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Summary

In 2019, the rapid rate at which GPU manufacturers refresh their designs,
coupled with their reluctance to disclose microarchitectural details, is still a
hurdle for those software designers who want to extract the highest possible
performance from GPUs.

Last year, these very reasons motivated us to dissect the Volta GPU archi-
tecture using microbenchmarks. We presented our findings at NVidia’s GPU
Technology Conference (GTC2018) [1] and published them in a technical re-
port [2].

The introduction in August 2018 of Turing [3], NVidia’s latest architecture,
pressed us to update our study. In this report, we examine Turing and com-
pare it quantitatively against previous NVidia GPU generations. Specifically,
we study the T4 GPU: a low-power, small form-factor board aiming at infer-
ence applications. We describe its improvements against its inference-oriented
predecessor: the P4 GPU based on the Pascal architecture. Both T4 and P4
GPUs achieve significantly higher frequency-per-Watt figures than their full-
size counterparts.

We study the performance of the T4’s Tensor Cores, finding a much higher
throughput on low-precision operands than on the P4 GPU. We reveal that
Turing introduces new instructions that express matrix math more succinctly.
We map Turing’s instruction space, finding the same encoding as Volta, and
additional instructions. We reveal that the Turing TU104 chip has the same
memory hierarchy depth as the Volta GV100; cache levels sizes on the TU104
are frequently twice as large as those found on the Pascal GP104. We bench-
mark each constituent of the T4 memory hierarchy and find substantial over-
all performance improvements over its P4 predecessor. We studied how clock
throttling affects compute-intensive workloads that hit power or thermal lim-
its.

Many of our findings are novel, published here for the first time. All of
them can guide high-performance software developers get closer to the GPU’s
peak performance, as we illustrate with examples.
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Chapter 1

Low-level details make a difference

In this section, we use a practical example to motivate our claim that a deep
understanding of the architecture can help developers achieve substantial
speed-ups in certain, specific scenarios, although at the cost of significant de-
velopment effort.

It takes disproportionate effort to optimize code on the basis of a deep un-
derstanding of its target architecture. This approach frequently resorts to writ-
ing inline PTX assembly and, when pushed to its extreme, to patching binary
code in the pursuit of specific SASS assembly that the compiler won’t emit,
following undocumented instruction encoding formats, without any support
from NVidia’s toolchain.

Whether the gains are worth the effort is a central question but, ultimately,
one that only you can answer depending on your unique circumstances and
pressure for performance. For a large majority of GPU software developers,
the answer is no:

• if one of the mature libraries provided by NVidia (such as cuBlas, cuFFT,
cuSparse, cuRand, cuDNN, etc.) covers the computation desired, the
performance obtained is close to ideal in most circumstances;

• in other applications, for which developers write CUDA code, NVCC
usually emits efficient machine code, if the source code is written suffi-
ciently well.

Rare are the cases where the pressure for performance justifies extreme,
low-level optimization. A prolific line of research has traditionally focused
on understanding GPU instruction encoding [4, 5, 6] precisely to improve the
performance of compute kernels [7, 8, 9]. Our prior work on Volta [2] also
offered such an example: we patched compiler-emitted code so that it used
the register cache better, and achieved a 15% higher floating-point arithmetic
throughput.
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Figure 1.1: Performance of our improved saxpy implementation that uses 128-bit wide global
memory access instructions, compared with cublasSaxpy from NVidia’s cuBlas library, that
uses 32- and 64-bit wide instructions. Elapsed time in microseconds; lower is better.

This time, we show that the knowledge of Turing’s instructions allows de-
signers to improve the performance of a common linear algebra function (i.e.,
BLAS ?axpy), whose library implementation for single-precision operands
contains memory access operations limited to a 64-bit width. We show a sim-
ple replacement that uses vectorized 128-bit accesses, and improves perfor-
mance substantially (see Fig. 1.1).

The ?axpy workload we chose performs a scaled, element-wise vector-
vector sum, i.e.:

~y := a · ~x+ ~y

where a is the scale factor. The workload is quite obviously of low arithmetic
intensity, which makes it memory bound. This means that any efficiency gain
in its access to global memory translates into a direct overall speedup.

The most straightforward way to compute this workload in C on a CPU
code is invoking BLAS function cblas_?axpy (where ‘?’ is a placeholder
for the operand type, i.e., s, d, c, or z, respectively, for single- or double-
precision, real or complex operands). In CUDA, the corresponding function
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is cublas?axpy, from NVidia’s cuBlas library. For simplicity, we only focus
on its single-precision variant cublasSaxpy.

In our analysis, function cublasSaxpy calls, in turn, axpy_kernel_val
which, in its single-precisions implementations shipped with the CUDA SDK
version 10.0, contain load and store instructions (from/to global memory) no
wider than 64 bits. An excerpt of one such implementation follows:
Function : void axpy_kernel_val<float2, float2, 0>(

cublasAxpyParamsVal<float2, float2, float2>)
.headerflags @"EF_CUDA_SM75 EF_CUDA_PTX_SM(EF_CUDA_SM75)"

...
/*01f0*/ LDG.E.64.SYS R2, [R2] ;
/*0200*/ LDG.E.64.SYS R8, [R4] ;

...
/*0330*/ LDG.E.64.SYS R2, [R2] ;
/*0340*/ LDG.E.64.SYS R8, [R4] ;

...

This access width is suboptimal on Turing, especially considering that:

1. Turing has only half as many load/store units per SM as Volta (16 vs. 32,
as per public NVidia information [10, 3]);

2. a T4 device supports only half as many threads per SM than a V100
device (1,024 vs. 2,048); it is therefore harder to saturate the available
memory bandwidth on Turing by just increasing block count.

As a consequence, loading wider words per instruction is an effective strat-
egy to increase memory access throughput. We do so in our improved imple-
mentation of the Saxpy kernel, that uses 128-bit vectorized memory access
instructions:
__global__ void improved_Saxpy( float *d_y, const float *d_x,

const float alpha, const uint32_t arraySize)
{
// every thread process 4 elements at a time
uint32_t tid = (threadIdx.x+blockIdx.x*blockDim.x)*4;
// the elements that all threads on GPU can process at a time
uint32_t dim = gridDim.x*blockDim.x*4;

for(uint32_t i = tid; i < arraySize; i += dim)
asm volatile ("{\t\n"

// registers to store input operands
".reg .f32 a1,b1,c1,d1;\n\t"
".reg .f32 a2,b2,c2,d2;\n\t"

// loading with vectorized, 128-bit instructions
"ld.global.v4.f32 {a1,b1,c1,d1},[%0];\n\t"
"ld.global.v4.f32 {a2,b2,c2,d2},[%1];\n\t"

// core math operations
"fma.rn.f32 a2,a1,%2,a2;\n\t"
"fma.rn.f32 b2,b1,%2,b2;\n\t"
"fma.rn.f32 c2,c1,%2,c2;\n\t"
"fma.rn.f32 d2,d1,%2,d2;\n\t"

// storing results with a vectorized, 128-bit write instruction
"st.global.v4.f32 [%1],{a2,b2,c2,d2};\n\t"
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"}" :: "l"(d_x+i),"l"(d_y+i), "f"(alpha) : "memory"
);

}

The PTX assembly that you see inlined in our code above visibly
uses 128-bit wide load and store instructions ld.global.v4.f32 and
st.global.v4.f32, capable of transferring a vector of four single-precision
floating-point values at a time. (For simplicity and brevity, our implementa-
tion neglects arrays whose size is not a multiple of 4.)

Inspection of the corresponding SASS code emitted by NVCC confirms
that global memory instructions are 128 bits wide:

.headerflags @"EF_CUDA_SM75 EF_CUDA_PTX_SM(EF_CUDA_SM75)"

...
/*00d0*/ LDG.E.128.SYS R8, [R8] ;
/*00e0*/ LDG.E.128.SYS R4, [R2] ;
...
/*0110*/ FFMA R4, R8, c[0x0][0x170], R4 ;
/*0120*/ FFMA R5, R9, c[0x0][0x170], R5 ;
/*0130*/ FFMA R6, R10, c[0x0][0x170], R6 ;
/*0140*/ FFMA R7, R11, c[0x0][0x170], R7 ;
/*0150*/ STG.E.128.SYS [R2], R4 ;
...

The performance of this improved_Saxpy code proves to be significantly
higher than the performance of cublasSaxpy (see Figure 1.1) except for triv-
ially small arrays (<20 Kib), and it asymptotically tends to be almost twice as
fast for large ones.

In summary, with this example we demonstrated optimization opportu-
nities that are only accessible to a software designer who possesses in-depth
knowledge of Turing’s instruction set and an architectural-level understand-
ing of its performance behavior: these goals are the very subjects of this report.



Chapter 2

How Turing encodes instructions

By systematically disassembling machine code that we hand-crafted and that
we sampled from representative CUDA libraries, using cuobjdump and
nvdisasm, we discovered the instruction encoding formats adopted across
the different GPU architectures. Turing adopts the same format as Volta,
which differs from that of Pascal and Maxwell which, in turn, is different from
Kepler’s, as we detail in this chapter.

Turing and Volta use 128 bits to encode both an instruction and its asso-
ciated scheduling control information1. This is a substantial departure from
previous NVidia GPU architectures that used one word per instruction (64-
bit) to encode pure instruction information, plus a separate 64-bit word every
few instructions, to encode control information associated those instructions.

The following example illustrates a Turing/Volta instruction, to-
gether with its control information, as decoded by nvdisasm [11]:

S2UR UR4, SR_CLOCKLO ;  /* 0x00000000000479c3 */
/* 0x0000240000005000 */

Instruction Part 1

Instruction Part 2

Control Logic

The output shows the instruction decoded into two 64-bit words. The first
word contains pure instruction information, while the second contains both
instruction and control information.

Our experiments based on instruction disassembly and arbitrary code ex-
ecution suggest that the encoded 128 bits are used as follows:

• at least 91 bits for instruction information;

1By control information in this context, we mean instruction scheduling decisions taken by
the compiler, that the architecture must enforce; the next section discusses this topic in detail.

9
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• at least 23 bits for control information;

• the remaining 14 bits appeared to be unused in both Turing and Volta;
in our experiments, they were ignored both by cuobjdump and by the
hardware.

2.1 Control information

Control words appeared first with the Kepler architecture, which substantially
replaced dynamic hardware scheduling with static software scheduling. Con-
trol words encode instruction scheduling decisions taken by the compiler [8]
that the hardware must enforce. The design choice to use software schedul-
ing in Kepler was a departure from the previous design (Fermi): designers
replaced a complex hardware scheduler with a simpler, more efficient one
that occupied less silicon area and consumed less power. Overall, software
scheduling enabled simpler on-chip control logic, leading to higher compute
density per area of silicon and better energy efficiency.

On Turing and Volta, 128 bits contain one instruction together with the
control information associated with only that instruction.

Pre-Volta architectures pack one control word with multiple instruction
words into a bundle. In each bundle, the first word contains control informa-
tion, and the remaining words (3 on Pascal and Maxwell, 7 on Kepler) encode
one instruction each. Each control word affects how the architecture schedules
the instructions within the bundle.

The following excerpt shows a bundle of Pascal instructions decoded by
nvdisasm. The bundle contains four 64-bit words. The first word, which
has a hexadecimal dump but no corresponding disassembled instruction, is a
control word. The remaining three words are instructions.

/* 0x000f8800fe2007f1 */
/*0288*/ @P5 LDG.E.CI R66, [R86+0x100]; /* 0xeed4a00010055642 */
/*0290*/ @!P5 MOV R66, RZ; /* 0x5c9807800ffd0042 */
/*0298*/ @P6 LDG.E.CI R67, [R86+0x180]; /* 0xeed4a00018065643 */

Control information is encoded as follows on the different GPU generations:

• on Kepler, each control word contains 6 zeroes as its most significant
bits, 2 zeroes as its least significant bits, and 7 sections of 8 bits each;

• on Pascal and Maxwell, each control word contains one zero as its most
significant bit, and 3 sections of 21 bits each;

• on Turing and Volta, each control section contains 2 zeroes as its most
significant bits, and 1 section of 21 bits. For every 128 bits corresponding
to one instruction, control information is preceded and followed by bits
encoding the instruction itself.
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Sections containing control information are organized in the same way on
Turing, Volta, Pascal and Maxwell. Each section contains 6 fields, organized
as follows:

Width (bits) 4 6 3 3 1 4

Meaning Reuse Wait Read Write Yield Stall
flags barrier barrier barrier flag cycles

mask index index

Fields have the following meaning:

Reuse flags. Each hardware thread on Turing, Volta, Pascal and Maxwell
has a 2-way associative Content-Addressable Memory (CAM) for each of the
four conceptual source registers operand positions. This memory is intended
to allow data reuse between instructions without accessing any register ports:
this relieves pressure on the register file, and helps reducing register bank con-
flicts (we discuss register bank conflicts at length in Section 3.5.1). Reuse flags
control this mechanism as follows: an instruction may flag for saving into the
reuse set any combination of up to its first four arguments. Each instruction
will attempt to service register reads for its first 4 arguments from the respec-
tive reuse slots before resorting to loading values via register file ports. E.g.,
if the last two reuse-saved registers in the second instruction source operand
position were R98 and R99, either of those registers may be used in the sec-
ond position of instructions without contributing to register bank conflicts.
The four bits in the reuse flags map the first to fourth source operands with
the least to most significant bits, respectively.

Wait barrier mask; Read/Write barrier index. While most instructions
have fixed latency and can be statically scheduled by the assembler, instruc-
tions involving memory and shared resources typically have variable latency.
Turing, Volta, Pascal and Maxwell use dependency barriers to track the com-
pletion of variable-latency instructions and resolve data hazards. When a
variable-latency instruction writes to a register, the assembler associates it to
one of the 6 available barriers by setting the corresponding write barrier num-
ber field. When a later instruction consumes that register, the assembler marks
the instruction as waiting on that barrier by setting the bit corresponding to
that barrier in the wait barrier mask. The hardware will stall the later instruc-
tion until the results of the earlier one are available. An instruction may wait
on multiple barriers, which explains why the wait barrier mask is a bitmask,
not an index.

Read dependency barriers. Read dependency barriers serve to protect
against write-after-read hazards. Unbuffered instructions that write the con-
tents of registers to memory need the registers to remain unchanged during
the operation. To guarantee that, the assembler associates them to a barrier
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by populating the corresponding read barrier number field. Later instructions
writing to the same register will wait on that barrier.

Stall cycles. This 4-bit field indicates how long the scheduler should wait
before issuing the next instruction, ranging from 0 to 15 cycles. On Pascal and
Maxwell, if the combination of this field and the yield flag contain a special
combination of bits, the two dispatchers in a processing block can dispatch
two consecutive instructions of a warp at the same time (dual issue). On Tur-
ing and Volta there is only one dispatcher in a processing block, and we do
not observe dual issue in the generated code.

Yield flag. As its predecessors, the Turing architecture uses a one-bit yield
flag to balance the workload assigned to a processing block. When this bit is
set, the scheduler prefers to issue the next instruction from the current warp.
When the bit is cleared, the scheduler prefers to switch to another warp, mak-
ing all register reuse flags for the next instruction ineffective. This costs one
extra cycle to switch to another warp.

2.2 Processing Blocks and Schedulers

The Turing streaming multiprocessor (SM) is partitioned into four processing
blocks, each containing a dedicated warp scheduler and dispatch unit [3]. In-
structions from the same warp are allocated to a specific processing block, and

Table 2.1: This experiment reveals the same mapping between warps and schedulers on Turing
and Volta: warps with the same index modulo 4 are mapped to the same scheduler. We vary the
indices of two active warps (A and B) and measure their aggregate throughput. When the indices
collide modulo 4 (i.e., they are mapped to the same scheduler) performance drops. All values are
in single-precision GFLOPS.

T4 GPU

Warp A Index
0 1 2 3

Warp B index

4 48.9 72.4 72.5 73.1
5 73.4 46.7 72.5 73.1
6 73.2 72.8 47.0 73.2
7 72.9 72.7 72.7 46.2

V100 GPU

Warp A Index
0 1 2 3

Warp B index

4 42.27 66.05 66.04 65.29
5 66.05 41.98 66.04 66.04
6 66.02 66.04 42.06 66.04
7 66.04 66.04 66.02 42.08
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can only access the processing units within that block.

We found that warps are mapped to schedulers (and processing blocks) on
Turing and Volta according to the same, simple rule:

scheduler_id = warp_id%4.

This is demonstrated with a benchmark composed of 8 warps running on a
single SM simultaneously, of which only 2 are active with loops of FFMA in-
structions, while the remaining 6 are idle.

We repeat the experiments varying the warp index of each of the two active
warps (Warp A and B), while measuring each time the aggregate arithmetic
throughput achieved by the two warps. The results (see Table 2.1) show that
whenever the two warps have the same index modulo 4 (e.g., 0 and 4, 1 and 5,
...), their aggregate performance drops, which suggests that they are mapped
to the same scheduler.

These findings are consistent between Turing and Volta.

Furthermore, these results indicate that every block of your workload
must use at least 128 threads to fully utilize the processing units on one SM of
Turing and Volta.

2.3 Instruction word format

2.3.1 Opcodes

Turing and Volta use more bits to encode their instructions than in previous
architectures.

Unlike previous architectures (Pascal, Maxwell and Kepler), which orga-
nize the opcode in the most significant bits of the instruction, Turing and Volta
architectures place the opcode in the least significant bits of the first 64-bit
word of the instruction. Turing opcodes vary in length from 10 to 13 bits. For
an extensive opcode reference that compares Pascal, Volta and Turing, see the
Appendix.

2.3.2 Operands

As in previous architectures, instruction operands on Turing can be registers
of different types, memory addresses (constant, shared or global), or an im-
mediate value. Predication is regulated by 4 bits: the first bit is a negation
flag, and the remaining 3 bits encode a predicate register index.





Chapter 3

Memory hierarchy

NVidia GPU architectures tend to increase in complexity with newer gen-
erations. Gaining a deep understanding of GPU memory hierarchy as they
evolve is necessary to write efficient code.

For designers to map their working sets optimally onto the memory hier-
archy, it is especially important to know the size of each cache level, whether
that memory is co-located with another cache that might evict its contents,

Private to every GPU 

Private to every SM 

Private to every processing block 

64 KiB registers 16 KiB L0 instruction cache

96 KiB L1 data cache/shared memory 2 KiB L1 constant cache

~46 KiB L1.5 constant cache/L1 instruction cache

4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

~16 GiB GDDR6

Figure 3.1: Memory hierarchy of the Turing T4 GPU (TU104).
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Private to every GPU 

Private to every SM 

Private to every processing block 

64 KiB registers 12 KiB L0 instruction cache

128 KiB L1 data cache/shared memory 2 KiB L1 constant cache

>64 KiB L1.5 constant cache/128 KiB L1 instruction cache

6144 KiB L2 data cache/L2 constant cache/L2 instruction cache

~16 GiB HBM2

Figure 3.2: Memory hierarchy of the Volta V100 GPU (GV100).

Private to every GPU 

Private to every SM 

Private to every processing block 

128 KiB registers

8 KiB L1 instruction cache

24 KiB L1 data/read-only cache

>64 KiB L1.5 constant cache/128 KiB L1.5 instruction cache

4096 KiB L2 data cache/L2 constant cache/L2 instruction cache

~16 GiB HBM2

64 KiB shared memory 2 KiB L1 constant cache

Figure 3.3: Memory hierarchy of the Pascal P100 GPU (GP104).
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Private to every GPU 

Private to every SM 

Private to every processing block 

64 KiB registers

8 KiB L1 instruction cache

24 KiB L1 data/read-only cache

32 KiB L1.5 constant cache/L1.5 instruction cache

2048 KiB L2 data cache/L2 constant cache/L2 instruction cache

~8 GiB GDDR5

96 KiB shared memory 2 KiB L1 constant cache

Figure 3.4: Memory hierarchy of the Maxwell M60 GPU (GM204).

and whether each cache memory is private to a streaming multiprocessor or
shared among all.

In this chapter, we describe the structure of Turing’s memory hierarchy in
detail (Figure 3.1). Specifically, we reveal:

• the geometry, properties and performance of all cache levels and Trans-
lation Look-aside Buffers (TLBs);

• register file banks and their conflicts;

• the performance of shared and global memory under load.

Table 3.1 summarizes our findings, also comparing Turing against the
Volta, Pascal, Maxwell and Kepler generations.

The T4 GPU employs GDDR6 memory, which offers a bandwidth of 320
GB/s (at a memory clock frequency 5,001 MHz), in conjunction with a L2
cache of 4,096 KiB [3]. Data loaded from global memory is implicitly cached
in L1 and L2.
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3.1 L1 data cache

Turing adopts the same combined L1 data cache / shared memory design as
Volta. This design reduces the cache hit latency and improves the bandwidth
with respect to the Pascal architecture.

As the geometry of the L1 data cache is concerned, our findings agree with
what reported in the Turing and Volta architecture whitepapers [10, 3]. Specif-
ically, the T4 offers twice as much L1 data capacity, and twice as high a band-
width as the P4 GPU.

As performance is concerned, our experiments show that on a T4 GPU, the
L1 data cache offers approximately 3.7× more bandwidth than its P4 prede-
cessor.
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3.1.1 Latency and bandwidth

The L1 data cache hit latency we measured on the T4 GPU is 32 cycles, com-
pared to 82 cycles on the P4 (see Figure 3.5).

Before Turing and Volta, Kepler was the most recent architecture to com-
bine its L1 cache and its shared memory. Kepler’s L1 cache read hit latency is
35 clock cycles. Turing exhibits a better L1 latency than Kepler in clock cycles,
despite the T4 being clocked almost twice as high as the K80 (1,590 vs. 875
MHz).

We use the following benchmark to measure the L1 data cache load band-
width. The benchmark scans an array with 32-bit elements; every warp ac-
cesses all the elements in the array:
__global__ void l1_bw( uint32_t *startClk, uint32_t *stopClk,

float *dsink, uint32_t *posArray )
{

// Thread index
uint32_t tid = threadIdx.x;

// Side-effect variable, intended to avoid compiler elimination of this code
float sink = 0;

// Warm up the L1 cache by populating it
for (uint32_t i = tid; i<L1_SIZE; i+=THREADS_NUM) {

float * ptr = posArray+i;
asm volatile ("{\t\n"

".reg .f32 data;\n\t"
"ld.global.ca.f32 data, [%1];\n\t"
"add.f32 %0, data, %0;\n\t"
"}" : "+f"(sink) : "l"(ptr) : "memory"

);
}

// Synchronize all threads
asm volatile ("bar.sync 0;");

// Start timing
uint32_t start = 0;
asm volatile ("mov.u32 %0, %%clock;" : "=r"(start) :: "memory");

// Load data from L1 cache, accumulate
for (uint32_t i = 0; i<L1_SIZE; i+=THREADS_NUM) {

float * ptr = posArray+i;
// every warp loads all data in l1 cache
for (uint32_t j = 0; j<THREADS_NUM; j+=WARP_SIZE) {

uint32_t offset = (tid+j)%THREADS_NUM;
asm volatile ("{\t\n"
".reg .f32 data;\n\t"
"ld.global.ca.f32 data, [%1];\n\t"
"add.f64 %0, data, %0;\n\t"
"}" : "+f"(sink) : "l"(ptr+offset) : "memory"

);
}

}

// Synchronize all threads
asm volatile ("bar.sync 0;");

// Stop timing
uint32_t stop = 0;
asm volatile ("mov.u32 %0, %%clock;" : "=r"(stop) :: "memory");
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// Write time and data back to memory
startClk[tid] = start;
stopClk[tid] = stop;
dsink[tid] = sink;

}

We report L1 data bandwidths we measured across GPU devices in Ta-
ble 3.2, together with their theoretical upper bounds.

The actual bandwidth we measure on the T4 GPU is 58.83 bytes/cycle/SM,
i.e., 3.7× higher than that of the P4 GPU, i.e., 15.7 bytes/cycle/SM. This band-
width comparison expressed in cycle counts is meaningful, because the T4
and P4 cards run at very similar graphics clock frequencies fg .

We calculate the theoretical throughput by multiplying the LSU count per
SM by the number of bytes that each LSU can load per cycle per instruction.

Historically, architectures that employ an L1 cache combined with shared
memory (Turing, Volta and Kepler) exhibit a higher L1 bandwidth than archi-
tectures where the L1 cached and the shared memory are separate (Pascal and
Maxwell).

3.1.2 Geometry

According to the Turing whitepaper [3], load/store operations can use a L1
data cache of 32 KiB or 64 KiB in size.

Our experiments based on Mei and Chu’s fine-grained pointer-chase tech-
nique [9] were unable to detect the whole configured size, and fell 7 KiB short
of the nominal L1 data cache size, on both Volta and Turing architectures (see
Table 3.3).

In our experimental setup, the shared memory is configured to a size of
64 KiB. We then employed a benchmark that scans a variable length array A
twice. As long as the size of A exceeds 25 KiB, we detected cache misses.

At this time we are unable to explain this 7-KiB discrepancy. We conjecture
it is the result of a newly applied replacement policy that we discuss below.
We confirm that it is not associated to the ECC feature (error correction).

Table 3.1 describes the remainder of L1 data cache geometry as we discover
it. The line size, load and update granularity of Turing’s L1 data cache are the
same as on the Volta, Pascal and Maxwell GPUs.

In our previous report for Volta [2], we discovered an improved L1 cache
replacement policy on Volta with respect to its predecessors. Turing also fea-
tures a L1 cache replacement policy that aims at preserving large arrays from
eviction caused by sparse memory accesses.

We employed a benchmark that scans a variable length array twice, and



3.2. UNIFIED L2 CACHE 21

recorded positions and latency data when L1 cache miss happens. We found
that when the L1 data cache saturates, Turing randomly evicts 4 consecutive
cache lines (128 B). We observed that once a block of cache lines are evicted,
the second scan will cause more cache lines from the same set to be evicted.

3.2 Unified L2 cache

Turing employs an L2 cache that is unified for data, instructions and constant
memory, as the previous GPU generations do. The L2 cache on a T4 GPU is
a 16-way, set-associative cache having a size of 4,096 KiB, a cache line of 64 B,
and an average latency of 188 clock cycles (Figure 3.5).

We use the following benchmark to measure L2 load bandwidth, on all the
GPUs considered:
__global__ void l2_bw(float *dsink, uint32_t *posArray)
{

// block and thread index
UINT tid = threadIdx.x;
UINT bid = blockIdx.x;

// accumulator; side effect to prevent code elimination
float sink = 0;

// load data from l2 cache and accumulate
for (UINT i = 0; i<L2_SIZE; i+=THREADS_NUM) {

DTYPE* ptr = posArray+i;
// every warp loads all data in l2 cache
for ( UINT j=0; j < THREADS; j+=32 ){

UINT offset = (tid+j)%THREADS;
asm volatile ("{\t\n"
".reg .f32 data;\n\t"
"ld.global.cg.f32 data, [%1];\n\t"
"add.f32 %0, data, %0;\n\t"
"}" : "+f"(sink) : "l"(ptr+offset) : "memory"

);
}

}

// side effect: store the result
dsink[tid] = sink;

}

Note that we warm up the L2 cache before launching this kernel (code
not shown for brevity). The benchmark contains a simple floating-point ac-
cumulation into variable sink, which is later written to global memory; this
accumulation intentionally creates a side effect intended to prevent the com-
piler from eliminating the entire benchmark code. The marginal cost of this
accumulation is negligible with respect to the data access latency.

The bandwidth we measure on the T4 device (see results in Table 3.4) is
30% higher than the P4’s, and 59% of the one measured on the larger V100
GPU.
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Table 3.1: Geometry, properties and latency of the memory hierarchy across GPU architectures.
For consistency, all performance data in this table were measured on PCI-E cards.

Architecture generation Turing Volta Pascal Pascal Maxwell Kepler
GPU Board T4 V100 P100 P4 M60 K80
GPU Chip TU104 GV100 GP100 GP104 GM204 GK210

Processors per chip (P ) 40 80 56 40 16 13
Max graphics clock (fg) MHz 1,590 1,380 1,328 1,531 1,177 875
Threads per Multiprocessor 1,024 2,048 2,048 2,048 2,048 2,048

Registers Number of banks 2 2 4 4 4 4
Bank width bits 64 64 32 32 32 32

L1 data Size KiB 32 or 64 32...128 24 24 24 16...48
Line size B 32 32 32 32 32 128
Hit latency cycles 32 28 82 82 82 35
Load granularity B 32 32 32 32 32 128
Update granularity B 128 128 128 128 128 128

L2 data Size KiB 4,096 6,144 4,096 2,048 2,048 1,536
Line size B 64 64 32 32 32 32
Hit latency cycles ∼188 ∼193 ∼234 ∼216 ∼207 ∼200

L1 const Broadcast latency cycles ∼26 ∼27 ∼24 ∼25 ∼25 ∼30
Cache size KiB 2 2 2 2 2 2
Line size B 64 64 64 64 64 64
Number of sets 8 8 8 8 8 8
Associativity 4 4 4 4 4 4

L1.5 const Broadcast latency cycles 92 ∼89 ∼96 ∼87 ∼81 ∼92
Cache size KiB ∼46 >=64 >=64 32 32 32
Line size B 256 256 256 256 256 256

L2 constant Broadcast latency cycles ∼215 ∼245 ∼236 ∼225 ∼221 ∼220

L0 instruction Cache size KiB ∼16 ∼12 - - - -
L1 instruction Cache size KiB ∼46 128 8 8 8 8
L1.5 instruction Cache size KiB - - 128 32 32 32
L2 instruction Cache size KiB 4,096 6,144 4,096 2,048 2,048 1,536

L1 TLB Coverage MiB 32 32 ∼32 ∼32 ∼2 ∼2
Page entry KiB 2,048 2,048 2,048 2,048 128 128

L2 TLB Coverage MiB ∼8,192 ∼8,192 ∼2,048 ∼2,048 ∼128 ∼128
Page entry MiB 32 32 32 32 2 2

L3 TLB Coverage GiB - - - - ∼2 ∼2
Page entry MiB - - - - 2 2

Shared Size per SM KiB 32 or 64 0...96 64 64 96 48
Size per chip KiB 1,280 or 2,560 0...7,689 3,584 1,280 1,536 624
Banks per processor (Bs) 32 32 32 32 32 32
Bank width (ws) B 4 4 4 4 4 8
LSU count per SM (nLSU ) 16 32 16 16 32 32
No-conflict latency cycles 19 19 24 23 23 26
Theoretical bandwidth GiB/s 4,070 13,800 9,519 3,919 2,410 2,912
Actual bandwidth GiB/s 3,662 12,080 7,763 3,555 2,122 2,540
Actual/Theoretical ratio % 90.9% 87.5% 81.6% 90.7% 88.0% 87.2%

Global Memory bus GDDR6 HBM2 HBM2 GDDR5 GDDR5 GDDR5
Size MiB 15,079 16,152 16,276 8,115 8,155 12,237
Max clock rate (fm) MHz 5,001 877 715 3,003 2,505 2,505
Theoretical bandwidth GiB/s 320 900 732 192 160 240
Actual bandwidth GiB/s 220 750 510 162 127 191
Actual/Theoretical ratio % 68.8% 83.3% 69.6% 84.4% 79.3% 77.5%
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Table 3.2: L1 cache load throughput per SM.

T4 V100 P100 P4 M60 K80

Theoretical upper bound 64.0 128.0 64.0 64.0 128.0 128.0 bytes/cycle
Measured throughput 58.8 108.3 31.3 15.7 15.7 68.6 bytes/cycle

Table 3.3: Detectable L1 data cache size with the pointer-chase benchmark on the T4 GPU.

Configured size of shared memory (KiB) 32 64

Expected size of L1 data cache (KiB) 64 32
Detected size of L1 data cache (KiB) 57 25

Table 3.4: L2 data cache load throughput.

Turing Volta Pascal Pascal Maxwell Kepler
T4 V100 P100 P4 M60 K80

Throughput (GB/s) 1,270 2,155 1,624 979 446 339
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Figure 3.6: We detect the size of instruction cache level with a benchmark based on sequences of identical instructions of increasing length. We then chart
the average inverse throughput: each plateau reveals the size of a cache level. Top charts: boundaries of the first two levels in the hierarchy. Bottom
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3.3 Instruction cache hierarchy

In this section, we map experimentally the size and the organization of the
instruction cache hierarchy. In practice, that consists in (1) detecting the size of
each cache level and (2) determining how cache levels are distributed within
the architectural blocks (scheduler, SM, entire chip) of the GPU.

3.3.1 Taxonomy

All GPU architectures we considered, including Turing, feature three levels
of instruction caches. To avoid confusion, note that on Turing and Volta the
three levels are named differently (L0, L1, L2) than on previous architectures
(L1, L1.5, L2). We adopt this established taxonomy for consistency with the
NVidia’s whitepapers [3, 10] and with prior literature. Pay attention to ex-
pressions like “the second level of instruction caches”: this expression refers
to L1 on Turing and Volta, but to L1.5 on Pascal, Maxwell and Kepler.

3.3.2 Size

To detect the size of each cache level, we study how the average inverse
throughput (i.e., average clocks per instruction, or CPI) achieved by a long
sequence of instructions changes as a function of sequence length. As we in-
crease the length of a sequence, we expect to see a constant CPI value until the
sequence exceeds the cache size. Indeed, experimental results show plateaus
and ramps (Figure 3.6) which correspond to cache level sizes and transitions
from one level to the following. In the figure, the bottom charts focus on the
three instruction cache levels, whereas the bottom charts focus on the transi-
tion between the last cache level and global device memory.

We report all findings in Table 3.1. Turing enjoys better inverse throughput
than its predecessors when accessing the second and third instruction cache
levels.

Experimental setup. Our benchmark measures the average CPI seen by a sequence
of instructions of given length that exert no pressure on the data cache hierarchy. We
iterate measurements for sequence sizes starting from the cache line size up to the
larger plausible size of L3. The benchmark executes each sequence twice, but only
times the second execution, so that we only measure capacity misses and conflict misses,
but not cold misses.

• On Pascal, Maxwell and Kepler, we employ the same technique as in our previ-
ous report [2] for the sake of consistency, i.e., long sequences of FFMA instruc-
tions, whose register operands are chosen so that each instruction experiences
no register dependence with its neighbors.

• On Volta and Turing, we switched to a simpler method that uses NOP sequences
rather than FFMA. This choice circumvents NVCC’s undesired generation of 2-
cycle stalls between consequent FFMA instructions on these two GPUs.
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3.3.3 Organization

Across the different GPU architectures, levels in the instruction memory hier-
archy are organized as follows:

• on Turing and Volta, each L0 instruction cache is private to one sched-
uler/processing block;

• on all GPUs considered, each L1 instruction cache is private to an SM;

• on Pascal, Maxwell and Kepler each L1.5 instruction cache is private to
one SM; the L1.5 instruction cache does not exist on Turing and Volta;

• on all GPUs considered, the L2 cache is unified (i.e., it caches instructions
and data) and it is shared across all SMs.

On architectures older than Turing, we provided experimental support for
these claims in our previous report [2]. For claims about Turing, we collected
evidence using experiments designed as follows.

Our experiments measure the interaction between an aggressor warp and
a victim warp. Both warps loop through sequences of NOP instructions of
chosen length:

• the victim warp only runs a fixed-length NOP sequence, typically de-
signed to fit within a certain instruction cache level; we call it the victim
probing sequence;

• the aggressor warp runs, in addition to the same probing sequence as
the victim, and before it, a variable-length NOP sequence, designed to
thrash a given cache level, potentially evicting instruction cache entries.

We monitor whether the evictions caused by the aggressor warp only affect its
own performance, or they affect the victim as well: if the victim is unaffected,
then the smallest cache level that fits the fixed-length victim probing sequence
is private to the architectural block where the two warps are running (i.e., GPU
processing block or SM); else, the cache level is shared between the two warps
and located outside the block considered. In our experiments, both warps
monitor their performance by measuring their inverse throughput (CPI).

Results show that each L0 instruction cache is private to a processing block,
that each L1 instruction cache is private to an SM, and that the L2 cache is
shared among all SMs (Figure 3.7).

To examine the relation between levels L0, L1 and schedulers (or GPU pro-
cessing blocks), we use experiments where the aggressor and victim warps
run on the same SM, but different processing blocks. We use increasingly
longer sequences in the aggressor warp. To exclude compulsory misses from
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the measurements, we let the aggressor and then the victim warm up the
caches by running each their respective sequence once.

We observe that:

• as the aggressor sequence grows while remaining below L0 capacity,
only the aggressor experiences a slowdown (top left chart in Fig. 3.7),
whereas the victim is unaffected. This indicates that the two warps ac-
cess distinct L0 caches, private to each processing block;

• as the instruction sequence grows above L0 capacity (top right chart)
and into L1, both warps slow down similarly, which indicates that the
two warps share L1.

Next, we examine the relation between levels L1 and L2, and SMs, with
similarly constructed experiments. This time, the two warp run on separate
SMs (SM0 and SM1).

We observe that:

• as the aggressor sequence exceeds L0 but remains within L1 capacity,
only the aggressor warp experiences a slow-down corresponding to L1
hit rates (bottom left); the victim, still running a sequence fitting L0 (16
KiB), is unaffected. This indicates that different SMs have distinct L1
caches;

• as the aggressor sequence exceeds L2 capacity (bottom right chart), both
victim and aggressor experience slowdowns; This indicates that differ-
ent SMs access the same L2 cache.

3.4 Constant memory hierarchy

The constant memory is a cached window of global memory, reserved for data
declared with the __constant__ keyword, plus kernel invocation parame-
ters and immediate constants. We find that Turing has three levels of constant
cache memory, which have the geometry and properties described in Table 3.1
and latency as in Figure 3.9.

The constant memory hierarchy used in Turing did not change signifi-
cantly from previous generations. Across all the GPU generations we con-
sidered, the following properties hold true:

• the L1 constant cache uses a non-LRU replacement policy;

• each SM possesses two private levels of constant caches, which we de-
note as L1 and L1.5 constant cache (accesses to either of each level within
an SM do not affect the same cache levels on other SMs);
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Figure 3.8: An aggressor-victim experiment shows that the L1.5 constant cache and the L1
instruction cache coincide. We measure the miss rates experienced by the scan of a constant
array pre-cached in constant L1.5 cache (victim) that follows a long sequence of identical FFMA
instructions (aggressor), intentionally designed to cause L1 instruction cache pressure. As the
aggressor’s sequence length increases, the victim suffers increasing miss rates.

• the L2 cache is the third level of constant cache. It is shared among all
SMs and is unified for instruction and data.

On Turing as in Volta, the second levels of the constant and the instruc-
tion cache are backed by the same hardware cache. More precisely, the L1.5
constant cache and the L1 instruction cache coincide. To prove this claim,
we run an aggressor-victim experiment, in which we show that instruction
sequences of increasing length (aggressor) evict pre-populated entries in the
L1.5 constant cache. We detect these evictions by recording the execution time
of a constant array scan (victim) that we execute after the aggressor. We use
instruction sequences composed of identical FFMA instructions.

Experimental results (Figure 3.8) show that longer instruction sequences
in the aggressor cause correspondingly higher miss rates in the victim. We
observed victim miss rates vary from 0% to 100%.

As in previous architectures, constant memory accesses on Turing support
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broadcasting (see Figure 3.9). When all threads within a warp access the same
address, the constant memory sends data to all threads simultaneously. When
threads visit diverging addresses, the accesses are serialized.

3.5 Registers

3.5.1 Register File Banks

Turing and Volta use a physical register file of 16,384, 32-bit elements in each
processing block. Thread-visible logical registers are allocated in increments
of 8, or aggregate increments of 256 for all 32 threads in a warp. These reg-
ister files are organized in 2 banks with dual 32-bit ports each, with logical
registers belonging to the bank with the index matching their name, modulo-
2. Each port can satisfy only one 32-bit read per clock cycle, and instructions
in compiled code requiring three or more operands (such as FFMA, the single-
precision floating-point fused multiply-and-add instruction) will suffer a stall
in execution due to a register bank conflict if any three source registers’ names
map to either dual-ported bank.



3.5. REGISTERS 31

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 100  102  104  106  108  110  112  114  116  118  120

E
la

ps
ed

 T
im

e 
(u

s)

Register Index of RX

FFMA R6, R97, R99, RX

FFMA R6, R98, R99, RX

Figure 3.10: Register bank conflicts affect the execution time of instructions. Charted is the
execution time taken by long sequences of identical FFMA instructions, as we vary one source
register (RX). In both sequences R6, the destination sequence, is irrelevant. In sequence FFMA
R6, R97, R99, RX, the choice of RX causes a conflict when RX is odd: the other two source
operands are already using both ports from bank 1, and a third access cannot occur in the same
clock cycle. In sequence FFMA R6, R98, R99, RX, no choice of RX can cause a conflict be-
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For example:

• instruction FFMA R15, R11, R12, R13 has no conflict, since source
operands R11 and R13 can be serviced by bank 1’s two ports, R12 can be
serviced by one of bank 0’s ports, and destination register R15 does not
use an additional port from bank 1;

• instruction FFMA R18, R10, R12, R16 suffers a conflict because
R10, R12 and R16 are all in bank 0. (The destination of R18 is irrelevant.)

Architectures prior to Volta used 4, single-ported banks, requiring sub-
stantially more constrained register scheduling by the compiler, but there are
opportunities for improvements even on the newest devices. In our technical
report on Volta [2], we demonstrated performance increases of up to 15% by
minimizing bank conflicts through careful register re-assignment.
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Figure 3.10 illustrates the effect of register bank conflicts on instruction
latency on the T4 GPU. We use long sequences of identical FFMA instructions
in which we vary one source register index (RX) to cause conflicts. Since the
T4 GPU has dual-ported register banks, a conflict will only happen when all
three 32-bit source registers in an FFMA instruction belong to the same bank.
In every instruction of form FFMA R6, R97, R99, RX in the benchmark,
R97 and R99 are in bank 1; if RX also sits in bank 1, a conflict will occur. (R6
is irrelevant as it is a destination register.) In instruction sequence FFMA R6,
R98, R99, RX, because R98 and R99 sit in different banks, there is no choice
of RX that can cause three reads from the same bank.

3.5.2 Uniform Registers

As per NVidia’s documentation, Turing introduces a new feature intended
to improve the maximum achievable arithmetic throughput of the main,
floating-point capable datapaths, by adding a separate, integer-only, scalar
datapath (named the uniform datapath) that operates in parallel with the main
datapath.

This design is intended to accelerate numerical, array-based, compute-
bound workloads that occupy the main datapaths almost completely with
floating-point instructions, typically FFMA or HMMA, but also contain a few
integer operations, typically updating array indices, loop indices or pointers;
or performing array or loop boundary checks.

These few integer instructions spoil the instruction mix, and prevent the
main datapaths from ingesting a 100% pure stream of FFMA or HMMA. In these
circumstances, even a small fraction of integer instructions can hurt the overall
arithmetic throughput, lowering it significantly from its theoretical maximum.

On Turing, the compiler has the option to push these integer operations
onto the separate uniform datapath, out of the way of the main datapath. To
do so, the compiler must emit uniform datapath instructions.

Regular instructions can access both uniform and regular registers. Uni-
form datapath instructions, instead, focus on uniform instructions almost ex-
clusively.

While at this time we have not been able to stimulate the generation of
uniform datapath instructions by the compiler, we were able to enumerate the
64 uniform registers supported by Turing (including a Uniform Zero Register
URZ and 63 general-purpose uniform registers UR0–UR62) by systematically
disassembling packed uniform instructions.

3.5.3 Regular Registers

Instructions on Turing still supports the 256 regular registers (including the
general-purpose R0–R254 and the Zero Register RZ).
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We found that the cuobjdump -dump-resource-usage command
(that prints a kernel’s register usage) reports a count that includes both regu-
lar and uniform registers. The upper limit of total registers used in any CUDA
kernel is 256, unchanged from Volta.

We confirmed this result by patching the register count in the sec-
tion header of a CUDA kernel to values above 256, and determining that
cuobjdump only recognizes 256 registers at most.

3.6 Shared memory

The T4 GPU has up to 64 KiB of shared memory (configurable by the user) that
offers low latency and high memory bandwidth. In this section, we character-
ize shared memory performance, including performance under contention.
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3.6.1 Latency

Turing’s shared memory enjoys relatively low latency among the GPUs we
examined (Figure 3.11). Only the V100 GPU exhibits lower shared memory
latency than the T4 GPU.

On all GPUs except for Kepler, the measured average access latency mono-
tonically increases with the number of conflicts in a warp. Kepler is the only
GPU adopting dual-ported shared memory banks, allowing any two threads
to alias on any given bank without penalty and resolving two further aliases
at a time for conflicted banks.

3.6.2 Bandwidth

Due to their large number of streaming multiprocessors, the V100 and P100
GPUs provide the highest theoretical and measured shared memory band-
width (Figure 3.12).

As benchmarking is concerned, on Kepler, Maxwell, Pascal and Volta, we
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were able to rely on nvprof to collect shared memory metrics. On Turing,
because nvprof does not support shared memory metrics collection on that
GPU, we resorted to adopting the following custom-tailored benchmark:

// Pointer-chasing shared memory bandwidth benchmark
// dData : Pointer-chase array
// dSink : Side-effect destination variable (prevents code elimination)
// repeat : Count of pointer-chase steps requested

// To ensure all LSUs in an SM are used, use >= 128 threads
#define THREAD_NUM 1024

// shared memory per block
#define PCHASE_SIZE 8*THREAD_NUM

__global__ void bandwidthTest(uint32_t * dData,
uint32_t * dSink,
uint32_t repeat){

// Pointer-chase starting position in shared memory
uint32_t sid = threadIdx.x;

// The pointer-chase array in shared memory
__shared__ DTYPE shrData[PCHASE_SIZE];

// Initialize the pointer-chase array in shared memory
for (uint32_t i = sid; i<PCHASE_SIZE; i+=THREAD_NUM)
shrData[i] = dData[i];

// Synchronize threads in a same block
__syncthreads();

// Scan the shared-memory array with the p-chase method
unsigned next=sid;
for (uint32_t j = 0; j < repeat; j++) {
next = shrData[next];

}

// Side effect to prevent the compiler from eliminating this code
dSink[sid] = next;

}

This benchmark performs pointer-chase accesses to the shared memory with
a varying number of steps. We invoke as many threads and blocks as possible
to provide enough pressure on load/store units. We measured the execution
time as we increased pointer-chase step count.

We cross-verified the correctness and accuracy of this benchmark by run-
ning it on all architectures other than Turing (on which shared memory met-
rics are supported) and confirming that the bandwidths it measures match
those computed from nvprof metrics.

3.7 Global memory

We measured the actual global memory bandwidth and compared it against
its theoretical limit for all the GPUs considered (Figure 3.13).

Thanks to their adoption of HBM2 memory, V100 and P100 boards feature
a significantly higher bandwidth than GPUs based on GDDR memory. The
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P100 outperforms GDDR-based GPUs boards but suffers from a large gap be-
tween actual and theoretical performance. Compared to the P4 GPU, the T4
GPU enjoys a higher global bandwidth because of GDDR6 memory. However,
the actual-to-theoretical bandwidth ratio on the T4 board is lower than on the
P4 board (68.8% vs. 84.4%)

3.8 TLBs

On Turing and on all other architectures that we examined, we found that

• the L1 data cache is indexed by virtual addresses, and

• the L2 data cache is indexed by physical addresses.

Because L2 is a physical cache, accesses to it involve the TLBs. We prove this
claim by scanning a large array with L1 data cache enabled; we size the ar-
ray to exceed the L1 TLB coverage, so that accesses in the benchmark would
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cause at least one level of TLB miss if L1 data cache were indexed by physi-
cal address. As expected, we saw no TLB misses in the second scan, as long
as the stride is big enough to cache all accesses in L1 data cache. The same
benchmark shows that addressing data in L2 data cache goes through the
TLBs when the L1 data cache is disabled.

Figure 3.14 shows that, within the available global memory size, there are
two levels of TLB on the Turing GPUs. The L1 TLB has 2 MiB page entries and
32 MiB coverage. The coverage of the L2 TLB is about 8192 MiB, which is the
same as Volta.



Chapter 4

Instruction latency and throughput

In this chapter, we report on the latency of native Turing instructions. We also
benchmark the performance of atomics operations on Turing and compare it
with that of older devices. We evaluate the floating-point performance in sin-
gle, double and half precision on a T4 GPU, and evaluate the updated Tensor
Cores.

4.1 Native instructions

Turing and Volta’s instructions typically exhibit lower latency than Pascal and
older GPU generations, but Turing does not seem to offer instruction latency
improvements over Volta. In this section, we report the latency of common
instructions on Turing, Volta and Pascal in Table 4.1.

As the Turing whitepaper [3] mentions, the dependent-issue latency for
core FMA math operations is 4 clock cycles, the same as on Volta.

On Turing, we found that most integer, single- and half-precision instruc-
tions have similar latencies as those on Volta, whereas double-precision in-
structions increased their latency above 40 cycles.

On Volta, most integer and single-precision instructions have a latency of 4
cycles. In our previous work we determined that most Volta double-precision
instructions have a latency of 8 cycles, and half-precision instructions have a
latency of 6 cycles.

On Maxwell and Pascal, instructions IMAD and IMUL have a long latency
because they are emulated.

On Pascal, most integer and single-precision instructions have a latency of
6 cycles; double-precision instructions have a latency of 8 cycles; more com-
plex instructions, some of which run on the SFU, require 14 cycles.

Experimental setup. Measuring dependent issue instruction latency on a software-

39
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Table 4.1: Latency of frequently used instructions on Volta and Pascal.

Architecture Instructions Latency (cycles)

Pascal BFE, BFI, IADD, IADD32I, FADD, FMUL, FFMA, FMNMX, 6
HADD2, HMUL2, HFMA2, IMNMX, ISCADD, LOP, LOP32I,
LOP3, MOV, MOV32I, SEL, SHL, SHR, VADD, VABSDIFF,
VMNMX, XMAD

DADD, DMUL, DFMA, DMNMX 8
FSET, DSET, DSETP, ISETP, FSETP 12
POPC, FLO, MUFU, F2F, F2I, I2F, I2I ∼14
IMUL, IMAD ∼86

Volta IADD3, SHF, LOP3, SEL, MOV, FADD, FFMA, FMUL, 4
ISETP, FSET, FSETP
IMAD, FMNMX, DSET, DSETP 5
HADD2, HMUL2, HFMA2 6

DADD, DMUL, DFMA 8
POPC ∼10
FLO, BREV, MUFU ∼14

Turing IADD3, SHF, LOP3, SEL, MOV, FADD, FFMA, FMUL, 4
ISETP, FSET, FSETP
IMAD, FMNMX, DSET, DSETP 5
HADD2, HMUL2, HFMA2 6

POPC, FLO, BREV, MUFU ∼15
DADD, DMUL ∼48
DFMA, DSET, DSETP ∼54

scheduled GPU requires the use of custom-tailored benchmarks designed as follows.
To measure the latency of instruction A, we add a second instruction B that depends
on A, then set the control word that regulates A’s execution:

• if A has fixed latency, we choose a B that consumes A’s output. We decrease A’s
stall cycles in its control word, till A’s result consumed by B is incorrect. The last
stall value producing correct results is A’s latency;

• if A has variable latency, we choose a B of known latency, then set control flags
to create an artificial read/write dependency between A and B. We let the sched-
uler wait for the dependency, then measure the pair’s cumulative latency with
a bracket of CS2R instructions, and obtain A’s latency by subtracting B’s known
one.

4.2 Atomic operations

Our measurements show that atomic operations on shared memory have a
slightly longer latency on Turing than on Volta, but shorter than Pascal and
older generations. In Table 4.2, we report those latencies expressed in clock
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Table 4.2: Latency of atomic operations on shared and global memory, in clock cycles.

Shared memory Global memory

Contention T4 V100 P100 P4 M60 K80 T4 V100 P100 P4 M60 K80

none 8 6 15 16 17 93 76 36 26 30 24 29
2 threads 10 7 17 18 19 214 72 31 31 50 26 69
4 threads 14 11 19 25 25 460 73 32 48 50 41 96
8 threads 22 18 30 30 31 952 81 41 48 51 41 152

16 threads 37 24 46 46 47 1,936 97 58 50 51 46 264
32 threads 69 66 78 78 79 4,257 116 76 50 51 46 488

cycles. The comparison is meaningful even in real terms because the different
GPUs adopt similar clock frequencies (reported in Table 3.1)

As atomics on global memory are concerned, latency seems to have in-
creased on the T4 device compared with V100. The M60 GPU had the best
latency among all GPU considered.

Notably, Kepler is the only architecture where shared memory atomics are
slower than global memory one, and by a large margin (4× to 8×). This is due
to Kepler’s lack of hardware support for shared memory atomics. Moreover,
its emulated atomics degrade quickly under contention. Later architectures
support atomics in hardware, and offer low-latency atomics, even in presence
of contention.

We measured these latencies with benchmarks designed in the following
manner: we determine the latency of atomic instruction A by following it
with a load instruction B, of known latency, that visits the same location. We
deduce A’s latency from that of pair (A,B) as described in the previous section.

Figure 4.1 reports the throughput measured on GPUs from Kepler to Tur-
ing in presence of contention, in four scenarios:

• Scenario 1, one block of 1,024 threads. Of these, R threads access the
same address, while the others access distinct, sequential addresses in
global memory. 8 groups of threads access the same L2 cache line;

• Scenario 2, one block of 1,024 threads. Of these, R threads access the
same address, while the others access sequential L2 cache lines in global
memory, with every group of threads accessing a single L2 cache line;

• Scenario 3, a variable number of blocks, of 1,024 threads each. All threads
in all blocks access the same address; heavy contention exists among
blocks;

• Scenario 4, a variable number of blocks, of 1,024 threads each. All threads
within a block access the same address. Different blocks access distinct
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addresses; no contention exists among blocks.

The T4 GPU doesn’t achieve the highest throughput in the scenarios with
contention and the scenarios on single SM. The only scenario in which the
T4 GPU provides the best performance is on multiple SMs and without con-
tention among SMs. In all scenarios, from Maxwell to Pascal the aggregate
throughput increase substantially.

4.3 New Tensor Core instructions

The Turing architecture refreshes its Tensor Cores by offering support for a
wider range of operand types than Volta. Specifically, Tensor Cores as intro-
duced in Volta were designed to offer high throughput when performing ma-
trix math on half-precision floating point operands; on Turing, Tensor Cores
add support for short integer operands: int8, int4 and int1.

Moreover, Turing offers new instructions that allow to express matrix math
more succinctly. To demonstrate that, we will compare the Volta and the
Turing code generated by the compiler for the same warp-level primitive
wmma::mma_sync(). Readers will recognize this example from Chapter 4.3
of our technical report on Volta [2].

When targeting Volta, NVCC compiles one example invocation of the
primitive into the following 16 HMMA.884.F32.F32.* instructions:

HMMA.884.F32.F32.STEP0 R8, R26.reuse.COL, R16.reuse.COL, R8 ;
HMMA.884.F32.F32.STEP1 R10, R26.reuse.COL, R16.reuse.COL, R10 ;
HMMA.884.F32.F32.STEP2 R4, R26.reuse.COL, R16.reuse.COL, R4 ;
HMMA.884.F32.F32.STEP3 R6, R26.COL, R16.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R20.reuse.COL, R18.reuse.COL, R8 ;
HMMA.884.F32.F32.STEP1 R10, R20.reuse.COL, R18.reuse.COL, R10 ;
HMMA.884.F32.F32.STEP2 R4, R20.reuse.COL, R18.reuse.COL, R4 ;
HMMA.884.F32.F32.STEP3 R6, R20.COL, R18.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R22.reuse.COL, R12.reuse.COL, R8 ;
HMMA.884.F32.F32.STEP1 R10, R22.reuse.COL, R12.reuse.COL, R10 ;
HMMA.884.F32.F32.STEP2 R4, R22.reuse.COL, R12.reuse.COL, R4 ;
HMMA.884.F32.F32.STEP3 R6, R22.COL, R12.COL, R6 ;

HMMA.884.F32.F32.STEP0 R8, R2.reuse.COL, R14.reuse.COL, R8 ;
HMMA.884.F32.F32.STEP1 R10, R2.reuse.COL, R14.reuse.COL, R10 ;
HMMA.884.F32.F32.STEP2 R4, R2.reuse.COL, R14.reuse.COL, R4 ;
HMMA.884.F32.F32.STEP3 R6, R2.COL, R14.COL, R6 ;

When targeting Turing, NVCC compiles the same primitive invocation into
only 4 HMMA instructions of a new kind, that contain the new .1688 infix:

# Turing rendition
HMMA.1688.F32 R8, R12, R22, R8 ;
HMMA.1688.F32 R4, R12, R23, R4 ;
HMMA.1688.F32 R8, R2, R24, R8 ;
HMMA.1688.F32 R4, R2, R25, R4 ;
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Figure 4.2: Floating-point performance of cuBLAS and CUTLASS matrix multiplication on a T4
GPU running at 1,590 MHz.

4.4 Arithmetic performance

We evaluated arithmetic performance by benchmarking matrix-matrix mul-
tiplications using functions from the cuBLAS 10.1 library and template func-
tions from cutlass 1.2, on integer operands and floating-point ones of different
precisions. We report arithmetic throughput in TOPS and TFLOPS, when op-
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Table 4.3: Arithmetic throughput of matrix multiplication on inference-oriented GPUs on floating
point and integer types.

T4 P4

Double precision 253 231 GFLOPS
Single precision 7,174 6,944 GFLOPS
Half precision 41,616 6,571 GFLOPS
Int8 precision 74,934 24,172 GOPS
Int4 precision 114,384 - GOPS
Int1 precision 552,230 - GOPS

erating on integer and floating-point values respectively. In all experiments,
the T4 GPU was running at a clock frequency of 1,590 MHz.

In half, single and double precision, cuBLAS provides higher arithmetic
throughput than cutlass. This is because the cuBLAS library has been specifi-
cally optimized for the Turing architecture. For int8 precision, two APIs are
available in cuBLAS 10.1:

• BLAS-like extension function cublasGemmEx, which invokes native
CUDA core implementations, and

• the new light-weight cublasLtMatmul function, which supports int8
native TensorCore implementations.

For int8, the throughput of (cublasLtMatmul) is much higher than the
throughput of (cublasGemmEx). At the time of this writing, only cutlass sup-
ports int4 and int1 matrix multiplication on NVidia GPUs.

Except in double precision, benchmarks don’t achieve near-peak perfor-
mance. For int8 and int4, cutlass implementations don’t achieve 50% of
theoretical throughput on the T4 GPU (Figure 4.2).

In Table 4.3 we compare the arithmetic throughputs achieved on T4 and
P4 GPUs on matrix multiplication at different precisions, with both boards
running at the respective top frequencies (1,590 and 1,531 MHz). The T4 GPU
enjoys a higher throughput in half precision and int8 precision, thanks to
Tensor Cores usage.

Because the T4 and the P4 GPU have the same number of CUDA cores, we
measure similar arithmetic throughput in matrix multiplication on the two
boards, in double and single precision. Note that double-precision perfor-
mance is hampered by the small number of native FP64 cores available (only
two per SM), as both architectures are optimized for inference, where lower
precision is more frequently employed.
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Figure 4.3: Clock frequency observed on a T4 GPU while continuously computing cuBLAS matrix
multiplication. The application clock frequency is set to 1,590 MHz.

4.5 Performance throttling

Most GPUs include forms of clock throttling and/or power-state throttling to
prevent exceeding either the power or thermal envelopes if the workload is
particularly demanding or the heat dissipation is insufficient.

Our experiments show that the small form-factor T4 and P4 boards, de-
signed for inference applications, achieve a significantly higher frequency-
per-Watt rating than their full-size counterparts. At the same time, they are
more prone to clock throttling than their full-size counterparts (K80, P100,
V100, and M60) because of

• their smaller size, which limits their heat sinks’ heat transfer rate, and

• their maximum power limits set by the manufacturer, which is signifi-
cantly lower (70W) on low-power, small form-factor boards than on full-
size boards (250W).

Experimental setup: All GPU specimens we examined adopt passive cooling. Our
K80, P100, V100 and M60 experiments ran on Dell PowerEdge C4130 servers, which
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Figure 4.4: Temperature and clock frequency of the T4 card when computing a cublasSgemm
repeatedly. The application clock frequency is set to 1,590 MHz.

are Tesla-qualified. Our T4 and P4 experiments ran on HPE Proliant DL360 Gen9
servers. This server model does not appear in NVidia’s Tesla-qualified server cata-
log. Power and thermal performance of a GPU also depend on the server that hosts it,
and could be suboptimal on a non-qualified server. The server generation immediately
following the one we employed (HPE Proliant DL360 Gen10) is Tesla-qualified, but we
were unable to arrange for an upgrade before the publication of this manuscript.

In our experiments, we were able to trigger clock throttling on the T4 GPU
consistently, using benchmarks based on cuBLAS matrix multiplication ker-
nels cublas<t>gemm. On the T4 GPU, clock throttling triggers for two rea-
sons:

• power-limit throttling: instantaneous power exceeds the power limit
set by the manufacturer (70W on the T4 GPU);

• thermal throttling: the GPU reaches its maximum operating tempera-
ture (85◦C on the T4 card).

Compared to power limit throttling, thermal throttling causes a more severe
clock frequency reduction.
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when computing an identical cublas<t>sgemm function on 1024×1024 matrices repeatedly. On
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4.5.1 Power-limit throttling

On the T4 and P4 GPUs, we saw power-limit throttling trigger very early in
our cuBLAS-based matrix multiplication experiments. On the other hand, the
V100, P100, M60 and K80 GPUs barely experienced any power-limit throt-
tling, due to the larger margin between actual power consumption and its
limit.

To confirm the cause of throttling, we designed an experiment that invokes
cuBLAS<t>gemm kernels with input matrices of growing size. We observed
the T4 GPU exceeded its power limit more and more frequently, and lower
its clock rates more and more, with growing input sizes. The reduced clock
frequency eventually hurts overall arithmetic throughput. See Figure 4.3.

In the experiment, we set the application clock for graphics on the T4 card
to 1,590 MHz, and prevent GPU temperatures from exceeding the maximum
operating temperature of the T4 GPU. We record the clock frequency of the T4
card while computing cublas<t>gemm in half precision.
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4.5.2 Thermal throttling

We characterized thermal throttling with a benchmark that repeatedly
launches a cublas<t>gemm kernel on a large matrix. We observed that below
85 degrees C (the maximum operating temperature), power limit throttling
causes the T4 GPU to reduce its graphics clock with the growth of temper-
ature. As soon as the temperature reaches 85 degrees C, thermal throttling
triggers in addition to power-limit throttling, causing a more dramatic clock
frequency step-down, depicted in Figure 4.4.

4.5.3 Power-limit throttling across GPU devices

We compared the power-limit throttling behavior of the different GPUs, by
recording graphics clock over time while all cards computed endless repeti-
tions of the same cublasSgemm kernel on 1024×1024 input matrices.

We noticed substantial differences between low-power GPUs (e.g., T4 and
P4) and the full form-factor GPUs (K80, M60, P100, V100). We observe clock
throttling only on the T4 and the P4 GPUs. Both cards are only able to run
at their highest supported clock frequency for a few seconds at the very be-
ginning of the experiment. As temperatures increased, clock throttling inter-
vened and clock frequency decreased (Figure 4.5).

On full-height, full-length GPUs, we could not raise power consumption
enough to approach the limits and trigger throttling.

Experimental setup: in all experiments, we set all graphics clocks to the highest sup-
ported value for each device. We turned off the AutoBoost features wherever available.
We also ensured that only power-limit throttling was active.





Chapter 5

Conclusions

We refreshed our microbenchmark-based architectural discovery study, up-
dating it for the Turing architecture. We revealed Turing’s architectural de-
tails, and compared them with previous NVidia architectures.

We emphasize the comparison between the T4 and the P4 GPUs: both are
low-power, small-form-factor boards that target inference applications. The
T4 is based on the Turing architecture; the P4, its predecessor, is based on
Pascal.

We find that Turing uses the same instruction encoding as Volta, but it
extends Volta’s instruction set; it also introduces a new register type (uniform
registers) and supports more operand types on Tensor Cores. The new instruc-
tions allow the nvcc compiler to render matrix math in fewer instructions on
Turing than on Volta.

The T4 GPU also delivers a significantly higher arithmetic throughput than
the P4 on reduced-precision operands.

Turing’s memory hierarchy is similar to that of Volta, with different sizes
at certain cache levels. We provided an exhaustive examination of the differ-
ences. When compared in terms of instruction encoding, memory hierarchy,
and behavior of their processing units, the Turing and Volta generations dis-
play continuity, and together represent a significant departure from the Kepler
and older generations.

Turing continues a trend of growth in the scheduler-to-cores ratio, which
grew from 1:48 in Kepler to 1:16 in Turing. This trend correlates with a growth
in instruction throughput. With their newly introduced L0 instruction cache,
Turing and Volta mitigate the penalty associated with their longer instruc-
tions. The improved L1 data cache offers lower latency and higher bandwidth.
Their new replacement policy also reduces cache miss rates when not using
shared memory, and the change from 4, single-ported register banks in Pascal
to 2, dual-ported banks facilitates the prevention of bank conflicts.

51
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Compared to the Pascal P4 GPU, the Turing T4 GPU provides higher band-
width on L1 cache and global memory. The T4 GPU has higher arithmetic
throughput for half-precision, int8 and int4matrix multiplication thanks to
its improved Tensor Cores. In single and double precision, the T4 and the P4
GPUs exhibit comparable performance because they contain the same number
of cores and are clocked at similar frequencies.

Using our findings on the instruction set encoding, software designers can
optimize their code at the binary level and even construct customized SASS
assemblers able to target Turing and possibly generate more tightly scheduled
code, that delivers higher performance. Thanks to the memory hierarchy in-
formation we disclose, developers can also optimize their code by selecting
working sets that match the cache memories at every suitable level, thus re-
ducing miss rates and improving overall performance.



Appendix

In this appendix, we provide the opcodes for common instructions, as en-
coded in Turing’s instruction encoding and, for comparison, in Pascal’s and
Volta’s encoding.

Floating point instructions

Instruction Pascal Volta Turing

FADD 0101 1100 0101 1 10 0010 0001 10 0010 0001
0100 1100 0101 1
0011 1001 0101 1

FCHK 0101 1100 1000 1 011 0000 0010 011 0000 0010
0100 1100 1000 1
0011 1001 1000 1

FCMP 0101 1011 1010 – –
0101 0011 1010
0100 1011 1010
0011 0111 1010

FFMA 0101 1001 1 10 0010 0011 10 0010 0011
0101 0001 1
0100 1001 1
0011 0011 1
0011 0010 1

FMNMX 0101 1100 0110 0 010 0000 1001 010 0000 1001
0100 1100 0110 0
0011 1001 0110 0
0011 1000 0110 0

FMUL 0101 1100 0110 1 010 0010 0000 010 0010 0000
0100 1100 0110 1
0011 1001 0110 1
0011 1000 0110 1

FSET 0101 1000 010 0000 1010 010 0000 1010
0100 1000
0011 0001

FSETP 0101 1011 1011 010 0000 1011 010 0000 1011
0100 1011 1011
0011 0111 1011
0011 0110 1011

FSWZADD 0101 0000 1111 1 0 1000 0010 0010 0 1000 0010 0010
MUFU 0101 0000 1000 0 011 0000 1000 011 0000 1000
RRO 0101 1100 1001 0 –

0100 1100 1001 0
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Floating point instructions (continued)

Instruction Pascal Volta Turing

0011 1001 1001 0
0011 1000 1001 0

DADD 0101 1100 0111 0 10 0010 1001 10 0010 1001
0100 1100 0111 0
0011 1001 0111 0
0011 1000 0111 0

DFMA 0101 1011 0111 10 0010 1011 10 0010 1011
0101 0011 0111
0100 1011 0111
0011 0111 0111
0011 0110 0111

DMNMX 0101 1100 0101 0 – –
0100 1100 0101 0
0011 1001 0101 0
0011 1000 0101 0

DMUL 0101 1100 1000 0 010 0010 1000 010 0010 1000
0100 1100 1000 0
0011 1001 1000 0
0011 1000 1000 0

DSET 0101 1001 0 – –
0100 1001 0
0011 0011 0
0011 0010 0

DSETP 0101 1011 1000 10 0010 1010 10 0010 1010
0100 1011 1000
0011 0111 1000
0011 0110 1000

HADD2 – 10 0011 0000 10 0011 0000
HFMA2 – 10 0011 0001 10 0011 0001
HMMA – 0 0010 0011 0110 0 0010 0011 0110
HMUL2 – 010 0011 0010 010 0011 0010
HSETP2 – 10 0011 0100 10 0011 0100
HSET2 – 10 0011 0011 10 0011 0011
FSEL – 010 0000 1000 010 0000 1000

Integer Instructions

Instruction Pascal Volta Turing

BFE 0101 1100 0000 0 – –
0100 1100 0000 0
0011 1001 0000 0
0011 1000 0000 0

BFI 0101 1011 1111 0 – –
0101 0011 1111 0
0100 1011 1111 0
0011 0111 1111 0
0011 0110 1111 0

FLO 0101 1100 0011 0 011 0000 0000 011 0000 0000
0100 1100 0011 0
0011 1001 0011 0
0011 1000 0011 0
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Integer Instructions (continued)

Instruction Pascal Volta Turing

IADD 0101 1100 0001 0 – –
0100 1100 0001 0
0101 1100 0001 0
0101 1101 0001 0

IADD3 0101 1100 1100 010 0001 0000 010 0001 0000
0100 1100 1100
0011 1001 1100
0011 1000 1100

ICMP 0101 1011 0100 – –
0101 0011 0100
0100 1011 0100
0011 0111 0100
0011 0110 0100

IMAD 0101 1010 0 10 0010 0100 10 0010 0100
0101 0010 0 10 0010 0101 10 0010 0101
0100 1010 0
0011 0100 0

IMADSP 0101 1010 1 – –
0101 0010 1
0100 1010 1
0011 0101 1
0011 0100 1

IMNMX 0101 1100 0010 0 – –
0100 1100 0010 0
0011 1001 0010 0
0011 1000 0010 0

IMUL 0011 1000 0011 1 ? ?
0100 1100 0011 1
0011 1001 0011 1
0011 1000 0011 1

ISCADD 0101 1100 0001 1 – –
0100 1100 0001 1
0011 1001 0001 1
0011 1000 0001 1

ISET 0101 1011 0101 – –
0100 1011 0101
0011 0111 0101
0011 0110 0101

ISETP 0011 0111 0110 010 0000 1100 010 0000 1100
0100 1011 0110
0011 0111 0110
0011 0110 0110

LEA 0101 1011 1101 0 010 0001 0001 010 0001 0001
0101 1011 1101 1
0100 1011 1101 0
0011 0111 1101 0
0011 0110 1101 0
0001 1000

LOP3 0011 11 010 0001 0010 010 0001 0010
0101 1011 1110 0
0000 001

LOP 0101 1100 0100 0 -
0100 1100 0100 0
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Integer Instructions (continued)

Instruction Pascal Volta Turing

0011 1001 0100 0
0011 1000 0100 0

POPC 0101 1100 0000 1 011 0000 1001 011 0000 1001
0100 1100 0000 1
0011 1001 0000 1
0011 1000 0000 1

SHF 0101 1011 1111 1 10 0001 1001 10 0001 1001
0011 0111 1111 1
0011 1000 1111 1
0011 1001 1111 1
0011 0110 1111 1
0101 1100 1111 1

SHL 0101 1100 0100 1 * *
0011 1000 0100 1
0011 1001 0100 1
0100 1100 0100 1

SHR 0101 1100 0010 1 * *
0011 1000 0010 1
0011 1001 0010 1
0100 1100 0010 1

XMAD 0101 1011 00 – –
0100 111
0101 0001 0
0011 0111 00
0011 0110 00

VABSDIFF – 10 0001 0100 10 0001 0100
VABSDIFF4 – 10 0001 0101 10 0001 0101
BREV – 011 0000 0001 011 0000 0001
IABS – 010 0001 0011 010 0001 0011
IDP – 010 0010 0110 010 0010 0110
QSPC – 0 0011 1010 1010 0 0011 1010 1010
BMSK – 010 0001 1011 010 0001 1011

Conversion Instructions

Instruction Pascal Volta Turing

MOV 0101 1100 1001 1 010 0000 0010 010 0000 0010
0100 1100 1001 1
0011 1001 1001 1
0011 1000 1001 1

PRMT 0101 1011 1100 10 0001 0110 10 0001 0110
0101 0011 1100
0100 1011 1100
0011 0111 1100
0011 0110 1100

SEL 0101 1100 1010 0 010 0000 0111 010 0000 0111
0011 1000 1010 0
0011 1001 1010 0
0100 1100 1010 0

SHFL 1110 1111 0001 0 0 1001 1000 1001 0 1001 1000 1001
CSET 0101 0000 1001 1 –
CSETP 0101 0000 1010 0 –
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Conversion Instructions (continued)

Instruction Pascal Volta Turing

PSET 0101 0000 1000 1 –
PSETP 0101 0000 1001 0 –
P2R 0101 1100 1110 1 010 0000 0011 010 0000 0011

0100 1100 1110 1
0011 1001 1110 1
0011 1000 1110 1

R2P 0101 1100 1111 0 010 0000 0100 010 0000 0100
0100 1100 1111 0
0011 1001 1111 0
0011 1000 1111 0

GETLMEMBASE – 0 0011 1100 0000 0 0011 1100 0000

Load/Store Instructions

Instruction Pascal Volta Turing

LD 100 0 1001 1000 0000 0 1001 1000 0000
LDC 1110 1111 1001 0 0 1011 1000 0010 0 1011 1000 0010
LDG 1110 1110 1101 0 0 0011 1000 0001 0 0011 1000 0001
LDL 1110 1111 0100 0 0 1001 1000 0011 0 1001 1000 0011
LDS 1110 1111 0100 1 0 1001 1000 0100 0 1001 1000 0100
ST 101 0 0011 1000 0101 0 0011 1000 0101
STG 1110 1110 1101 1 0 0011 1000 0110 0 0011 1000 0110
STL 1110 1111 0101 0 0 0011 1000 0111 0 0011 1000 0111
STS 1110 1111 0101 1 0 0011 1000 1000 0 0011 1000 1000
ATOM 1110 1101 0 0011 1000 1010 0 0011 1000 1010

1110 1110 011 0 0011 1000 1011 0 0011 1000 1011
1110 1110 1111

ATOMS 1110 1100 0 0011 1000 1100 0 0011 1000 1100
1110 1110 00 0 0011 1000 1101 0 0011 1000 1101
1110 1110 010

ATOMG – 0 0011 1010 1000 0 0011 1010 1000
0 0011 1010 1001 0 0011 1010 1001

RED 1110 1011 1111 1 0 1001 1000 1110 0 1001 1000 1110
CCTL 1110 1111 0111 0 1001 1000 1111 0 1001 1000 1111
MEMBAR 1110 1111 1001 1 0 1001 1001 0010 0 1001 1001 0010
ERRBAR – 0 1001 1010 1011 0 1001 1010 1011
CCTL – 0 1001 1000 1111
CCTLT 1110 1011 1111 0
CCTLL 0 1001 1001 0000
MATCH – 0 0011 1010 0001 0 0011 1010 0001

Control Instructions

Instruction Pascal Volta Turing

BRA 1110 0010 0100 0 1001 0100 0111 0 1001 0100 0111
BRX 1110 0010 0101 0 1001 0100 1001 0 1001 0100 1001
JMP 1110 0010 0001 0 1001 0100 1010 0 1001 0100 1010
JMX 1110 0010 0000 0 1001 0100 1100 0 1001 0100 1100
SSY 1110 0010 1001
SYNC 1111 0000 1111 1 –
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Control Instructions (continued)

Instruction Pascal Volta Turing

BSYNC – 0 1001 0100 0001 0 1001 0100 0001
WARPSYNC – 011 0100 1000 011 0100 1000
CAL 1110 0010 0110 –
CALL – 011 0100 0011 011 0100 0011

0 1001 0100 0100 0 1001 0100 0100
JCAL 1110 0010 0010 –
PRET 1110 0010 0111 –
RET 1110 0011 0010 0 1001 0101 0000 0 1001 0101 0000
BRK 1110 0011 0100 –
PBK 1110 0010 1010 –
CONT 1110 0011 0101 –
PCNT 1110 0010 1011 –
EXIT 1110 0011 0000 0 1001 0100 1101 0 1001 0100 1101
PEXIT 1110 0010 0011 –
BPT 1110 0011 1010
BMOV – 0 0011 0101 0101 0 0011 0101 0101

011 0101 0110 011 0101 0110
011 0101 0111 011 0101 0111

YIELD – 0 1001 0100 0110 0 1001 0100 0110
RTT – 0 1001 0100 1111 0 1001 0100 1111
KILL – 0 1001 0101 1011 0 1001 0101 1011
RPCMOV – 011 0101 0010 011 0101 0010

0 0011 0101 0011 0 0011 0101 0011
0 1001 0101 0100

IDE – 0 1001 0101 0001 0 1001 0101 0001
PMTRIG – 0 1000 0000 0001 0 1000 0000 0001
BREAK – 0 1001 0100 0010 0 1001 0100 0010
BSSY – 0 1001 0100 0101 0 1001 0100 0101
NANOSLEEP – 011 0101 1101 011 0101 1101
NANOTRAP – 011 0101 1010 011 0101 1010

Other Instructions

Instruction Pascal Volta Turing

NOP 0101 0000 1011 0 0 1001 0001 1000 0 1001 0001 1000
CS2R 0101 0000 1100 1 0 1000 0000 0101 0 1000 0000 0101
S2R 1111 0000 1100 1 0 1001 0001 1001 0 1001 0001 1001
B2R 1111 0000 1011 1 0 0011 0001 1100 0 0011 0001 1100
BAR 1110 0010 0100 011 0001 1101 011 0001 1101
R2B 1111 0000 1100 0 0 0011 0001 1110 0 0011 0001 1110
VOTE 0101 0000 1101 1 0 1000 0000 0110 0 1000 0000 0110

0101 0000 1110 0
TMML – 0 1011 0110 1001 0 1011 0110 1001
TXD – 0 1011 0110 1100 0 1011 0110 1100
SGXT – 010 0001 1010 010 0001 1010
AL2P – – 0 1001 0010 0000
CSMTEST – 0 1000 0000 1101 0 1000 0000 1101
DEPBAR – 0 1001 0001 1010 0 1001 0001 1010
IPA – – 0 0011 0010 0110
ISBERD – – 0 1001 0010 0011
LEPC – 0 0011 0100 1110 0 0011 0100 1110
OUT – – 0 0011 0010 0100
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Other Instructions (continued)

Name Pascal Volta Turing

PIXLD – – 0 1001 0010 0101
PLOP3 – 0 1000 0001 1100 0 1000 0001 1100
SETCTAID – 0 0011 0001 1111 0 0011 0001 1111
SETLMEMBASE – 0 0011 1100 0001 0 0011 1100 0001
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