
Chapter 7: Naïve Bayes and Text

Classifying
unstructured text

In previous chapters we've looked at recommendation systems that have people explicitly
rate things with star systems (5 stars for Phoenix), thumbs-up/thumbs-down (Inception--
thumbs-up!), and numerical scales. We've looked at implicit things like the behavior of
people—did they buy the item, did they click on a link. We have also looked at classification
systems that use attributes like height, weight, how people voted on a particular bill. In all
these cases the information in the datasets can easily be represented in a table.

age glucose
level

blood
pressure

diabetes?

26 78 50 1

56 111 72 1

23 81 78 0

mpg
cylinders HP

sec. 0-60
30

4
68

19.5
45

4
48

21.7
20

8
130

12

This type of data is called “structured data”—data where instances (rows in the tables above)
are described by a set of attributes (for example, a row in a table might describe a car by a set
of attributes including miles per gallon, the number of cylinders and so on). Unstructured
data includes things like email messages, twitter messages, blog posts, and newspaper
articles. These types of things (at least at first glance) do not seem to be neatly represented in
a table.

For example, suppose we are interested in determining whether various movies are good or
not good and we want to analyze Twitter messages:

We, as speakers of English can see that Andy Gavin likes Gravity, since he said “puts the
thrill back in thriller” and “good acting.” We know that Debra Murphy seems not so excited
about the movie since she said “save your $$$.” And if someone writes “I wanna see Gravity
sooo bad, we should all go see it!!!” that person probably likes the movie even though they
used the word bad.

Suppose I am at my local food co-op and see something called Chobani Greek Yogurt. It looks
interesting but is it any good? I get out my iPhone, do a google search and find the following
from the blog “Woman Does Not Live on Bread Alone”:

7-2

Chobani nonfat greek yogurt.

Have you ever had greek yogurt? If not, stop reading, gather your keys (and a coat if
you live in New York) and get to your local grocery. Even when nonfat and plain, greek
yogurt is so thick and creamy, I feel guilty whenever I eat it. It is definitely what yogurt
is MEANT to be. The plain flavor is tart and fantastic. Those who can have it, try the
honey version. There's no sugar, but a bit of honey for a taste of sweetness (or add your
own local honey-- local honey is good for allergies!). I must admit, even though I'm not
technically supposed to have honey, if I've had a bad day, and just desperately need
sweetness, I add a teaspoon of honey to my yogurt, and it's SO worth it. The fruit
flavors from Chobani all have sugar in them, but fruit is simply unnecessary with this
delicious yogurt. If your grocery doesn't carry the Chobani brand, Fage (pronounced
Fa-yeh) is a well known, and equally delicious brand.

Now, for Greek yogurt, you will pay about 50 cents to a dollar more, and there are
about 20 more calories in each serving. But it's worth it, to me, to not feel deprived and
saddened over an afternoon snack!

http://womandoesnotliveonbreadalone.blogspot.com/2009/03/sugar-free-yogurt-reviews.html

Is that a positive or negative review for Chobani? Even based on the second sentence: If not,
stop reading, gather your keys … and get to your local grocery store, it seems that this will
be a positive review. She describes the flavor as fantastic and calls the yogurt delicious. It
seems that I should buy it and check it out. I will be right back...

NAIVE BAYES AND TEXT

7-3

http://womandoesnotliveonbreadalone.blogspot.com/2009/03/sugar-free-yogurt-reviews.html
http://womandoesnotliveonbreadalone.blogspot.com/2009/03/sugar-free-yogurt-reviews.html

An automatic system for determining positive and negative texts.

Let's imagine an automatic system that can read some text and decide whether it is a positive
or negative report about a product. Why would we want such a system? Suppose there is a
company that sells health monitors, they might want to know about what people are saying
about their products. Are what people say mostly positive or negative? They release an ad
campaign for a new product. Are people favorable about the product (Man, I sooo want this!)
or negative (looks like crap). Apple has a press conference to talk about the iPhone problems.
Is the resulting press coverage positive? A Senate candidate delivers a major policy speech—
do the political bloggers view it favorably? So an automatic system does sound useful.

7-4

John, that looks like a positive
tweet for Gravity!

So how can I create an automatic text
classification system?

Let's say I want to create a system that can tell whether a person likes or dislikes various food
products. We might come up with an idea of having a list of words that would provide
evidence that a person likes the product and another list of words that provides evidence that
the person doesn't like the product.

If we are trying to determine if a particular reviewer likes Chobani yogurt or not, we can just
count the number of ‘like’ words and the number of ‘dislike’ words in their text. We will
classify the text based on which number is higher. We can do this for other classification
tasks. For example, if we want to decide whether someone is pro-choice or pro-life, we can
base it on the words and phrases they use. If they use the phrase 'unborn child' then chances
are they are pro-life; if they use fetus they are more likely to be pro-choice. It's not surprising
that we can use the occurrence of words to classify text.

NAIVE BAYES AND TEXT

7-5

‘Like’ words:
delicious
tasty
good
love
smooth

‘Dislike’ words:
awful
bland
bad
hate
gritty

Rather than just using raw counts to
classify text, let’s use the naïve Bayes!!

hMAP = argmaxh∈H P(D | h)P(h)

Let’s dissect that formula!

We will use the naïve Bayes methods that were introduced in the previous chapter. We start
with a training data set and, since we are now interested in unstructured text this data set is
called the training corpus. Each entry in the corpus we will call a document even if it is a
140 character Twitter post. Each document is labeled with its class. So, for example, we
might have a corpus of Twitter posts that rated movies. Each post is labeled in some way as a
‘favorable’ review or ‘unfavorable’ and we are going to train our classifier using this corpus of
labeled documents. The P(h) in the formula above is the probability of these labels. If we
have 1,000 documents in our training corpus and 500 of them are favorable reviews and 500
unfavorable then

P(favorable) = 0.5 P(unfavorable)= 0.5

hMAP = argmaxh∈H P(D | h)P(h)

7-6

I am going to go
through all the hypotheses
and pick the one with the
maximum probability

 The probability of that
hypotheses

The probability of the data
given the hypothesis (for example,
the probability of seeing specific

words in the text given the text

For each hypothesis, h, in the
set of hypotheses, H...

Okay, back to

Now let's examine the P(D|h) part of the formula—the probability of seeing some evidence,
some data D given the hypothesis h. The data D we are going to use is the words in the text.
One approach would be to start with the first sentence of a document, for example, Puts the
Thrill back in Thriller. And compute things like the probability that a 'like' document starts
with the word Puts; what's the probability of a 'like' document having a second word of the;
and the probability of the third word of a like document being Thrill and so on. And then
compute the probability of a dislike document starting with the word Puts, the probability of
the second word of a dislike document being the and so on.

hMAP = argmaxh∈H P(D | h)P(h)

NAIVE BAYES AND TEXT

7-7

When we start with labeled
training data it is called ‘supervised
learning.’ Text classification is an
example of supervised learning.

Learning from unlabeled text is
called unsupervised learning. One
example of unsupervised learning is
clustering which we will cover in the

next chapter.

There is also semi-supervised learning where
the system learns from both labeled and unlabeled
data. Often the system is bootstrapped using
labeled data and then in subsequent learning makes
use of unlabeled data.

Hmm. yeah. That is a huge number of probabilities which makes this approach unworkable.
And, fortunately, there is a better approach. We are going to simplify things a bit by treating
the documents as bags of unordered words. Instead of asking things like What's the
probability that the third word is thrill given it is a 'like' document we will ask What's the
probability that the word thrill occurs in a 'like' document. Here is how we are going to
compute those probabilities.

Training Phase
First, we are going to determine the vocabulary—the unique words—of all the documents
(both like and dislike documents). So, for example, even though the may occur thousands of
times in our training corpus it only occurs once in our vocabulary. Let

 Vocabulary

denote the number of words in the vocabulary. Next, for each word wk in the vocabulary we
are going to compute the probability of that word occurring given each hypothesis: P(wk |hi).

7-8

Google estimates that
there are about 1 million
words in the English language.

If a Twitter message
has about 14 words, we
would need to compute...

1,000,000 x 1,000,000 x 1,000,000 x ,
1,000,000 x 1,000,000 x 1,000,000 x ,1,000,000 x
1,000,000 x 1,000,000 x 1,000,000 x 1,000,000 x

1,000,000 x 1,000,000 x 1,000,000 probabilities

That’s a huge number of
probabilities to compute!

There must be a better approach!

We are going to compute this as follows. For each hypothesis (in this case 'like' and dislike')

1. combine the documents tagged with that hypothesis into one text file.

2. count how many word occurrences there are in the file. This time, if there are 500
occurrences of the we are going to count it 500 times. Let’s call this n.

3. For each word in the vocabulary wk, count how many times that word occurred in the
text. Call this nk

4. For each word in the vocabulary wk, compute

Naïve Bayes Classification Phase
Once we have completed the training phase we can classify documents using the formula that
was already presented:

hMAP = argmaxh∈H P(D | h)P(h)

NAIVE BAYES AND TEXT

7-9

P(wk | hi) =
nk +1

n + Vocabulary

That seems
simple enough. Let’s
work through an
example!

Let’s say our training corpus consisted of 500 Twitter messages with positive reviews of
movies and 500 negative. So

P(like)= 0.5 P(dislike) = 0.5

After training the probabilities are as follows:

We are going to compute

P(like)× P(I | like)× P(am | like)× P(stunned | like)× ...

and

P(dislike)× P(I | dislike)× P(am | dislike)× P(stunned | dislike)× ...

and chose the hypothesis associated with the highest probability.

7-10

word P(word|like) P(word|dislike)

am 0.007 0.009

by 0.012 0.012

good 0.002 0.0005

gravity 0.00001 0.00001

great 0.003 0.0007

hype 0.0007 0.002

I 0.01 0.01

over 0.005 0.0047

stunned 0.0009 0.002

the 0.047 0.0465

How should we classify:

I am stunned by the hype over
gravity

So the probabilities are

like 0.000000000000000000000622

dislike 0.000000000000000000004720

The probability of dislike is larger than
that for like so we classify the tweet as a
dislike.

word P(word|like) P(word|dislike)

P(like) = 0.5 P(dislike) =0.05

I 0.01 0.01

am 0.007 0.009

stunned 0.0009 0.002

by 0.012 0.012

the 0.047 0.0465

hype 0.0007 0.002

over 0.005 0.0047

gravity 0.00001 0.00001

∏ 6.22E-22 4.72E-21

NAIVE BAYES AND TEXT

7-11

Just a reminder:

That e notation means how many places to move
the decimal point. If the number is positive we
move the decimal to the right, negative means
move it to the left. So

1.23e-1 = 0.123
1.23e-2 = 0.0123
1.23e-3 = 0.00123

and so on

Here’s an illustration of the problem. Let’s say we have a 100 word document and the average
probability of each word is 0.001 (words like tell, reported, average, morning, and am have
a probability of around 0.001). If I multiply those probabilities in Python we get zero:

>>> 0.0001**100
0.0

However, if we add the log of the probabilities we do get a non-zero value:

>>> import math
>>> p = 0
>>> for i in range(100):
! p += math.log(0.0001)

>>> p
-921.034037197617

7-12

wow. those are
pretty small numbers!

Yes. If we multiply
the word probabilities for
even a short document of
100 words we are going
to get a very, very, very
small number.

Right. But Python
can’t handle very small
numbers. They’ll just end
up being zero.

Exactly. We can fix
this using logs. Instead of
multiplying the proba-
bilities we will add the logs
of the probabilities!!

Newsgroup Corpus
We will first investigate how this algorithm works by using a standard reference corpus of
usenet newsgroup posts. The data consists of posts from 20 different newsgroups:

comp.graphics misc.forsale soc.religion.christian alt.atheism

comp.os.ms-windows-misc rec.autos talk.politics.guns sci.space

comp.sys.ibm.pc.hardware rec.motorcycles talk.politics.mideast sci.crypt

comp.sys.mac.hardware rec.sport.baseball talk.politics.misc sci.electronics

comp.windows.x rec.sport.hockey talk.religion.misc sci.med

in case you forgot ... bn = x

The logorithm (or log) of a number (the x above) is the exponent (the n above)
that you need to raise a base (b) to equal that number. For example, suppose
the base is 10,

log10(1000) = 3 since 1000 equals 103

The base of the Python log function is the mathematical constant e. We don’t
really need to know about e. What is of interest to us is:

1. logs compress the scale of a number (with logs we can represent smaller
numbers in Python)
for ex.,
.0000001 x .000005 = .000000000005
the logs of those numbers are:
-16.11809 + -9.90348 = -26.02157

2. instead of multiplying the probabilities we are going to add the logs of the
probabilities (as shown above).

NAIVE BAYES AND TEXT

7-13

We would like to build a classifier that can correctly determine what group the post came
from. For example, we would like to classify this post

as being from rec.motorcycles

Notice the misspellings (accesories and
ussually). This might be challenging for
a classifier!

The data is available at http://qwone.com/~jason/20Newsgroups/ (we are using the
20news=bydate dataset) . It is also available on the website for the book, http://
guidetodatamining.com. The data consists of 18,846 documents and is already sorted into
training (60% of the data) and test sets. The training and test data are in separate directories.
Within each directory are subdirectories representing each newsgroup. Within those are the
separate documents representing posts to that newsgroup.

7-14

From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)Subject: Re: Mail order response timeDisclaimer: This posting represents the poster's views, not necessarily those of IBMNntp-Posting-Host: relva.rchland.ibm.comOrganization: IBM RochesterLines: 18
> I have ordered many times from Competition > accesories and ussually get 2-3 day delivery.
ordered 2 fork seals and 2 guide bushings from CA for my FZR. two weeks later get 2 fork seals and 1 guide bushing. call CA and ask for remaining *guide* bushing and order 2 *slide* bushings (explain on the phone which bushings are which; the guy seemed to understand). two weeks later get 2 guide bushings.

sigh

how much you wanna bet that once i get ALL the parts and take the fork apart that some parts won't fit?

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com
mailto:essbaum@rchland.vnet.ibm.com

Throwing things out!
Before we start coding, let’s think about this task in more
detail.

For example, we would like to build a system that would classify the following post as being
from rec.motorcycle:

NAIVE BAYES AND TEXT

7-15

Ladies and Gentlemen. On the main

stage ... Just based on the words in the

text, we are going to attempt to tell

which newsgroup the post is from

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?

Let’s consider which words might be helpful in the classification task:

If we throw out the 200 most frequent words in English our document looks like this:

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?

7-16

I...

am...

looking...

at...

buying...

a

dual...

sport ...

type...

motor-
cycle

“I’ is not helpful

not helpful

not helpful

not helpful

erm. probably helpful

not helpful

definitely helpful

definitely

probably not

definitely!!!!

Removing these words cuts down the size of our text by about half. Plus, it doesn't look like
removing these words will have any impact on our ability to categorize texts. Indeed data
miners have called such words words without any content, and fluff words. H.P. Luhn, in his
seminal paper 'The automatic creation of literature abstracts' says of these words that they
are “too common to have the type of significance being sought and would constitute 'noise' in
the system.” That noise argument is interesting as it implies that removing these words will
improve performance. These words that we remove are called 'stop words'. We have a list of
such words, the 'stop word list', and remove these words from the text in a preprocessing
step. We remove these words because 1) it cuts down on the amount of processing we need to
do and 2) it does not negatively impact the performance of our system—as the noise
argument suggests removing them might improve performance.

The counter argument: the hazards of stop word removal

While removing stop words may be useful in some situations, you should not just
automatically remove them without thinking. For example, it turns out just using the most
frequent words and throwing out the rest (the reverse technique of the above) provides

NAIVE BAYES AND TEXT

7-17

You whippersnapper. You shouldn’t be
throwing away those common words!

Common Words vs. Stop Words
While it is true that common words like ‘the’ and ‘a’ may not help us in our classification task,

other common words such as ‘work’, ‘write’, and ‘school’ may help depending on our classification

task. When we create a stop word list, we often omit common words that may be helpful. You can

explore these differences by comparing stop word lists and frequent word lists found on the web.

sufficient information to identify where Arabic documents were written. (If you are curious
about this check out the paper Linguistic Dumpster Diving: Geographical Classification of
Arabic Text I co-wrote with some of my colleagues at New Mexico State University. It is
available on my website http://zacharski.org). In looking at online chats, sexual predators
use words like I, me, and you, much more frequently than non-predators. If your task is to
identify sexual predators, removing frequent words would actually hurt your performance.

Coding it — Python Style
Let us first consider coding the training part of the Naïve Bayes Classifier.
Recall that the training data is organized as follows:

20news-bydate-train
! alt.atheism
! ! text file 1 for alt.atheism
! ! text file 2
! ! …
! ! text file n
! comp.graphics
! ! text file 1 for comp.graphics
! ! ...

7-18

Don’t blindly remove stop words.

Think First.

http://zacharski.org/
http://zacharski.org/

So I have a directory (in this example called ‘20news-bydate-train’). Underneath this
directory are subdirectories representing different classification categories (in this case
alt.atheism, comp.graphics, etc). The names of these subdirectories match the
category names. The test directory is organized in a similar way. So, in matching this
structure, the Python code for training will need to know the training directory (for
example, /Users/raz/Downloads/20news-bydate/20news-bydate-train/). The
outline for the training code is as follows.

NAIVE BAYES AND TEXT

7-19

class BayesText
1. the init method:

a. read in the words from the stoplist

b. read the training directory to get the names of the
subdirectories (in addition to being the names of the
subdirectories, these are the names of the categories).

c. For each of those subdirectories, call a method “train”
that will count the occurrences of words in all the files of
that subdirectory.

d. compute the probabilities using

P(wk | hi) =
nk +1

n + Vocabulary

Yet another reminder that all the code is available at
guidetodatamining.com

from __future__ import print_function
import os, codecs, math

class BayesText:

 def __init__(self, trainingdir, stopwordlist):
 """This class implements a naive Bayes approach to text
 classification
 trainingdir is the training data. Each subdirectory of
 trainingdir is titled with the name of the classification
 category -- those subdirectories in turn contain the text
 files for that category.
 The stopwordlist is a list of words (one per line) will be
 removed before any counting takes place.
 """
 self.vocabulary = {}
 self.prob = {}
 self.totals = {}
 self.stopwords = {}
 f = open(stopwordlist)
 for line in f:
 self.stopwords[line.strip()] = 1
 f.close()
 categories = os.listdir(trainingdir)
 #filter out files that are not directories
 self.categories = [filename for filename in categories
 if os.path.isdir(trainingdir + filename)]
 print("Counting ...")
 for category in self.categories:
 print(' ' + category)
 (self.prob[category],
 self.totals[category]) = self.train(trainingdir, category)
 # I am going to eliminate any word in the vocabulary
 # that doesn't occur at least 3 times
 toDelete = []
 for word in self.vocabulary:
 if self.vocabulary[word] < 3:
 # mark word for deletion
 # can't delete now because you can't delete
 # from a list you are currently iterating over
 toDelete.append(word)

7-20

 # now delete
 for word in toDelete:
 del self.vocabulary[word]
 # now compute probabilities
 vocabLength = len(self.vocabulary)
 print("Computing probabilities:")
 for category in self.categories:
 print(' ' + category)
 denominator = self.totals[category] + vocabLength
 for word in self.vocabulary:
 if word in self.prob[category]:
 count = self.prob[category][word]
 else:
 count = 1
 self.prob[category][word] = (float(count + 1)
 / denominator)
 print ("DONE TRAINING\n\n")

 def train(self, trainingdir, category):
 """counts word occurrences for a particular category"""
 currentdir = trainingdir + category
 files = os.listdir(currentdir)
 counts = {}
 total = 0
 for file in files:
 #print(currentdir + '/' + file)
 f = codecs.open(currentdir + '/' + file, 'r', 'iso8859-1')
 for line in f:
 tokens = line.split()
 for token in tokens:
 # get rid of punctuation and lowercase token
 token = token.strip('\'".,?:-')
 token = token.lower()
 if token != '' and not token in self.stopwords:
 self.vocabulary.setdefault(token, 0)
 self.vocabulary[token] += 1
 counts.setdefault(token, 0)
 counts[token] += 1
 total += 1
 f.close()
 return(counts, total)

NAIVE BAYES AND TEXT

7-21

The results of the training phase are stored in a dictionary (hash table) called prob. The keys
of the dictionary are the different classifications (comp.graphics, rec.motorcycles,
soc.religion.christian, etc); the values are dictionaries. The keys of these subdictionaries are
the words and the values are the probabilities of those words. Here is an example:

So, for example, the probability of the word ‘god’ occurring in a text in the rec.motorcycles
newsgroup is 0.00013 (or one occurrence of god in every 10,000 words). The probability of
the word ‘god’ occurring in a text in soc.religion.christian is .00424 (one occurrence in every
250 words).

Training also results in a list called categories, which, as you might predict, is simply a list of
all the categories:

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', ...]

7-22

bT = BayesText(trainingDir, stoplistfile)
>>>bT.prob["rec.motorcycles"]["god"]
0.00013035445075435553
>>>bT.prob["soc.religion.christian"]["god"]
0.004258192391884386
>>>bT.prob["rec.motorcycles"]["the"]
0.028422937849264914
>>>bT.prob["soc.religion.christian"]["the"]
0.039953678998362795

So that is the training
phase. Let us now turn to
classifying a document.

s code it

Can you code a method called classify that will predict the classification of a
document? For example:

>>> bT.classify("20news-bydate-test/rec.motorcycles/104673")
'rec.motorcycles'
>>> bT.classify("20news-bydate-test/sci.med/59246")
'sci.med'
>>> bT.classify("20news-bydate-test/soc.religion.christian/21424")
'soc.religion.christian'

As you can see, the classify method takes a filename as an argument and returns a
string denoting the classification.

A Python file you can use as a template, bayesText-ClassifyTemplate.py, is available
on our website.

NAIVE BAYES AND TEXT

7-23

class BayesText:

 def __init__(self, trainingdir, stopwordlist):

 self.vocabulary = {}

 self.prob = {}

 self.totals = {}

 self.stopwords = {}

 f = open(stopwordlist)

 for line in f:

 self.stopwords[line.strip()] = 1

 f.close()

 categories = os.listdir(trainingdir)

 #filter out files that are not directories

 self.categories = [filename for filename in categories

 if os.path.isdir(trainingdir +

filename)]

 print("Counting ...")

 for category in self.categories:

 print(' ' + category)

 (self.prob[category],

 self.totals[category]) = self.train(trainingdir,

category)

 # I am going to eliminate any word in the vocabulary

Finally, let’s have a method that classifies every document in the test directory and prints out
the percent accuracy of this method.

s code it - one possible solution

def classify(self, filename):
 results = {}
 for category in self.categories:
 results[category] = 0
 f = codecs.open(filename, 'r', 'iso8859-1')
 for line in f:
 tokens = line.split()
 for token in tokens:
 token = token.strip('\'".,?:-').lower()
 if token in self.vocabulary:
 for category in self.categories:
 if self.prob[category][token] == 0:
 print("%s %s" % (category, token))
 results[category] += math.log(
 self.prob[category][token])
 f.close()
 results = list(results.items())
 results.sort(key=lambda tuple: tuple[1], reverse = True)
 # for debugging I can change this to give me the entire list
 return results[0][0]

7-24

 def testCategory(self, directory, category):
 files = os.listdir(directory)
 total = 0
 correct = 0
 for file in files:
 total += 1
 result = self.classify(directory + file)
 if result == category:
 correct += 1
 return (correct, total)

 def test(self, testdir):
 """Test all files in the test directory--that directory is
 organized into subdirectories--each subdir is a classification
 category"""
 categories = os.listdir(testdir)
 #filter out files that are not directories
 categories = [filename for filename in categories if
 os.path.isdir(testdir + filename)]
 correct = 0
 total = 0
 for category in categories:
 (catCorrect, catTotal) = self.testCategory(
 testdir + correct += catCorrect
 total += catTotal
 print("Accuracy is %f%% (%i test instances)" %
 ((float(correct) / total) * 100, total))

 When I run this code using an empty stoplist file I get:

DONE TRAINING

Running Test ...

....................

Accuracy is 77.774827% (7532 test instances)

NAIVE BAYES AND TEXT

7-25

s code it

Can you run the classifier with a few stop word lists? Does performance improve? Which is most
accurate? (You will need to search the web to find these lists)

stop list size accuracy

0 77.774827

list 1

list 2

7-26

77.77% accuracy is pretty good...
I wonder what the accuracy would be
if we used a stoplist?

Only one way to find out ...

s code it - some results

I found a 25 word stop word list at: http://nlp.stanford.edu/IR-book/html/htmledition/dropping-
common-terms-stop-words-1.html
And a 174 word one at http://www.ranks.nl/resources/stopwords.html

(these word lists are available on our website)

Here are the results:

stop list size accuracy

0 77.774827%

25 word list 78.757302%

174 word list 79.938927%

So in this case, it looks like having a 174 word stop word list improved performance about 2%

over having no stop word list? Does this match your results?

NAIVE BAYES AND TEXT

7-27

http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
http://www.ranks.nl/resources/stopwords.html
http://www.ranks.nl/resources/stopwords.html

Naïve Bayes and Sentiment Analysis
The goal of sentiment analysis is to determine the writer’s attitude (or opinion).

One common type of sentiment analysis is to determine the polarity of a review or comment
(positive or negative) and we can use a Naïve Bayes Classifier for this task. We can try this
out by using the polarity movie review dataset first presented in Pang and Lee 2004 1. Their
dataset consists of 1,000 positive and 1,000 negative reviews. Here are some examples:

7-28

1 Pang, Bo and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. Proceedings of ACL.

Katy Perry is awesome!

Katy Perry? Bland
uninspired pop.

Lorde is
awesome!

Okay,
I agree. Lorde IS

awesome!

when i first heard that romeo & juliet had been " updated " i shuddered . i thought that yet another of shakespeare's classics had been destroyed .
fortunately , i was wrong . baz luhrman has directed an " in your face " , and visually

the second serial-killer thriller of the month

is just awful . oh , it starts deceptively okay ,

with a handful of intriguing characters and

some solid location work

You can download the original dataset from http://www.cs.cornell.edu/People/pabo/movie-
review-data/. I have organized the data into 10 buckets (folds) with the following directory
structure:

This re-organized dataset is available on our website.

s code it

Can you modify the Naive Bayes Classifier code to do 10-fold cross validation of the classifier on
this data set. The output should look something like:

 Classified as:
 neg pos
 +-----+-----+
 neg | 1 | 2 |
 pos | 3 | 4 |
 +-----+-----+
12.345 percent correct
total of 2000 instances

Also compute the kappa coefficient.

NAIVE BAYES AND TEXT

7-29

review_polarity_buckets
! txt_sentoken
! ! neg
! ! ! 0
! ! ! ! files in fold 0
! ! ! 1
! ! ! ! files in fold 1
! ! ! ...
! ! ! 9!
! ! ! ! files in fold 9
! ! pos
! ! ! 0
! ! ! ! files in fold 0
! ! ! ...

http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.cs.cornell.edu/People/pabo/movie-review-data/

7-30

Woman practicing Brahms

Obvious Disclaimer

You won’t become proficient in data mining by reading this book anymore than reading a book about piano playing will make you proficient at piano playing. You need to practice!

Woman practicing Naïve Bayes

Pr
ac

tic
e

ma
ke

s
th

e
he

ar
t g

ro
w

fo
nd

er
!

My code is on the following page!

s code it — my results

Here are the results I got:

 Classified as:
 neg pos
 +-----+-----+
 neg | 845 | 155 |
 pos | 222 | 778 |
 +-----+-----+

81.150 percent correct
total of 2000 instances

Also compute the kappa coefficient.

κ = P(c)− P(r)
1− P(r)

= .8115 − 0.5
1− 0.5

= .3115
.5

= 0.623

So we have good performance of the algorithm on this data.

NAIVE BAYES AND TEXT

7-31

Yet another reminder:

The code is available for download on the book’s

website http://guidetodatamining.com/

http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/
http://guidetodatamining.com/

from __future__ import print_function
import os, codecs, math

class BayesText:

 def __init__(self, trainingdir, stopwordlist, ignoreBucket):
 """This class implements a naive Bayes approach to text
 classification
 trainingdir is the training data. Each subdirectory of
 trainingdir is titled with the name of the classification
 category -- those subdirectories in turn contain the text
 files for that category.
 The stopwordlist is a list of words (one per line) will be
 removed before any counting takes place.
 """
 self.vocabulary = {}
 self.prob = {}
 self.totals = {}
 self.stopwords = {}
 f = open(stopwordlist)
 for line in f:
 self.stopwords[line.strip()] = 1
 f.close()
 categories = os.listdir(trainingdir)
 #filter out files that are not directories
 self.categories = [filename for filename in categories
 if os.path.isdir(trainingdir + filename)]
 print("Counting ...")
 for category in self.categories:
 #print(' ' + category)
 (self.prob[category],
 self.totals[category]) = self.train(trainingdir, category,
 ignoreBucket)
 # I am going to eliminate any word in the vocabulary
 # that doesn't occur at least 3 times
 toDelete = []

7-32

 for word in self.vocabulary:
 if self.vocabulary[word] < 3:
 # mark word for deletion
 # can't delete now because you can't delete
 # from a list you are currently iterating over
 toDelete.append(word)
 # now delete
 for word in toDelete:
 del self.vocabulary[word]
 # now compute probabilities
 vocabLength = len(self.vocabulary)
 #print("Computing probabilities:")
 for category in self.categories:
 #print(' ' + category)
 denominator = self.totals[category] + vocabLength
 for word in self.vocabulary:
 if word in self.prob[category]:
 count = self.prob[category][word]
 else:
 count = 1
 self.prob[category][word] = (float(count + 1)
 / denominator)
 #print ("DONE TRAINING\n\n")

 def train(self, trainingdir, category, bucketNumberToIgnore):
 """counts word occurrences for a particular category"""
 ignore = "%i" % bucketNumberToIgnore
 currentdir = trainingdir + category
 directories = os.listdir(currentdir)
 counts = {}
 total = 0
 for directory in directories:
 if directory != ignore:
 currentBucket = trainingdir + category + "/" + \
 directory
 files = os.listdir(currentBucket)
 #print(" " + currentBucket)
 for file in files:

NAIVE BAYES AND TEXT

7-33

 f = codecs.open(currentBucket + '/' + file, 'r',
 'iso8859-1')
 for line in f:
 tokens = line.split()
 for token in tokens:
 # get rid of punctuation
 # and lowercase token
 token = token.strip('\'".,?:-')
 token = token.lower()
 if token != '' and not token in \
 self.stopwords:
 self.vocabulary.setdefault(token, 0)
 self.vocabulary[token] += 1
 counts.setdefault(token, 0)
 counts[token] += 1
 total += 1
 f.close()
 return(counts, total)

 def classify(self, filename):
 results = {}
 for category in self.categories:
 results[category] = 0
 f = codecs.open(filename, 'r', 'iso8859-1')
 for line in f:
 tokens = line.split()
 for token in tokens:
 #print(token)
 token = token.strip('\'".,?:-').lower()
 if token in self.vocabulary:
 for category in self.categories:
 if self.prob[category][token] == 0:
 print("%s %s" % (category, token))
 results[category] += math.log(
 self.prob[category][token])
 f.close()
 results = list(results.items())
 results.sort(key=lambda tuple: tuple[1], reverse = True)

7-34

 # for debugging I can change this to give me the entire list
 return results[0][0]

 def testCategory(self, direc, category, bucketNumber):
 results = {}
 directory = direc + ("%i/" % bucketNumber)
 #print("Testing " + directory)
 files = os.listdir(directory)
 total = 0
 correct = 0
 for file in files:
 total += 1
 result = self.classify(directory + file)
 results.setdefault(result, 0)
 results[result] += 1
 #if result == category:
 # correct += 1
 return results

 def test(self, testdir, bucketNumber):
 """Test all files in the test directory--that directory is
 organized into subdirectories--each subdir is a classification
 category"""
 results = {}
 categories = os.listdir(testdir)
 #filter out files that are not directories
 categories = [filename for filename in categories if
 os.path.isdir(testdir + filename)]
 correct = 0
 total = 0
 for category in categories:
 #print(".", end="")
 results[category] = self.testCategory(
 testdir + category + '/', category, bucketNumber)
 return results

def tenfold(dataPrefix, stoplist):
 results = {}
 for i in range(0,10):

NAIVE BAYES AND TEXT

7-35

 bT = BayesText(dataPrefix, stoplist, i)
 r = bT.test(theDir, i)
 for (key, value) in r.items():
 results.setdefault(key, {})
 for (ckey, cvalue) in value.items():
 results[key].setdefault(ckey, 0)
 results[key][ckey] += cvalue
 categories = list(results.keys())
 categories.sort()
 print("\n Classified as: ")
 header = " "
 subheader = " +"
 for category in categories:
 header += "% 2s " % category
 subheader += "-----+"
 print (header)
 print (subheader)
 total = 0.0
 correct = 0.0
 for category in categories:
 row = " %s |" % category
 for c2 in categories:
 if c2 in results[category]:
 count = results[category][c2]
 else:
 count = 0
 row += " %3i |" % count
 total += count
 if c2 == category:
 correct += count
 print(row)
 print(subheader)
 print("\n%5.3f percent correct" %((correct * 100) / total))
 print("total of %i instances" % total)

change these to match your directory structure
theDir = "/Users/raz/Downloads/review_polarity_buckets/txt_sentoken/"
stoplistfile = "/Users/raz/Downloads/20news-bydate/stopwords25.txt"
tenfold(theDir, stoplistfile)

7-36

NAIVE BAYES AND TEXT

7-37

