jason/20Newsgroups/ (we are using the 
20news=bydate dataset) . It is also available on the website for the book, http://
guidetodatamining.com. The data consists of 18,846 documents and is already sorted into 
training (60% of the data) and test sets. The training and test data are in separate directories.  
Within each directory are subdirectories representing each newsgroup. Within those are the 
separate documents representing posts to that newsgroup.
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From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)Subject: Re: Mail order response timeDisclaimer: This posting represents the poster's views, not necessarily those of IBMNntp-Posting-Host: relva.rchland.ibm.comOrganization: IBM RochesterLines: 18
> I have ordered many times from Competition > accesories and ussually get 2-3 day delivery.  
ordered 2 fork seals and 2 guide bushings from CA for my FZR.  two weeks later get 2 fork seals and 1 guide bushing.  call CA and ask for remaining *guide* bushing and order 2 *slide* bushings (explain on the phone which bushings are which; the guy seemed to understand).  two weeks later get 2 guide bushings.

*sigh*

how much you wanna bet that once i get ALL the parts and take the fork apart that some parts won't fit?

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com


Throwing things out!
Before we start coding, let’s think about this task in more 
detail. 

For example, we would like to build a system that would classify the following post as being 
from rec.motorcycle:

NAIVE BAYES AND TEXT
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Ladies and Gentlemen. On the main 

stage ...  Just based on the words in the 

text, we are going to attempt to tell 

which newsgroup the post is from

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L 
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?



Let’s consider which words might be helpful in the classification task:

If we throw out the 200 most frequent words in English our document looks like this:

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L 
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?
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I...

am...

looking...

at...

buying...

a ....

dual...

sport ...

type...

motor-
cycle

“I’ is not helpful

not helpful

not helpful

not helpful

erm. probably helpful

not helpful

definitely helpful

definitely

probably not

definitely!!!!



Removing these words cuts down the size of our text by about half. Plus, it doesn't look like 
removing these words will have any impact on our ability to categorize texts. Indeed data 
miners have called such words words without any content, and fluff words. H.P. Luhn, in his 
seminal paper 'The automatic creation of literature abstracts' says of these words that they 
are “too common to have the type of significance being sought and would constitute 'noise' in  
the system.” That noise argument is interesting as it implies that removing these words will 
improve performance. These words that we remove are called 'stop words'. We have a list of 
such words, the 'stop word list', and remove these words from the text in a preprocessing 
step. We remove these words because 1) it cuts down on the amount of processing we need to 
do and 2) it does not negatively impact the performance of our system—as the noise 
argument suggests removing them might improve performance.

The counter argument: the hazards of stop word removal

While removing stop words may be useful in some situations, you should not just 
automatically remove them without thinking. For example, it turns out just using the most 
frequent words and throwing out the rest (the reverse technique of the above) provides 

NAIVE BAYES AND TEXT
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You whippersnapper. You shouldn’t be 
throwing away those common words!

Common Words vs. Stop Words
While it is true that common words like ‘the’ and ‘a’ may not help us in our classification task, 

other common words such as ‘work’, ‘write’, and ‘school’ may help depending on our classification 

task.  When we create a stop word list, we often omit common words that may be helpful. You can 

explore these differences by comparing stop word lists and frequent word lists found on the web.



sufficient information to identify where Arabic documents were written. (If you are curious 
about this check out the paper Linguistic Dumpster Diving: Geographical Classification of 
Arabic Text I co-wrote with some of my colleagues at New Mexico State University. It is 
available on my website http://zacharski.org).  In looking at online chats, sexual predators 
use words like I, me, and you, much  more frequently than non-predators. If your task is to 
identify sexual predators, removing frequent words would actually hurt your performance. 

  

Coding it — Python Style          
Let us first consider coding the training part of the Naïve Bayes Classifier.      
Recall that the training data is organized as follows:

20news-bydate-train
! alt.atheism
! ! text file 1 for alt.atheism
! ! text file 2
! ! …
! ! text file n
! comp.graphics
! ! text file 1 for comp.graphics
! ! ...
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Don’t blindly remove stop words. 

Think First.

http://zacharski.org/
http://zacharski.org/


So I have a directory (in this example called ‘20news-bydate-train’). Underneath this 
directory are subdirectories representing different classification categories (in this case 
alt.atheism, comp.graphics, etc). The names of these subdirectories match the 
category names. The test directory is organized in a similar way. So, in matching this 
structure, the Python code for training will need to know the training directory (for 
example, /Users/raz/Downloads/20news-bydate/20news-bydate-train/).  The 
outline for the training code is as follows.

NAIVE BAYES AND TEXT
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class BayesText
1. the init method:

a. read in the words from the stoplist

b. read the training directory to get the names of the 
subdirectories (in addition to being the names of the 
subdirectories, these are the names of the categories).

c. For each of those subdirectories, call a method “train” 
that will count the occurrences of words in all the files of 
that subdirectory.

d.  compute the probabilities using

P(wk | hi ) =
nk +1

n + Vocabulary

Yet another reminder that all the code is available at 
guidetodatamining.com



from __future__ import print_function
import os, codecs, math

class BayesText:

    def __init__(self, trainingdir, stopwordlist):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category)
        # I am going to eliminate any word in the vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)

7-20



        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        print("Computing probabilities:")
        for category in self.categories:
            print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1) 
                                             / denominator)
        print ("DONE TRAINING\n\n")
                    

    def train(self, trainingdir, category):
        """counts word occurrences for a particular category"""
        currentdir = trainingdir + category
        files = os.listdir(currentdir)
        counts = {}
        total = 0
        for file in files:
            #print(currentdir + '/' + file)
            f = codecs.open(currentdir + '/' + file, 'r', 'iso8859-1')
            for line in f:
                tokens = line.split()
                for token in tokens:
                    # get rid of punctuation and lowercase token
                    token = token.strip('\'".,?:-')
                    token = token.lower()
                    if token != '' and not token in self.stopwords:
                        self.vocabulary.setdefault(token, 0)
                        self.vocabulary[token] += 1
                        counts.setdefault(token, 0)
                        counts[token] += 1
                        total += 1
            f.close()
        return(counts, total)

NAIVE BAYES AND TEXT
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The results of the training phase are stored in a dictionary (hash table) called prob. The keys 
of the dictionary are the different classifications (comp.graphics, rec.motorcycles, 
soc.religion.christian, etc); the values are dictionaries. The keys of these subdictionaries are 
the words and the values are the probabilities of those words. Here is an example:

So, for example, the probability of the word ‘god’ occurring in a text in the rec.motorcycles 
newsgroup is 0.00013 (or one occurrence of god in every 10,000 words). The probability of 
the word ‘god’ occurring in a text in soc.religion.christian is .00424 (one occurrence in every 
250 words). 

Training also results in a list called categories, which, as you might predict, is simply a list of 
all the categories:

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 
'comp.sys.ibm.pc.hardware', ...]
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bT = BayesText(trainingDir, stoplistfile)
>>>bT.prob["rec.motorcycles"]["god"]
0.00013035445075435553
>>>bT.prob["soc.religion.christian"]["god"]
0.004258192391884386
>>>bT.prob["rec.motorcycles"]["the"]
0.028422937849264914
>>>bT.prob["soc.religion.christian"]["the"]
0.039953678998362795

So that is the training 
phase. Let us now turn to 
classifying a document.



 

s code it 

Can you code a method called classify that will predict the classification of a 
document? For example:

>>> bT.classify("20news-bydate-test/rec.motorcycles/104673")
'rec.motorcycles'
>>> bT.classify("20news-bydate-test/sci.med/59246")
'sci.med'
>>> bT.classify("20news-bydate-test/soc.religion.christian/21424")
'soc.religion.christian'

As you can see, the classify method takes a filename as an argument and returns a 
string denoting the classification. 

A Python file you can use as a template, bayesText-ClassifyTemplate.py, is available 
on our website.
 

NAIVE BAYES AND TEXT
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class BayesText:

  def __init__(self, trainingdir, stopwordlist):

    self.vocabulary = {}

    self.prob = {}

    self.totals = {}

    self.stopwords = {}

    f = open(stopwordlist)

    for line in f:

        self.stopwords[line.strip()] = 1

    f.close()

    categories = os.listdir(trainingdir)

    #filter out files that are not directories

    self.categories = [filename for filename in categories

                       if os.path.isdir(trainingdir + 

filename)]

    print("Counting ...")

    for category in self.categories:

        print('    ' + category)

        (self.prob[category],

         self.totals[category]) = self.train(trainingdir, 

category)

    # I am going to eliminate any word in the vocabulary



                    

   
Finally, let’s have a method that classifies every document in the test directory and prints out 
the percent accuracy of this method.  

s code it - one possible solution

def classify(self, filename):
  results = {}
  for category in self.categories:
     results[category] = 0
  f = codecs.open(filename, 'r', 'iso8859-1')
  for line in f:
     tokens = line.split()
     for token in tokens:
       token = token.strip('\'".,?:-').lower()
       if token in self.vocabulary:
         for category in self.categories:
            if self.prob[category][token] == 0:
               print("%s %s" % (category, token))
            results[category] += math.log(
                         self.prob[category][token])
  f.close()
  results = list(results.items())
  results.sort(key=lambda tuple: tuple[1], reverse = True)
  # for debugging I can change this to give me the entire list
  return results[0][0]
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    def testCategory(self, directory, category):
        files = os.listdir(directory)
        total = 0
        correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            if result == category:
                correct += 1
        return (correct, total)

    def test(self, testdir):
        """Test all files in the test directory--that directory is
        organized into subdirectories--each subdir is a classification
        category"""
        categories = os.listdir(testdir)
        #filter out files that are not directories
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        correct = 0
        total = 0
        for category in categories:
            (catCorrect, catTotal) = self.testCategory(
                testdir + correct += catCorrect
            total += catTotal
        print("Accuracy is  %f%%  (%i test instances)" %
              ((float(correct) / total) * 100, total))
            

  When I run this code using an empty stoplist file I get:

DONE TRAINING

Running Test ...

....................

Accuracy is  77.774827%  (7532 test instances)
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s code it 

Can you run the classifier with a few stop word lists? Does performance improve? Which is most 
accurate? (You will need to search the web to find these lists)

stop list size accuracy

0 77.774827

list 1

list 2
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77.77% accuracy is pretty good...
I wonder what the accuracy would be 
if  we used a stoplist?

Only one way to find out ...



s code it - some results

I found a 25 word stop word list at: http://nlp.stanford.edu/IR-book/html/htmledition/dropping-
common-terms-stop-words-1.html
And a 174 word one at http://www.ranks.nl/resources/stopwords.html

(these word lists are available on our website)

Here are the results:

stop list size accuracy

0 77.774827%

25 word list 78.757302%

174 word list 79.938927%

 

So in this case, it looks like having a 174 word stop word list improved performance about 2% 

over having no stop word list? Does this match your results?

NAIVE BAYES AND TEXT
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Naïve Bayes and Sentiment Analysis
The goal of sentiment analysis is to determine the writer’s attitude (or opinion).                      

One common type of sentiment analysis is to determine the polarity of a review or comment  
(positive or negative) and we can use a Naïve Bayes Classifier for this task.  We can try this 
out by using the polarity movie review dataset first presented in Pang and Lee 2004 1. Their 
dataset consists of 1,000 positive and 1,000 negative reviews.  Here are some examples:
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1 Pang, Bo and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity 
summarization based on minimum cuts. Proceedings of ACL.

Katy Perry is awesome!

Katy Perry? Bland 
uninspired pop.

Lorde is 
awesome!

Okay, 
I agree. Lorde IS 

awesome!

when i first heard that romeo & juliet had been " updated " i shuddered . i thought that yet another of shakespeare's classics had been destroyed . 
fortunately , i was wrong . baz luhrman has directed an " in your face " , and visually 

the second serial-killer thriller of the month 

is just awful . oh , it starts deceptively okay , 

with a handful of intriguing characters and 

some solid location work . ...



You can download the original dataset from http://www.cs.cornell.edu/People/pabo/movie-
review-data/.   I have organized the data into 10 buckets (folds) with the following directory 
structure:

This re-organized dataset is available on our website.

s code it 

Can you modify the Naive Bayes Classifier code to do 10-fold cross validation of the classifier on 
this data set. The output should look something like:

       Classified as: 
          neg   pos   
        +-----+-----+
 neg    |   1 |   2 |
 pos    |   3 |   4 |
        +-----+-----+
12.345 percent correct
total of 2000 instances

Also compute the kappa coefficient.

 

NAIVE BAYES AND TEXT

7-29

review_polarity_buckets
! txt_sentoken
! ! neg
! ! ! 0
! ! ! ! files in fold 0
! ! ! 1
! ! ! ! files in fold 1
! ! ! ...
! ! ! 9!
! ! ! ! files in fold 9
! ! pos
! ! ! 0
! ! ! ! files in fold 0
! ! ! ...

http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
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Woman practicing Brahms

Obvious Disclaimer

You won’t become proficient in data mining by reading this book anymore than reading a book about piano playing will make you proficient at piano playing. You need to practice!

Woman practicing Naïve Bayes
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My code is on the following page!

s code it — my results

Here are the results I got:

       Classified as: 
          neg   pos   
        +-----+-----+
 neg    | 845 | 155 |
 pos    | 222 | 778 |
        +-----+-----+

81.150 percent correct
total of 2000 instances

Also compute the kappa coefficient.

κ = P(c)− P(r)
1− P(r)

= .8115 − 0.5
1− 0.5

= .3115
.5

= 0.623

 
So we have good performance of the algorithm on this data.
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Yet another reminder:

The code is available for download on the book’s 

website http://guidetodatamining.com/

http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/


from __future__ import print_function
import os, codecs, math

class BayesText:

    def __init__(self, trainingdir, stopwordlist, ignoreBucket):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            #print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category,
                                                 ignoreBucket)
        # I am going to eliminate any word in the vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
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        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)
        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        #print("Computing probabilities:")
        for category in self.categories:
            #print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1)
                                             / denominator)
        #print ("DONE TRAINING\n\n")
                    

    def train(self, trainingdir, category, bucketNumberToIgnore):
        """counts word occurrences for a particular category"""
        ignore = "%i" % bucketNumberToIgnore
        currentdir = trainingdir + category
        directories = os.listdir(currentdir)
        counts = {}
        total = 0
        for directory in directories:
            if directory != ignore:
                currentBucket = trainingdir + category + "/" +  \   
                                directory
                files = os.listdir(currentBucket)
                #print("   " + currentBucket)
                for file in files:
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                    f = codecs.open(currentBucket + '/' + file, 'r',
                                    'iso8859-1')
                    for line in f:
                        tokens = line.split()
                        for token in tokens:
                            # get rid of punctuation 
                            # and lowercase token
                            token = token.strip('\'".,?:-')
                            token = token.lower()
                            if token != '' and not token in \ 
                               self.stopwords:
                                self.vocabulary.setdefault(token, 0)
                                self.vocabulary[token] += 1
                                counts.setdefault(token, 0)
                                counts[token] += 1
                                total += 1
                    f.close()
        return(counts, total)
                    
                    
    def classify(self, filename):
        results = {}
        for category in self.categories:
            results[category] = 0
        f = codecs.open(filename, 'r', 'iso8859-1')
        for line in f:
            tokens = line.split()
            for token in tokens:
                #print(token)
                token = token.strip('\'".,?:-').lower()
                if token in self.vocabulary:
                    for category in self.categories:
                        if self.prob[category][token] == 0:
                            print("%s %s" % (category, token))
                        results[category] += math.log(
                            self.prob[category][token])
        f.close()
        results = list(results.items())
        results.sort(key=lambda tuple: tuple[1], reverse = True)
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        # for debugging I can change this to give me the entire list
        return results[0][0]

    def testCategory(self, direc, category, bucketNumber):
        results = {}
        directory = direc + ("%i/" % bucketNumber)
        #print("Testing " + directory)
        files = os.listdir(directory)
        total = 0
        correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            results.setdefault(result, 0)
            results[result] += 1
            #if result == category:
            #               correct += 1
        return results

    def test(self, testdir, bucketNumber):
        """Test all files in the test directory--that directory is
        organized into subdirectories--each subdir is a classification
        category"""
        results = {}
        categories = os.listdir(testdir)
        #filter out files that are not directories
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        correct = 0
        total = 0
        for category in categories:
            #print(".", end="")
            results[category] = self.testCategory(
                testdir + category + '/', category, bucketNumber)
        return results

def tenfold(dataPrefix, stoplist):
    results = {}
    for i in range(0,10):

NAIVE BAYES AND TEXT

7-35



        bT = BayesText(dataPrefix, stoplist, i)
        r = bT.test(theDir, i)
        for (key, value) in r.items():
            results.setdefault(key, {})
            for (ckey, cvalue) in value.items():
                results[key].setdefault(ckey, 0)
                results[key][ckey] += cvalue
                categories = list(results.keys())
    categories.sort()
    print(   "\n       Classified as: ")
    header =    "          "
    subheader = "        +"
    for category in categories:
        header += "% 2s   " % category
        subheader += "-----+"
    print (header)
    print (subheader)
    total = 0.0
    correct = 0.0
    for category in categories:
        row = " %s    |" % category 
        for c2 in categories:
            if c2 in results[category]:
                count = results[category][c2]
            else:
                count = 0
            row += " %3i |" % count
            total += count
            if c2 == category:
                correct += count
        print(row)
    print(subheader)
    print("\n%5.3f percent correct" %((correct * 100) / total))
    print("total of %i instances" % total)

# change these to match your directory structure
theDir = "/Users/raz/Downloads/review_polarity_buckets/txt_sentoken/"
stoplistfile = "/Users/raz/Downloads/20news-bydate/stopwords25.txt"
tenfold(theDir, stoplistfile)
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