Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU

Victor W Leef, Changkyu Kim®, Jatin Chhuganif, Michael Deisher,
Daehyun Kim™, Anthony D. Nguyen', Nadathur Satish', Mikhail Smelyanskiy?,

Srinivas Chennupaty*, Per Hammarlund+,

Ronak Singhal~ and Pradeep Dubey?®

victor.w.lee@intel.com

TThroughput Computing Lab,
Intel Corporation

ABSTRACT

Recent advances in computing have led to an explosion imtloeiat

of data being generated. Processing the ever-growing daa i
timely manner has made throughput computing an important as
pect for emerging applications. Our analysis of a set of gt
throughput computing kernels shows that there is an amptaiatn

of parallelism in these kernels which makes them suitahblédo
day’s multi-core CPUs and GPUs. In the past few years thare ha
been many studies claiming GPUs deliver substantial specthe-
tween 10X and 1000X) over multi-core CPUs on these kernals. T
understand where such large performance difference comes f
we perform a rigorous performance analysis and find that afie
plying optimizations appropriate for both CPUs and GPUgpikre
formance gap between an Nvidia GTX280 processor and the Inte
Core i7 960 processor narrows to only 2.5x on average. Irp#ns
per, we discuss optimization techniques for both CPU and GPU
analyze what architecture features contributed to peidoa dif-
ferences between the two architectures, and recommenddaf set
architectural features which provide significant improeaiin ar-
chitectural efficiency for throughput kernels.

Categories and Subject Descriptors

C.1.4 Processor Architecturd: Parallel architectures
; C.4 [Performance of Systemf Design studies
; D.3.4 [Software]: Processors-Optimization

General Terms
Design, Measurement, Performance

Keywords

CPU architecture, GPU architecture, Performance analysigor-
mance measurement, Software optimization, Throughputp@iom

ing

1. INTRODUCTION

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISCA'10,June 19-23, 2010, Saint-Malo, France.

Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

*Intel Architecture Group,
Intel Corporation

The past decade has seen a huge increase in digital content as
more documents are being created in digital form than ever be
fore. Moreover, the web has become the medium of choice for
storing and delivering information such as stock marke& dper-
sonal records, and news. Soon, the amount of digital dataxvil
ceed exabytes (18) [31]. The massive amount of data makes stor-
ing, cataloging, processing, and retrieving informatibaltenging.

A new class of applications has emerged across differenagam
such as database, games, video, and finance that can prioisess t
huge amount of data to distill and deliver appropriate cainte
users. A distinguishing feature of these applications & they
have plenty of data level parallelism and the data can bespsea
independently and in any order on different processing efem
for a similar set of operations such as filtering, aggregatiank-
ing, etc. This feature together with a processing deadlefees
throughput computing application§&oing forward, as digital data
continues to grow rapidly, throughput computing applicas are
essential in delivering appropriate content to users ireaaeable
duration of time.

Two major computing platforms are deemed suitable for thig n
class of applications. The first one is the general-purpd3e C
(central processing unit) that is capable of running mapgsyof
applications and has recently provided multiple cores twess
data in parallel. The second one is the GPU (graphics process
ing unit) that is designed for graphics processing with msmll
processing elements. The massive processing capabili@Paf
allures some programmers to start exploring general parposh-
puting with GPU. This gives rise to the GPGPU field [3, 33].

Fundamentally, CPUs and GPUs are built based on very differe
philosophies. CPUs are designed for a wide variety of appitins
and to provide fast response times to a single task. Ardhitaic
advances such as branch prediction, out-of-order exetudind
super-scalar (in addition to frequency scaling) have bespansi-
ble for performance improvement. However, these advanoes ¢
at the price of increasing complexity/area and power coisiam.

As a result, main stream CPUs today can pack only a small numbe
of processing cores on the same die to stay within the power an
thermal envelopes. GPUs on the other hand are built spdlifica
for rendering and other graphics applications that havege lde-
gree of data parallelism (each pixel on the screen can bessed
independently). Graphics applications are also laterleydaot (the
processing of each pixel can be delayed as long as framesare p
cessed at interactive rates). As a result, GPUs can tradingte-
thread performance for increased parallel processinginstance,
GPUs can switch from processing one pixel to another wheg lon

latency events such as memory accesses are encounteredrand c characteristics. These kernels have a large amount oflelath-

switch back to the former pixel at a later time. This approaokrks parallelism, which makes them a natural fit for modern medtie

well when there is ample data-level parallelism. The spped@an architectures. Table 1 summarizes the workload charaetesn.

application on GPUs is ultimately limited by the percentafjthe We classify these kernels based on (1) their compute and nyemo

scalar section (in accordance with Amdahl’s law). requirements, (2) regularity of memory accesses, whicérdehes
One interesting question is the relative suitability of C&HGPU the ease of exploiting data-level parallelism (SIMD), aB)l the

for throughput computing workloads. CPUs have been the main granularity of tasks, which determines the impact of syanira-

workhorse for traditional workloads and would be expectedd tion. These characteristics provide insights into the itectural

well for throughput computing workloads. There is littleuthd that features that are required to achieve good performance.

today’'s CPUs would provide the best single thread perfooador 1. SGEMM (both dense and sparse) is an important kernel that is

throughput computing workloads. However, the limited nemaf an integral part of many linear algebra numerical algorghsuch

cores in today’s CPUs limits how many pieces of data can be pro as linear solvers. SGEMM is characterized by regular aceass
cessed simultaneously. On the other hand, GPUs provide manyterns and therefore maps to SIMD architecture in a straigivird
parallel processing units which are ideal for throughpunpat- manner. Threading is also simple, as matrices can be broken i
ing. However, the design for graphics pipeline lacks soniie cr sub-blocks of equal size which can be operated on indepégden
cal processing capabilities (e.g., large caches) for géperrpose by multiple threads. SGEMM performs %) compute, where

workloads, which may result in lower architecture efficigrom n is the matrix dimension and has 18} data accesses. The ra-
throughput computing workloads. tio of compute to data accesses inDhich makes SGEMM a
This paper attempts to correlate throughput computingachar ~ compute-bound application, when properly blocked.
teristics with architectural features on today’s CPUs aRiU&and 2. MC or Monte Carlo randomly samples a complex function,
provides insights into why certain throughput computingnis with an unknown or highly complex analytical representatiand
perform better on CPUs and others work better on GPUs. We useaverages the results. We use an example of Monte Carlo fram co
a set of kernels and applications that have been identifiquido- putational finance for pricing options [34]. It simulatesamdom
ous studies [6, 10, 13, 44] as important components of tlmoulg path of an underlying stock over time and calculates a pdyaff
computing workloads. We highlight the importance of platie the option at the end of the time step. It repeats this stepyman
specific software optimizations, and recommend an apmitat times to collect a large number of samples which are therageer
driven design methodology that identifies essential harelagchi- to obtain the option price. Monte Carlo algorithms are galher
tecture features based on application characteristics. compute-bound with regular access patterns, which makegeity
This paper makes the following contributions: good fit for SIMD architectures.

3. Conv or convolution is a common image filtering operation
e We reexamine a number of claims [9, 19, 21, 32, 42, 45, used for effects such as blur, emboss and sharpen. lIts atithm

47, 53] that GPUs perform 10X to 1000X better than CPUs computations are simple multiply-add operations and itsnorg

on a number of throughput kernels/applications. After tun- accesses are regular in small neighborhood. Each pixellis ca

ing the code foBOTH CPU and GPU, we find the GPU culated independently, thus providing ample parallelignbath

only performs 2.5X better than CPU. This puts CPU and SIMD and thread level. Though its compute-to-memory charac

GPU roughly in the same performance ballpark for through- teristic varies depending on the filter size, in practicejstially

put computing. exhibits high compute-to-memory ratio. Its sliding-windstyle

access pattern gives rise to a memory alignment issue in SIMD
* We provide a systematic characterization of throughput-com computations. Also, multi-dimensional convolutions incwon-
puting kernels regarding the types of parallelism avaéiabl sequential data accesses, which require good cache bipkin
the compute and bandwidth requirements, the access pattermigh performance.

and the synchronization needs. We identify the important 4 FFT or Fast Fourier Transform is one of the most impor-

CPU and GPU platforms. signals from time domain to frequency domain, and vice versa
FFT is an improved algorithm to implement Discrete Fouriemb-
form (DFT). DFT requires Q@) operations and FFT improves it
to O(nlogn). FFT algorithms have been studied exhaustively [26].
Though various optimizations have been developed for eaeh u
age model/hardware platform, their basic behavior is simillt
is composed of log stages of the butterfly computation followed
by a bit-reverse permutation. Arithmetic computations sineple
floating-point multiply-adds, but data access patternsaretrivial
pseudo-all-to-all communication, which makes paral&ion and
SIMDification difficult. Therefore, many studies [7] havectsed
on the challenges to implement FFT on multi-core wide-SIMD a
chitectures well.

5. SAXPY or Scalar Alpha X Plus Y is one of the functions
in the Basic Linear Algebra Subprograms (BLAS) package and i
2. THEWORKLOAD: THROUGHPUT COM- a combination of scalar multiplication and vector additidhhas

PUTING KERNELS a regular access pattern and maps well to SIMD. The use of TLP
requires only a simple partitioning of the vector. For loregtors
that do not fit into the on-die storage, SAXPY is bandwidthrmhu

e We analyze the performance difference between CPU and
GPU and identify the key architecture features that benefit
throughput computing workloads.

This paper is organized as follows: Section 2 discusse$ithagh-
put computing workloads used for this study. Section 3 dlessr
the two main compute platforms — CPUs and GPUs. Section 4 dis-
cusses the performance of our throughput computing wodkloa
today’s compute platforms. Section 5 provides a platfopmesfic
optimization guide and recommends a set of essential acthie
features. Section 6 discusses related work and Sectioncfuctes
our findings.

We analyzed the core computation and memory characteristic
of recently proposed benchmark suites [6, 10, 13, 44] andder
lated the set othroughput computing kernelhat capture these

[Kernel I Application [SIMD [TLP [Characteristics |
SGEMM (SGEMM) [48] Linear algebra Regular Across 2D Tiles Compute bound after tiling
Monte Carlo(MC) [34, 9] Computational Financeg Regular Across paths Compute bound
Convolution(Conv) [16, 19] Image Analysis Regular Across pixels Compute bound; BW bound for small filters
FFT (FFT) [17, 21] Signal Processing Regular Across smaller FFT Compute/BW bound depending on size
SAXPY (SAXPY) [46] Dot Product Regular Across vector BW bound for large vectors
LBM (LBM) [32, 45] Time Migration Regular Across cells BW bound
Constraint Solve(Solv) [14] Rigid body physics Gather/Scatter Across constraints Synchronization bound
SpMV (SpMV) [50, 8, 47] Sparse Solver Gather Across non-zero BW bound for typical large matrices
GJIK(GJIK) [38] Collision Detection Gather/Scatter Across objects Compute Bound
Sort(Sort) [15, 39, 40] Database Gather/Scatter Across elements Compute bound
Ray CastindRC) [43] Volume Rendering Gather Across rays 4-8MB first level working set,
over 500MB last level working set
Search(Search) [27] Database Gather/Scatter Across queries Compute bound for small tree, BW
bound at bottom of tree for large tree
Histogram(Hist) [53] Image Analysis Requires Across pixels Reduction/synchronization bound
conflict detection
Bilateral (Bilat) [52] Image Analysis Regular Across pixels Compute Bound

Table 1: Throughput computing kernels characteristics. The refe

rred papers contains the best previous reported perfonance

numbers on CPU/GPU platforms. Our optimized performance numbers are at least on par or better than those numbers.

For very short vectors, SAXPY spends a large portion of tire p
forming horizontal reduction operation.

6. LBM or Lattice Boltzmann method, is a class of computa-
tional fluid dynamics. LBM uses the discrete Boltzmann eiguat
to simulate the flow of a Newtonian fluid instead of solving the
Navier Stokes equations. In each time step, for a D3Q1%:4atti
LBM traverses the entire 3D fluid lattice and for each cell eom
putes new distribution function values from the cell’s 18&gh&ors
(including self). Within each time step, the lattice can faevé¢rsed
in any order as values from the neighbors are computed frem th
previous time step. This aspect makes LBM suitable for bR T
and DLP. LBM ha€O(n) compute and requireé3(n) data, where
is the number of cells. The working set consists of the dathef
cell and its 19 neighbors. The reuse of these values is sulzha
less than convolution. Large caches do not improve the perfo
mance significantly. The lack of reuse also means that thgpatem
to bandwidth ratio is low; LBM is usually bandwidth bound.

7. Solvor constraint solver is a key part of game physics simu-
lators. During the execution of the physical simulationatiipe, a
collision detection phase computes pairs of colliding bedivhich
are then used as inputs to a constraint solving phase. The con
straint solver operates on these pairs and computes theatiaga
contact forces, which keeps the bodies from inter-periegyanto
one another. The constraints are typically divided intches of
independent constraints [14]. SIMD and TLP are both exgtbit
among independent constraints. Exploiting SIMD paraitaliis
however challenging due to the presence of gather/scattae
tions required to gather/scatter object data (positiofgoity) for
different objects. Ideally, the constraint solver shouddBandwidth
bound, because it iterates over all constraints in a givenation
and the number of constraints for realistic large scalerdetsbn
scenes exceeds the capacity of today’s caches. Howeveticpta
implementations suffer from synchronization costs acgegts of
independent constraints, which limits performance onenirar-
chitectures.

8. SpMV or sparse matrix vector multiplication is at the heart of
many iterative solvers. There are several storage forniagarse
matrices, compressed row storage being the most common- Com
putation in this format is characterized by regular accegems
over non-zero elements and irregular access patterns loweet-
tor, based on column index. When the matrix is large and does n
fitinto on-die storage, a well optimized kernel is usuallpthaidth
bound.

9. GJK is acommonly used algorithm for collision detection and

resolution of convex objects in physically-based aninretisimu-
lations in virtual environments. A large fraction of the rtime
is spent in computing support map, i.e., the furthest veofethe
object along a given direction. Scalar implementation oK@sJ
compute bound on current CPUs and GPUs and can exploit DLP
to further speedup the run-time. The underlying SIMD is ekptl
by executing multiple instances of the kernel on differeaitp of
objects. This requires gathering the object data (vergdegs) of
multiple objects into a SIMD register to facilitate fast popt map
execution. Hence the run-time is dependent on support fafan
ficient gather instruction by the underlying hardware. Ehaiso
exist techniques [38] that can compute support map by mengpiz
the object into a lookup table, and performing lookups ifitese
tables at run-time. Although still requiring gathers, tloigkup can
be performed using texture mapping units available on GRUs t
achieve further speedups.

10. Sortor radix sort is a multi-pass sorting algorithm used in
many areas including databases. Each pass sorts one diugtiof
put at a time, from least to most significant. Each pass imstlata
rearrangement in the form of memory scatters. On CPUs, thie be
implementation foregoes the use of SIMD and implementsthesca
oriented rearrangement within cache. On GPUs, where SIMD us
is important, the algorithm is rewritten using a 1-bit saitrptive,
called split [39]. The split based code, however, has moatasc
operations than the buffer code (since it works on a singlatbi
a time). The overall efficiency of SIMD use relative to optaed
scalar code is therefore not high even for split code. Thelbmurof
bits considered per pass of radix sort depends on the sihe d6+
cal storage. Increasing cache sizes will thus improve pmaidace
(each doubling of the cache size will increase the numbeiitsf b
per pass by one). Overall, radix sort Ha&) bandwidth and com-
pute requirements (whergs the number of elements to be sorted),
but is usually compute bound due to the inefficiency of SIMB.us

11. RCor Ray Casting is an important visual application, used
to visualize 3D datasets, such as CT data used in medicalnmag
High quality algorithms, known as ray casting, cast raysugh
the volume, performing compositing of each voxel into a eerr
sponding pixel, based on voxel opacity and color. Tracindtimu
ple rays using SIMD is challenging, because rays can ac@@ss n
contiguous memory locations, resulting in incoherent aretjular
memory accesses. Some ray casting implementations pegorm
decent amount of computation, for example, gradient slgadihe
first level working set due to adjacent rays accessing the sen
ume data is reasonably small. However, the last level wgrkt

can be as large as the volume itself, which is several gigahyf
data.

12. Searchor in-memory tree structured index search is a com-
monly used operation in various fields of computer scienspee
cially databases. For CPUs, the performance depends omevhet
the trees can fit in cache or not. For small trees (tree sizeesm
than the last-level cache (LLC)), the search operation ispzde
bound, and can exploit the underlying SIMD to achieve sppsdu
However, for large trees (tree sizes larger than the LL®,ldst
few levels of the tree do not fit in the LLC, and hence the rumeti
for search is bound by the available memory bandwidth. Asagar
the GPUs are concerned, the available high-bandwidth dgabe
required bandwidth even for large trees, and the run-tineiis-
pute bound. The run-time of search is proportional to the depth
on the GTX280.

13. Hist or histogram computation is an important image pro-
cessing algorithm which hashes and aggregates pixels fnem t
continuous stream of data into a smaller number of bins. &Vhil
address computation is SIMD friendly, SIMDification of thggae-
gation, however, requires hardware support for conflicectain,
currently not available on modern architectures. The acpatiern
is irregular and hence SIMD is hard to exploit. Generally/tiu
threading of histogram requires atomic operation suppbidw-
ever, there are several parallel implementations of hiatagvhich
use privatization. Typically, private histograms can balento fit
into available on-die storage. However, the overhead dfdied
the private histograms is high, which becomes a major betle
for highly parallel architectures.

14. Bilat or bilateral filter is a common non-linear filter used in
image processing for edge-preserving smoothing opesatidhe
core computation has a combination of a spatial and an iityens
filter. The neighboring pixel values and positions are usetbtn-
pute new pixel values. It has high computational requiresand
the performance should scale linearly with increased fldpgical
image sizes are large; TLP/DLP can be exploited by dividhmgy t
pixels among threads and SIMD units. Furthermore, theed#ét
filter involves transcendental operations like computirgaments,
which can significantly benefit from fast math units.

3. TODAY'S HIGH PERFORMANCE COM-
PUTE PLATFORMS

In this section, we describe two popular high-performarma-c
pute platforms of today: (1) A CPU based platform with an In-
tel Core i7-960 processor; and (2) A GPU based platform with a
Nvidia GTX280 graphics processor.

3.1 Architectural Details

First, we discuss the architectural details of the two dectures,
and analyze the total compute, bandwidth and other architgc
features available to facilitate throughput computingli@pggions.

3.1.1 Intel Corei7 CPU

The Intel Core i7-960 CPU is the latest multi-threaded multi
core Intel-Architecture processor. It offefieur cores on the same
die running at a frequency of 3.2GHz. The Core i7 process@sco
feature an out-of-order super-scalar microarchitectwity newly
added 2-way hyper-threading. In addition to scalar unitg)g0
has 4-wide SIMD units that support a wide range of SIMD instru
tions [24]. Each core has a separate 32KB L1 for both indtust
and data, and a 256KB unified L2 data cache. All four coreseshar

memory. Table 2 provides the peak single-precision and ldeub
precision FLOPS for both scalar and SSE units, and also thle pe
bandwidth available per die.

3.1.2 Nvidia GTX280 GPU

The Nvidia GTX280 is composed of an array of multiproces-
sors (a.k.a. SM). Each SM has 8 scalar processing unitsmgnni
in lockstep, each at 1.3 GHz. The hardware SIMD structure is
exposed to programmers through thread warps. To hide memory
latency, GTX280 provides hardware multi-threading supjploat
allows hundreds of thread contexts to be active simultasigou
To alleviate memory bandwidth, the card includes variousluip
memories — such as multi-ported software-controlled 16K&8m
ory (referred to alocal shared bufférand small non-coherent read-
only caches. The GTX280 also has special functional urkitsthe
texture sampling unit, and math units for fast transceralager-
ations. Table 2 depicts the peak FLOPS and the peak bandefidth
the GTX286.

3.2 Implications for Throughput Computing

Applications

We now describe how the salient hardware features on thertwo a
chitectures differ from each other, and their implicati@rshrough-
put computing applications.

Processing Element Difference:The CPU coreis designed to
work well for a wide range of applications, including singleeaded
applications. To improve single-thread performance, tR&JCore
employs out-of-order super-scalar architecture to ekphsitruc-
tion level parallelism. Each CPU core supports scalar andDS|
operations, with multiple issue ports allowing for morertt@ne
operation to be issued per cycle. It also has a sophistidatetth
predictor to reduce the impact of branch misprediction arfiope
mance. Therefore, the size and complexity of the CPU corigslim
the number of cores that can be integrated on the same die.

In comparison, the processing element for GBUSM trades off
fast single thread performance and clock speed for higtutiro
put. Each SM is relatively simple. It consists of a singlelfetinit
and eight scalar units. Each instruction is fetched andwggedn
parallel on all eight scalar units over four cycles for 32adate-
ments (a.k.a. avarp). This keeps the area of each SM relatively
small, and therefore more SMs can be packed per die, as cechpar
to the number of CPU cores.

Cache size/Multi-threading: CPU provides caches and hardware
prefetchers to help programmers manage data implicitlg. cHthes
are transparent to the programmer, and capture the moseifnédy
used data. If the working set of the application can fit int ¢in-
die caches, the compute units are used more effectively. ks a
sult, there has been a trend of increasing cache sizes intgears.
Hardware prefetchers provide additional help to reduce angia-
tency for streaming applications. Software prefetch uettons are
also supported to potentialtgducethe latency incurred with irreg-
ular memory accesses. In contrast, GPU provides for a large n
ber of light-weight threads to hide memory latency. E&can
support up to 32 concurrent warps per multi-processor.eSifiche
threads within a warp execute the same instruction, the svairg
switched out upon issuing memory requests. To capture tegpea
access patterns to the same data, GTX280 provides for a &l lo
storages (shared buffer, constant cache and texture cadie}ize

Iwe view 8 scalar units as SIMD lanes, hence 8-element wide
SIMD for GTX280.

2The peak single-precision SIMD Flops for GTX280 is 311.1 and

an 8MB L3 data cache. The Core i7 processor also features anijncreases to 933.1 by including fused multiply-add and atipiyl

on-die memory controller that connects to three channeBQiR

operation which can be executed in SFU pipeline.

Num. | Frequency Num. BW SP SIMD | DP SIMD Peak SP Scalar Peak SP SIMD | Peak DP SIMD
PE (GHz) Transistors| (GB/sec) width width FLOPS (GFLOPS)| Flops (GFLOPS)| Flops (GFLOPS)
Core i7-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 1 116.6 311.1/933.1 77.8

Table 2: Core i7 and GTX280 specifications. BW: local DRAM bawlwidth, SP: Single-Precision Floating Point, DP: Double-Recision
Floating Point.

of the local shared buffer is just 16KB, and much smaller ttien
cache sizes on CPUs.

Bandwidth Difference: Core i7 provides a peak external mem-
ory bandwidth of 32 GB/sec, while GTX280 provides a bandvidt
of around 141 GB/sec. Although the ratio of peak bandwidth is
pretty large £4.7X), the ratio of bytes per flop is comparatively
smaller ~1.6X) for applications not utilizing fused multiply add
in the SFU.

Other Differences: CPUs provide for fast synchronization op-
erations, something that is not efficiently implemented dUS.
CPUs also provide for efficient in-register cross-lane Slbfier-
ations, like general shuffle and swizzle instructions. Gndther Figure 1: Comparison between Core i7 and GTX280 Perfor-
hand, such operations are emulated on GPUs by storing the dat mance.

into the shared buffer, and loading it with the appropridtefite
pattern. This incurs large overheads for some throughpupot-
ing applications. In contrast, GPUs provide support fohgds-
catter instructions from memory, something that is not igffity
implemented on CPUs. Gather/Scatter operations are iagort
to increase SIMD utilization for applications requiringcass to
non-contiguous regions of memory to be operated upon in &5IM
fashion. Furthermore, the availability of special funatimits like
texture sampling unit and math units for fast transcendédips
speedup throughput computing applications that spend stasub
tial amount of time in these operations.

Normalized to Core i7
o B, N W~ U1 O
,

FFT
RC
Hist
Bilat

=
o
\

Gmean J_'_'_l

SGEMM
MC
Convol
SAXPY
LBM
Solv
SpMV
GJK

Search

(a) Relative Performace

[1, 8, 2, 34], respectively. For the evaluationsSSSSEMM, SpMV

and FFT on Core i7, we used Intel MKL 10.0. Table 3 shows
the performance of throughput computing kernels on Coreni¥ a
GTX280 processor with the appropriate performance metows

in the caption.To the best of our knowledge, our performance num-
bers are at least on par and often better than the best puidish
data. We typically find that the highest performance is achieved
when multiple threads are used per core. For Core i7, thepeest
formance comes from running 8 threads on 4 cores. For GTX280,
while the maximum number of warps that can be executed on one
GPUSMis 32, a judicious choice is required to balance the ben-
efit of multithreading with the increased pressure on regssand
on-chip memory resources. Kernels are often run with 4 to®sva
per core for best GPU performance.

4. PERFORMANCE EVALUATIONS ON
CORE I7 AND GTX280

This section evaluates the performance of the throughput co
puting kernels on the Core i7-960 and GTX280 processors iand a

alyzes the measured results. .
4.2 Performance Comparison

4.1 MethOdc’lOgy Figure 1 shows the relative performance between GTX280 and

We measured the performance of our kernels on (1) a 3.2GHz Core i7 processors when data transfer time for GTX280 is owt ¢
Core i7-960 processor running the SUSE Enterprise Servepil sidered. Our data shows that GTX280 only has an average ¥f 2.5
erating system with 6GB of PC1333 DDR3 memory on an Intel performance advantage over Core i7 in the 14 kernels teStely.
DX58S0O motherboard, and (2) a 1.3GHz GTX280 processor (an GJK achieves a greater than 10X performance gap due to the use of
eVGA GeForce GTX280 card with 1GB GDDR3 memory) in the the texture sampleSort andSolv actually perform better on Core
same Core i7 system with Nvidia driver version 19.180 and the i7 . Our results are far less than previous claims like the 80X
CUDA 2.3 toolkit. ference in pricing European options using Monte Carlo ne&{ef

Since we are interested in comparing the CPU and the GPU ar-the 114X difference in LBM [45], the 40X difference in FFT [21

chitectures at the chip level to see if any specific archirectea-
tures are responsible for the performance difference, dedai in-

clude the data transfer time for GPU measurements. We agbeme

throughput computing kernels are executed in the middletluro
computations that create data in GPU memory before the kexne

nificantly degrade performance as reported by Datta in [Tle
GPU results as presented here are an upper bound of whatewill b performed on the CPU and GPU. Many studies compare optimized

seen in actual applications for these algorithms.

optimized most of the kernels individually for each platforFor
some of the kernels, we have used the best available imptemen similar to ours. Section 5.1 discusses the necessary gefoysi-

tation that already existed. Specifically, evaluationS&EMM,
SpMV, FFT andMC on GTX280 have been done using code from forms.

the 50X difference in sparse matrix vector multiplicatig?] and

the 40X difference in histogram computation [53], etc.
There are many factors that contributed to the big diffeedve-

tween previous reported results and ours. One factor is @Rat

and GPU are used in the comparison. Comparing a high perfor-

ecution and use data generated by the kernel in GPU memary. Fo mance GPU to a mobile CPU is not an optimal comparison as their

applications that do not meet our assumption, transfer ¢emnesig-

considerations for operating power, thermal envelop aliahiéty
are totally different. Another factor is how much optimipat is

GPU code to unoptimized CPU code and resulted in large differ
For both CPU and GPU performance measurements, we haveence. Other studies which perform careful optimization€ R
and GPU such as [27, 39, 40, 43, 49] report much lower speedup

mizations for improving performance for both CPU and GPU-pla

Apps. SGEMM | MC | Conv | FFT | SAXPY | LBM | Solv | SpMV | GJK | Sort | RC | Search| Hist | Bilat
Core i7-960 94 0.8 | 1250 | 71.4 16.8 85 103 4.9 67 250 5 50 1517 83
GTX280 364 1.4 | 3500 | 213 88.8 426 52 9.1 1020 | 198 | 8.1 90 2583 | 475

Table 3: Raw performance measured on the two platforms. Fronthe left, metrics are Gflops/s, billion paths/s, million piels/s,
Gflops/s, GB/s, million lookups/s, FPS, Gflops/s, FPS, mitlh elements/s, FPS, million queries/s, million pixels/s, ifion pixels/s.

4.3 Performance Analysis

In this section, we analyze the performance results andifgden
the architectural features that contribute to the perfoweaf each
of our kernels. We begin by first identifying kernels that poeely
bounded by one of the two fundamental processor resourcewl- b
width and compute. We then identify the role of other ardtiteal
features such as hardware support for irregular memorysaese
fast synchronization and hardware for performing fixed fiamc
computations (such as texture and transcendental mathtopes)
in speeding up the remaining kernels.

4.3.1 Bandwidth

Every kernel requires some amount of external memory band-

width to bring data into the processor. The impact of externa
memory bandwidth on kernel performance depends on tworfacto
(1) whether the kernel has enough computation to fully zgithe

The reason for not achieving the peak compute ratio is becaus
GPUs do not achieve peak efficiency in the presence of shared
buffer accesses. \olkov et al. [48] show that GPUs obtairy onl
about 66% of the peak flops even #GEMM (known to be com-
pute bound). Our results match their achieved performastbest
MC uses double precision arithmetic, and hence has a perfeeman
ratio of 1.8X, close to the 1.5X double-precision (DP) floiaa
Bilat utilizes fast transcendental operations on GPUs (destribe
later), and has a GTX280 to Core i7 performance ratio betan t
5X. The algorithm used foSort critically depends on the SIMD
width of the processor. A typical radix sort implementation
volves reordering data involving many scalar operatiomsédgfer
management and data scatters. However, scalar code igierffi
on GPUs, and hence the best GPU sort code uses a SIMD friendly
split primitive. This has many more operations than thessaadde
- and is consequently.25X sloweron the GTX280 than on Core

memory accesses; and (2) whether the kernel has a working set Seven of our fourteen kernels have been identified as bounded

that fits in the on-die storages (either cache or buffersp dtour
kernels,SAXPY and LBM have large working sets that require
global memory accesses without much compute on the loadad da
- they arepurely bandwidth boundThese kernels will benefit from
increased bandwidth resources. The performance ratiahése
two kernels between GTX280 and Core i7 are 5.3X and 5X re-
spectively. These results are inline with the ratio betwientwo
processors’ peak memory bandwidth (which is 4.7X).

SpMV also has a large working set and very little compute.
However, the performance ratio for this kernel between GAX2
and Core i7 is 1.9X, which is about 2.3X lower than the ratio of
peak bandwidth between the two processors. This is due fathe
that the GTX280 implementation of SpMV keeps both vector and
column index data structures in GDDR since they do not fit & th
small on-chip shared buffer. However, in the Core i7 implame
tation, the vectors always fit in cache and the column indexrfit
cache for about half the matrixes. On average, the GPU baltialwi
requirement for SpMV is about 2.5X the CPU requirement. As th
result, although the GTX280 has 4.7X more bandwidth thareCor
i7 , the performance ratio is only 1.9X.

Our other kernels either have a high compute-to-bandwatib r
or working sets that fit completely or partially in the on-dterage,
thereby reducing the impact of memory bandwidth on perforcea
These categories of kernels will be described in later gesti

4.3.2 Compute Flops

The computational flops available on a processor depenahglesi
thread performance, as well as TLP due to the presence ofpfault
cores, or DLP due to wide vector (SIMD) units. While most &ppl
cations (except the bandwidth-bound kernels) can benefit fm-
proved single-thread performance and thread-level mdisath by
exploiting additional cores, not all of them can exploit S)wvell.
We identify SGEMM, MC, Conv, FFT andBilat as being able to
exploit all available flops on both CPU and GPU architectuég-
ure 1 shows tha8GEMM, Conv andFFT have GTX280-to-Core
i7 performance ratios in the 2.8-4X range. This is close 36X
single-precision (SP) flop ratio of the GTX280 to Core i7 dexdt
tures (see Table 2), depending on whether kernels caneutilsed
multiply-adds or not.

by compute or bandwidth resources. We now describe the other
architectural features that have a performance impact @ottner
seven kernels.

4.3.3 Cache

As mentioned in the section 4.3.1, on-die storage can alievi
external memory bandwidth pressure if all or part of the &ksn
working set can fit in such storage. When the working set fits in
cache, most kernels are compute bound and the performatice wi
scale with increasing compute. The five kernels that we ifjent
as compute bound have working sets that can be tuned to fit in
any reasonably sized cache without significant loss of peidoce.
Consequently, they only rely on the presence on some kina-of o
chip storage and are compute bound on both CPUs and GPUs.

There are kernels whose working set cannot be easily tuned to
any given cache size without loss of performance. One exampl
is radix sort, which requires a working set that increaseh thie
number of bits considered per pass of the sort. The number of
passes over the data, and hence the overall runtime, desraas
we increase cache size. On GPUs with a small local buffer of
16 KB shared among many threads, we can only sort 4 bits in
one pass - requiring 8 passes to sort 32-bit data. On Cored7, w
can fit the working set of 8 bits in L2 cache; this only requides
passes - a 2X speedup. This contributeStot on Core i7 being
1.25X fasterthan GTX280. Another interesting example is index
tree searchearch. Here, the size of the input search tree de-
termines the working set. For small trees that fit in cacharcée
on CPUs is compute bound, and in fact2X faster than GPU
search. For larger trees, search on CPUs is bandwidth bamnad,
becomesl.8X slowerthan GPUs. GPU search, in contrast, is al-
ways compute bound due to ISA inefficiencies (i.e., the uihava
ability of cross-lane SIMD operations).

Another important working set characteristic that deteesiker-
nel performance is whether the working set scales with timelbsu
of threads or is shared by all threads. Kernels 8iGEMM, MC,
Conv, FFT, Sort, RC, andHist have working sets that scale with
the number of threads. These kernels require larger worseétg
for GPUs (with more threads) than CPUs. This may not have any
performance impact if the kernel can be tiled to fit into a eachan

arbitrary size (e.gSGEMM andFFT). However, tiling can only
be done to an extent fdRC. ConsequentlyRC becomes band-
width bound on GPUs, which have very small amount of on-die
storages, but is not bandwidth bound on CPUs (instead béding a
fected by gathers/scatters, described later), and therpsathce ra-

tio on GTX280 to Core i7 is only 1.6X, far less than bandwidtid a
compute ratios.

4.3.4 Gather/Scatter

Kernels that are not bandwidth bound can benefit with inéngas
DLP. However, the use of SIMD execution units places ret#ns
on kernel implementations, particularly in the layout of tiata.
Operands and results of SIMD operations are typically meguio
be grouped together sequentially in memory. To achieve és¢
performance, they should be placed into an address-alignec
ture (for example for 4-wide single-precision SIMD, the tesr-
formance will be when the data is 16-byte aligned). If thexdites
not meet these layout restrictions, programmers must cbtive
data layout of kernels. This generally involves gathettecap-
erations, where operands are gathered from multiple lmesi@nd
packed together into a tight grouping, and results areeseatfrom
a tight grouping to multiple locations. Performing gatbeatter in
software can be expensiveThus, efficient hardware support for
gather/scatter operations is very important.

A number of our kernels rely on the availability of gatheafser
operations. For exampl&JK spends a large fraction of its run-
time in computing the support map. This requires gatherimgg t
object data (vertices/edges) of multiple objects into a SIMg-
ister to facilitate fast support map execution. Anothemepke is
RC, which requires gathering volume data across the rays. Fre-
quent irregular memory accesses result in large numbertbega
operations. Up to 10% of the dynamic instructions are gatker
quests.

On Core i7, there is no hardware gather/scatter supportsézon
quently, GJK andRC do not utilize SIMD efficiently. For exam-
ple, RC sees very incremental benefit from SSE between 0.8X and
1.2X, due to large overhead of software gatl@iK also sees min-
imal benefits from SSE. On GTX280, support for gather/scate
offered for accesses to the local buffer and GDDR memoryal.oc
shared buffer supports simultaneous gather/scattersesesmul-
tiple banks. The GDDR memory controller coalesces requests
the same line to reduce the number of gather/scatter accédsis
improved gather/scatter support leads to an improveme@tI&f
performance on the GTX280 over the Core i7 . However, gath-
er/scatter support only has a small impact (of 1.2X)R@ per-
formance because the accesses are widely spread out to ypemor
requiring multiple GDDR accesses even with coalescing supp
it therefore becomes limited by GPU memory bandwidth. Cense
quently, the ratio of GTX280 to Core i7 performanceRE is only
1.6X, slightly better than the scalar flop ratio of 1.5X.

b

4.3.5 Reduction and Synchronization

Throughput computing kernels achieve high performanaaittn
thread-level (multiple cores and threads) and/or datet@vide
vector) parallelism. Reduction and synchronization ame dywera-
tions that do not scale with increasing thread count and-leatd
parallelism. Various optimization techniques have beappsed
to reduce the need of reduction and to avoid synchronizatiomv-
ever, the synchronization overhead is still dominant inséernels
such adist andSolv, and will become an even bigger performance

SFor 4-wide SIMD on Core i7, a compiler generated gather se-
quence will take 20 instructions and even a hand optimizedras
bly sequence will still take 13 instructions.

bottleneck as the number of cores/threads and the SIMD \iidth
crease.

The performance ofist is mainly limited by atomic updates.
Although Core i7 supports a hardware lock increment insimac
28% of the total run-time is still spent on atomic updatesomic
update support on the GTX280 is also very limited. Conseilyyen
a privatization approach where each thread generates khisea
togram was implemented for both CPU and GPU. However, this
implement does not scale with increase core count becaage-th
duction overhead increases with the number of cores. Also, t
lack of cross-SIMD lane operations like reduction on GPUsl¢e
to large instruction overhead on GTX280. Thhst is only 1.8X
faster on GTX280 than on Core i7, much lower than the compute
and bandwidth ratios~5X). As was mentioned in Section 2, map-
ping Hist to SIMD requires support for conflict detection which
is not currently available on modern architectures. Oullyaig
of ideal conflict detection hardware, capable of detectimgudpi-
trary number of conflicting indices within the same SIMD ¢t
improves histogram computation by up to 3X [29].

In Solv, a batch of independent constraints is executed simul-
taneously by multiple cores/threads, followed by a barbiefiore
executing the next batch. Since resolving a constraintiregjonly
small amount of computation (on the order of several hundred
structions), the task granularity is small. As a result,gkecution
time is dominated by the barrier overhead. On Core i7, barrie
are implemented using atomic instructions. While it is [ass
to implement barrier operations entirely on GPU [48], thigpie-
mentation does not guarantee that previous accessesewveltl bf
memory hierarchy have completed. CPUs provide a memory con-
sistency model with the help of a cache coherence protocaé D
to the fact that cache coherence is not available on today9s;
assuring memory consistency between two batches of camstra
requires launching the second batch from the CPU host, which
curs additional overhead. As a result, the barrier exeguiime of
GTX280 is order of magnitude slower than on Core i7, resgitin
in an overall1.9X slow downin performance for GTX280 when
compared to Core i7 for the constraint solver.

4.3.6 Fixed Function

Bilat consists oftranscendental operatioriike computing ex-
ponential and power functions. However, for image procegsi
purpose, high accuracy version of these functions are ngsae
sary. Current CPUs use algebraic expressions to evalueiieesu
pressions up to the required accuracy, while modern GPUsd&o
hardware to speedup the computation. On Core i7 , a larg@®port
of run-time (around 66%) is spent in transcendental contiouia
On GTX280, due to the presence of fast transcendental heediva
achieves a 5.7X performance ratio compare to Core i7 (muaglke mo
than the peak compute ratio of around 3X). Speeding up tesAsc
dental on Core i7 (for example, as on GTX280) would improve
Bilat performance by around 2X, and the resultant GPU-to-CPU
performance ratio would be around 3X, which is closer to tsakp
compute ratio.MC is another kernel that would benefit from fast
transcendental on CPUs.

Modern GPUs also provide for other fixed function units like t
texture sampling unit, which is a major component of rendgél-
gorithms. However, by reducing the linear-time supporproam-
putation to constant-time texture lookugaJK collision detection
algorithm can exploit théast texture lookup capability of GPUs,
resulting in an overall 14.9X speedup on GTX280 over Core i7.

5. DISCUSSION

The platform-specific software optimization is critical fudly

utilize compute/bandwidth resources for both CPUs and GRNés
first discuss these software optimization techniques amdeda
number of key hardware architecture features which play a ma
jor role in improving performance of throughput computingris
loads.

5.1 Platform Optimization Guide

Traditionally, CPU programmers have heavily relied on éas-
ing clock frequencies to improve performance and have ntt op
mized their applications to fully extract TLP and DLP. Howev
CPUs are evolving to incorporate more cores with wider SIMD
units, and it is critical for applications to be paralleliz® exploit
TLP and DLP. In the absence of such optimizations, CPU imple-
mentations are sub-optimal in performance and can be oafers
magnitude off their attainable performance. For example pre-
viously reported. BM number on GPUs claims 114X speedup over
CPUs [45]. However, we found that with careful multithrezgli
reorganization of memory access patterns, and SIMD opéimiz
tions, the performance on both CPUs and GPUs is limited by-mem
ory bandwidth and the gap is reduced to only 5X. Now we hidtilig
the key platform-specific optimization techniques we ledrfrom
optimizing the throughput computing kernels.

CPU optimization: First, most of our kernels can linearly scale
with the number of cores. Thus multithreading provides 3p&X
formance improvement on Core i7. Second, CPUs heavily nely o
caches to hide memory latency. Moreover, memory bandwidth o

performance benefits, it also incurs high area overheadedsing
SIMD width also provides higher performance, and is mora-are
efficient. Our observation is confirmed by the trend of insieg
SIMD width in computing platforms such as Intel architeetpro-
cessor with AVX extension [23], Larrabee [41] and next gatien
Nvidia GT GPUs [30]. Increasing SIMD width will reach a poaft
diminishing return. As discussed in Section 4.3.4, irraguhem-
ory accesses can significantly decrease SIMD efficiency.coke
to fix this would offset any area benefit offered by increadd3I
width. Consequently, the future throughput computing pssor
should strike the right balance between SIMD and MIMD execu-
tion.

With the growth of compute flops, high memory bandwidth is
critical to achieve scalable performance. The current Gleids-
age high-end memory technology (e.g., graphics DDR or GDDR)
to support high compute throughput. This solution limits them-
ory capacity available in a GPU platform to an amount muchligma
than the capacities deployed in CPU-based servers todahefu
more, increasing memory bandwidth to match the computeihas p
count and power limitations. Instead, one should explorerging
memory technologies such as 3D-stacking [12] or cache cesapr
sion [5].

Large cache As shown in Section 4.3.3, caches provide signif-
icant benefit for throughput computing applications. Anrepée
proof of our viewpoint is that GTX280 has limited on-die memo
ries and around 40% of our benchmarks will lose the oppastuai

CPUs is low as compared to GPUs. Blocking is one technique benefit from increasing compute flops. The size of the on-die s
which reduces LLC misses on CPUs. Programmers must be aware2ge should match the working set of target workloads for mara

of the underlying cache hierarchy or use auto-tuning tepkes to
obtain the best performing kernels [18, 35]. Many of our késn
SGEMM, FFT, SpMV, Sort, Search andRC use cache blocking.
Sort, for best performance, requires the number of bits per mass t
be tuned so that its working set fits in cacReC blocks the volume
to increase 3D locality between rays in a bundle. We obsédwae t
cache blocking improves the performanceéoft andSearchby 3-
5X. Third, we found that reordering data to prevent irregai@m-
ory accesses is critical for SIMD utilization on CPUs. Theima
reason is that CPUs do not have gather/scatter sugpearchper-
forms explicit SIMD blocking to make memory accesses regula
Solv performs a reordering of the constraints to improve memory
access patterns. Other kernels, suchilgl andRC convert some
of the data structures from array-of-structure to striesnfrarray
format to completely eliminate gather operations. For epanthe
performance oEBM improves by 1.5X from this optimization.

GPU optimization: For GPUs, we found that global inter-thread
synchronization is very costly, because it involves a Ketereni-
nation and new kernel call overhead from the hést minimizes
global synchronization by privatizing histogramSolv also per-
forms constraint reordering to minimize conflicts amongghebr-
ing constraints, which are global synchronization poidtaother
important optimization for GPUs was the use of the local stiar
buffer. Most of our kernels use the shared buffer to reducel-ba
width consumption. Additionally, our GPU sort uses the fheit
buffer memory is multi-banked to enable efficient gathewsters
of data.

5.2 Hardware Recommendations

In this section we capitalize on the learning from Sectidtd.
derive a number of key processor features which play majerino
improving performance of throughput computing applicasio

High compute flops and memory bandwidth High compute
flops can be achieved in two ways - by increasing core coumt-or i
creasing SIMD width. While increasing core count providigghbr

efficiency. Some workloads have a working set that only ddpen
on the dataset and does not change with increasing core oount
thread count. For today’s datasets, 8MB on-die storageffs su
cient to eliminate 90% of all accesses to external memorythAs
data footprint is likely to increase tomorrow, larger ore-dtorage
is necessary for these workloads to work well. Other worttoa
have working set scales with the number of processing trdzat
these workloads, one should consider their per thread @stdr-
age size requirement. For today’s dataset, we found mosreed
working sets can be as small as a few KB to as large as 256KB. The
per thread working sets are unlikely to change in the futsrénay
are already set to scale with increased thread count.
Gather/Scatter. 42% percent of our benchmarks can exploit
SIMD better with an efficient gather/scatter support. Oomsgation-
based analysis projects a 3X performance benefiSfavV and
RC with idealized gather operations. Idealized gather opmrat
can simultaneously gather all elements into SIMD registethe
same amount of time to load one cache line. This may require si
nificant hardware and be impractical to build as it may rezjair
large number of cache ports. Therefore, this representagper
bound of the gather/scatter hardware potential. Cheapamal
tives exist. One alternative is to use multi-banking - anrapph
taken by GTX280. On GTX280, its local shared memory allows
16 simultaneous accesses to 16 banks in a single cycle, @ga$on
there are no bank conflicts. However, this data structurgpbce
ity managed by the programmer. Another alternative is t@ta
advantage of cache line locality by gathering - i.e. to ettedl el-
ements required the same gather from a single load of théreelqu
cache line. This approach requires shuffle logic to reoiueidata
within a cache line before writing into the target regist&huf-
fle logic is already available in general-purpose CPUs fompe
tation operations within SIMD registers. Our analysis shahat
many throughput computing kernels have large amounts dfecac
line locality. For exampleSolv accesses on average 3.6 cache
lines within each 8-wide gather reque®C accesses on average

5 cache lines within each 16-wide gather request. Lasttyréu
throughput computing processors should provide improay-e
of-programming support for gather/scatter operations.

Efficient synchronization and cache coherenceCore i7 al-
lows instructions like increment and compare&exchangeaeeh
an atomic lock prefix. GTX280 also has support for atomic aper
tions, but only through device memory. In both CPUs and GPUs,
the current solutions are slow, and more importantly do oates
well with respect to core count and SIMD width. Thereforesit
critical to provide efficient synchronization solutionstive future.

Two types of synchronizations are common in throughput com-
puting kernels: reductions and barriers. First, redustishould
provide atomicity between multiple threads and multiplé1BlI
lanes. For examplédist loses up to 60% of SIMD efficiency be-
cause it cannot handle inter-SIMD-lane atomicity well. \&leam-
mend hardware support for atomic vector read-modify-wajer-
ations [29], which enables conflict detection between Slibek
as well as atomic memory accesses across multiple thrdags, t
achieving 54% performance improvement on four cores with 4-
wide SIMD. Second, faster barrier and coherent caches becom
more important as core count increases and task size geligisma
For example, irSoly, the average task size is only about 1000 cy-
cles, while a barrier takes several hundred cycles on CPUds an

50]. However, these efforts concentrate on (1) overcomanglp
lel scalability bottlenecks, and (2) demonstrating matire perfor-
mance over a single-core of the same type.

General-purpose computation on graphics hardware (GPGPU)
has been an active topic in the graphics community. Extensork
has recently been published on GPGPU computation; thisnis su
marized well in [3, 33]. A number of studies [8, 9, 19, 20, 2%, 2
27, 34, 40, 43, 53] discuss similar throughput computing&ksras
in this paper. However, their focus is to map non-graphidiegp
tions to GPUs in terms of algorithms and programming models

Analytical models of CPUs [51] and GPUs [22] have also been
proposed. They provide a structural understanding of ginput
computing performance on CPUs and GPUs. However, (1) each
discusses either CPUs or GPUs only, and (2) their modelseaye v
simplified. Further, they try to verify their models againsal sil-
icons, rather than to provide in-depth performance corsparbe-
tween CPUs and GPUs.

This paper provides an architectural analysis of CPUs andsGP
Instead of simply showing the performance comparison, weyst
how architectural features such as core complexity, caadlfffef
design, and fixed function units impact throughput computvork-
loads. Further, we provide our recommendation on what tchi
ture features to improve future throughput computing aechires.

several micro-seconds on GPUs. We recommend hardware sup-To the best of our knowledge, this is the first paper that etaki

port for fast barriers to amortize small task size and cade ¢
herence to guarantee memory consistency between ban@ain
tions. In addition, we also believe that hardware accederé&isk
queues will improve synchronization performance even rnie8eéo

to 109% [28]).

Fixed function units: As shown in Section 4.3.@ilat can be
sped up by 2X using fast transcendental operations. Tezame
pling units significantly improve the performance®§K. In fact,

a large class of image processing kernels (i.e., video éngiuf-
coding) can also exploit such fixed function units to ac@kespe-
cialized operations at very low area/power cost. LikewiSere

i7 introduced a special purpose CRC instruction to acceletee
processing of CRC computations and the upcoming 32nm wversio
will add encryption/decryption instructions that accaterkey ker-
nels by 10X [36]. Future CPUs and GPUs will continue this dren
of adding key primitives for developers to use in accelamathe
algorithms of interest.

6. RELATED WORK

Throughput computing applications have been identifiednas o
of the most important classes of future applications [6, 18,
44]. Chen et al. [13] describe a diverse set of emerging appli
cations, called RMS (Recognition, Mining, and Synthesisykw
loads, and demonstrate that its core kernel functions éxiap-
plications across many different domains. The PARSEC bench
mark discusses emerging workloads and their characteyifir
CMPs [10]. The Berkeley View report illustrates 13 kernelsle-
sign and evaluate throughput computing models [6]. The BUC
Parboil benchmark tailors to capture the strengths GPUs 44
this paper, we share the vision that throughput computirnigsig-
nificantly impact future computing paradigms, and analyzepter-
formance of a representative subset of kernels from thesdaeal
suites on common high-performance architectures.

Multi-core processors are a major architectural trend daycs
general-purpose CPUs. Various aspects of multi-core teathies
such as cache/memory hierarchy [11], on-chip intercondéeind
power management [37] have been studied. Many paralleklern
have also been ported and optimized for multi-core systenrag
of which are similar to the kernels discussed in this papgy 17,

CPUs and GPUs from the perspective of architecture design. |
addition, this paper also presents a fair comparison betvyee-
formance on CPUs and GPUs and dispels the myth that GPUs are
100x-1000x faster than CPUs for throughput computing Kerne

7. CONCLUSION

In this paper, we analyzed the performance of an important se
of throughput computing kernels on Intel Core i7-960 anddivi
GTX280. We show that CPUs and GPUs are much closer in perfor-
mance (2.5X) than the previously reported orders of madaitlif-
ference. We believe many factors contributed to the reddegye
gap in performance, such as which CPU and GPU are used and
what optimizations are applied to the code. Optimizatian<PU
that contributed to performance improvements are: mu##ding,
cache blocking, and reorganization of memory accessedftbS
ification. Optimizations for GPU that contributed to perfance
improvements are: minimizing global synchronization astg
local shared buffers are the two key techniques to improviope
mance. Our analysis of the optimized code on the current CPU
and GPU platforms led us to identify the key hardware archite
features for future throughput computing machines — highmate
and bandwidth, large caches, gather/scatter supportieeffisyn-
chronization, and fixed functional units. We plan to perfqouwer
efficiency study on CPUs and GPUs in the future.

8. REFERENCES

[1] CUDA BLAS Library. http://developer.download.nvid@m/
compute/cuda/2_1/toolkit/docs/ CUBLAS_Library_2.1,f#008.
[2] CUDA CUFFT Library. http://developer.download.nvadcom/
compute/cuda/2_1/toolkit/docs/ CUFFT_Library 2.1,2{f08.
[3] General-purpose computation on graphics hardwarg:/kgpgpu.org/, 2009.
[4] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. Hpasti. Achieving
predictable performance through better memory contrpliecement in
many-core cmps. IISCA '09: Proceedings of the 36th annual international
symposium on Computer architectu209.
[5] A.R. AlameldeenUsing compression to improve chip multiprocessor
performancePhD thesis, Madison, WI, USA, 2006. Adviser-Wood, David A.
K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.théusls, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, &dA. Yelick. The
landscape of parallel computing research: A view from besk@echnical
Report UCB/EECS-182006.

(6]

(7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23

[24
[25]

[26]

[27]

[28]

[29]

[30]

D. H. Bailey. A high-performance fft algorithm for veato
supercomputers-abstract. Proceedings of the Third SIAM Conference on
Parallel Processing for Scientific Computingpge 114, Philadelphia, PA, USA,
1989. Society for Industrial and Applied Mathematics.

N. Bell and M. Garland. Implementing sparse matrix-egctultiplication on
throughput-oriented processors.3€ '09: Proceedings of the 2009 ACM/IEEE
conference on Supercomputjrp09.

C. Bennemann, M. Beinker, D. Egloff, and M. Gauckler. &faps for games
and derivatives pricing. http://quantcatalyst.com/dmad.php?
file=DerivativesPricing.pdf.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSECdbenark suite:
characterization and architectural implicationsPiRCT '08: Proceedings of
the 17th international conference on Parallel architeesiand compilation
techniquespages 72—-81, New York, NY, USA, 2008. ACM.

S. Biswas, D. Franklin, A. Savage, R. Dixon, T. Sherwcaad F. T. Chong.
Multi-execution: multicore caching for data-similar exéions.SIGARCH
Comput. Archit. News37(3):164-173, 2009.

B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, LnjaG. H. Loh,

D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, pléy

S. Shankar, J. Shen, and C. Webb. Die stacking (3d) micridecthre. In
MICRO 39: Proceedings of the 39th Annual IEEE/ACM Inte rowadil
Symposium on Microarchitectyrpages 469-479, Washington, DC, USA,
2006. IEEE Computer Society.

Y. K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. KinK@nar, V. W. Lee,
A. D. Nguyen, M. Smelyanskiy, and M. Smelyanskiy. Convergeof
recognition, mining, and synthesis workloads and its iogilons.Proceedings
of the IEEE 96(5):790-807, 2008.

Y.-K. Chen, J. Chhugani, C. J. Hughes, D. Kim, S. KumaWWLee, A. Lin,
A. D. Nguyen, E. Sifakis, and M. Smelyanskiy. High-performa physical
simulations on next-generation architecture with mangsdntel Technology
Journal 11, 2007.

J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog;K(.Chen,

A. Baransi, S. Kumar, and P. Dubey. Efficient implementatibsorting on
multi-core simd cpu architecturBVLDB, 1(2):1313-1324, 2008.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimizatiordauto-tuning on
state-of-the-art multicore architectures 3@ '08: Proceedings of the 2008
ACM/IEEE conference on Supercomputipgges 1-12, Piscataway, NJ, USA,
2008. IEEE Press.

F. Franchetti, M. Puschel, Y. Voronenko, S. Chellagpad J. M. F. Moura.
Discrete Fourier transform on multicol&EE Signal Processing Magazine,
special issue on “Signal Processing on Platforms with MuéiCores”,
26(6):90—102, 2009.

M. Frigo, Steven, and G. Johnson. The design and impieatien of fftw3. In
Proceedings of the IEEEolume 93, pages 216-231, 2005.

L. Genovese. Graphic processing units: A possible anssvHPC. Indth
ABINIT Developer Worksh2009.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Grasgert: high
performance graphics co-processor sorting for large da@management. In
SIGMOD '06: Proceedings of the 2006 ACM SIGMOD internationa
conference on Management of dgpages 325-336, NY, USA, 2006. ACM.
N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and\anferdelli. High
performance discrete fourier transforms on graphics msms. InNSC '08:
Proceedings of the 2008 ACM/IEEE conference on Supercangppages
1-12, Piscataway, NJ, USA, 2008. IEEE Press.

S. Hong and H. Kim. An analytical model for a gpu architee with
memory-level and thread-level parallelism awaren8§SARCH Comput.
Archit. News 37(3):152-163, 2009.

Intel Advanced Vector Extensions Programming Refeeen

Intel. SSE4 Programming Reference. 2007.

C. Jiang and M. Snir. Automatic tuning matrix multigiton performance on
graphics hardware. IRACT '05: Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Teghes pages
185-196, Washington, DC, USA, 2005. IEEE Computer Society.

J. R. Johnson, R. W. Johnson, D. Rodriquez, and R. TefimA methodology
for designing, modifying, and implementing fourier tramsh algorithms on
various architecture€ircuits Syst. Signal Proces$(4):449-500, 1990.

C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen, @ldéwey, V. Lee,

S. Brandt, and P. Dubey. FAST: Fast Architecture Sensitiee Bearch on
Modern CPUs and GPUs. RCM SIGMOD 2010.

S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: architatsupport for
fine-grained parallelism on chip multiprocessorslSEA '07: Proceedings of
the 34th annual international symposium on Computer aechitre pages
162-173, New York, NY, USA, 2007. ACM.

S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugah J. Hughes,
C. Kim, V. W. Lee, and A. D. Nguyen. Atomic vector operatiomsahip
multiprocessors. IISCA '08: Proceedings of the 35th International
Symposium on Computer Architectupages 441-452, Washington, DC, USA,
2008. IEEE Computer Society.

N. Leischner, V. Osipov, and P. Sanders. Fermi Architec\White Paper, 2009.

[31]

[32]

[33]

[34]

[39]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

P. Lyman and H. R. Varian. How much information.
http://iwww?2.sims.berkeley.edu/research/projectsfauch-info-2003/, 2003.
NVIDIA. NVIDIA CUDA Zone. http://www.nvidia.com/obgct/
cuda_home.html, 2009.

Owens, D. John, Luebke, David, Govindaraju, Naga, idaMark, Kruger,
Jens, Lefohn, E. Aaron, Purcell, and J. Timothy. A surveyesfegal-purpose
computation on graphics hardwaf@omputer Graphics Forun26(1):80-113,
March 2007.

V. Podlozhnyuk and M. Harris. Monte Carlo Option Prigin

http://developer.download.nvidia.com/compute/cudldisebsite/projects/MonteCarlo

/doc/MonteCarlo.pdf.

M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. \¢&lBs Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.Jéhnson, and
N. Rizzolo. SPIRAL: Code generation for DSP transforfsceedings of the
IEEE, special issue on “Program Generation, Optimizatiand Adaptation’
93(2):232— 275, 2005.

R. Ramanathan. Extending the world.s most populargssar architecture.
Intel Whitepaper

K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motionefigrained power
management for multi-core systef8GARCH Comput. Archit. News
37(3):302-313, 2009.

R. Sathe and A. Lake. Rigid body collision detection be gpu. I'SIGGRAPH
'06: ACM SIGGRAPH 2006 Research postgrage 49, New York, NY, USA,
2006. ACM.

N. Satish, M. Harris, and M. Garland. Designing effitisarting algorithms for
manycore GPUs. ItPDPS pages 1-10, 2009.

N. Satish, C. Kim, J. Chhugani, A. Nguyen, V. Lee, D. Kiamd P. Dubey. Fast
Sort on CPUs and GPUs: A Case For Bandwidth Oblivious SIMD. S0 ACM
SIGMOD, 2010.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrda Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, Eh@nski, T. Juan,
and P. Hanrahan. Larrabee: a many-core x86 architecturasfeal computing.
ACM Trans. Graph.27(3):1-15, August 2008.

M. Silberstein, A. Schuster, D. Geiger, A. Patney, and.JOwens. Efficient
computation of sum-products on gpus through software-geshaache. In
Proceedings of the 22nd ACM International Conference ore&gmnputing
pages 309-318, June 2008.

M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, Dri@ean, D. Hanson,
P. Dubey, K. Augustine, D. Kim, A. Kyker, V. W. Lee, A. D. NguyeL. Seiler,
and R. A. Robb. Mapping high-fidelity volume rendering fordioal imaging
to cpu, gpu and many-core architectuleEE Trans. Vis. Comput. Graph.
15(6):1563-1570, 2009.

The IMPACT Research Group, UIUC. Parboil benchmarkesui
http://impact.crhc.illinois.edu/parboil.php.

J. Tolke and M. Krafczyk. TeraFLOP computing on a depkto with GPUs for
3D CFD. Ininternational Journal of Computational Fluid Dynamics
volume 22, pages 443-456, 2008.

N. Univ. of lllinois. Technical reference: Base opéngtsystem and extensions
, volume 2, 2009.

F. Vazquez, E. M. Garzon, J.A.Martinez, and J.J.FeileanThe sparse matrix
vector product on GPUs. Technical report, University of Atia, June 2009.
V. Volkov and J. Demmel. LU, QR and Cholesky Factoriaat using Vector
Capabilities of GPUs. Technical Report UCB/EECS-2008EBCS
Department, University of California, Berkeley, May 2008.

V. Volkov and J. W. Demmel. Benchmarking GPUs to tunesgelinear algebra.
In SC '08: Proceedings of the 2008 ACM/IEEE conference on $opguuting
pages 1-11, Piscataway, NJ, USA, 2008. IEEE Press.

S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, d. Demmel.
Optimization of sparse matrix-vector multiplication onenging multicore
platforms. InSC '07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputingpages 1-12, New York, NY, USA, 2007. ACM.

S. Williams, A. Waterman, and D. Patterson. Rooflineireightful visual
performance model for multicore architectur€®@mmun. ACM52(4):65-76,
2009.

W. Xu and K. Mueller. A performance-driven study of régiization methods
for gpu-accelerated iterative ct. Workshop on High Performance Image
Reconstruction (HPIRR009.

Z.Yang, Y. Zhu, and Y. Pu. Parallel Image ProcessingeéBam CUDA. In
International Conference on Computer Science and Soft&agineering
volume 3, pages 198-201, 2008.

