
Dijkstra’s in Disguise

Eric Jang

August 12, 2018

Keywords: Graph Theory, Finance, Reinforcement Learning, Computer
Graphics

A weighted graph is a data structure consisting of some vertices and edges,
and each edge has an associated cost of traversal. Let’s suppose we want to
compute the shortest distance from vertex u to every other vertex v in the graph,
and we express this cost function as Lu(v).

Figure 1: For example, if each edge in this graph has cost 1, Lu(v) = 3.

Dijkstra’s, Bellman-Ford, Johnson’s, Floyd-Warshall are good algorithms for
solving the shortest paths problem. They all share the principle of relaxation,
whereby costs are initially overestimated for all vertices and gradually corrected
for using a consistent heuristic on edges1. The heuristic can be expressed in
plain language as follows:

1The term “relaxation” in the context of graph traversal is not be confused with “relaxation”
as used in an optimization context, e.g. integer linear programs.

1



E(s, v)
Lu(s)

s

v

u

Lu(v) = min
s∈N (v)

[Lu(s) + E(s, v)]

Figure 2: Consistent heuristic: The cost to reach v from u can be no greater
than the cost to reach any of v’s neighbors, plus the cost of traversing from that
neighbor to the final destination v.

It turns out that many algorithms I’ve encountered in my computer graph-
ics, finance, and reinforcement learning studies are all variations of this
relaxation principle in disguise. It’s quite remarkable (embarrassing?) that
so much of my time has been spent on such a humble technique taught in
introductory computer science courses!

This blog post is a gentle tutorial on how all these varied CS topics are
connected. No prior knowledge of finance, reinforcement learning, or computer
graphics is needed. The reader should be familiar with undergraduate probability
theory and introductory calculus and willing to look at math equations. I’ve
also sprinkled in some insights and questions that might be interesting to the AI
researcher audience, so hopefully there’s something for everybody here.

1 Bellman-Ford
Here’s a quick introduction to Bellman-Ford, which is actually easier to under-
stand than the famous Dijkstra’s Algorithm.

Given a graph with N vertices and costs E(s, v) associated with each directed
edge s→ v, we want to find the cost of the shortest path from a source vertex u
to each other vertex v. The algorithm proceeds as follows: The cost to reach u
from itself is initialized to 0, and all the other vertices have distances initialized
to infinity.

The relaxation step (described in the previous section) is performed across
all edges in any order for each iteration. The correct distances from u are
guaranteed to have propagated completely to all vertices after N − 1 iterations,
since the longest of the shortest paths contain at most N unique vertices. If the
relaxation condition indicates there are still yet shorter paths after N iterations,

2



it implies the presence of a cycle whose total cost is negative. You can find a
nice animation of the Bellman-Ford algorithm here

Below is the pseudocode:

2 Currency Arbitrage
Admittedly, all this graph theory seems sort of abstract and boring at first. But
would it still be boring if I told you that efficiently detecting negative cycles in
graphs is a multi-billion dollar business?

The foreign exchange (FX) market, where one currency is traded for another,
is the largest market in the world, with about 5 trillion USD being traded every
day. This market determines the exchange rate for local currencies when you
travel abroad. Let’s model a currency exchange’s order book (the ledger of
pending transactions) as a graph:

• Each vertex represents a currency (e.g. JPY, USD, BTC).

• Each directed edge represents the conversion of currency A to currency B.

An arbitrage opportunity exists if the product of exchange rates in a cycle
exceeds 1, which means that you can start with 1 unit of currency A, trade your
way around the graph back to currency A, and then end up with more than one
unit of A!

To see how this is related to the Bellman-Ford algorithm, let each currency
pair (A,B) with conversion rate B

A be represented as a directed edge from A to
B with edge weight E(A,B) = log A

B . Rearranging the terms,

3

https://visualgo.net/en/sssp


log
A

B
+ log

B

C
+ ... log

Z

A
< 0

A

B
· B
C
...
Y

Z
· Z
A

< 1

B

A

C

B
...
Z

Y

A

Z
> 1

Figure 3: Arbitrage: Any cycle in an asset exchange graph having a product of
conversion rates less than 1 is an arbitrage opportunity. We can re-write this as
a negative cycle in a graph whose edge weights are in the form E(A,B) = log A

B .

The above algebra shows that if the sum of edge weights in a cycle is negative,
it is equivalent to the product of exchange rates exceeding 1. The Bellman-Ford
algorithm can be directly applied to detect currency arbitrage opportunities!2.

In my sophomore year of college, I caught the cryptocurrency bug and set
out to build an automated arbitrage bot for scraping these opportunities in
exchanges. Cryptocurrencies - being unregulated speculative digital assets - are
ripe for cross-exchange arbitrage opportunities:

1. Inter-exchange transaction costs are low (assets are ironically centralized
into hot and cold wallets).

2. Lots of speculative activity, whose bias generates lots of mispricing.3.

3. Exchange APIs expose much more order book depth and require no license
to trade cryptos. With a spoonful of Python and a little bit of initial capital,
you can trade nearly any crypto you want across dozens of exchanges..

Now we have a way to automatically detect mispricings in markets and end
up with more money than we started with. Do we have a money printing machine
yet?

2This also applies to all fungible assets in general, but currencies tend to be the most
strongly-connected vertices in the graph.

3A simple form of bias being that retail traders like to buy things in integer dollar amounts.
Another scenario: suppose an exchange rate of USD/BTC = 1/1. Let’s also suppose ACME
corporation has holdings in BTC and needs a lot of USD quickly to pay off some loans. Due to
inadequate planning and human incompetence, ACME is so desperate to get this transaction
filled quickly that rather than filling a bunch of small orders over the course of a few days, they
are willing to pay a conversion ratio of 0.5 for a bulk order. As soon as ACME’s order hits
the order book (all the buy and sell orders), a trader could start with 1000 USD, fill ACME’s
order for 2000 BTC, and then trade it back to 2000 USD by 1) submitting a bunch of separate
USD/BTC buy orders immediately or 2) slowly converting it back.

4



Not so fast! A lot of things can still go wrong. Exchange rates fluctuate
over time and other people are competing for the same trade, so the chances of
executing all legs of the arbitrage are by no means certain.

Execution of trading strategies is an entire research area on its own, and can
be likened to crossing a frozen lake as quickly as possible. Each intermediate
currency position, or “leg”, in an arbitrage strategy is like taking a cautious step
forward. One must be able to forecast the stability of each step and know what
steps proceed after, or else one can get “stuck” holding a lot of a currency that
gives out like thin ice and becomes worthless. Often the profit opportunity is
not big enough to justify the risk of crossing that lake.

Simply taking the greedy minimum among all edge costs does not take into
account the probability of various outcomes happening in the market. The right
way to structure this problem is to think about edge weights being random
variables that change over time. In order to compute the expected cost, we need
to integrate over all possible path costs that can manifest. Hold this thought, as
we will need to introduce some more terminology in the next few sections.

While the arbitrage system I implemented was capable of detecting arb
opportunities, I never got around to fully automating the execution and order
confirmation subsystems. Unfortunately, I got some coins stolen and lost interest
in cryptos shortly after. To execute arb opportunities quickly and cheaply I
had to keep small BTC/LTC/DOGE positions in each exchange, but sometimes
exchanges would just vanish into thin air. Be careful of what you wish for, or
you just might find your money “decentralized” from your wallet!

3 Directional Shortest-Path
Let’s introduce another cost function, the directional shortest path Lu(v, s→
v), that computes the shortest path from u to v, where the last traversed edge
is from s→ v. Just like making a final stop at the bathroom s before boarding
an airplane v.

Note that the original shortest path cost Lu(v) is equivalent to the smallest
directional shortest path cost among all of v’s neighboring vertices, i.e. Lu(v) =
mins Lu(v, s→ v)

5



Shortest-path algorithms typically associate edges with costs, and the objec-
tive is to minimize the total cost. This is also equivalent to trying to maximize
the negative cost of the path, which we call Qu = −Lu(v). Additionally, we
can re-write this max-reduction as a sum-reduction, where each Qu term is
multiplied by an indicator function that is 1 when its Qu term is the largest and
0 otherwise.

s

v

u

E(s, v)
Lu
(s
, u

i
→
s)

s

v

u

Lu(v, s → v)

Lu(v, s→ v) = E(s, v) + Lu(s)
= E(s, v) + min

ui∈N (s)
Lu(s, ui → s)

Qu(v, s→ v) = E(s, v) + max
ui∈N (s)

Qu(s, ui → s)

Qu(v, s→ v) = E(s, v) +
∑

ui∈N (s)

Lu(s, ui → s)p(uimaximizes Qu(s, ui → s))

Figure 4: Consistent heuristic (rephrased): The “directional shortest path
cost” to the target node, through a neighbor of the target node, is the cost of the
final step from the neighbor to the target, plus the cost of the shortest path to
the neighbor node. Recursing into the neighbor node’s own neighbors, note that
the cost of the shortest path to the neighbor node is the min-reduction over all
of the directional shortest paths for each of its neighbors. This is also equivalent
to a maximization problem of negated costs.

Does this remind you of any well-known algorithm? If you guessed "Q-
Learning", you are right!

4 Q-Learning
Reinforcement learning (RL) problems entail an agent interacting with its
environment such that the total expected reward R it receives is maximized over
a multi-step (maybe infinite) decision process. In this setup, the agent will be
unable to take further actions or receive additional rewards after transitioning
to a terminal (absorbing) state.

There are many ways to go about solving RL problems4, and we’ll discuss
just one kind today: value-based RL algorithms attempt to recover a value
function Q(s, a) that computes the maximum total reward an agent can possibly
obtain if it takes an action a at state s.

4mathematically, all optimal control algorithms are just different faces of the same coin.

6



Wow, what a mouthful! Here’s a diagram of what’s going on along with an
annotated mathematical expression.

Q(s, a) = r(s, a) + γmax
a′

Q(s′, a′)

Figure 5: Bellman Equality: an agent takes action a at state s, receiving some
reward r(s, a) and arriving at a new state s′. The maximum obtainable total
reward after taking a from s is the reward it just received, plus the maximum
obtainable total reward starting from s′, discounted by the probability that the
agent randomly gets stuck and no longer can obtain rewards.

Re-writing the shortest path relaxation procedure in terms of a directional
path cost recovers the Bellman Equality, which underpins the Q-Learning al-
gorithm. It’s no coincidence that Richard Bellman of Bellman-Ford is also the
same Richard Bellman of the Bellman Equality! Q-learning is a classic example
of dynamic programming.

For those new to Reinforcement Learning, it’s easiest to understand Q-
Learning in the context of an environment that yields a reward only at the
terminal transition:

1. The value of state-action pairs (sT , aT ) that transition to a terminal state
are easy to learn - it is just the sparse reward received as the episode ends,
since the agent can’t do anything afterwards.

2. Once we have all those final values, the value for (sT−1, aT−1) leading to
those states are “backed up” (backwards through time) to the states that
transition to them.

3. This continues all the way to the state-action pairs (s1, a1) encountered at
the beginning of episodes.

5 Handling Randomness in Shortest-Path Algo-
rithms

Remember the “thin ice” analogy from currency arbitrage? Let’s take a look at
how modern RL algorithms are able to handle random path costs.

7



In RL, the agent’s policy distribution π(a|s) is a conditional probability
distribution over actions, specifying how the agent behaves randomly in response
to observing some state s. In practice, policies are made to be random in
order to facilitate exploration of environments whose dynamics and set of states
are unknown (e.g. imagine the RL agent opens its eyes for the first time and
must learn about the world before it can solve a task). Since the agent’s
sampling of action a ∼ π(a|s) from the policy distribution are immediately
followed by computation of environment dynamics s′ = f(s, a), it’s equivalent to
view randomness as coming from a stochastic policy distribution or stochastic
transition dynamics. We redefine a notion of Bellman consistency for expected
future returns:

Q(s, a) = Ea∼π(a|s)

[
r(s, a) + γmax

a′
Q(s′, a′)

]
By propagating expected values, Q-learning allows for shortest-path algo-

rithms to essentially be aware of the expected path length, and take transition
probabilities of dynamics/policies into account.

6 Modern Q-Learning
This section discusses some recent breakthroughs in RL research, such asQ-value
overestimation, Softmax Temporal Consistency, Maximum Entropy
Reinforcement Learning, and Distributional Reinforcement Learning.
These cutting-edge concepts are put into the context of shortest-path algorithms
as discussed previously. If any of these sound interesting and you’re willing to
endure a bit more math jargon, read on – otherwise, feel free to skip to the next
section on computer graphics.

Single-step Bellman backups during Q-learning turn out to be rather sensitive
to random noise, which can make training unstable. Randomness can come from
imperfect optimization over actions during the Bellman Update, poor function
approximation in the model, random label noise (e.g. human error in assigning
labels to a robotic dataset), stochastic dynamics, or uncertain observations
(partial observability). All of these can violate the Bellman Equality, which may
cause learning to diverge or get stuck in a poor local minima.

partial 
observability

approximate 
max

label noise stochastic
dynamics

8



Figure 6: Sources of noise that arise in Q-learning which violate the hard Bellman
Equality.

A well-known problem among RL practitioners is that Q-learning suffers
from over-estimation; during off-policy training, predicted Q-values climb higher
and higher but the agent doesn’t get better at solving the task. Why does this
happen?

Even if Qθ is an unbiased estimator of the true value function, any variance
in the estimate is converted into upward bias during the Bellman update. A
sketch of the proof: assuming Q values are uniformly or normally distributed
about the true value function, the Fisher–Tippett–Gnedenko theorem tells us
that applying the max operator over multiple normally-distributed variables is
mean-centered around a Gumbel distribution with a positive mean. Therefore
the updated Q function, after the Bellman update is performed, will obtain
some positively skewed bias! One way to deal with this is double Q-learning,
which re-evaluates the optimal next-state action value using an i.i.d Q function.
Assuming Q-value noise is independent of the max action, the use of a i.i.d Q
function for scoring the best actions makes max-Q estimation unbiased again.

Dampening Q values can also be accomplished crudely by decreasing the
discount factor (0.95 is common for environments like Atari), but γ is kind of a
hack as it is not a physically meaningful quantity in most environments.

Yet another way to decrease overestimation of Q values is to “smooth” the
greediness of the max-operator during the Bellman backup, by taking some kind
of weighted average over Q values, rather than a hard max that only considers
the best expected value. In discrete action spaces with K possible actions, the
weighted average is also known as a “softmax” with a temperature parameter:

softmax(x, τ) = wTx

where

wi =
exi/τ∑K
j=1 e

xj/τ

Intuitively, the “softmax” can be thought of as a confidence penalty on how
likely we believe maxQ(s′, a′) to be the actual expected return at the next
time step. Larger temperatures in the softmax drag the mean away from the
max value, resulting in more pessimistic (lower) Q values. Because of this
temeprature-controlled softmax, our reward objective is no longer simply to
“maximize expected total reward”; rather, it is more similar to “maximizing the
top-k expected rewards”. In the infinite-temperature limit, all Q-values are
averaged equally and the softmax becomes a mean, corresponding to the return
of a completely random policy. Hold that thought, as this detail will be important
later when we discuss computer graphics!

This modification to the standard Hard-Max Bellman Equality is known as
Softmax Temporal Consistency. In continuous action spaces, the backup

9



through an entire episode can be thought of as repeatedly backing up expectations
over integrals.

Q(s, a) = r(s, a) + γτ log

∫
a′∈A

da′ exp(Q(s′,a′)/τ)

fubar

By introducing a confidence penalty as an implicit regularization term, our
optimization objective is no longer optimizing for the cumulative expected
reward from the environment. In fact, if the policy distribution has the form of
a Boltzmann Distribution:

π(a|s) ∼ expQ(s, a)

This softmax regularization has a very explicit, information-theoretic interpre-
tation: it is the optimal solution for the Maximum-Entropy RL objective:

π∗MaxEnt = argmax
π

Eπ

[
T∑
t=0

rt +H(π(·|st))
]

An excellent explanation for the maximum entropy principle is reproduced
below from Brian Ziebart’s PhD thesis:

When given only partial information about a probability distribu-
tion, P̃ , typically many different distributions, P , are capable of
matching that information. For example, many distributions have
the same mean value. The principle of maximum entropy resolves
the ambiguity of an under-constrained distribution by selecting the
single distribution that has the least commitment to any particular
outcome while matching the observational constraints imposed on
the distribution.

This is nothing more than“Occam’s Razor” in the parlance of statistics. The
Maximum Entropy Principle is a framework for limiting overfitting in RL models,
as it limits the amount of information (in nats) contained by the policy. The
more entropy a distribution has, the less information it contains, and therefore
the less “assumptions” about the world it makes. The combination of Softmax
Temporal Consistency with Boltzmann Policies is known as Soft Q-Learning.

To draw a connection back to currency arbitrage and the world of finance,
limiting the number of assumptions in a model is of paramount importance to
quantiatiative researchers at hedge funds, since hundreds of millions of USD
could be at stake. Quants have developed a rather explicit form of Occam’s
Razor by tending to rely on models with as few statistical priors as possible,
such as Linear models and Gaussian Process regression with simple kernels.

10

http://www.cs.cmu.edu/~bziebart/publications/thesis-bziebart.pdf


Although Soft Q-Learning can regularize against model complexity, updates
are still backed up over single timesteps. It is often more effective to integrate
rewards with respect to a “path” of samples actually sampled at data collection
time, than backing up expected Q values one edge at a time and hoping that
softmax temporal consistency remains consistent well when accumulating multiple
backups.

Work from Nachum et al. 2017, O’Donoghue et al. 2016, Schulman et al.
2017 explore the theoretical connections between multi-step return optimization
objectives (policy-based) and temporal consistency (value-based) objectives.
The use of a multi-step return can be thought of as a path-integral solution
to marginalizing out random variables occuring during a multi-step decision
process (such as random non-Markovian dynamics). In fact, long before any
of this Deep RL hype came around, control theorists have been using path
integrals for optimal control to tackle the problem of integrating multi-step
stochastic dynamics (https://arxiv.org/pdf/physics/0505066.pdf, http:
//www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf).

Once trained, the value function Q(s, a) implies a sequence of actions an
agent must do in order to maximize expected reward (this sequence does not
have to be unique). In order for the Q function to be correct, it must also
implicitly capture knowledge about the expected dynamics that occur along the
sequence of actions. It’s quite remarkable that all this “knowledge of the world
and one’s own behavior” can be captured into a single scalar.

However, this representaitonal compactness can also be a curse!
Soft Q-learning and PGQ/PCL successfully back up expected values over some

return distribution, but it’s still a lot to ask of a neural network to capture all
the knowledge about expected future dynamics, marginalize all the randomness
into a single statistic.

We may be interested in propagating other statistics like variance, skew, and
kurtosis of the value distribution. What if we did Bellman backups over entire
distributions, without having to throw away the higher-order moments?

This actually recovers the motivation of Distributional Reinforcement
Learning, in which “edges” in the shortest path algorithm propagate distri-
butions over values rather than collapsing everything into a scalar. The main
contribution of the seminal Bellemare et al. 2017 paper is defining an algebra
that generalizes the Bellman Equality to operate on distributions rather than
scalar statistics of them. Unlike the path-integral approach to Q-value estimation,
this framework avoids marginalization error by passing richer messages in the
single-step Bellman backups.

Soft-Q learning, PGQ/PCL, and Distributional Reinforcement Learning are
“probabilistically aware” reinforcement learning algorithms. They appear to be
tremendously beneficial in practice, and I would not be surprised if by next year
it becomes widely accepted that these techniques are the “physically correct”
thing to do, and hard-max Q-learning (as done in standard RL evaluations)
is discarded. Given that multi-step Soft-Q learning (PCL) and Distributional
RL take complementary approaches to propagating value distributions, I’m also
excited to see whether the approaches can be combined (e.g. policy gradients

11

https://arxiv.org/pdf/1702.08892.pdf
https://arxiv.org/abs/1611.01626
https://arxiv.org/pdf/1704.06440.pdf
https://arxiv.org/pdf/1704.06440.pdf
https://arxiv.org/pdf/physics/0505066.pdf
http://www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf
http://www.jmlr.org/papers/volume11/theodorou10a/theodorou10a.pdf
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1710.02298
http://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/


over distributional messages).

7 Physically-Based Rendering
Ray tracing is not slow, computers are. – James Kajiya

A couple of the aforementioned RL works make heavy use of the terminology
“path integrals”. Do you know where else path integrals and the need for “physical
correctness” arise? Computer graphics!

Whether it is done by an illustrator’s hand or a computer, the problem of
rendering asks “Given a scene and some light sources, what is the image that
arrives at a camera lens?”. Every rendering procedure – from the first abstract
cave painting to Disney’s modern Hyperion renderer, is a depiction of light
transported from the world to the eye of the observer.

Production rendering technology has made tremendous strides in the last 20
years:

Figure 7: From top left, clockwise: Big City Overstimulation by Gleb Alexandrov.
Pacific Rim, Uprising. The late Peter Cushing resurrected for a Star Wars movie.
Remove Henry’s Cavill’s mustache to re-shoot some scenes because he needs the
mustache for another movie.

12

https://www.artstation.com/artwork/big-city-sensory-overstimulation


Photorealistic rendering algorithms are made possible thanks to accurate
physical models of how light behaves and interacts with the natural world,
combined with the computational resources to actually represent the natural
world in a computer. For instance, a seemingly simple object like a butterfly
wing has an insane amount of geometric detail, and light interacts with this
geometry to produce some macroscopic effect like iridescence.

Light transport involves far too many calculations for a human to do by
hand, so the old master painters and illustrators came up with a lot of rules
about how light behaves and interacts with everyday scenes and objects. Here
are some examples of these rules:

• Cold light has a warm shadow, warm light has a cool shadow.

• Light travels through tree leaves, resulting in umbras that are less "hard"
than a platonic sphere or a rock.

• Clear water and bright daylight result in caustics.

• Light bounces off flat water like a billiard ball - with a perfectly reflected
incident angle, but choppy water turns white and no longer behaves like a
mirror.

You can get quite far on a big bag of heuristics like these. Here are some
majestic paintings from the Hudson River School (19th century).

13



Figure 8: Albert Bierstadt, Scenery in the Grand Tetons, 1865-1870

Figure 9: Albert Bierstadt, Among the Sierra Nevada Mountains, California,
1868

14

https://artsandculture.google.com/asset/scenery-in-the-grand-tetons/tQGS1SjveuPfFg
https://artsandculture.google.com/asset/among-the-sierra-nevada-california/IQE1CY9y_Rfy5A
https://artsandculture.google.com/asset/among-the-sierra-nevada-california/IQE1CY9y_Rfy5A


Figure 10: Mortimer Smith: Winter Landscape, 1878

However, a lot of this painterly understanding – though breathtaking – was
non-rigorous and physically inaccurate. Scaling this up to animated sequences
was also very laborious. It wasn’t until 1986, with the independent discovery
of the rendering equation by David Immel et al. and James Kajiya, that we
obtained physically-based rendering algorithms.

Of course, the scene must obey the conservation of energy transport: the
electromagnetic energy being fed into the scene (via radiating objects) must
equal the total amount of electromagnetic energy being absorbed, reflected,
or refracted in the scene. Here is the rendering equation explained in an
annotated equation:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

dωifr(x, ωo, ωi)(ωi · n)Li(x,−ωi)

15

https://www.dia.org/art/collection/object/winter-landscape-61811


Figure 11: Rendering Equation: The outgoing radiance from a given point in
a given direction is the emitted radiance in that direction, plus the total reflected
radiance, which is made up of incoming radiance from every possible direction.
Radiance from reflected, incoming light rays are attenuated by the probability of
the light ray exiting in the direction of interest, given that it it entered the point
from the incoming direction. It is also attenuated by the cosine of the facing
angle of local surface geometry with respect to the incoming light ray. More
generally, fr may also be a function of wavelength λ and time t.

A Monte Carlo estimator is a method for estimating high-dimensional inte-
grals, by simply taking the average over many independent samples of an unbiased
estimator. Path-tracing is the simplest Monte-Carlo approximation possible
to the rendering equation. I’ve borrowed some screenshots from Disney’s very
excellent tutorial on production path tracing to explain how “physically-based
rendering” works.

Figure 12: Initially, the only thing visible to the camera is the light source. Let
there be light!

16

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://www.youtube.com/watch?v=frLwRLS_ZR0


Figure 13: A stream of photons is emitted from the light and strikes a surface
(in this case, a rock). It can be absorbed into non-visible energy, reflected off
the object, or refracted into the object.

Figure 14: Any reflected or refracted light is emitted from the surface and
continues in another random direction, and the process repeats until there are
no photons left or it is absorbed by the camera lens.

Figure 15: This process is repeated ad infinum for many rays until the inflow vs.
outflow of photons reaches equilibrium or the artist decides that the computer
has been rendering for long enough.

This equation has applications beyond entertainment: the inverse problem is
studied in astrophysics simulations (given observed radiance of a supernovae, what
are the properties of its nuclear reactions?), and the neutron transport problem
5. The rendering integral is also a inhomogeneous Fredholm equations of
the second kind, which has the general form:

5In fact, Monte Carlo methods for solving integral equations were developed for studying
fissile reactions for the Manhattan Project!

17

https://www.amazon.com/Principles-Neutron-Transport-Problems-Mathematics/dp/0486462935


ϕ(t) = f(t) + λ

∫ b

a

K(t, s)ϕ(s) ds.

Take another look at the rendering equation. Déjà vu, anyone?

Once again, path tracing is nothing more than the Bellman-Ford heuristic
encountered in shortest-path algorithms! The rendering integral is taken over
the 4π steradian’s of surface area on a unit sphere, which cover all directions
an incoming light ray can come from. If we interpret this area integration
probabilistically, this is nothing more than the expectation (mean) over samples
from a uniform sphere.

This equation takes the same form as the high-temperature softmax limit
for Soft Q-learning! Recall that as τ →∞, softmax converges to an expectation
over a uniform distribution, i.e. a policy distribution with maximum entropy
and no information. Light rays have no agency, they merely bounce the scene
like RL agents taking random actions!

The astute reader may wonder whether there is also a corresponding “hard-
max” version of rendering, just as hard-max Bellman Equality is to the Soft
Bellman Equality in Q-learning.

The answer is yes! The recursive ray-tracing algorithm (invented before
path-tracing, actually) was a non-physical approximation of light transport that
assumes the largest of lighting contributions reflected off a surface comes from
one of the following light sources:

1. Emitting material

2. Direct exposure to light sources

3. Strongly reflected light (i.e. surface is a mirror)

4. Strongly refracted light (i.e. surface is made of glass or water).

In the case of reflected and refracted light, recursive trace rays are branched
out to perform further ray intersection, usually terminating at some fixed depth.

18



Lo(x, ωo) = Le(x, ωo) + max
ωi∈Ω

fr(x, ωo, ωi)(ωi · n)Li(x,−ωi)

Because ray tracing only considers the maximum contribution directions, it
is not able to model indirect light, such as light bouncing off a bright wall and
bleeding into an adjacent wall. Although these contributions are minor in today
setups like Cornell Boxes, they play a dominant role in rendering pictures of
snow, flesh, and food.

Below is a comparison of a ray-traced image and a path-traced image. The
difference is like night and day:

Prior work has drawn connections between light transport and value-based
reinforcement learning, and in fact Dahm and Keller 2017 leverage Q-learning to
learn optimal selection of “ray bounce actions” to accelerate importance sampling
in path tracing. Much of the physically-based rendering literature considers
the problem of optimal importance sampling to minimize variance of the path
integral estimators, resulting in less “noisy” images.

For more information on physical rendering, I highly recommend Benedikt
Bitterli’s interactive tutorial on 2D light transport and Pat Hanrahan’s book
chapter on Monte Carlo Path Tracing.

19

https://arxiv.org/pdf/1701.07403v1.pdf
https://benedikt-bitterli.me/tantalum
http://www.graphics.stanford.edu/courses/cs348b-01/course29.hanrahan.pdf


8 Summary and Questions
We have 3 very well-known algorithms (currency arbitrage, Q-learning, path
tracing) that independently discovered the principle of relaxation used in shortest-
path algorithms such as Dijkstra’s and Bellman-Ford. Remarkably, each of these
disparate fields of study discovered notions of hard and soft optimality, which is
relevant in the presence of noise or high-dimensional path integrals. Here is a
table summarizing the connections:

These different fields have quite a lot of ideas that could be cross-fertilized.
Just to toss some ideas out there (a request for research, if you will):

1. There has been some preliminary work on using optimal control to reduce
sample complexity of path tracing algorithms. Can sampling algorithms
used in rendering be leveraged for reinforcement learning?

2. Path tracing integrals are fairly expensive because states and actions are
continuous and each bounce requires ray-intersecting a geometric data
structure. What if we just consider a lot of discrete points (e.g. scattered
photons), pre-compute a visibility matrix, and use that to seed a final-
gather render?

3. Path tracing is to Soft Q-Learning as Photon Mapping is to ...?

4. Has anyone ever tried using the Maximum Entropy principle as a regular-
ization framework for financial trading strategies?

5. The selection of a proposal distribution for importance-sampled Monte
Carlo rendering could utilize Boltzmann Distributions with soft Q-learning.
This is nice because the proposal distribution over recursive ray directions
has infinite support by construction, and Soft Q-learning can be used to
tune random exploration of light rays.

6. Is there a distributional RL interpretation of path tracing, such as polarized
path tracing?

7. Given the equivalence between Q Learning and shortest path algorithms, it’s
interesting to note that in Deep RL research, we carefully initialize weights
but leave the Q-function values fairly arbitrary. However, all shortest-path
algorithms rely on initializing costs to negative infinity, so that costs being
propagated during relaxation correspond to actually realizable paths. Why
aren’t we initializing all function values to negative-valued numbers?

20



9 Acknowledgements
I’m very grateful to Austin Chen, Deniz Otkay, Ofir Nachum, and Vincent
Vanhoucke for reading and providing feedback to this post. All typos/factual
errors are my own; please write to me if you spot additional errors. And finally,
thank you for reading!

21


	Bellman-Ford
	Currency Arbitrage
	Directional Shortest-Path
	Q-Learning
	Handling Randomness in Shortest-Path Algorithms
	Modern Q-Learning
	Physically-Based Rendering
	Summary and Questions
	Acknowledgements

