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DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,forsome constants k, , k,, and k3, where V'is the number of vertices and E is the number
of edges of the graph being examined.
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1. Introduction. Consider a graph G, consisting of a set of vertices ¥~ and a
set of edges & The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G = (¥, &) is a graph, a path p:v LwinGisa sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p:v vis called a closed path. A closed path p:v 2 v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation “‘(v,w) is an edge of T” is denoted by v — w. The relation “There is a
path from v to w in T is denoted by v 5 w. If v — w, v is the father of w and w is a
sonof v. If v % w, v is an ancestor of w and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T, is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R~ is the
inverse of R, and

RS = {(u,w)|I((u,v)e R & (v,w) € S)}.
* Received by the editors August 30, 1971, and in revised form March 9, 1972.
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Iff,f.,---, f,are functions of x, - - -, x,, we say fis O(f, -- -, f) if

|f(xl"",xn)| é kO + kllfl(x19"'1xn)' + o+ knlfn(xla"',xn)l

for all x; and some constants kg, - - - , k,. We shall assume a random-access com-
puter model.

2. Depth-first search. Backtracking, or depth-first search, is a technique
which has been widely used for finding solutions to problems in combinatorial
theory and artificial intelligence [2], [11] but whose properties have not been
widely analyzed. Suppose G is a graph which we wish to explore. Initially all the
vertices of G are unexplored. We start from some vertex of G and choose an edge
to follow. Traversing the edge leads to a new vertex. We continue in this way;
at each step we select an unexplored edge leading from a vertex already reached
and we traverse this edge. The edge leads to some vertex, either new or already
reached. Whenever we run out of edges leading from old vertices, we choose some
unreached vertex, if any exists, and begin a new exploration from this point.
Eventually we will traverse all the edges of G, each exactly once. Such a process is
called a search of G.

There are many ways of searching a graph, depending upon the way in which
edges to search are selected. Consider the following choice rule: when selecting
an edge to traverse, always choose an edge emanating from the vertex most recently
reached which still has unexplored edges. A search which uses this rule is called a
depth-first search. The set of old vertices with possibly unexplored edges may be
stored on a stack. Thus a depth-first search is very easy to program either iteratively
or recursively, provided we have a suitable computer representation of a graph.

DEFINITION 1. Let G = (¥, &) be a graph. For each vertex ve ¥~ we may con-
struct a list containing all vertices w such that (v, w) € & Such a list is called an
adjacency list for vertex v. A set of such lists, one for each vertex in G, is called an
adjacency structure for G.

If the graph G is undirected, each edge (v, w) is represented twice in an ad-
jacency structure ; once for v and once for w. If G is directed, each edge (v, w) is
represented once: vertex w appears in the adjacency list of vertex v. A single graph
may have many adjacency structures; in fact, each ordering of the edges around
the vertices of G gives a unique adjacency structure, and each adjacency structure
corresponds to a unique ordering of the edges at each vertex. Using an adjacency
structure for a graph, we can perform depth-first searches in a very efficient
manner, as we shall see.

Suppose G is a connected undirected graph. A search of G imposes a direction
on each edge of G given by the direction in which the edge is traversed when the
search is performed. Thus G is converted into a directed graph G'. The set of edges
which lead to a new vertex when traversed during the search defines a spanning
tree of G'. In general, the arcs of G’ which are not part of the spanning tree inter-
connect the paths in the tree. However, if the search is depth-first, each edge (v, w)
not in the spanning tree connects vertex v with one of its ancestors w.

DEFINITION 2. Let P be a directed graph, consisting of two disjoint sets of
edges, denoted by v — w and v -— w respectively. Suppose P satisfies the following
properties :

(i) The subgraph T containing the edges v — w is a spanning tree of P.
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(i) We have-— < (%)~ !, where “—”" and *-—” denote the relations defined
by the corresponding set of edges. That is, each edge which is not in the
spanning tree T of P connects a vertex with one of its ancestors in T.

Then P is called a palm tree. The edges v -— w are called the fronds of P.

THEOREM 1. Let P be the directed graph generated by a depth-first search of a
connected graph G. Then P is a palm tree. Conversely, let P be any palm tree. Then P
is generated by some depth-first search of the undirected version of P.

Proof. Consider the program listed below, which carries out a depth-first
search of a connected graph, starting at vertex s, using an adjacency structure of the
graph to be searched. The program numbers the vertices of the graph in the order
they are reached during the search and constructs the directed graph (P) generated
by the search.

BEGIN
INTEGER i;
PROCEDURE DFS(v, u); COMMENT vertex u is the father of
vertex v in the spanning tree being constructed ;

BEGIN
NUMBER (v) :=i:=i+1;
FOR w in thé adjacency list of v DO
BEGIN
IF w is not yet numbered THEN
BEGIN
construct arcv - w in P;
DFS(w, v);
END

ELSE IF NUMBER (w) < NUMBER (v) and w— = u
THEN construct arcv-— w in p;

END;
END;
i:=0;

DFS(s, 0);
END;

Figure 1 gives an example of the application of DFS to a graph. Suppose
P = (¥, &) is the directed graph generated by a depth-first search of some con-
nected graph G, and assume that the search begins at vertex s. Examine the proce-
dure DFS. The algorithm clearly terminates because each vertex can only be
numbered once. Furthermore, each edge in the graph is examined exactly twice.
Therefore the time required by the search is linear in V and E.

For any vertices v and w, let d(v, w) be the length of the shortest path between
vand win G. Since G is connected, all distances are finite. Suppose that some vertex
remains unnumbered by the search. Let v be an unnumbered vertex such that
d(s, v) is minimal. Then there is a vertex w such that w is adjacent to v and d(s, w)
< d(s, v). Thus w is numbered. But v will also be numbered, since it is adjacent to w.
This means that all vertices are numbered during the search.
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C (8,C)
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Fi1G. 1. Application of depth-first search to a graph
(a) The graph
(b) Order of edge exploration
(c) Generated palm tree, with numbers of vertices in ()

The vertex s is the head of no edge w — s. Each other vertex v is the head of
exactly one edge w — v. The subgraph T of P defined by the edges v — w is obvious-
ly connected. Thus T is a spanning tree of P.

Each arc of the original graph is directed in at least one direction ; if (v, w)
does not become an arc of the spanning tree T, either v -— w or w -— v must be
constructed since both » and w are numbered whenever edge (v, w) is inspected and
either NUMBER (v) < NUMBER (w) or NUMBER (v) > NUMBER (w).

The arcs v — w run from smaller numbered points to larger numbered points.
The arcs v-— w run from larger numbered points to smaller numbered points.
If arc v -— w is constructed, arc w — v is not constructed later because v is num-
bered. If arc w — v is constructed, arc v -— w is not later constructed, because of
the test “w— = u” in procedure DFS. Thus each edge in the original graph is
directed in one and only one direction.

Consider an arc v-— w. We have NUMBER (w) < NUMBER (v). Thus w
is numbered before v. Since v -— w is constructed and not w — v, v must be num-
bered before edge (w, v) is inspected. Thus v must be numbered during execution
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of DFS (w,-). But all vertices numbered during execution of DFS (w,-) are
descendants of w. This means that w 5 v, and G is a palm tree.

Let us prove the converse part of the theorem. Suppose that P is a palm tree,
with spanning tree T and undirected version G. Construct an adjacency structure
of G in which all the edges of T appear before the other edges of G in the adjacency
lists. Starting with the root of T, perform a depth-first search using this adjacency
structure. The search will traverse the edges of T preferentially and will generate
the palm tree P; it is easy to see that each edge is directed correctly. This completes
the proof of the theorem.

We may state Theorem 1 nonconstructively as the following corollary.

COROLLARY 2. Let G be any undirected graph. Then G can be converted into a
palm tree by directing its edges in a suitable manner.

3. Biconnectivity. The value of depth-first search follows from the simple
structure of a palm tree. Let us consider a problem in which this structure is
useful.

DEFINITION 3. Let G = (7, &) be an undirected graph. Suppose that for each
triple of distinct vertices v, w,a in#; thereisa path p:v 2 wsuch that a is not on the
path p. Then G is biconnected. (Other equivalent definitions of biconnectedness
exist.) If, on the other hand, there is a triple of distinct vertices v, w,a in ¥~ such that a
is on any path p:v 2 w, and there exists at least one such path, then a is called an
articulation point of G.

LEMMA 3. Let G = (¥, &) be an undirected graph. We. may define an equivalence
relation on the set of edges as follows: two edges are equivalent if and only if they
belong to a common cycle. Let the distinct equivalence classes under this relation
be ,1 < i = n,and let G, = (¥, &), where ¥ is the set of vertices incident to the
edges of &;7; = {v|I((v,w) € &)}. Then:

(i) G, is biconnected, for each1 <i < n.

(i) No G; is a proper subgraph of a biconnected subgraph of G.

(iii) Each articulation point of G occurs more than once among the ¥;,1 <i<n.
Each nonarticulation point of G occurs exactly once among the ¥
1ighn

(iv) The set ¥; (N ¥ contains at most one point, for any 1 < i, j < n. Such a
point of intersection is an articulation point of the graph.

The subgraphs G, of G are called the biconnected components of G.

Suppose we wish to determine the biconnected components of an undirected
graph G. Common algorithms for this purpose, for instance, Shirey’s [14], test
each vertex in turn to discover if it is an articulation point. Such algorithms require
time proportional to V- E, where V is the number of vertices and E is the number
of edges of the graph. A more efficient algorithm uses depth-first search. Let P be a
palm tree generated by a depth-first search. Suppose the vertices of P are num-
bered in the order they are reached during the search (as is done by the procedure
DFS above). We shall refer to vertices by their numbers. If u is an ancestor of v
in the spanning tree T of P, then u < v. For.any vertex v in P, let LOWPT (v) be
the smallest vertex in the set {v} U {wlv 5-— w}. That is, LOWPT (v) is the
smallest vertex reachable from v by traversing zero or more tree arcs followed by at
most one frond. The following results form the basis of an efficient algorithm
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for finding biconnected components. This algorithm was discovered by Hopcroft
and Tarjan [4]. Paton [12] describes a similar algorithm.

LEMMA 4. Let G be an undirected graph and let P be a palm tree formed by
directing the edges of G. Let T be the spanning tree of P. Suppose p:v 2w is any
path in G. Then p contains a point which is an ancestor of both v andw in T.

Proof. Let T, with root u be the smallest subtree of T containing all vertices
on the path p. Ifu = voru = w, the lemma is immediate. Otherwise, let T, and T,,
be two distinct subtrees containing points on p such that u — u; and u — u,.
If only one such subtree exists, then u is on p since T, is minimal. If two such sub-
trees exist, path p can only get from T,, to T,, by passing through vertex u, since
no point in one of these trees is an ancestor of any point in the other, while both
— and -— connect only ancestors in a palm tree. Since u is an ancestor of both »
and w, the lemma holds.

LEMMA 5. Let G be a connected undirected graph. Let P be a palm tree formed
by directing the edges of G, and let T be the spanning tree of P. Suppose a, v, w are
distinct vertices of G such that (a, v) € T, and suppose w is not a descendant of vin T.
(That is,—(v % w)in T) If LOWPT (v) = a, then a is an articulation point of P and
removal of a disconnects v and w. Conversely, if a is an articulation point of G,
then there exist vertices v and w which satisfy the properties above.

Proof.Ifa - vand LOWPT (v) = q, then any path from v not passing through
a remains in the subtree T,, and this subtree does not contain the point w. This
gives the first part of the lemma.

To prove the converse, let a be an articulation point of G. If a is the root
of P, then at least two tree arcs must emanate from a. Let v be the head of one
such arc and let w be the head of another such arc. Then a — v, LOWPT (v) = q,
and w is not a descendant of v. If a is not the root of P, consider the connected
components formed by deleting a from G. One component must consist only of
descendants of a. Such a component can contain only one son of v by Lemma 4.
Let v be such a son of a. Let w be any proper ancestor of a. Then a — v, LOWPT (v)
= a, and w is not a descendant of v. Thus the converse part of the lemma is
true.

COROLLARY 6. Let G be a connected undirected graph, and let P be a palm
tree formed by directing the edges of G. Suppose that P has a spanning tree T. If C is a
biconnected component of G, then the vertices of C define a subtree of T, and the
root of this subtree is either an articulation point of G or is the root of T.

Figure 2 shows a graph, its LOWPT values, articulation points, and bi-
connected components. The LOWPT values of all the vertices of a palm tree P
may be calculated during a single depth-first search, since

LOWPT (v) = min ((NUMBER (v)} U {LOWPT (w)jv — w}
U {NUMBER (W)jv -— w}).
On the basis of such a calculation, the articulation points and the biconnected

components may be determined, all during one search. The biconnectivity algo-
rithm is presented below. The program will compute the biconnected components



152 ROBERT TARJAN

4
)
3 5 5
af2) 60 9 (7]
| 6
9 p7
) 8
4
3 8
: l : 7
2
9
5
| 2< ’ ) 6
[
(c)
Fi1G. 2. A graph and its biconnected components
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of a graph G, starting from vertex s.

BEGIN
INTEGER i;
procedure BICONNECT (v, u);
BEGIN
NUMBER (v) :=i:=i+1;
LOWPT (v) = NUMBER (v);
FOR w in the adjacency list of v DO
BEGIN
IF w is not yet numbered THEN
BEGIN
add (v, w) to stack of edges;
BICONNECT (w, v)
LOWPT (v) := min (LOWPT (v), LOWPT (w));
IF LOWPT (w) = NUMBER (v) THEN
BEGIN
start new biconnected component ;
WHILE top edge e = (u,, u,) on edge
stack has NUMBER (u,)
= NUMBER (w) DO
delete (uy, u,) from edge stack and
add it to current component ;
delete (v, w) from edge stack and add
it to current component ;
END;
END
ELSE IF (NUMBER (w) < NUMBER (v)) and
(w— = u) THEN
BEGIN
add (v, w) to edge stack;
LOWPT (v) := min(LOWPT (v), NUMBER (w));
END;
END;
END;
i:=0;

empty the edge stack;
FOR w a vertex DO IF w is not yet numbered THEN BICONNECT (w, 0);
END;

The edges of G are placed on a stack as they are traversed ; when an articula-
tion point is found the corresponding edges are all on top of the stack. (If (v, w)e T
and LOWPT (w) = LOWPT (v), then the corresponding biconnected com-
ponent contains the edges in {(u;, u,)lw > u;} U {(v,w)} which are on the edge
stack.) A single search on each connected component of a graph G will give us all
the connected components of G.

THEOREM 7. The biconnectivity algorithm requires O(V, E) space and time
when applied to a graph with V vertices and E edges.



154 ROBERT TARJAN

Proof. The algorithm clearly requires space bounded by k,V + k,E + kj,
for some constants k,, k,, and k5. The algorithm is an elaboration of the depth-
first search procedure DFS. During the search, LOWPT values are calculated
and each edge is placed on the edge stack once and removed from the edge stack
once. The amount of extra time required by these operations is proportional to E.
Thus BICONNECT has a time bound linear in V and E.

THEOREM 8. The biconnectivity algorithm correctly gives the biconnected
components of any undirected graph G.

Proof. The actual depth-first search undertaken by the algorithm depends
on the adjacency structure chosen to represent G ; we shall prove that the algorithm
is correct for all adjacency structures. Notice first that the biconnectivity algorithm
analyzes each connected component of G separately to find its biconnected com-
ponents, applying one depth-first search to each connected component. Thus we
need only prove that the biconnectivity algorithm works correctly on connected
graphs G.

The correctness proof is by induction on the number of edges in G. Suppose G
is connected and contains no edges. G either is empty or consists of a single point.
The algorithm will terminate after examining G and listing no components.
Thus the algorithm operates correctly in this case. Now suppose that the algorithm
works correctly on all connected graphs with E — 1 or fewer edges. Consider
applying the algorithm to a connected graph G with E edges.

Each edge placed on the stack of edges is eventually removed and added to a
component since everything on the edge stack is removed whenever the search
returns to the root of the palm tree of G. Consider the situation when the first
component G’ is formed. Suppose that this component does not include all the
edges of G. Then the vertex v currently being examined is an articulation point
of the graph and separates the edges in the component from the other edges in the
graph by Lemma 5.

Consider only the set of edges in the component. If BICONNECT (v, 0) is
executed, using the graph G’ as data, the steps taken by the algorithm are the same
as those taken during the analysis of the edges of G’ when the data consists of the
entire graph G. Since G’ contains fewer edges than G, the algorithm operates
correctly on G’ and G’ must be biconnected. If we delete the edges of G’ from G,
we get another subgraph G” with fewer edges than G since G’ is not empty. The
algorithm operates correctly on G” by the induction assumption. The behavior of
the algorithm on G is simply a composite of its behavior on G’ and on G”; thus
the algorithm must operate correctly on G.

Now suppose that only one component is found. We want to show that in
this case G is biconnected. Suppose that G is not biconnected. Then G has an
articulation point a. By Lemma 5, LOWPT (v) = a for some son v of a. But
the articulation point test in the program will succeed when the edge (a,v) is
examined, and more than one biconnected component will be generated. This
contradiction shows that G is biconnected, and the algorithm works correctly
in this case.

By induction, the biconnectivity algorithm gives the correct components
when applied to any connected graph, and hence when applied to any
graph.
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4. Strong connectivity. The biconnectivity algorithm shows how useful
depth-first search can be when applied to undirected graphs. However, when a
directed graph is searched in a depth-first manner, a simple palm tree structure
does not result, because the direction of search on each edge is fixed. The more
complicated structure which results in this case is still simple enough to prove
useful in at least one application.

DEFINITION 4. Let G be a directed graph. Suppose that for each pair of vertices
v,w in G, there exist paths p, :v = w and p,:w = v. Then G is said to be strongly
connected.

LEMMA 9. Let G = (7, &) be a directed graph. We may define an equivalence
relation on the set of vertices as follows : two vertices v and w are equivalent if there
is a closed path p:v 2 v which contains w. Let the distinct equivalence classes under
this relation be ¥;, 1 £ i < n. Let G; = (¥}, &), where &, = {(v,w)e &lo,we ¥}}.
Then:

(i) Each G, is strongly connected.

(i) No G, is a proper subgraph of a strongly connected subgraph of G.

The subgraphs G; are called the strongly connected components of G.

Suppose we wish to determine the strongly connected components of a
directed graph. This problem is related to the problem of determining the ergodic
subchains and transient states of a Markov chain. Fox and Landy [1] give an
algorithm for solving the latter problem; Purdom [13] and Munro [10] present
virtually identical methods for solving the former problem. These algorithms use
depth-first search. Purdom claims a time bound of k¥'? for his algorithm; Munro
claims k max (E, Vlog V), where the graph has V vertices and E edges. Their
algorithm attempts to construct a cycle by starting from a point and beginning a
depth-first search. When a cycle is found, the vertices on the cycle are marked as
being in the same strongly connected component and the process is repeated.
The algorithm has the disadvantage that two small strongly connected components
may be collapsed into a bigger one; the resultant extra work in relabeling may
contribute V2% steps using a simple approach, or Vlog V steps if a more sophisti-
cated approach is used (see Munro [10]). In fact, the time bound may be reduced
further if an efficient list merging algorithm [9] is used. However, a more careful
study of what a depth-first search does to a directed graph reveals that an O(V, E)
algorithm which requires no merging of components may be devised.

Consider what happens when a depth-first search is performed on a directed
graph G. The set of edges which lead to a new vertex when traversed during the
search form a tree. The other edges fall into three classes. Some are edges running
from ancestors to descendants in the tree. These edges may be ignored, because
they do not affect the strongly connected components of G. Some edges run from
descendants to ancestors in the tree ; these we may call fronds as above. Other edges
run from one subtree to another in the tree. These, we call cross-links. It is easy to
verify that if the vertices of the tree are numbered in the order they are reached
during the search, a cross-link (v, w) always has NUMBER (v) > NUMBER (w).
We shall denote tree edges by v — w, and fronds and cross-links by v -— w.

Suppose G is a directed graph, to which a depth-first search algorithm is
applied repeatedly until all the edges are explored. The process will create a set
of trees which contain all the vertices of G, called the spanning forest F of G, and
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sets of fronds and cross-links. (Other edges are thrown away.) A directed graph
consisting of a spanning forest and sets of fronds and cross-links is called a jungle.
Suppose the vertices are numbered in the order they are reached during the search
and that we refer to vertices by their number. Then we have the following results.

LEMMA 10. Let v and w be vertices in G which lie in the same strongly connected
component. Let F be a spanning forest of G generated by repeated depth-first search.
Then v and w have a common ancestor in F. Further, if u is the highest numbered
common ancestor of v and w, then u lies in the same strongly connected component
as v and w.

Proof. Without loss of generality we may assume v < w. Let p be a path from
vtowin G. Let T, with root u be the smallest subtree of a tree in F containing all
the vertices in p. There must be such a tree, since p can pass from one tree in F to
another tree with smaller numbered vertices but p can never lead to a tree with
larger numbered vertices. If p were contained in two or more trees of F, it could
not end at w, since v < w.

Thus T, exists, and v and w have a common ancestor in F. In fact, p must pass
through vertex u, by a proof similar to the proof of Lemma 4, and u, v, w must all
be in the same strongly connected component. This gives the lemma.

COROLLARY 11. Let C be a strongly connected component in G. Then the vertices
of C define a subtree of a tree in F, the spanning forest of G. The root of this subtree
is called the root of the strongly connected component C.

The problem of finding the strongly connected components of a graph G
thus reduces to the problem of finding the roots of the strongly connected com-
ponents, just as the problem of finding the biconnected components of an un-
directed graph reduces to the problem of finding the articulation points of the
graph. We can construct a simple test to determine if a vertex is the root of a
strongly connected component. Let

LOWLINK (v) = min ({v} U {wjo B->w& @S v&uSw&uandw
are in the same strongly connected component of G)}).

That is, LOWLINK (v) is the smallest vertex which is in the same component as v
and is reachable by traversing zero or more tree arcs followed by at most one
frond or cross-link.

LEMMA 12. Let G be a directed graph with LOWLINK defined as above relative
to some spanning forest F of G generated by depth-first search. Then v is the root of
some strongly connected component of G if and only if LOWLINK (v) = v.

Proof. Obviously, if v is the root of a strongly connected component C of G,
then LOWLINK (v) = v, since if LOWLINK(v) < v, some proper ancestor of v
would be in C and v could not be the root of C.

Consider the converse. Suppose u is the root of a strongly connected com-
ponent C of G, and v is a vertex in C different from u. There must be a path p:v = u.
Consider the first edge on this path which leads to a vertex w not in the subtree T,.
This edge is either a vine or a cross-link, and we must have LOWLINK (v) £ w
< v, since the highest numbered common ancestor of v and w is in C.

Figure 3 shows a directed graph, its LOWLINK values, and its strongly
connected components. LOWLINK may be calculated using depth-first search.
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An algorithm for computing the strongly connected components of a directed
graph in O(V, E) time may be based on such a calculation. An implementation of
such an algorithm is presented below. The points which have been reached during
the search but which have not yet been placed in a component are stored on a
stack. This stack is analogous to the stack of edges used by the biconnectivity
algorithm.

BEGIN
INTEGER i;
PROCEDURE STRONGCONNECT (v);
BEGIN

LOWLINK (v) := NUMBER (v) :=i :=i+ 1;

put v on stack of points;

FOR w in the adjacency list of v DO

BEGIN
IF w is not yet numbered THEN
BEGIN comment (v, w) is a tree arc;
STRONGCONNECT (w);
LOWLINK (v) := min (LOWLINK (v),
LOWLINK (w));
END
ELSE IF NUMBER (w) < NUMBER (v) DO
BEGIN comment (v, w) is a frond or cross-link ;
if w is on stack of points THEN
LOWLINK (v) := min (LOWLINK (v),
NUMBER (w));
END;
END;

If LOWLINK (v) = NUMBER (v)) THEN
BEGIN comment v is the root of a component;
start new strongly connected component ;
WHILE w on top of point stack satisfies
NUMBER (w) = NUMBER (v) DO
delete w from point stack and put w in
current component ;
END;
END;
i:=0;
empty stack of points;
FOR wa vertex IF wis not yet numbered THEN STRONGCONNECT (w);
END;

THEOREM 13. The algorithm for finding strongly connected components requires
O(V, E) space and time.

Proof. The algorithm clearly requires space bounded by k,V + k,E + k;,
for some constants k,, k,, and k5. The algorithm is an elaboration of the depth-
first search procedure DFS, modified to apply to directed graphs. During the
search, LOWLINK values are calculated, each point is placed on the stack of
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points once, and each point is removed from the stack of points once. Testing to
see if a vertex is on the point stack can be done in a fixed time if a Boolean array
is kept which answers this question for each vertex. The amount of extra time
required by these operations is linear in ¥V and E. Thus STRONGCONNECT
has a time bound linear in V and E.

THEOREM 14. The algorithm for finding strongly connected components works
correctly on any directed graph G.

Proof. We prove by induction that the calculation of LOWLINK (v) is
correct. Suppose as the induction hypothesis that for all vertices v such that v is a
proper descendant of vertex k or v < k, LOWLINK (v) is computed correctly.
This means that the test to determine if v is the root of a component is performed
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correctly for all such vertices v. The reader may verify that this somewhat strange
induction hypothesis corresponds to considering vertices in the order they are
examined for the last time during the depth-first search process.

Consider vertex v = k. Let v % w, and let w, -— w, be a vine or cross-link
such that w, < v. If vertices v and w, have no common ancestor, then before vertex
vis reached during the search, vertex w, must have been removed from the stack of
points and placed in a component. (The smallest numbered ancestor of vertex w,
must be a component root.) Thus edge w, -— w, does not enter into the calculation
of LOWLINK (v).

Otherwise, let u be the highest common ancestor of » and w,. Vertex v is also
the highest common ancestor of w; and w,. If u is not in the same strongly con-
nected component as w,, then there must be a strongly connected component root
on the tree path u 5> w,. Since w, < v, this root was discovered and w, was
removed from the stack of points and placed in a component before the edge
w, -— w, is traversed during the search. Thus w; -— w, will not enter into the
calculation of LOWLINK (v). (This can only happen if w, -— w, is a cross-link.)
On the other hand, if u is in the same strongly connected component as w,, there
is no component root r — = u on the branch u % w,, and v -— w, will be used to
calculate LOWLINK (w,), and also LOWLINK (v), as desired. Thus LOW-
LINK (v) is calculated correctly, and by induction LOWLINK is calculated cor-
rectly for all vertices.

Since the algorithm correctly calculates LOWLINK, it correctly identifies
the roots of the strongly connected components. If such a root u is found, the
corresponding component contains all the descendants of u which are on the
stack of points when u is discovered. These vertices are all on top of the stack of
points, and are all put into a component by STRONGCONNECT. Thus
STRONGCONNECT works correctly.

5. Further applications. We have seen how the depth-first search method may
be used in the construction of very efficient graph algorithms. The two algorithms
presented here are in fact optimal to within a constant factor, since every edge and
vertex of a graph must be examined to determine a solution to one of the problems.
(Given a suitable theoretical framework, this statement may be proved rigor-
ously.) The similarity between biconnectivity and strong connectivity revealed
by the depth-first search approach is striking. The possible uses of depth-first
search are very general, and are certainly not limited to the examples presented.
Hopcroft and Tarjan have constructed an algorithm for finding triconnected
components in O(V, E) time by extending the biconnectivity algorithm [8].
An algorithm for testing the planarity of a graph in O(V) time [15] is also based on
depth-first search. Combining the connectivity algorithms, the planarity algorithm,
and an algorithm for testing isomorphism of triconnected planar graphs [7],
we may construct an algorithm to test isomorphism of arbitrary planar graphs in
O(Vlog V) time [8]. Depth-first search is a powerful technique with many applica-
tions.
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