
Debugging Programs that use Atomic Blocks
and Transactional Memory

Ferad Zyulkyarov†∗ Tim Harris‡ Osman S. Unsal† Adrián Cristal† Mateo Valero†∗
†BSC-Microsoft Research Centre ∗Universitat Politècnica de Catalunya ‡Microsoft Research

†{ferad.zyulkyarov, osman.unsal, adrian.cristal, mateo.valero}@bsc.es
‡tharris@microsoft.com

Abstract
With the emergence of research prototypes, programming using
atomic blocks and transactional memory (TM) is becoming more
attractive. This paper describes our experience building and using
a debugger for programs written with these abstractions. We intro-
duce three approaches: (i) debugging at the level of atomic blocks,
where the programmer is shielded from implementation details
(such as exactly what kind of TM is used, or indeed whether lock
inference is used instead), (ii) debugging at the level of transac-
tions, where conflict rates, read sets, write sets, and other TM inter-
nals are visible, and (iii) debug-time transactions, which let the pro-
grammer manipulate synchronization from within the debugger—
e.g., enlarging the scope of an atomic block to try to identify a
bug.

In this paper we explain the rationale behind the new debugging
approaches that we propose. We describe the design and implemen-
tation of an extension to the WinDbg debugger, enabling support
for C# programs using atomic blocks and TM. We also demonstrate
the design of a “conflict point discovery” technique for identifying
program statements that introduce contention between transactions.
We illustrate how these techniques can be used by optimizing a C#
version of the Genome application from STAMP TM benchmark
suite.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids; D.3.4 [Program-
ming Languages]: Processors—Debuggers

General Terms Languages, Reliability

Keywords Transactional Memory, Debugging

1. Introduction
Atomic blocks are programming language constructs for con-
trolling concurrency in multi-threaded applications. Many re-
searchers, including ourselves, have developed research prototypes
for atomic blocks, some based on static analysis for automatic
lock inference, and others based on various kinds of transactional
memory (TM), either implemented in software (STM) or hardware
(HTM) [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

However, based on our experience developing complex trans-
actional applications such as Atomic Quake [26], QuakeTM [7],
RMS-TM [12], WormBench [25] and Haskell-STM [9] we found it
frustrating to use current debuggers when writing programs using
atomic blocks and TM. This experience has motivated us to study
how to extend debuggers to better support transactional applica-
tions.

In this paper we present the new principles and approaches that
we have developed. In particular, we introduce the idea of distin-
guishing between debugging at the level of atomic blocks, and de-
bugging at the level of transactional memory. When working at the
level of atomic blocks, the programmer should only be aware that
the blocks run atomically and in isolation: the programmer should
not see implementation details such as exactly how atomic blocks
are built over TM, or the internal algorithms used by a given TM
implementation. Thus, when a breakpoint fires in an atomic block,
the interrupted thread will be the only one in any atomic block. If
the programmer single steps through the block, they will not see
conflicts, transaction reexecutions, and so on. A rule of thumb is
that, at this level, the experience using the debugger should be the
same, whether atomic blocks are built over TM, or whether they
are built over a static analysis for lock inference. We discuss our
overall design in Section 2, and atomic-level debugging in Sec-
tion 3.

Conversely, when debugging at the lower level of transactions
(Section 4), the programmer is presented with a view of the im-
plementation of their program. This view is intended for debug-
ging performance errors—for instance, identifying the instructions
that are responsible for conflicts between transactions. Transactions
represent the runtime execution of atomic blocks and have vari-
ous attributes such as the number of aborts, status, priority, nesting
level, and read and write sets. This information is helpful in debug-
ging pathological cases such as forms of starvation [2]. In addition,
besides finding errors, the debugger must be extended to handle
basic information about the transactions, such as the read and write
sets, in order to present the user with a correct view of memory.
For example, in lazy versioning STMs that buffer the updates until
commit, the user might be confused if the values of the variables in
a watch list do not change while stepping inside an atomic block.
Moreover, the user might be interested in debugging inside a partic-
ular atomic block only when a specific change in its state happens
such as a transition from valid to invalid. To help in these situa-
tions, the user can additionally use the debugger to monitor for var-
ious events associated with the change of the transaction status and
when for example a conflict is detected, the debugger will break
automatically and display relevant information such as conflicting
threads, statements and memory addresses.

We provide a conflict point discovery mechanism. At the end
of the program’s execution, conflict point discovery identifies the

Figure 1. Decoupled design approach for the debugger extension.
The components in gray represent our extension and the dashed
lines represent TM operations. The implementation of TmTarget-
Dbg is specific for our STM library and the implementation of
TmDbgExt is specific for WinDbg family of debuggers.

statements within the source code where the transactions have con-
flicted, together with additional contextual information. This fea-
ture is useful in optimizing applications by reducing the abort rate
of their transactions. To demonstrate its use in practice, we itera-
tively optimized a C# version of Genome application from STAMP
TM benchmark suite [3] by applying conflict point discovery and
examining the state of the transactions. Initial version of Genome
did not scale at all, but after the optimization we achieved consis-
tent performance with the original C version of Genome.

In Section 5, we discuss debugger features that the user can use
to dynamically control transactions and their state. This provides
mechanisms to create and to remove debug-time transactions under
the control of the debugger without changing and recompiling the
source code. These features are useful when investigating errors
such as data races, atomicity violations and order violations—
much as existing debuggers provide abstractions for modifying the
contents of data in memory when investigating errors.

We discuss related work in Section 6 and conclude in Section 7.

2. Design and Implementation
We prototyped our ideas in an extension module for the publicly-
available WinDbg debugger [18]. Concretely, we target transac-
tional C# applications compiled with Bartok [10] compiler. How-
ever, our design decisions are motivated by maintaining applicabil-
ity of our approaches to other debuggers, other TMs, and to non-
TM implementations of atomic blocks.

WinDbg is a multi-purpose debugger for Win32 applications.
Its functionality can be extended by using the Microsoft Debug
Engine Extension APIs [17]. WinDbg extensions are Dynamic Link
Libraries (DLL) that implement and export a number of callback
functions. Some of these callbacks are required by the debugger
for the extension’s integration, and other callbacks implement the
additional user commands that extend the debugger functionality
or let it visualize specific data structures.

Bartok is an ahead-of-time C# compiler with language level
support for atomic blocks. The runtime execution of the atomic
blocks in applications compiled with Bartok is handled by an STM
library which from now on we will refer to as Bartok-STM. Bartok-
STM updates memory locations in-place by logging the old value
for rollback in case a conflict happens. It detects conflicts at an
object granularity, eagerly for write operations and lazily for read
operations.

Operation Description

GetTxStatus Get the status of the transaction.
SetTxStatus Set the status of the transaction.

GetPriority Get the priority of the transaction.
SetPriority Set the priority of the transaction.

GetReadSet Get the read set of a transaction.
GetWirteSet Get the write set of a transaction.

AddToReadSet Add entry to the read set.
RemoveFromReadSet Remove an entry from the read set.

AddToWriteSet Add entry to the write set.
RemoveFromWriteSet Remove an write from the read set.

GetNestingLevel Get the nesting level of a transaction.

GetOriginalValue Get value before a speculative update.
GetSpeculativeValue Get value after speculative update.

IsTxIrrevocable Check if a transaction is irrevocable
SwitchToIrrevocable Switches transaction to irrevocable mode.

StartIrrevocableTx Starts a transaction in irrevocable mode.
CommitIrrevocableTx Commits an irrevocable transaction.

SplitTx Splits a transaction

Figure 2. The API of TmTargetDbg component.

In the following sections we introduce our design and imple-
mentation of the debugger extension and then from Section 3 return
to the high-level debugging approaches.

2.1 Design Approach

We have chosen a decoupled design for extending WinDbg. Our
design consists of two components: a debugger extension library
(TmDbgExt) and an STM-library debug helper (TmTargetDbg).
Figure 1 shows the structure of the system. TmDbgExt implements
the end-user debugger commands for use with atomic blocks and
transactions. It is dynamically loaded by WinDbg and runs as part
of the debugger process and uses the debugger engine (DbgEng)
to access the target. TmDbgExt is specific to a particular debugger,
but independent of the TM in use. Conversely, TmTargetDbg runs
in the address space of the program being debugged. TmTargetDbg
is specific to the TM, but independent of the debugger.

We were inspired by the approach described in Lev’s presen-
tation [14]. Comparing with Herlihy and Lev’s subsequent pa-
per [11], we have only one component at the debugger side (TmD-
bgExt), whereas Lev’s design uses two (tm db and a Remote De-
bugging Module, RDM). tm db defines an common interface for
implementing extensions to debug transactional applications. It can
be used with all debuggers providing the proc service inter-
face and is independent of the TM implementation. RDM provides
tm db with functionality for debugging a particular TM. Within
the target process, the TM runtime system provides a support layer
(RTDB). We chose to avoid placing any TM-specific components
on the debugger side—the developer of our TmTargetDbg will not
need to know about the debugger and vice versa. Ultimately, we
might be tempted to define a common interface and communica-
tion mechanisms between TmDbgExt and TmTargetDbg—but this
seems premature at the moment.

We also experimented with an alternative approach which im-
plements all the functionality in the debugger extension (TmD-
bgExt), without the helper component in the target process. In this
approach the debugger extension is coupled with the STM library
implementation and depends on the layout of the data structures,
size of buffers, alignment, and so on. For instance, suppose that we
want to check if a specific memory address is in the read set of a
transaction. The debugger-side module would need to be coupled

to the layout of the data structure representing the read set entry
and the field where the address is stored. Also, the module has to
know any possible alignment restrictions that the compiler might
apply. Modifying the read set entry data structure by adding a new
field or compiling for different architecture (e.g., 64-bit) would re-
quire changing and re-testing the debugger extension. We felt that
this model was not a good fit with rapidly-evolving transactional
memory systems.

We believe our decoupled design approach can readily be ap-
plied to implementations of atomic blocks over other TMs; the de-
tails of TmTargetDbg will vary, depending on the exact data struc-
tures used, but the approach will remain the same.

2.2 Interaction Between TmDbgExt and TmTargetDbg

The interaction between the debugger and the STM library has
two levels of indirection. First, TmDbgExt accesses TmTargetDbg
over the debugger engine API and then TmTargetDbg accesses the
STM internals (see Figure 1). TmTargetDbg acts as a wrapper for
the STM library and exports a set of functions listed in Figure 2.
TmDbgExt may query or modify the STM state by setting a call to
one or more of these functions. To safely execute a function in the
target process, TmDbgExt saves the process context prior the call
and restores it after the call. For simplicity, we have designed the
prototypes of the TmTargetDbg functions in a way that if the return
value is larger than a register (e.g., an array or a data structure)
the value is stored in a temporary location and the address to this
location is returned.

2.3 Internal Breakpoints

We use breakpoints to implement many of our new debugger fea-
tures. For instance, when debugging at the level of atomic blocks
and a normal breakpoint fires inside an atomic block, we must
check that the current transaction is valid, and then “clean” the vis-
ible state of other threads (e.g., by rolling back transactions that
other threads are in). This provides the impression of isolation. In
many examples like this we either need to cause the target process
to execute STM-helper functions, or we need to roll forward appli-
cation code in the target process.

Both of these operations involve adding temporary breakpoints
in addition to those set by the user (e.g., we must regain control
after rolling forward). We refer to these as “internal” breakpoints.
As described later in the paper, we used internal breakpoints to
override the step command to interpret atomic blocks as a single
statement (Section 3.1), to implement watchpoints (Section 4.1),
to implement debug-time transactions (Section 5.1) and to split
atomic blocks (Section 5.2).

We use a breakpoint-time callback to distinguish ordinary user-
breakpoints from internal breakpoints. The callback overrides the
default debugger behavior of suspending the target program when
an internal breakpoint is hit and, if necessary, it executes comple-
mentary actions associated with the internal breakpoint.

The diagram in Figure 3 shows how the callback works. When a
breakpoint is hit, the callback checks whether it is a normal break-
point, or an internal breakpoint. If it is a normal breakpoint and
the event thread is executing a transaction, the callback executes
a complementary action to switch the transaction to irrevocable
mode [22, 23] and breaks to the debugger prompt (Section 3). If
the breakpoint is internal, the callback executes a complementary
action based on its type (purpose). Also, depending on the type of
the internal breakpoint the debugger may either break or continue
execution as if the breakpoint is not hit.

3. Debugging at the Level of Atomic Blocks
In this section we discuss our approach for debugging transactional
applications at the level of atomic blocks. We extend the debugger

Figure 3. Using a breakpoint callback to distinguish between nor-
mal user breakpoints and the internal breakpoints. Also, the break-
points fired during transaction execution may require to do com-
plementary actions such as switching the transaction to irrevocable
mode.

to model the semantics of atomic blocks, presenting the user with
the impression that they run with atomicity and isolation (even
when the underlying implementation uses TM).

Consequently, when debugging a program using atomic blocks,
we provide facilities to single-step over entire blocks so that they
appear as indivisible operations (Section 3.1), and to step into a
block while preserving the appearance that it is executing in isola-
tion (Section 3.2).

By analogy, a debugger for a language implemented with
garbage collection (GC) will abstract away the details of how the
heap is structured—e.g., when single-stepping, it would not step
into the GC implementation if it runs, and it would clear and re-set
data watchpoints if the underlying objects are relocated.

3.1 Stepping Over Atomic Blocks

The atomicity property of atomic blocks guarantees that the state-
ments comprising the atomic block execute either all or none.
When debugging higher-level concurrency errors in transactional
applications, the user may therefore have the expectation that the
debugger will execute the atomic block in its entirety without be-
ing interested in what is going on inside—much as the user may
step over a complete function call.

Earlier work that studied the construction of parallel programs
with atomic blocks and TM [19, 21] and our experience of de-
veloping such applications [7, 12, 20, 25, 26] suggests that pro-
grammers organize transactional synchronization between threads
in a different, more abstract, way by relying on the atomicity of
complete transactions but not identifying the individual shared data
structures to protect them with locks. In this approach, the concur-
rency errors in transactional applications are coarser and manifest
on the level of atomic blocks and not on the level of individual
statements inside the atomic block.

1 atomic {
2 ...// Initialize the bounding box
3 if (ent->v.modelindex)
4 SV_FindTouchedLeafs (ent, sv.worldmodel->nodes);
5 ent->num_leafs = 0;
6 if (ent->v.modelindex)
7 SV_FindTouchedLeafs (ent, sv.worldmodel->nodes);
8 if (ent->v.solid != SOLID_NOT) {
9 tm_block_flag = true;

10 i=1;
11 node = sv_areanodes; // Areanode tree
12 while (1) {
13 if (node->axis == -1)
14 break;
15 if (ent->v.absmin[node->axis] > node->dist) {
16 node = node->children[0];
17 i *= 2;
18 }
19 else if (ent->v.absmax[node->axis] < node->dist) {
20 node = node->children[1];
21 i = i*2 + 1;
22 }
23 else
24 break;
25 }
26 if (ent->v.solid == SOLID_TRIGGER)
27 InsertLinkBefore (&ent->area, &node->trigger_edicts);
28 else
29 InsertLinkBefore (&ent->area, &node->solid_edicts);
30 }
31 } // end atomic

Figure 4. The body of the atomic block in function
SV LinkEdict from Atomic Quake which is responsible for
changing the location of an object such as a player from its old to
the new position in the map (areanode tree).

Existing debuggers are not aware of atomic block boundaries
and so they do not provide the illusion of atomicity. In such a
case, instead of helping to identify the concurrency problem, the
debugger may cause additional confusion, especially if the atomic
block contains sophisticated logic and function calls. For exam-
ple, Figure 4 shows the body of the atomic block in function
SV LinkEdict taken from the Atomic Quake code [26]. This func-
tion is responsible for changing the location of a game object (e.g.,
a player) from one to another location in the game map. Suppose
that we are searching for an error and want to see the state of the
map data structure (i.e. sv areanodes line 11) before and after ex-
ecuting the atomic block. When we advance in the debugger, we
would normally proceed by stepping into each of the statements in-
side the atomic block. This will show the intermediate changes,
rather than the overall effect of the block. Furthermore, if the trans-
action implementing the atomic block aborts part-way through,
the user may find execution back at the start of the first statement.

Without debugger support for TM, a workaround for this prob-
lem is to put a breakpoint at the end of the atomic block (i.e. line
31) and to continue execution up to that point. This has the effect
of executing the atomic block as a single statement.

To support execution of complete atomic blocks, we provide
a distinct tmstep operation. This steps over the whole atomic
block in a single operation. To implement this, TmDbgExt puts
internal breakpoints at the functions exported by TmTargetDbg that
are called at the start and end of an outermost transaction (Figure 5).
These breakpoints are enabled by default and, when the first one is
hit upon starting a transaction, the debugger continues to execute
until it reaches the matching commit function. When committing
the outermost function the breakpoint on the commit function is hit
and this time the debugger switches back to normal stepping mode.

Figure 5. The illusion of atomicity in TmDbgExt is implemented
by putting internal breakpoints at the functions EventOnStart
and EventOnCommit called by the STM library when outermost
transactions start and commit respectively. When the breakpoint
on function EventOnStart is hit, TmDbgExt continues execution
in go mode, and when the breakpoint on EventOnCommit is hit
TmDbgExt restores the execution to step mode.

3.2 Stepping Inside Atomic Blocks

The isolation property of atomic blocks guarantees that threads
will not see the intermediate updates made by a thread which
executes an atomic block. Consequently, we provide a mechanism
to preserve isolation when stepping into atomic blocks.

This is intended for debugging errors within a single atomic
block—for instance, if our code in function InsertLinkBefore
(Figure 4 line 26–29) is wrong, and its internal logic needs to be
examined. Debugging within an atomic block is activated auto-
matically when a breakpoint is hit while executing a transaction.
For example, if the user puts a breakpoint at line 27 in Figure 5
then the user will be able to advance inside the atomic block by
stepping over each statement.

To preserve the appearance of isolation, we must take care to
prevent interference between transactions—e.g., consuming spec-
ulative updates from concurrent transactions, operating on an in-
consistent view of memory, or being aborted and reexecuted. For
instance, in the code example from Figure 4 the root of the arean-
ode tree is assigned to a local variable (line 11), and if a second
transaction commits a change to the root, then InsertLinkEdict
might operate on invalid data. Debugging logic inside an atomic
block based on invalid values but not yet detected conflict, camou-
flages the actual problem and violates isolation.

We preserve isolation by switching the transaction being de-
bugged into irrevocable mode [22, 23] (i.e., a transaction that is
guaranteed to commit). Our implementation of irrevocable trans-
actions is simplistic: before switching to irrevocable mode the TM
library validates all transactions and makes sure that the only trans-
action being executed is the irrevocable one (rolling back any oth-
ers). Thus, while stepping through an atomic block, the user will
see only actual values and never see transactional aborts.

If a conditional breakpoint is reached while executing a trans-
action, we first validate the transaction, and if the validation passes
successfully we break into the debugger. If validation fails, then
the transaction is aborted and reexecuted, without breaking into the
debugger.

This is necessary to prevent invalid transactions from falsely
suspending the execution, and reflects our intended semantics for

Figure 6. Filtering uninteresting events. The debugger extension
sets filter mask for thread id 2 and instruction address to monitor
for conflicts. When conflict happens the STM checks the masks and
if they are true calls the function EventOnConflict which is set a
breakpoint.

atomic blocks which are designed to abstract the details of partic-
ular TM implementations.

4. Debugging at the Level of Transactions
When debugging at the level of transactions, the debugger exten-
sion deliberately exposes a TM-based implementation of atomic
blocks. The aim is to provide the user with means to discover and
reason about pathological situations, such as those described by Ja-
yaram et al. [2]. Such examples can harm overall performance or
prevent progress.

When debugging at the level of transactions, the user can step
into the statements inside an atomic block without changing the
transaction into irrevocable mode like we did in Section 3. In
such a case, when advancing line-by-line over the source code,
the execution of two or more atomic blocks may be interleaved,
and the user may observe the effect of this interleaving on the
TM system. At any time, the user can see the state of any active
transaction, and inspect the following attributes:

• The status of the transaction such as valid, invalid, blocked.

• The priority of the transaction.

• How many times the transaction aborted and reexecuted.

• The transaction’s read and write set.

• Whether the transaction is irrevocable.

• The ID of the thread executing the transaction.

• The original and the speculative value of a variable.

The debugger must distinguish between original and speculative
values in order to support some of its existing features. For exam-
ple, a user might have a variable in a watch list that is speculatively
updated in a transaction. The underlying value of this variable will
not change in TM systems with lazy versioning (i.e., which buffer
updates until commit). In such cases, the debugger must monitor
transactional writes to check if this variable is updated by a transac-
tion and display its most current value. Herlihy and Lev [11] make
a more detailed analysis of this problem and discusses the changes
for the current debuggers in order to support it.

By combining these primitive queries, we have also imple-
mented richer operations to intersect the read or write sets of two or

more transactions. This is intended to help the programmer under-
stand the common data sets between the transactions, and to dis-
cover pathological cases that prevent transactions to progress and
hurt the overall application performance.

However, the user would usually prefer not to dive in the world
of this complicated debugging which requires knowledge about the
workings of the underlying TM implementation until a specific
event happens such as a transition from a valid to an invalid state
due to a conflict. We discuss transaction events in more detail in the
next section. Then, in Section 4.2, we describe how we implement
conflict point discovery to help users to find the locations where
transactions conflict. Later, in Section 4.3, we iteratively optimize a
C# ported version of Genome application from the STAMP bench-
mark suite by studying conflict points and examining the state of
the transactions.

4.1 Transaction Events

Our debugger extension can monitor transaction events that relate
to changes in the status of the transaction and its read and write
sets. The events that users can monitor are:

• Transaction start.

• Transaction commit.

• Transaction abort.

• New read or write set entry.

A user can set a watchpoint on any of these events. When the watch-
point is triggered, the debugger breaks and provides contextual in-
formation such as the event thread, the conflicting transactions, the
conflict addresses, or the entry being added into the read or write
set. To avoid interrupting the target process at uninteresting places,
the user can also introduce filters for these events so that the event
is triggered—for example, only if the conflict happens on a specific
atomic block(s).

To be able to catch the transaction events as they happen, we
define stub functions in TmTargetDbg for each of these events. The
stubs are called by the STM library when the event happens. To
break on an event, TmDbgExt places a internal breakpoint on the
entry to the relevant stub. Also, to filter out irrelevant events, TmD-
bgExt can modify a filter mask variable defined in TmTargetDbg
(see Figure 6). Depending on the filter criteria the STM library de-
cides whether or not to call the corresponding event function. We
enable these tests only when compiling in debug mode.

4.2 Conflict Point Discovery

To help aid performance debugging, we have developed a conflict
point discovery mechanism. Conflict point discovery is a debugger
feature that provides the exact source-code statements where mem-
ory accesses are involved in a conflict. Along with the line numbers,
it includes contextual information such as how many times a spe-
cific statement was involved in a conflict, whether due to read or
write access, and the atomic blocks where the conflicts occurred.
Figure 7 shows an example output from the C# version of Genome
application.

In recent empirical studies of developing transactional applica-
tions, Rossbach et al. [21] and Pankratius [19] report that the very
first version of transactional applications often suffer from poor
performance due to unanticipated overheads of the underlying STM
system. Therefore, providing profiling information that developers
can use to quickly optimize atomic blocks is important for the
adoption of TM systems. Many researchers [3, 7, 20, 24, 26] have
observed that one of the primary overheads in TM workloads is
due to the aborts. Conflict point discovery provides information for
reducing the abort rate and thereby improving overall performance.

File:Line #Conf. Method Line

Hashtable.cs:51 152 Add if (_container[hashCode] ...
Hashtable.cs:48 62 Add uint hashCode = HashSdbm ...
Hashtable.cs:53 5 Add _container[hashCode] = n ...
Hashtable.cs:83 5 Add while (entry != null)
ArrayList.cs:79 3 Contains for (int i = 0; i < cont ...
ArrayList.cs:52 1 Add if (count == capacity - 1)

Figure 7. Example output generated by conflict point discovery
for the C# version of Genome application.

We support conflict point discovery by using further “stub”
functions to provide abstraction over the underlying STM library.
These stubs are called when the STM library does book-keeping
work. In effect, this automates the reach point technique we used
in earlier work [7], by removing the need for manual instrumenta-
tion of code. We experimented with an alternative implementation
that operates entirely on the debugger side, but the overhead of ad-
ditional internal breakpoints was prohibitively high.

In Bartok-STM, conflicts can be detected in the write barriers,
intermediate validations of the read set and the commit method
(which also validates the read set). In the stubs we add to read
and write barriers, we log the return address of the STM operation,
along with the address of the memory location being accessed
(see Figure 8). The return address of these functions is the place
in the user code where the actual access to the memory is done.
If the STM library detects a conflict while handling any of these
methods we record the return address together with the origin of the
conflict—whether caused by read or write. If the address is already
recorded, then we increment a conflict counter associated with it.

Of course, as with many debugging techniques, this approach
adds a probe effect because of the extra logging. We have mea-
sured the probe effect over the Red Black Tree micro benchmark
which reflects even the minimal overheads in an amplified scale.
Figure 9 shows relative difference between a binary compiled with-
out any additional logging and binary compiled with the logging re-
quired for conflict point detection. Column Execution Time shows
the relative difference between execution times and column Aborts
shows the relative difference between abort rates. This experiment
suggests that while the probe effect may change the fine-grain be-
havior of the program it does not introduce or remove high level
contention. Qualitatively, when reducing contention on hot spots
identified by conflict point discovery, contention in the underlying
program is reduced. Similarly, programs with low contention under
normal execution have low contention under conflict point discov-
ery.

We do not currently try to identify the actual data structures that
are involved in conflict. The reason is that we use a managed envi-
ronment with a copying garbage collector which relocates objects.
There is no stable way to identify an object over the course of its
lifetime. Identifying a “hot” shared counter is trivial, but dynami-
cally allocated data structures do not have symbolic names for in-
ternal nodes. In future work we would like to examine stable nam-
ing schemes for these cases.

4.3 The Debugger in Action

In this section we describe how we iteratively optimized a C# ver-
sion of the Genome application from the STAMP TM application
suite [3]. We use conflict point discovery to examine how transac-
tions progress.

The STAMP STM version of Genome is a gene sequencing
application implemented in C using TL2 STM library [6]. We
initially ported this application from C to C# in a direct manner
by annotating the atomic blocks using the available language
constructs that the Bartok compiler implements. In the original

Figure 8. This figure shows how we identify the locations in the
source code where conflicts happen. We modified the read and
write barriers in the STM library to log their return address in the
user code. When conflict is detected, we record the return address
associated with the conflicting memory access in Conflicts Table
and increment the conflict counter. At the end of the execution,
using the debugger engine (DbgEng) we translate the addresses into
source lines.

Threads Execution Time Aborts
1 0.0% n/a
2 0.4% 1.2%
4 6.0% 4.5%
8 10.6% 1.6%
16 5.6% 10.0%

Figure 9. The probe effect of additional logging to support conflict
point detection. In this experiment we used the Red Black Tree
microbenchmark.

version of Genome, the memory accesses inside atomic blocks
are made through explicit calls to the STM library, whereas in
the C# port the STM library calls are automatically generated by
the compiler. Our observations optimizing the C# version therefore
do not necessarily reflect aspects of the manually-instrumented C
program.

We performed our experiments on a 4*2-core CPU with 2 hard-
ware threads per core. We show the effect of the different improve-
ments on the normalized performance and on the reduction in the
abort rate in Figure 10 and Figure 11 respectively. For comparison,
we also show variants where we used a global lock in place of the
atomic blocks (prefixed with L). We developed four variants using
atomic blocks:

Unoptimized Genome (Unopt). Our first version of the C#
Genome application had poor performance and did not scale. The
reason for this was a very high abort rate. Using conflict point
discovery, we saw that most of the conflicts happened in the first
phase of the Genome application when duplicate gene segments
are filtered by adding them to a hashtable. The highest contention
was in two conflict points: (i) the test in a loop that checks whether
a bucket already contains the entry to be added, and (ii) when in-
crementing a shared counter that indicates the number of elements
in the hashtable. After a careful look at the implementation of our
hashtable we realized that it is a variation of an open addressing
hashtable where entries are stored in the bucket array and the array
is probed for empty slots on collisions.

Using chaining hashtable (Opt). The open addressing hashtable
performs poorly in our implementation because Bartok-STM uses

84.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#threads

Unopt

Opt

OptInit

OptNoBk

L-Opt

L-OptInit

L-OptNoBk

Figure 10. The execution time of Genome, normalized to L-Opt.

object level conflict detection: all array elements are considered
as one object with respect to the conflict detection. We changed
the implementation of the hashtable to a chaining version and
also removed the shared counter, much like the hashtable from the
STAMP suite. After these changes Genome’s conflict rate was very
low and scaled as in the original C version (see Figure 10 Opt).

Friendly fire pathology when rehashing. A second observation
was that, when running with 4 or more threads, sometimes the ex-
ecution was unusually long. Then looking at the number of reexe-
cutions of the individual atomic blocks, we observed the friendly
fire pathology [2]: transactions were aborting one another without
any being able to commit. Linking this information with the con-
flict points we found the underlying reason: one transaction was
trying to rehash and at the same time another thread was starting
the execution of the same atomic block. Then the two transac-
tions were continuously aborting each other. When running with 2
threads it is less likely that the execution of the same atomic block
will overlap, but with 4 or more threads this probability becomes
much higher. Although a better solution could be found, our quick
approach was to initialize the hashtable with a larger bucket array.

Initializing the buckets (OptInit). At this point, we examined the
conflict data of the application more carefully and noticed that the
number of conflicts when adding an element to a hashtable was
approximately the same as the number of entries in the hashtable.
Almost every addition of a new entry to the hashtable was causing
a conflict. The reason for this was that we were initializing the
elements in the bucket array at the time of adding the first entry in
the bucket and again due to the object granularity conflict detection
this was causing other transaction working on the array to abort.
Our solution for this problem was to initialize the bucket array
with default bucket objects during the initialization phase. This
significantly reduced the abort rate (see Figure 11 OptInit) and
made the application scale up to 16 threads.

Removing the buckets (OptNoBk). We have also developed a
slightly different version of the chaining hashtable which does not
have buckets and stores the linked list directly into the buckets ar-
ray. This approach is slightly faster because it saves one indirec-
tion when performing a hashtable operation but has the same even
higher contention than Opt. Figure 12 visualizes the implementa-
tion differences between the chaining hashtables that we used to
optimize Genome.

We can see from Figure 11 that OptInit has smallest abort rate
and scales up to 16 threads whereas Opt and OptNoBk scale up to 8
threads and are saturated at 16 threads. OptNoBk is faster because
of saving one extra indirection due to the direct pointer in the array
and not initializing all the buckets. In Figure 10 we can see that the
single threaded execution of Unopt has the best performance but
simply the implementation of this hashtable is not TM friendly.

60.0%

98.4% 99.4% 100.0%

0%

20%

40%

60%

80%

100%

2 4 8 16

A
bo

rt
 r

at
e

#threads

Unopt

Opt

OptInt

OptNoBk

Figure 11. The effect of the optimizations on the abort rate.

Figure 12. The different variants of the chaining hashtable we
used in Genome. Opt uses bucket objects and does not initialize
the bucket array. OptInt is the same as Opt but the bucket array
is initialized. OptNoBk is a version of Opt that stores linked lists
directly on the bucket array.

5. Debug-Time Transaction Management
Our final set of debugger extension features allow the user to man-
age the transactions under the control of the debugger. At the level
of atomic blocks, the user can create debug-time transactions or
split atomic blocks. These features are intended for investigating
errors in the source code, and trying to patch the errors without
modifying and recompiling the source code (e.g., when testing out
a hypothesis for what is causing a race condition).

Although it might be error prone, drawing analogy from current
debuggers’ functionality that allow users to modify the program
aspects by changing the values of variables in memory or processor
registers, we were motivated to implement operations that the user
might use to change the state of the transactions such as by adding
or removing entries into the transaction’s read and write set when
debugging at the level of transactions.

5.1 Debug-Time Transactions

A debug-time transaction is a new debugger abstraction that helps
for the correctness debugging of transactional applications. While
debugging, a user may notice that atomic blocks are missing in
certain places or that atomic blocks could be reduced in size.
Figure 13 has a contrived example (line 26) where a data race
occurs because an atomic block is too small. Figure 14 has an
example where, instead of defining one large atomic block, the
program uses two smaller blocks. In such cases, the user can create
a debug-time transaction or enlarge the scope of an existing atomic
block by marking the boundaries of the new atomic block on the
source code. Thereafter, the debugger ensures that the debug-time
transactions are executed atomically, as if regular atomic blocks,
but without exiting the debug process to change and recompile the
source code.

In Figure 15 we show a difficult to find atomicity violation
example that we discovered in the QuakeTM [8] source code af-
ter a careful inspection. The error manifested in disconnecting the

1 static public void Main(string[] args) {
2 Thread t1 = new Thread(ThreadEntryIncrement);
3 Thread t2 = new Thread(ThreadEntryDecrement);
4
5 t1.Start();
6 t2.Start();
7 }
8
9 static void ThreadEntryIncrement() {

10 int temp = 0;
11
12 atomic {
13 temp = counter;
14 temp++;
15 counter = temp;
16 }
17 }
18
19 static void ThreadEntryDecrement() {
20 int temp = 0;
21
22 atomic {
23 temp = counter;
24 temp--;
25 }
26 counter = temp;
27 }

Figure 13. An example where the atomic block in lines 22-25 is
shorter and line 26 must be included in the atomic block.

initially a = b = 0;

Thread 1 Thread 2

1 atomic{
2 a++;
3 } atomic {
4 a++;
5 atomic{ }
6 b--;
7 assert(a + b == 0);
8 }

Figure 14. An example of incorrectly splitting a critical section
in two smaller atomic blocks. The shown interleaving between
thread 1 and thread 2 will result in violating the invariant that
a+b=0.

clients from the game session due to bad formatted messages. We
checked the functions such as WriteMulticast which build these
client messages and their definitions were all correctly synchro-
nized. To see how the execution changes, we randomly created
and removed temporary atomic blocks or coarsened existing ones.
Due to the nondeterministic nature of the error, it took us quite
long time to constrain the problematic location to the code that in-
terprets Quake extension functions implemented in Quake C and
compiled to intermediate representation. If we were able to create,
remove and resize atomic blocks while debugging, we would find
the problematic location easier. In this case we would save a lot
of time from changing and recompiling the source code and try-
ing to reproduce the error by re-establishing the client-server game
session.

Later, by reverse engineering the Quake extension functions
interpreted inside this problematic code, we noticed that there is
one function (FireAxe) which calls the function WriteMulticast
several times to build the individual parts of a multicast message.
This pattern of use is similar to calling printf to print multiple
lines on the console. In a serial execution, these functions would
execute one after the other and build a correct message. But in
multi-threaded execution, although each WriteMulticast func-
tion is correctly synchronized a possible interleaving with another

// Correctly synchronized function
void
WriteMulticast(message) {

atomic {
<update message buffer>;

}
}

Thread 1 Thread 2
1 void FireAxe() {
2 WriteMulticast(msg_part1);
3 WriteCoordinate(coord);
4 WriteMulticast(msg_part2);
5 }

Figure 15. A difficult-to-discover atomicity violation from
QuakeTM code. In a serial execution, the two calls to
WriteMulticast function would be executed one after other and
the two parts of the multicast message would be next to each other.
To properly synchronize this is necessary to call FireAxe method
inside an atomic block.

thread, like the one shown in the Figure 15, would result in a mal-
formed packet.

The implementation of debug-time transactions, relies on the
availability of irrevocable transactions in the STM library. When
the user marks the start and the end of the transaction TmD-
bgExt gets the addresses of the statements using the debugger
engine and puts internal breakpoints (see Section 2.3) at these
places—one denoting the start and other denoting the end of the
transaction. And when the start or end breakpoint is hit, TmD-
bgExt calls respectively the StartIrrevocableTransaction or
CommitIrrevocableTransaction function from TmTargetDbg
by following the method described in Section 2.2.

There is one more subtlety of calling function StartIrrevoca-
bleTransaction. This method manipulates locks within the STM
library and must synchronize with other threads (e.g., if they are
also trying to start irrevocable transactions). Consequently, if we
call this method by resuming only one thread in the target process
and keep the other threads blocked may cause deadlock. Therefore,
in this case we resume all target-process threads until the call to
StartIrrevocableTransaction is complete.

5.2 Splitting Atomic Blocks

To split a large atomic block into two smaller ones, we provide
the user with two alternatives. In the first alternative, while step-
ping inside an atomic block, the user can split the transaction for
one time only at the place where the next statement is to be ex-
ecuted. In the second alternative, the user marks at which state-
ment to split the transaction (see Figure 16). In the former case
following the method for calling functions in the target process,
described in Section 2.2, we call the SplitTransaction function
from TmTargetDbg. In the latter case, TmDbgExt creates a inter-
nal breakpoint on the location where the transaction is to be split.
Whenever any breakpoint is hit, TmDbgExt checks if it is used to
split an atomic block and if so, the debugger transparently calls the
SplitTransaction function and continues the execution without
breaking into the debugger. In effect, function SplitTransaction
commits the current transaction and then immediately initiates a
new transaction.

One subtlety inherent to our STM implementation that should
be considered implementing this feature is where the split point is
introduced. The user should be disallowed to split atomic blocks
in functions that are not defining the outermost transaction. In this
situation, the second part of the transaction (e.g., lines 4-6) may

Figure 16. Splitting a transaction. TmDbgExt puts a internal
breakpoint (IntBpt) denoting the place where the transaction is to
be split. When the breakpoint is hit the debugger transparently calls
a function SplitTransaction in the target process, creating the
effect of committing a transaction and initiating a new one.

not be able to roll back to an interior point (the place where the
transaction was split) because the function stack is torn down.

We believe that users who want to optimize their transactional
applications by decreasing the size of the coarse grain atomic
blocks would greatly benefit from this feature. For example, at
debug-time users can split the large atomic blocks and see how
this affects the correctness and the runtime performance.

5.3 Modifying Transactional State

TmDbgExt implements user commands to directly modify the state
of the transaction by changing any of its attributes and also adding
or removing an entry into the transaction’s read and write set while
debugging at the level of transactions (see Section 4). All these
operations may cause an incorrect execution of the application and
it is the user’s responsibility to use them reasonably. Adding an
entry into the read or write set of a transaction may cause the
transaction to become invalid and abort. The debugger extension
detects such cases and warns the user by requesting to confirm the
action. These operations are implemented by calling the respective
functions from Figure 2 which modify the STM state.

6. Related Work
In a parallel work to ours, Herlihy and Lev have developed an in-
frastructure for debugging transactional applications—tm db [11].
From a user’s perspective, compared to our work, when debugging
a transactional application with the abstractions that Herlihy and
Lev introduce, it will look like debugging at the level of transac-
tions (Section 4). Their approach has the objective to properly inte-
grate the debugger with the TM implementation. The primary focus
of tm db is to consistently expose the TM state through the debug-
ger without changing the existing debugging conventions. In addi-
tion to transaction-level debugging we introduce the notion of de-
bugging at the level of atomic blocks, attempting to abstract over
whether or not these are implemented with TM. We also propose
and implement mechanisms to create debug time transactions, split
atomic blocks and modify the state of transactions under the con-
trol of the debugger. In tm db Herlihy and Lev introduce important
concepts such as logical value, scopes, distinction between trans-
actional reads, writes and their respective conflict coverages. These
new concepts abstract the internal organization of different STM
systems. Logical values are necessary for preserving the isolation
property of transactions when debugging at the level of transac-
tions. Abstracting the reads and writes with their respective cov-
erages hides the internal mechanism to manage the read and write
sets and also help in identifying false conflicts. Incorporating these
new abstractions into our extension would provide users an uniform
view to the TM state when debugging at the level of transactions.

Using their debugging infrastructure, Herlihy and Lev provided
support for 8 different TM implementations [15]. To do so, they
implemented separate Remote Debugging Module (RDM) systems,

one for each library variation, and they extended the STM libraries
with support for debugging.

In earlier work, before tm db, Lev and Moir discussed how
the debugger and the TM implantation should by integrated [16].
They surveyed features that a debugger could provide by leveraging
the underlying TM system. From their work, we were inspired
that seeing the read set and write set of transactions can help
to understand the reason for aborts. We extended this idea, and
implemented conflict point discovery (Section 4.2) which identifies
the program statements that caused transactions to conflict.

Chafi et al. have developed a micro architectural extension
TAPE [4] for the Transactional Coherence and Consistency [5]
system that has HTM support. They used TAPE to profile and
optimize transactional applications by studying the locations where
transactions conflict much like we do in conflict point discovery
but in STM. These two approaches can be combined in a hybrid
transactional memory system.

Recent work carried by Gupta et al. leveraged the exist-
ing infrastructure in a hardware transactional memory system
RaceTM [8] to detect data races in multi-threaded applications.
The combination of this functionality and debug-time transactions
would be a complete tool to find and fix data races in multi-threaded
applications at debug time.

7. Conclusion and Future Work
In this paper we have presented three different debugging ap-
proaches for transactional applications. Debugging at the level of
atomic blocks provides users the same experience across different
underlying implementation mechanism. The debugger is extended
to reflect the atomicity and isolation properties of atomic blocks
and this makes it easier to debug synchronization problems across
different atomic blocks and incorrect code within atomic blocks.
Debugging at the level of transactions assumes that the underlying
implementation of atomic blocks is TM and exposes their typical
attributes such as read and write set. Debugging by following this
approach is useful to discover pathological cases that have nega-
tive impact on the overall runtime performance. To facilitate the
profiling and optimization of atomic blocks we have implemented
conflict point discovery which tells the exact statements where
conflicts happen along with additional contextual information. By
using conflict point discovery and examining the state of transac-
tion we iteratively optimized a C# port of the Genome application
from the STAMP TM application suite. We introduced mechanisms
for adding and removing atomic blocks under the control of the
debugger which would make debugging synchronization problems
such as atomicity violations easier. In our implementation of these
features, we followed a general decoupled approach that can be
applied to any debugger and TM system.

In future work, we hope to implement asymmetric data race
detection, a mechanism that will report the user when a variable is
accessed at the same time inside and outside a transaction. We plan
to enable this by leveraging the strong atomicity implementation in
Bartok-STM [1].

Acknowledgments
We would like to thank Emery Berger for the discussion about
concurrency errors in multi-threaded applications, Burton Smith
for his comments on the conditional breakpoints, Yossi Lev for
his comments on the tm db and all the reviewers for their useful
feedback.

This work is supported by the cooperation agreement between
the Barcelona Supercomputing Center – National Supercomputer
Facility and Microsoft Research, by the Ministry of Science and
Technology of Spain and the European Union (FEDER funds) un-

der contract TIN2007-60625, by the European Network of Excel-
lence on High-Performance Embedded Architecture and Compi-
lation (HiPEAC) and by the European Commission FP7 project
VELOX (216852). Ferad Zyulkyarov is also supported by a schol-
arship from the Government of Catalonia.

References
[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with

strong atomicity using off-the-shelf memory protection hardware. In
PPoPP ’09: Proc. 14th ACM SIGPLAN symposium on principles and
practice of parallel programming, pages 185–196, Feb. 2009.

[2] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood. Performance pathologies in hardware transactional
memory. In ISCA ’07: Proc. 34th international symposium on com-
puter architecture, pages 81–91, June 2007.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
’08: Proc. 11th IEEE international symposium on workload charac-
terization, pages 35–46, September 2008.

[4] H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom, J. Chung,
L. Hammond, C. Kozyrakis, and K. Olukotun. TAPE: A transactional
application profiling environment. In ICS ’05: Proc. 19th international
conference on supercomputing, pages 199–208, June 2005.

[5] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. Cao Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A scalable, non-blocking
approach to transactional memory. In HPCA ’07: Proc. 13th IEEE
international symposium on high performance computer architecture,
pages 97–108, Feb. 2007.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In
DISC ’06: Proc. 20th ACM international symposium on distributed
computing, pages 194–208, Sept. 2006.

[7] V. Gajinov, F. Zyulkyarov, A. Cristal, O. S. Unsal, E. Ayguadé, T. Har-
ris, and M. Valero. QuakeTM: Parallelizing a complex serial applica-
tion using transactional memory. In ICS ’09: Proc. 23rd international
conference on supercomputing, pages 126–135, June 2009.

[8] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rotteler. Using
hardware transactional memory for data race detection. In IPDPS
’09: Proc. 23rd IEEE international parallel and distributed processing
symposium, pages 1–11, may 2009.

[9] T. Harris and K. Fraser. Language support for lightweight transactions.
In OOPSLA ’03: Proc. 18th ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications, pages
388–402, Oct. 2003.

[10] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In PLDI ’06: Proc. 2006 ACM SIGPLAN conference
on programming language design and implementation, pages 14–25,
June 2006.

[11] M. Herlihy and Y. Lev. tm db: A generic debugging library for trans-
actional programs. In PACT ’09: Proc. 18th international conference
on parallel architectures and compilation techniques, pages 136–145,
Sep 2009.

[12] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and M. Valero. RMS-TM:
A transactional memory benchmark for recognition, mining and syn-
thesis applications. In TRANSACT ’09: 4th workshop on transactional
computing, Feb. 2009.

[13] J. Larus and R. Rajwar. Transactional Memory (Synthesis Lectures on
Computer Architecture). 1st edition, Jan. 2007.

[14] Y. Lev. Making debuggers transaction-ready. Transactional Memory:
From Implementation to Application, Seminar 2008241, Dagstuhl,
Germany, June 2008.

[15] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nussbaum, and
M. Olszewski. Anatomy of a scalable software transactional memory.
In TRANSACT ’09: 4th workshop on transactional computing, Feb.
2009.

[16] Y. Lev and M. Moir. Debugging with transactional memory. In
TRANSACT ’06: 1st workshop on transactional computing, June 2006.

[17] Microsoft Corporation – MSDN. Debugger engine and ex-
tension APIs. http://msdn.microsoft.com/en-us/library/
cc267863.aspx.

[18] Microsoft Corporation – MSDN. Debugging tools for windows.
http://msdn.microsoft.com/en-us/library/cc266321.
aspx.

[19] V. Pankratius, A.-R. Adl-Tabatabai, and F. Otto. Does transactional
memory keep its promises? Results from an empirical study. Technical
Report 2009-12, University of Karlsruhe, Sept. 2009.

[20] C. Perfumo, N. Sonmez, S. Stipic, A. Cristal, O. S. Unsal, T. Harris,
and M. Valero. The limits of software transactional memory (STM):
Dissecting Haskell STM applications on a many-core environment. In
CF ’08: Proc. 5th international conference on computing frontiers,
pages 67–78, May 2008.

[21] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional pro-
gramming actually easier? In PPoPP ’10: Proc. 15th ACM SIGPLAN
symposium on principles and practice of parallel programming, Jan.
2010.

[22] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and
M. L. Scott. Implementing and exploiting inevitability in software
transactional memory. In ICPP ’08: Proc. 37th IEEE international
conference on parallel processing, pages 59–66, Oct. 2008.

[23] A. Welc, B. Saha, and A.-R. Adl-Tabatabi. Irrevocable transactions
and their applications. In SPAA ’08: Proc. 20th ACM symposium
on parallelism in algorithms and architectures, pages 285–296, June
2008.

[24] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, and H.-
H. S. Lee. Kicking the tires of software transactional memory: Why
the going gets tough. In SPAA ’08: Proc. 20th ACM symposium
on parallelism in algorithms and architectures, pages 265–274, June
2008.

[25] F. Zyulkyarov, S. Cvijic, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris,
and M. Valero. WormBench: A configurable workload for evaluating
transactional memory systems. In MEDEA ’08: Proc. 9th workshop
on memory performance, pages 61–68, Oct. 2008.

[26] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Har-
ris, and M. Valero. Atomic Quake: Using transactional memory in an
interactive multiplayer game server. In PPoPP ’09: Proc. 14th ACM
SIGPLAN symposium on principles and practice of parallel program-
ming, pages 25–34, Feb. 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

