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Abstract—Half-precision matrix multiply has played a key role
in the training of deep learning models. The newly designed
Nvidia Tensor Cores offer the native instructions for half-
precision small matrix multiply, based on which Half-precision
General Matrix Multiply (HGEMM) routines are developed and
can be accessed through high-level APIs. In this paper, we, for
the first time, demystify how Tensor Cores on NVIDIA Turing
architecture work in great details, including the instructions
used, the registers and data layout required, as well as the
throughput and latency of Tensor Core operations. We further
benchmark the memory system of Turing GPUs and conduct
quantitative analysis of the performance. Our analysis shows
that the bandwidth of DRAM, L2 cache and shared memory
is the new bottleneck for HGEMM, whose performance is
previously believed to be bound by computation. Based on our
newly discovered features of Tensor Cores, we apply a series
of optimization techniques on the Tensor Core-based HGEMM,
including blocking size optimization, data layout redesign, data
prefetching, and instruction scheduling. Extensive evaluation
results show that our optimized HGEMM routine achieves an
average of 1.73× and 1.46× speedup over the native implemen-
tation of cuBLAS 10.1 on NVIDIA Turing RTX2070 and T4
GPUs, respectively. The code of our implementation is written
in native hardware assembly (SASS).

Index Terms—GEMM, GPU, Tensor Core, Half-precision

I. INTRODUCTION

GEMM (General Matrix Multiply) serves as a core building
block for deep learning computations. For example, Tensor op-
erations in the fully-connected layers can directly use GEMM.
For convolutional layers in Convolutional Neural Networks
(CNN), the convolution operations can be reduced to GEMM
efficiently [1]. In the Long Short Term Memory (LSTM)
model composed of multiple cells, it requires performing
multiple GEMMs in each cell. In the state-of-the-art NLP
model BERT [2], the basic transformer unit [3] also uses
GEMM as the underlying operations.

Given the importance of GEMM, NVIDIA introduced dedi-
cated hardware Tensor Core in 2017 with Volta V100 GPUs [4]
to accelerate its execution. Tensor Cores are also available in
the subsequent Turing generation. Each Tensor Core consumes
two 4 × 4 half-precision (FP16) matrices and computes their
multiplication result in one clock cycle. On devices like V100,
T4, and RTX2070, Tensor Cores offer 4× higher FLOPS
than the FP16 units. The result provided by Tensor Core
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is also of higher accuracy [5] than that of the FP16 unit.
Despite the significant performance advantage, how Tensor
Cores work in detail and what throughput and latency of the
Tensor Core operations can be achieved remain the important
missing pieces in the literature.

This paper is the first to reveal the working details of
Tensor Cores on NVIDIA Turing GPUs. Through extensive
measurement studies, we illustrate the data layout required
by the HMMA.1688 instruction, which is used to manipulate
Tensor Cores. We show that 8 × 8 matrix is the basic unit
of half-precision Tensor Core programming. This observation
can simplify Tensor Core programming. We also present a
benchmark result of the throughput and latency performance
of Tensor Core instructions.

We measure Turing GPUs’ DRAM and L2 cache perfor-
mance. Based on the bandwidth of DRAM and L2 cache we
measured, we analyze the performance of Tensor Core-based
HGEMM with the roofline model [6]. Our analysis shows
that the performance of HGEMM—previously believed to be
computation-bound—is actually bound by the global memory
bandwidth. To mitigate the bottleneck of limited global mem-
ory bandwidth, we analyze and increase the blocking size [7]
to maximize data reuse and reduce the data needed to be
fetched from the global memory.

We then benchmark the throughput of Turing GPUs’ shared
memory in clock cycle per instruction (CPI). To our knowl-
edge, this is the first work that benchmarks the CPI of shared
memory access on GPUs. The CPI value helps us interleave
the shared memory instructions with a proper number of
Tensor Core instructions. Moreover, by analyzing the perfor-
mance with the CPI value, we show that the shared memory
bandwidth is also a performance bottleneck. To eliminate the
bottleneck posed by the limited shared memory bandwidth,
we redesign the data layout in shared memory to avoid bank
conflict and increase the shared memory blocking size to
increase computation intensity at the shared memory level.

Based on the identified hardware features, we implement our
highly optimized Tensor Core-based HGEMM. We evaluate
our HGEMM implementation on NVIDIA Turing RTX2070
and T4 GPUs and compare its performance with the native
routine in cuBLAS 10.1. Evaluation results show that our
optimized HGEMM routine achieves an average of 1.73× and
1.46× speedup over cuBLAS’s implementation on RTX2070
and T4, respectively. For large matrices, the speedup is up to



3×, reaching the device peak.
We summarize our main contributions as follows:
• We demystify how Tensor Cores on Turing GPUs work.
• We benchmark the CPI of global memory instruction

(LDG) and shared memory instructions (LDS, STS) on
Turing GPUs.

• We analyze the performance of HGEMM with Tensor
Cores and point out that the performance of HGEMM
for large matrices is mainly bottlenecked by different
memory components, including DRAM, L2 cache and
shared memory.

• We implement Tensor Core-based HGEMM on NVIDIA
Turing GPUs and evaluate its performance on RTX2070
and T4. Our HGEMM achieves up to 3× speedup over
cuBLAS 10.1’s Tensor Core-based HGEMM for large
matrices.

The remainder of this paper is organized as follows. We
describe the notations and the basic of Tensor Core program-
ming in Section II. We survey related work in Section III
and present the details of Tensor Core on Turing GPUs in
Section IV. In Section V, we benchmark DRAM, L2 cache
and shared memory on GPUs. Section VI discusses the design
and optimizations of HGEMM in detail, including the choos-
ing of blocking size and instruction scheduling. Section VII
evaluates our optimized HGEMM. We summarize our work in
Section VIII.

II. BACKGROUND

This section introduces the concept of GEMM and the
notations we used in this work, as well as how we program
the Tensor Cores.

A. GEMM and Notations

The standard form of GEneral Matrix Multiplication
(GEMM) is C = αAB + βC, where A, B and C are m× k,
n×k and m×n matrices, respectively, and α and β are scalar
constants. In this work, we focus on the case where α = 1.0
and β = 0.0, i.e., the C = AB matrix multiplication.

Following the convention, we use m × n × k to denote
C = AB where A, B and C are m × k, n × k and m × n
matrices, respectively.

B. Tensor Core Programming

As of this writing, programmers can access Tensor Cores in
two ways. The first way is to program Tensor Core at CUDA
C++ level with Warp Matrix Multiply and Accumulation
(WMMA) API [8]. The second way is to call functions from
NVIDIA’s libraries like cuBLAS for linear algebra routines,
or cuDNN for deep learning routines.

When programming with CUDA C++ level WMMA API,
programmers need to load data with load_matrix_sync,
do the computation with mma_sync, and finally store the
result with store_matrix_sync. While programming in
CUDA C++ involves less human efforts compared with pro-
gramming in assembly, programmers lose the control of in-
struction scheduling. And as we will show in Section VI-A,

the performance of Tensor Core-based HGEMM is sensitive
to the memory bandwidth and it is hard for the compiler
to generate an optimal instruction schedule. As reported in
[5], a naive WMMA-based HGEMM is only able to achieve
around 10% of device peak. Even highly optimized CUDA-
level implementation like CUTLASS [9] can only achieve
around 50% of device peak [5].

Another way to leverage Tensor Core is through libraries
like cuBLAS. HGEMM routine in the cuBLAS library is be-
lieved to be written in native assembly, Streaming ASSembler
(SASS). However, the detail of Tensor Cores at the SASS level
is unpublished, making it challenging for users to program
Tensor Cores at the SASS level. We reveal how Tensor Cores
work in detail in the later section.

III. RELATED WORK

In this section, we discusses related work in reverse engi-
neer Tensor Cores, GPU memory benchmarking and GEMM
optimization.

A. Dissecting Tensor Core

Jia et al. [10], [11] started the work of dissecting Tensor
Cores. They showed that the Tensor Cores are controlled by
instructions HMMA.884 and HMMA.1688. They also showed
the data layout required by the Tensor Core when computing
16× 16× 16 matrix multiplication with HMMA.884.

Compared with their work, we make the following distinct
contributions:

• We point out that the basic unit in Tensor Core program-
ming with the HMMA.1688 instruction is an 8×8 matrix.

• We show that the 8×8 matrix can be indexed by a 32-bit
register, and we give the data layout (in registers) of the
8× 8 matrix.

• We explicitly point out that the .1688 infix stands for
16× 8× 8 matrix multiplication.

• We benchmark the latency and throughput of the
HMMA.1688 instruction.

• We optimize the Tensor Core-based HGEMM based on
our new observations.

B. GPU Memory Benchmark

Mei and Chu [12] introduced the fine-grained P-chase
method to benchmark GPU memory hierarchy. Their method
can detect cache size and latency, and was implemented in
CUDA C++. Compared to their method, we implement our
benchmark in SASS.

SASS-level benchmark enables us to discover patterns that
are difficult to observe at the CUDA C++ level. For example,
in CUDA C++, it is impossible to issue a long sequence (e.g.,
128 continuous) of LDG instructions, because the compiler will
think those codes have no effects and will optimize them away.
Issuing a long sequence of load/store instructions is important
to get the correct CPI value, which is important in our analysis
as we will show later.



C. GEMM Tuning

There is a rich body of work on optimizing double and
single precision GEMMs on GPUs. Lai et al. [13] optimized
SGEMM on Fermi and Kepler GPUs. Zhang et al. [14]
optimized SGEMM on Kepler K20. Gray [15] optimized
SGEMM on Maxwell GPUs. All these works can achieve
near-to-peak (more than 85% of limit) performance and are
written in SASS. While HGEMM shares many similarities
with SGEMM and DGEMM, it requires special data layout
and higher computation intensity to keep the Tensor Core
pipe busy. To solve the newly emerged problems, we propose
an analytical model to choose blocking size (Section VI-A)
and to schedule instructions (Section VI-C). In [16], Li et
al. proposed a framework to strike a balance between ILP
and TLP, targeting at batched small matrix multiplications of
different sizes.

CUTLASS (CUDA Templates for Linear Algebra Subrou-
tines) [9] is a template library that targets linear algebra,
especially GEMM. The CUTLASS library supports different
data types including double, single, half and int. It adopts many
different optimizations like multi-level blocking to maximize
data reuse and data prefetching to hide latency. The CUTLASS
library is written in CUDA C++, making it portable across
different GPU architectures. However, they lose the control
of instruction scheduling at the CUDA C++ level. For Tensor
Core-based HGEMM, CUTLASS usually cannot achieve the
near-to-peak performance [5].

IV. DEMYSTIFYING TENSOR CORES

While Tensor Core provides higher throughput and more
accurate results than FP16 unit, the underlying mechanism
remains unclear, which makes it hard for users to understand
and optimize the performance. In this section, we give an
in-depth analysis of the Tensor Core. Details include the
instruction to manipulate Tensor Core, the data layout required
by the Tensor Core, the throughput and the latency of Tensor
Core instructions.

A. Tensor Core Instruction

Turing GPUs use the HMMA instruction to manipulate the
Tensor Core for float computation. As previous reverse engi-
neering work [11] points out, there are two kinds of HMMA
instructions with .884 and .1688 infix. In this work, we
focus on the .1688 version, because it is more succinct.
Also, for the first time, we point out that the .1688 infix
stands for 16× 8× 8 matrix multiplication. The HMMA.1688
instruction has a type specifier as the suffix. It specifies
whether the accumulator is single precision (.F32) or half
precision (.F16). We limit our discussion to the .F16 variant
in this paper.

A typical HMMA instruction is given as follows:

HMMA.1688.F16 R0, R2, R6, R4; (1)

which computes

D16×8 = A16×8B8×8 + C16×8, (2)
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Fig. 1: Row-major order (left) and column-major order (right)
to store one 8× 8 half precision matrix. Number in the cell is
the lane id. One 32-bit thread register stores two half elements.
32 threads within a warp can store 64 elements of the matrix.

where D16×8 is stored in 64-bit registers, R0 and R1, A16×8

is stored in R2 and R3, B8×8 is stored in R6, and C16×8 is
stored in R4 and R5. When the type specifier is .F32, matrix
D and C are stored in 128-bit registers.

The basic building block in the half-precision Tensor Core
regime is an 8×8 matrix. One 32-bit register within a warp (32
threads) can store 32×4 = 128 bytes. An 8×8 half-precision
matrix also occupies 128 bytes space. Thus an 8 × 8 half-
precision matrix can be represented by 32-bit registers within
a warp with the same index. In this sense, the registers in the
HMMA.1688 instruction are not conventional thread registers
(or scalar registers). Instead, they should be viewed as “warp
registers” since this instruction requires data within a warp to
cooperate to generate the correct result.

Note that the Tensor Core programming model breaks the
original CUDA programming model. In the CUDA program-
ming model, the data of each thread is private to itself. The
only way to access data in other threads is to explicitly com-
municate with global/shared memory or shuffle instructions. In
contrast, the Tensor Core instruction HMMA requires threads
within a warp to cooperate, i.e., it allows data in different
threads to communicate with each other implicitly.

B. Matrix in Register

After knowing that one “warp register” can store one 8 ×
8 half-precision matrix, the remaining important question is:
how is the matrix scattered over registers in different lanes?

By looking into the SASS code generated by compiling
load_matrix_sync and mma_sync, we have the follow-
ing observations:

• An 8×8 half precision matrix can be stored in either row-
major or column-major order. We depict both row-major
and column-major layout in Fig. 1.

• HMMA.1688.F16 requires the destination matrix in
row-major order, the first source matrix in row-major
order, and the second matrix in column-major order. For
example, in Eq. (2), D16×8, C16×8 and A16×8 are stored
in row-major order whereas B8×8 is stored in column-
major order.

We summarize our observations and show how matrix are
distributed in registers for HMMA.1688.F16 R0, R6, R4
in Fig. 2.
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Fig. 2: Distribution of matrix elements in resigers for
HMMA.1688.F16 R0, R2, R6, R4. Each colored 8× 8
square is an 8 × 8 matrix. We label the register index next
to the coresponding matrix. The second source matrix (R6)
needed to be stored in column-major order.

TABLE I: Throughput and latency of HMMA.1688.F16.

Metric Value

CPI theoretical 8.00
CPI measured 8.06

Latency for the first half of D16×8 10
Latency for the second half of D16×8 14

C. Performance Metrics

There are two critical performance metrics of
HMMA.1688.F16, namely throughput and latency. We
perform a SASS-level benchmark to obtain those two metrics,
where we use clock cycles per instruction (CPI) to measure
the throughput.

Specifically, we measure the CPI by issuing thousands
of HMMA instructions and record the clock cycles it takes.
To eliminate the effect of cold instruction cache miss, we
reconstruct the long HMMA sequence into a loop, which can
be fit into the L0 instruction cache. Since the 16 × 8 × 8
matrix multiplication is composed of 16 4 × 4 × 4 matrix
multiplications and each processing block has 2 Tensor Cores
[17], the expected CPI is 16/2 = 8. Our measured CPI is 8.06,
close to the theoretical analysis.

We measure the latency of HMMA.1688.F16 by varying
the stall cycles and check if the output result is correct. It
takes 10 cycles for the first half of D16×8 (R0 in Eq. (1))
and 14 cycles for the second half of D16×8 (R1 in Eq. (1)) to
get correct result. No register bank conflict has been observed
for HMMA.1688. The register reuse flag has no impact on
performance. Those metrics are the same on RTX2070 and
T4 since they are of the same architecture and have the same
Streaming Multiprocessor (SM).

We summarize the important performance metrics in Table I
and highlight our key observations on Tensor Cores as follows:

• The basic element in half-precision Tensor Core program-
ming is an 8× 8 matrix.

• An 8× 8 half-precision matrix is scattered over different
threads within a warp and can be indexed by one register.
The layout of the matrix is shown in Fig. 1.

• One HMMA.1688 instruction computes 16×8×8 matrix
multiplication and accumulation.

TABLE II: Measured DRAM and L2 cache bandwidth of
RTX2070 and T4 GPUs

RTX2070 T4

DRAM theoretical 448GB/s 320GB/s
DRAM measured 380GB/s 238GB/s

L2 measured 750GB/s 910GB/s
Tensor Core throughput 59.7 TFLOPS 65 TFLOPS

• We observe no register bank conflict for HMMA.1688.
Register reuse flag has no impact on the performance of
the HMMA sequence.

V. MEMORY MICROBENCHMARK

Since the Tensor Core provides 4× higher throughput, the
bottleneck may shift to memory. However, important perfor-
mance metrics, such as L2 cache throughput and shared mem-
ory throughput, remain unpublished. To support subsequent
performance analysis, we perform detailed benchmarks on
Turing GPUs’ memory system. We benchmark the throughput
of DRAM and L2 cache in GB/s to analyze the performance
with the roofline model to choose the right blocking size.
We then benchmark the CPI of global and shared memory
access to help us interleave memory instructions with a proper
number of HMMA instructions.

A. DRAM and L2 Cache

a) Methodology: We measure DRAM’s throughput by
launching a kernel with multiple thread blocks and letting each
thread load a 512KB of data. To ensure data are loaded from
DRAM rather than L2 cache, we let each thread block load
data at different locations. The kernel running time is recorded
using cuda event [18].

We measure L2 cache’s throughput by letting each thread
block load a 512KB of data at the same location to ensure data
are loaded from L2 cache rather than DRAM. For both DRAM
and L2 cache measurement, we enforce the LDG instruction
to bypass the L1 cache, which is accomplished by using the
.ca flag in the PTX ld instruction [19].

We measure the CPI of LDG by launching a kernel with
32 threads and letting the kernel issue thousands of LDG
instructions continuously. We record the cycles needed by
reading the value in the clock register (equivalent to calling
clock() in CUDA C++) at the beginning and the end of the
long LDG sequence. To eliminate the effect of instruction cache
miss, we reconstruct the long sequence into a loop, which is
small enough (128 instructions) to fit into the L0 instruction
cache.

Note that this kind of CPI benchmark is only possible at
SASS-level. If the code is written in CUDA C++ or PTX
level, the compiler will optimize the long sequence of load
instructions away, as they have no effect. While we can use a
sink to prevent the compiler from optimizing away the LDGs,
the instruction sequence will be messed up, making the result
inaccurate.



TABLE III: CPI of LDG on Turing GPUs.

Width

Type 32 64 128

LDG (data in L1 cache) 4.04 4.04 8.00
LDG (data in L2 cache) 4.19 8.38 15.95

b) Benchmark result: We list the measured throughput
in GB/s in Table II, and show the measured throughput in
CPI of LDG with different width in Table III. We summarize
important observations about DRAM and L2 cache as follows:

• While T4 GPU has higher FLOPS than RTX2070, its
DRAM bandwidth is smaller. As we will show in Sec-
tion VI-A and Section VII, the performance of Tensor
Core-based HGEMM on T4 is bound by DRAM band-
width.

• The measured DRAM bandwidth is 85% of the peak on
RTX2070 and 75% of the peak on T4.

• From the SM’s perspective, when data are stored in L2
cache, LDG.32 has the same throughput as LDG.64
(32/CPILDG.32 = 64/CPILDG.64). LDG.128 has 5.1%
higher throughput than the other two.

B. Shared Memory

a) Methodology: We measure the CPI of shared memory
access in the same way as we measure the CPI of LDG. That
is, we issue a loop of shared memory access instructions and
record the cycles needed. We pick the shared memory access
offset to make sure that all accesses are bank conflict-free.

b) Benchmark result: We summarize the CPI of shared
memory instructions in Table IV and the corresponding
throughput (bytes/cycle) in Table V. The CPI and throughput
are the same on RTX2070 and T4.

We summarize the important shared memory behaviors as
follows:

• LDS.128 has the same throughput as LDS.64, and has
5.5% higher throughput than LDS.32.

• LDS.64 and LDS.128 can achieve theoretical peak
bandwidth. In comparison, [11] reports LDS bandwidth

TABLE IV: CPI of shared memory load/store instructions on
Turing GPUs.

Width

Type 32 64 128

LDS 2.11 4.00 8.00
STS 4.06 6.00 10.00

TABLE V: Throughput (bytes/cycle) of shared memory
load/store instructions on Turing GPUs.

Width

Type 32 64 128

LDS 60.66 64.00 64.00
STS 31.53 42.67 51.20

of 58.8 bytes/cycle. This demonstrates the power of
benchmarking at the SASS-level.

• STS.128 has 20% higher throughput than STS.64 and
62.4% higher than STS.32. Meaning, using a narrow
version of STS results in a high penalty on throughput.

VI. OPTIMIZING MATRIX MULTIPLICATION ROUTINE

The state-of-the-art GEMM implementations on GPUs [9],
[13], [14] all use two-level blocking to maximize data reuse.
In this section, we first analyze how the blocking size affects
the performance of HGEMM and how to choose the proper
blocking size. Other than blocking sizes, the instruction order
and the data layout in shared memory can also impact the
performance of HGEMM routines. To this end, we further
discuss how we use the CPI value to schedule instructions
and how we design the data layout in shared memory. We
evaluate the effects of these optimizations and show that they
provide us with significantly higher throughput. Our results
are obtained on RTX2070, where we use the cuda event to
record the running time. The reported throughput is averaged
over 10 measurements.

A. Blocking Size Analysis

1) Blocked HGEMM: We show how two-level blocking
works in Algorithm 1. We omit the details including data
prefeching, barrier synchronization and index calculation for
brevity. We refer to CUTLASS [9] for the idea of two-level
blocking.

Algorithm 1: Blocked HGEMM. Fragments (A frag,
B frag, C frag) reside in registers

1 shared A smem[bm][bk];
2 shared B smem[bn][bk];
3 A frag[wm][wk];
4 B frag[wn][wk];
5 C frag[wm][wn];
6 for iter←0 to k by bk do
7 A smem ← bm × bk of A;
8 B smem ← bn × bk of B;
9 for i←0 to bk by wk do

10 foreach 16× 8 matrix in C frag do
11 C frag[][] ← C frag[][] + A frag[][i]×

B frag[][i];
12 end
13 end
14 end

2) Blocking Size of Thread Block: Thread block is at the
first level of blocking, also known as shared memory blocking
in the literature. We divide the m×n×k matrix multiplication
into multiple blocks. Each thread block computes bm × bn
of matrix multiplication result. Thus b(m+ bm − 1)/bmc ×
b(n+ bn − 1)/bnc thread blocks will be launched.

Each thread block performs 2bmbnbk operations and loads
(bm + bn)bk half-precision elements. The computation inten-
sity, therefore, is 2bmbkbn

2(bm+bn)bk
= bmbn

bm+bn
. The blocking size
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Fig. 3: Global memory roofline model on RTX2070 and T4. Compared with the solution using FP16 units, the high throughput
of Tensor Core makes dense GEMM kind of memory-bounded.

will affect the computation intensity. Typical blocking sizes
(bm × bn) for half precision are (256 × 256), (256 × 128),
(128× 128), (128× 64), (64× 64).

Larger blocking size increases the computation intensity but
may lower the occupancy, hence harming the performance.
To choose a proper thread block blocking size, we use the
bandwidth we collected (see Table II) to depict the roofline
models for RTX2070 and T4 GPUs in Fig. 3. We also plot
the roof of FP16 unit in Fig. 3 for comparison. When using
FP16 units, (128×128) is good enough to keep the arithmetic
pipe busy. But for Tensor Cores, (128×128) makes the DRAM
bandwidth a new bottleneck.

While increasing the blocking size of thread block can
increase the computation intensity, we cannot adopt a larger
blocking size like (512 × 256). The bounding factor here is
the number of registers. On Turing GPUs, each SM has 64K
32-bit registers. 512× 256 half-precision elements occupy all
of them and leave no place for the other data. Thus, the
(512×256) version does not work. Other large blocking sizes
like (256× 320) may work, but we prefer blocking sizes that
are power of 2 since it is natural for GPU programming and
easier to reason about.

In this work, we focus on the (256×256) version. The third
dimension of the blocking bk is limited by the shared memory
size. Turing GPUs have up to 64KB shared memory per SM,
thus bk must be smaller than 64KB/(256 + 256)/2 = 64.
While choosing bk as 64 works, the fetched tiles of A and B
will take up all 64KB shared memory and leave no room for
padding to avoid bank conflict, which will hurt performance
greatly. Our final choice for bk is 32.

3) Warp Level Blocking Size: The second level of blocking
is the warp level. This level of blocking is also called register
blocking in the literature. The problem is how to distribute the
(256 × 256) of work to proper number of warps. Currently,
most of the exiting works [9], [13] choose the warp level
blocking size via trial-and-error, and some [14] compute the
computation intensity and use the roofline model at warp
level to choose the warp level blocking size. We propose a
new simple yet effective method to determine the warp level

blocking size before implementation. Our method is different
from the previous methods in several ways:

• We use CPI as the metric to guide the selection of warp
level blocking size, which has been largely ignored in the
previous work.

• Compared with the trial-and-error method, our approach
gives the proper blocking size before implementation,
saving lots of engineering efforts.

HGEMM in cuBLAS 10.1 uses (64× 64) blocking size at
this level. We will show that (64×64) is not enough and makes
the memory pipe a new bottleneck. (128× 64) can solve this
problem.

The cycles used to do computation per thread block in each
iteration with HMMA can be computed as:

2bmbnbk
2× 16× 8× 8× 4

× CPIHMMA.1688.F16, (3)

where 2×16×8×8 is the computation done with HMMA.1688,
and there are 4 processing blocks in an SM.
LDG, STS and LDS instructions all occupy memory I/O

pipe [17]. The cycles used to load (bm + bn) × bk of data
from global memory and store to shared memory with 128-bit
width instructions are:

(bm + bn)bk × 2

32× 16
× (CPILDG.128 + CPISTS.128), (4)

where 2 stands for 2 bytes of a half-precision element, 32 is
the warp size, and 16 stands for 16 bytes (128 bits).

We compute the cycles used to load data from shared
memory with 32-bit width instructions as follows:

bmbn
wmwn

× (
wm

8
+
wn

8
)× bk

wk
× CPILDS.32. (5)

While changing the two-level blocking size will not change
the total computation, it will change the data needed to be
transferred. Thus, the goal is to keep Tensor Cores busy and
not to let the memory I/O be the performance bottleneck.
In other words, we need to keep the clock cycles needed
for memory I/O in each iteration smaller than the clock
cycles needed for Tensor Core processing. Based on the



TABLE VI: Clock cycles needed by Tensor Core pipe and
memory IO pipe under different blocking sizes.

cycles

(bm × bn × bk) (wm × wn × wk) HMMA Memory IO

(128× 128× 32) (64× 64× 8) 1031 1370
(128× 128× 32) (128× 64× 8) 1031 1235
(256× 128× 32) (64× 64× 8) 2063 2325
(256× 128× 32) (128× 64× 8) 2063 2055
(256× 256× 32) (64× 64× 8) 4126 3821
(256× 256× 32) (128× 64× 8) 4126 3281

TABLE VII: Details of our HGEMM and cuBLAS 10.1’s
HGEMM.

Ours cuBLAS 10.1

(bm × bn × bk) (256× 256× 32) (128× 128× 64)
(wm × wn × wk) (128× 64× 8) (64× 64× 8)

Shared memory/CTA 36KB 32KB
Active CTAs/SM 1 2
Active warps/SM 8 8

aforementioned analysis and CPI values we collected (see
Tables I, III and IV), we list cycles needed by HMMA and
memory instructions of blocking sizes of interests in Table VI.

Table VI shows that when the thread block’s blocking size
is (128× 128), the HGEMM is bound by memory I/O. When
the blocking size is (256× 128), the HGEMM will be bound
by memory I/O if the warp blocking size is (64 × 64) and
Tensor Core bound if the warp blocking size is (128 × 64).
The best case is to set the thread block’s blocking size as
(256 × 256) and the warp blocking size as (128 × 64). In
this case, the clock cycles required by HMMA is significantly
greater than the clock cycles required by memory I/O. This
blocking size setting makes the HGEMM robust to L2 cache
miss and leaves enough room for latency hiding.

Note that we cannot set the warp-level blocking size to
(128× 128), as each thread can only use up to 256 registers
and (128× 128) will occupy all of them within a warp.

4) Comparison with cuBLAS: Table VII compares our
implementation of HGEMM with the stock implementation
in cuBLAS 10.1. The benefit of the smaller blocking size
(128× 128) as compared to what cuBLAS 10.1 adopts is that
it allows 2 CTAs to reside on one SM, which makes the warps
run in an asynchronous manner. The asynchronous behavior
gives the warp scheduler more opportunities to switch to the
other warps for increased throughput. This is align with the
conventional wisdom of GPGPU programming.

However, as our previous analysis in this section shows,
when the blocking size is (128 × 128 × 64), both DRAM
and shared memory will throttle the program. It is interesting
to notice that cuBLAS’ HGEMM only uses 32KB of shared
memory. This suggests that cuBLAS’s HGEMM does not use
padding to avoid bank conflict. We believe such an economical
data layout deserves an in-depth analysis.

To summarize, the important lessons we learn from our
analysis are:

• We should choose a larger thread block blocking size.
Otherwise the performance of HGEMM will be bound
by DRAM and L2 cache bandwidth. (256 × 256) is an
ideal choice at the thread block level. While (256×256) is
the largest blocking size we can choose, the performance
can still be bound by DRAM bandwidth.

• We also need to enlarge the blocking size at the warp
level; if not, the shared memory bandwidth will be a new
bottleneck. (128× 64) is our choice at the warp level.

B. Data Prefetching

Similar to the previous work, we hide the global and shared
memory accesses latency by data prefetching (some works call
it software pipelining), i.e., we load the data needed by the next
iteration at the beginning of the current iteration. While this
adds pressure to the registers, there are enough free registers
to hold prefetched data. In our implementation, we have at
least (64 + 32)× 8 = 768 cycles to hide the LDG latency.

C. Instruction Scheduling

Once the blocking size is determined, the number of HMMA
instructions and memory I/O instructions are fixed. The next
question is how to place those instructions in a proper order
(also called the instruction scheduling problem). Specifically,
we care about how to insert memory I/O instructions into the
HMMA sequence. Currently, there is no canonical way to deter-
mine the space between continuous memory I/O instructions.
In [14], [15], the authors propose a trial-and-error strategy to
find the space. We give a simple yet effective principle based
on the CPI values to determine the space between continuous
memory I/O instructions.

Take the STS.128 instruction as an example. In cuBLAS
10.1’s HGEMM, two HMMAs are used to interleave continuous
STS.128. We argue that this space is not enough. The
minimum number of HMMAs (#HMMA) required to interleave
STS.128 is computed as follows:

#HMMA× CPIHMMA ≥ 4× CPISTS.128, (6)

where 4 stands for 4 processing blocks within an SM. The idea
behind this expression is that the time used to do computation
should not be shorter than the time to do memory I/O. Based
on our measured CPI values, we need at least 5 HMMAs to
interleave STS.128.

Fig. 4 shows the throughput of interleaving STS.128 with
2 HMMAs (STS2) and interleaving STS.128 with 5 HMMAs
(STS5) respectively. The average speedup of STS5 over STS2
is 1.13×, and the maximum speedup is 1.26×.

D. Shared Memory Data Layout

Based on the discussion in Section VI-A, the thread block
blocking size is chosen as (256×256×32). We need to store
A256×32 (row-major) and B32×256 (column-major) in shared
memory. The naive strategy to store A256×32 and B32×256 in
shared memory is to allocate two 256×32 arrays and store all
the elements one after the other. In CUDA C++, this can be
written as A[256][32] and B[256][32] (column-major).



2000 4000 6000 8000 10000 12000 14000 16000
W

20

30

40

50

60
TF

LO
PS

RTX2070, [W × W × W]

STS5
STS2

Fig. 4: Our HGEMM’s throughput on RTX2070 when inter-
leaving STS.128 with 2 HMMAs (STS2) and with 5 HMMAs
(STS5) respectively.
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Fig. 5: Our HGEMM’s throughput on RTX2070 when padding
to avoid shared memory bank conflict and no padding with
bank conflict.

We evaluate this naive layout and show its throughput
in Fig. 5. As the figure shows, the naive layout slows the
HGEMM by half compared with our optimized data layout.

Instead, our proposed data layout is to pad 8 half elements
every other row, i.e., the offset of element A[row][col]
can be computed as row×32+row%2×8+col. This data
layout makes both the store-to and load-from shared memory
bank conflict-free.

VII. EVALUATION

In this section, we compare the performance of our op-
timized HGEMM to cuBLAS’ HGEMM. All results in this
section are collected on Ubuntu 18.04 with CUDA 10.1 and
cuBLAS 10.1. All input and output are in half precision. Input
and output data are stored in the GPU memory, which is the
case for many deep learning applications. The cost of the
memory allocation is not included in the timing.

We compare the performance of our optimized HGEMM
with cuBLAS 10.1 on two NVIDIA Turing GPUs, namely
RTX2070 and T4. We set the memory clock rate and GPU
clock rate on T4 to 5001GHz and 1590GHz respectively, while
RTX2070 does not support setting clock rate. We record the
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Fig. 6: Throughput of our and cuBLAS’s HGEMM with square
matrices on RTX2070.
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Fig. 7: Throughput of our and cuBLAS’s HGEMM with square
matrices on T4.

running time of each kernel with cuda event [18]. The reported
throughput is averaged over 10 measurements.

Consider the matrix multiplication problem C = AB,
where matrix A is in row-major layout and B is in
column-major layout. To leverage Tensor Cores when
calling cuBLAS’ routine, we set the cuBLAS math
mode to CUBLAS_TENSOR_OP_MATH and then invoke
cublasGemmEx(). Since the matrices are relatively large
in deep learning applications and Tensor Cores are targeting
large matrices, we evaluate matrix size from 1024 to 16384
with step size 256. Our evaluation starts with square matrices.
To evaluate the performance on rectangular matrices, we vary
one dimension of HGEMM at a time. We test the performance
of HGEMM with shape [2W ×W ×W ], [W × 2W ×W ],
[W × W × 2W ], [4W × W × W ], [W × 4W × W ] and
[W ×W × 4W ].

A. Performance on Square Matrices

a) RTX2070: Fig. 6 shows the TFLOPS sustained by
our HGEMM and cuBLAS’s HGEMM on RTX2070. When
the matrix size is small (W < 4096), our implementation
achieves comparable performance with cuBLAS. In this case,
the performance is prone to the kernel launch overhead and the
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Fig. 8: Throughput of our implementation and cuBLAS’s under different matrix shape and size on RTX2070.
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Fig. 9: Throughput of our implementation and cuBLAS’s under different matrix shape and size on T4.

small number of thread blocks. As the matrix size grows, the
throughput of our HGEMM increases steadily until it reaches
the device peak. The highest throughput of our implementation
is 60.37 TFLOPS, higher than the device peak (59.7 TFLOPS).
This may be due to the noise in time measurement and the
rounding error when calculating throughput. In comparison,
the throughput of cuBLAS’s HGEMM drops slightly when
the matrix size is greater than 4096. We observe a sharp drop
in performance when W reaches 12032. We suspect that this is
because the L2 cache blocking strategy of cuBLAS fails at that
size. The maximum throughput of cuBLAS is 52.75 TFLOPS

when W = 4096. The maximum speedup over cuBLAS is
2.7× when W = 16128. The average speedup over cuBLAS
is 1.55×.

b) T4: Fig. 7 shows the TFLOPS sustained by our
HGEMM and cuBLAS’s implementation on T4. Similar to the
case on RTX2070 when matrix size is smaller than or equal
to 4096, our implementation achieves comparable performance
with cuBLAS.

As the matrix size grows, the throughput of our HGEMM
increases steadily until it reaches around 50 TFLOPS. The
highest throughput of our implementation is 49.71 TFLOPS,
which is 76% of the device peak (65 TFLOPS). The difference



between the performance on RTX2070 and T4 clearly shows
the importance of DRAM bandwidth. In comparison, the
throughput of cuBLAS’s HGEMM drops slightly when the
matrix size is greater than 4096. The maximum throughput of
cuBLAS is 45.43 TFLOPS when W = 2560. The maximum
speedup over cuBLAS is 1.7× when W = 13312. The average
speedup over cuBLAS on T4 is 1.53×.

We also notice a trend that the throughput of our implemen-
tation starts to fall when W exceeds 12800. We believe that
this indicates that the performance of our implementation is
harmed by the low L2 cache hit rate and relatively low DRAM
bandwidth on T4.

B. Performance on Rectangle Matrices

a) RTX2070: Fig. 8 shows the TFLOPS sustained by
our HGEMM and cuBLAS’s implementation on RTX2070
on rectangular matrices. The trend is similar to the case of
the square matrices. Our implementation consistently achieves
near-to-peak throughput. The maximum speedup over cuBLAS
is 3.23× when W = 14848 and shape is [W ×W × 4W ].
The average speedup for rectangular matrices on RTX2070 is
1.77×.

b) T4: Fig. 9 compares the TFLOPS sustained by our
implementation with cuBLAS on T4 on rectangular matrices.
The trend is similar to the case of the square matrices. And
our implementation consistently achieves high throughput. The
maximum speedup over cuBLAS is 2.17× when W = 15360
and shape is [W × W × 4W ]. The average speedup for
rectangular matrices on T4 is 1.45×.

C. Summary

The average speedup over cuBLAS 10.1 for all settings
on two devices is 1.61×. For both our implementation and
cuBLAS’s HGEMM, the throughput is higher on RTX2070
than on T4 while the device peak of T4 is higher. The
major difference between RTX2070 and T4 is that RTX2070’s
DRAM bandwidth (380GB/s) is 58% higher than T4’s DRAM
bandwidth (240GB/s). We argue that this is a strong evidence
that the performance of HGEMM on T4 is bound by the
bandwidth of DRAM.

VIII. CONCLUSION AND FUTURE WORK

We demystify, for the first time, how half-precision Tensor
Cores on Turing GPUs work. Specifically, we present how the
HMMA.1688.F16 instruction is used to manipulate Tensor
Core. We point out the basic element in half-precision is
an 8 × 8 matrix, which can be stored in registers with
the same index within a warp, and depict the row-major
and column-major order to store the 8 × 8 half-precision
matrix. We also benchmark the throughput and latency of the
HMMA.1688.F16 instruction.

We present detailed benchmarks of the GPU memory sys-
tem. In addition to the benchmark techniques already known
to the community, we measure the CPI values of memory
instructions at the SASS level with higher accuracy. We use the
CPI value, which is not accessible with previous techniques,

to guide the process of selecting blocking size and scheduling
instructions.

We have presented an optimized Tensor Core-based
HGEMM on Turing GPUs and our implementation achieves
on average 1.6× and up to 3× speedup over cuBLAS 10.1’s
HGEMM. The speedup mainly comes from the larger blocking
size together with optimizations like smarter load/store instruc-
tion scheduling and novel data layout in shared memory.

Future work includes a deeper look into the L2 cache-
friendly thread block launch order, demystifying Tensor Cores
with single-precision accumulators and integer data type, au-
tomatic tools to simplify programming while achieving near
to peak performance.
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