
GTC 2018

Dissecting the Volta GPU Architecture through 

Microbenchmarking

Zhe Jia, Marco Maggioni, Benjamin Staiger, Daniele P. Scarpazza

High-Performance Computing Group



• Micro-architectural details matter – crucial to achieve peak performance

• Hard to keep up-to-date 

– new GPU generations every year

– complexity increases at every generation

• Everything is better on Volta… but how much?

• We describe the inner workings of Volta

– instruction encoding

– size, properties, performance of each level in the memory hierarchy

– latency of instructions

– performance of atomic operations

– performance of Tensor Cores and how their instructions operate

– floating point throughput, at different precisions

– host-device and peer-to-peer performance; both for PCI and NVLink devices

– compare all findings against Pascal, Maxwell, Kepler

• … a lot more than fits in a GTC presentation: technical report to come

Everything You Ever Wanted To Know About Volta
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• Example: simplest matrix-matrix multiplication core

– we wrote it in CUDA C

– compiled it with NVCC 

– we patched the binary instructions to

• apply a better register mapping

• increase use of register reuse caches

– achieved a +15.4% speedup

– this would be impossible without knowing 

• how instructions are encoded and 

• how register files are organized

• … and we discovered both in this very work

• Limitations of our approach

– optimizing at such a low level requires substantial effort; it might not be worth it, except in very specific cases

– our optimizations are device-dependent and not portable to future GPU generations

– in a vast majority of cases, CUDA libraries and the NVCC compiler offer an excellent level of optimization and 
portability at the same time

– optimizations delivered by NVCC and CUDA libraries will carry over to the next GPU generations for free

Why Architectural Details Matter 
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Microarchitectural Details Matter: A Case Study 
Simplest matrix multiplication kernel imaginable

…
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…

…
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… … … … … … … …

reg_A

reg_B

reg_C

float reg_A[8], reg_B[8], reg_C[64];
for (int k=0; k<512; k++) {
// ...
for (int i = 0; i<8; i++)
for (int j = 0; j<8; j++)
reg_C[i*8+j] += reg_A[i]*reg_B[j];

// ...
}



• Volta register file has two 64-bit banks (bank 0 & bank 1)

• Conflict: all 3 operand registers in the same bank

• Bank 0: even numbered registers, e.g. R0, R2, R4, R6 …

• Bank 1: odd numbered registers, e.g. R1, R3, R5, R7 …

• Kepler, Maxwell and Pascal: 4 banks

• Elapsed time of identical “FFMA R6, 

R97, R99, RX” sequence

• R97 and R99 are in bank 1

• When RX is in bank 1, longer 

execution time

Case Study: Register Mapping Makes A Difference
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Case Study: Register Mapping Makes A Difference
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Case Study: Reuse Caches Makes A Difference
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before optimization after reuse cache optimization
FFMA R16, R12, R80, R16 FFMA R17, R12.reuse, R80.reuse, R17
FFMA R17, R80.reuse, R13, R17 FFMA R16, R12, R81.reuse, R16
FFMA R18, R80.reuse, R14, R18 FFMA R25, R13.reuse, R80.reuse, R25
FFMA R19, R80, R15, R19 FFMA R24, R13, R81.reuse, R24
FFMA R20, R80.reuse, R8, R20 FFMA R33, R14.reuse, R80.reuse, R33
FFMA R21, R80.reuse, R9, R21 FFMA R32, R14, R81.reuse, R32
FFMA R22, R80.reuse, R10, R22 FFMA R41, R15.reuse, R80.reuse, R41
FFMA R23, R80, R11, R23 FFMA R40, R15, R81.reuse, R40
FFMA R24, R12, R81.reuse, R24 FFMA R49, R8.reuse, R80.reuse, R49
FFMA R25, R13, R81, R25 FFMA R48, R8, R81.reuse, R48
FFMA R26, R14, R81.reuse, R26 FFMA R57, R9.reuse, R80.reuse, R57
FFMA R27, R15, R81.reuse, R27 FFMA R56, R9, R81.reuse, R56
FFMA R28, R8, R81.reuse, R28 FFMA R65, R10.reuse, R80.reuse, R65
FFMA R29, R9, R81.reuse, R29 FFMA R64, R10.reuse, R81.reuse, R64
FFMA R30, R10, R81.reuse, R30 FFMA R73, R11.reuse, R80, R73

... ...

Performance improvement (128 threads): +15.4%



How Volta Encodes Instructions And Control
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Kepler:
/*0008*/ 
/*0010*/ 
/*0018*/
/*0020*/
/*0028*/
/*0030*/
/*0038*/   

MOV R1, c[0x0][0x44];
S2R R0, SR_CTAID.X; 
S2R R3, SR_TID.X;
IMAD R0, R0, c[0x0][0x28], R3;  
S2R R4, SR_CLOCKLO; 
MEMBAR.CTA; 
LOP32I.AND R2, R3, 0xfffffffc; 

/* 0x08a0bc80c0a08cc0 */
/* 0x64c03c00089c0006 */
/* 0x86400000129c0002 */
/* 0x86400000109c000e */
/* 0x51080c00051c0002 */
/* 0x86400000281c0012 */
/* 0x7cc00000001c0002 */
/* 0x207ffffffe1c0c08 */

Maxwell
Pascal: /*0008*/

/*0010*/
/*0018*/

MOV R1, c[0x0][0x20]; 
S2R R0, SR_CTAID.X; 
S2R R2, SR_TID.X; 

/* 0x001c7c00e22007f6 */
/* 0x4c98078000870001 */
/* 0xf0c8000002570000 */                  
/* 0xf0c8000002170002 */

Volta /*0000*/ @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ; /* 0x000000fffffff389 */
/* 0x000fe200000e00ff */

control for 7 instructions

control for 3 instructions

control for 1 instruction

Width (bits) 4 6 3 3 1 4

Meaning Reuse flags
Wait barrier 

mask

Read barrier 

index

Write barrier 

index
Yield flag Stall cycles



Volta Memory Hierarchy
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memory hierarchy for V100 GPU

• 4 Processing Blocks 

(PB) on every Streaming 

Multiprocessor (SM)

• 80 SMs on Every GPU

• 3 levels of instruction 

cache: L0 is private to 

every PB 

• 3 levels of constant 

cache

• 2 levels of data cache: 

L1 combined with 

shared memory



Memory Hierarchy: Volta vs. Pascal
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P100 V100

N of SMs 56 80

Processing block per SM 2 4

P100 V100

• Volta instruction cache: 12 KiB L0 in every 

processing block, no L1 

• Pascal instruction cache: no L0, 8 KiB L1 in every SM 

• Volta has combined L1 cache/shared memory

.

.



Floating Point Performance On V100
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• Matrix-matrix multiplication 

performance with cuBLAS from 

CUDA 9.0

• Measured half precision 

performance is 5.7x of single 

precision performance 

• cuBLAS library achieves 70% of 

peak performance on Tensor cores

• Theoretical performance

– Half precision: 113 TFLOPS

– Single precision:  14 TFLOPS

– Double precision:  7 TFLOPS 
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Combined L1 Cache/Shared Memory
Volta is like Kepler: L1 and shared memory are combined Low latency, high 
bandwidth

• new replacement policy: Volta keeps replacing the same cache lines first 

when L1 is saturated.



Instruction Latency: Improved
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Instruction latency on Volta: widely improved

Architecture Instructions Latency (cycles)

Pascal BFE, BFI, IADD, IADD32I, FADD, FMUL, FFMA, FMNMX,

HADD2, HMUL2, HFMA2, IMNMX, ISCADD, LOP, LOP32I,

LOP3, MOV, MOV32I, SEL, SHL, SHR, VADD, VABSDIFF,

VMNMX, XMAD

DADD, DMUL, DFMA, DMNMX

FSET, DSET, DSETP, ISETP, FSETP

POPC, FLO, MUFU, F2F, F2I, I2F, I2I

IMUL, IMAD

6

8

12

14

~86

Volta IADD3, SHF, LOP3, SEL, MOV, FADD, FFMA, FMUL,

ISETP, FSET, FSETP,

IMAD, FMNMX, DSET, DSETP,

HADD2, HMUL2, HFMA2

DADD, DMUL, DFMA,

POPC,

FLO, BREV, MUFU

4

5

6

8

10

14



Tensor Cores: How Do They Work
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• use warp-level primitive “wmma::mma_sync” to calculate 

acc_frag(16x16) += a_frag(16x16) x b_frag(16x16)

• 32 threads in a warp are divided in 8 groups, 

• every 4 threads update an area in acc_frag

acc_frag

thread 0-3 thread 4-7



Tensor Cores: How Do They Work
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HMMA.884.F32.F32.STEP0

HMMA.884.F32.F32.STEP1

HMMA.884.F32.F32.STEP2

HMMA.884.F32.F32.STEP3

HMMA.884.F32.F32.STEP0 

HMMA.884.F32.F32.STEP1 

HMMA.884.F32.F32.STEP2 

HMMA.884.F32.F32.STEP3 

HMMA.884.F32.F32.STEP0 

HMMA.884.F32.F32.STEP1 

HMMA.884.F32.F32.STEP2 

HMMA.884.F32.F32.STEP3 

HMMA.884.F32.F32.STEP0 

HMMA.884.F32.F32.STEP1 

HMMA.884.F32.F32.STEP2 

HMMA.884.F32.F32.STEP3 

acc_frag

• At compile time, NVCC 

translates one 

“wmma::mma_sync” to 16 

“HMMA” instructions

• We call every 4 

instructions a “set”

• At run time, different sets 

read from different areas 

in a_frag and b_frag, 

accumulate into same 

positions in acc_frag

• Within every set,  different 

“STEP” flags control the 

updating in different areas 

of acc_frag

set 0

set 1

set 2

set 3

wmma::mma_sync x 1



Shared Memory Performance: From Kepler To 

Volta
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• Shared memory

− Latency decreases significantly from Kepler to Volta

− Bandwidth increase significantly after Maxwell



17

Global Memory: From Kepler To Volta
Bandwidth increases significantly thanks to HBM2 memory



• Volta has the fastest atomic operations on shared memory

in all contention scenarios

• On global memory, Volta doesn’t win 

• Kepler: shared memory atomics are very slow because they are emulated

Atomic Instructions: From Kepler To Volta
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Shared memory Global memory

Contention V100 P100 M60 K80 V100 P100 M60 K80

None 6 15 17 93 36 26 24 29

2 threads 7 17 19 214 31 31 26 69

4 threads 11 19 25 460 32 48 41 96

8 threads 18 30 31 952 41 48 41 152

16 threads 24 46 47 1936 58 50 46 264

32 threads 66 78 79 4257 76 50 46 488



• Unified L2 data cache

– For all data, constant memory and instruction accesses

– Memory copy operations populate the L2 cache

• TLB ( Kepler and Maxwell: 2 levels, Pascal and Volta: 3 levels )

– L1 cache is indexed by virtual addresses

– L2 cache is indexed by physical addresses

• 3 levels of constant cache (L1, L1.5 and L2)

– 4-way L1 with 64 B lines

– L1 and L1.5 are private to every SM

– L2 constant cache is shared by all SMs

• 3 levels of Instruction cache

– Volta: L0 ( per processing block ), L1 ( per SMX ) and L2 ( all SMX )

– Kepler to Pascal: L1&L1.5 (per SMX), L2 (all SMX)

What Hasn’t Changed Across GPU Generations

19



Stay tuned for 

our Technical 

Report
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• all these findings 

and much more!

• in a 60+-page

technical report

• we will publish it on

arxiv.org

• April 9th 2018

• Stay tuned!
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Thank you!

Questions welcome


