
E D I C T

The internal extent formula for compacted tries

Paolo Boldi Sebastiano Vigna
Università degli Studi di Milano, Italy

Abstract

It is well known [Knu97, pages 399–400] that in a binary tree the external path length minus the
internal path length is exactly 2n � 2, where n is the number of external nodes. We show that a
generalization of the formula holds for compacted tries, replacing the role of paths with the notion of
extent, and the value 2n�2with the trie measure, an estimation of the number of bits that are necessary
to describe the trie.

1 Introduction
The well-known formula [Knu97, pages 399–400]

E D I C 2n � 2;

where n is the number of external nodes, relates the external path length E of a binary tree (the sum of
the lengths of the paths leading to external nodes) with the internal path length I (the sum of the lengths
of the paths leading to internal nodes).1

A compacted (binary) trie is a binary tree where each node (both internal and external) is endowed
with a (binary) string (possibly empty) called compacted path. For a compacted trie, if we extend in
the natural way the values of E and I the formula is no longer valid. In this note we provide a suitable
generalization of the formula, using the definition of extent of a node (which collapses to the definition
of path when all compacted paths are empty). We show that E D I C T , where E is the sum of the
lengths of external extents, I is the sum of the lengths of internal extents, and T is the trie measure,
which approximates the number of bits that are necessary to describe the trie. If all compacted paths
are empty the trie measure is 2n � 2, so our equation is a generalization of the classical result. We also
provide a generalization to the case of non-binary tries.

2 Definitions
We work out our definitions from scratch closely following Knuth’s, as the notation that can be found in
the literature is not always consistent.

1The formula actually reported by Knuth is slightly different (E D I C2n) because in his notation n is the number of internal
nodes, which is equal to the number of external nodes minus one. As we will see, for compacted tries the number of external nodes
is equal to the size of the set of strings represented by the trie, and so it is a more natural candidate for the letter n.

1



Binary trees. A binary tree is either the empty binary tree or a pair of binary trees (called the left
subtree and the right subtree) [Knu97, page 312].2

A binary tree can be represented as a rooted tree3 in which nodes are either internal or external. The
empty binary tree is represented by a single external root node. Otherwise, a binary tree is represented by
an internal root node connected to the representations of the left and right subtree by two edges labelled
0 and 1. Note that external nodes have no children, whereas internal nodes have always exactly two
children.4

Compacted binary tries. A compacted binary trie is either a binary string, called a compacted path,
or a binary string endowed with a pair of binary tries (called the left subtrie and the right subtrie). Equiv-
alently, a compacted binary trie can be seen as a labelling of the nodes of a binary tree with compacted
paths.

Given a nonempty prefix-free set of strings S � 2�, the associated compacted binary trie is:

• the only string in the set, if jS j D 1;

• otherwise, let p be the longest common prefix of the strings in S ; then, the trie associated to S is
given by the string p and by the pair of tries associated with the sets f x 2 2� j pbx 2 S g, for
b D 0, 1.

A compacted binary trie can be represented as a rooted tree in which, as in the case of binary trees,
nodes are either internal or external. A single string is represented by a single external root node labelled
by the string. Otherwise, a string and a pair of subtries are represented by an internal root node labelled
by the string, connected to the representations of the first and second subtries by two edges labelled 0 and
1 (see Figure 2). From this representation, the set S can be recovered by looking at the labelled paths
going from the root to external nodes.

Given a node ˛ of the trie (see again Figure 2):

• the extent of ˛ is the longest common prefix of the strings represented by the external nodes that
are descendants of ˛;

• the compacted path of ˛, denoted by c˛ , is the string labelling ˛;

• the name of ˛ is the extent of ˛ deprived of its suffix c˛ .

We will use the name internal extent (external extent, resp.) for the extent of an internal (external, resp.)
node.
A data-aware measure. Consider the compacted trie associated with a nonempty set S � 2�. We define
the trie measure of S [GHSV07] as

T .S/ D
X
˛

.jc˛j C 1/ � 1 D O.n`/

2We remark that the definition we use (a slight abstraction on Knuth’s) is the simplest and most correct from a combinatorial
viewpoint, but might sound unfamiliar. An alternative commonly found description says that a binary tree is given by a node with
a left and a right subtree, either of which might be empty; the latter definition, however, does not account for the empty binary tree,
which is essential in making the left-child-right-sibling isomorphism with ordered forests work (see again [Knu97, pages 334–335]).

3An acyclic connected graph with a chosen node (the root). As observed by Knuth [Knu97, page 312], a tree (in the graph-
theoretical sense) and a binary tree are two completely different combinatorial objects.

4We remark that it is common to forget about external nodes altogether and consider only internal nodes as “true” nodes of the
binary tree. In this setting, there are nodes with no children, nodes with a single child (left or right), and nodes with two children.
As noted by Knuth, handling external nodes explicitly makes the structure “more convenient to deal with”. In our case, external
nodes are essential in the very definition ofE .

2



s0 001001010
s1 00100110100100010
s2 001001101001001

Figure 1: A toy example set S .

0
0
1
0
0
1

0 1

1
0

0
1
0
0
1
0
0

0 1

1
0

˛

nam
e

of
˛

com
p.path

of
˛

extentof
˛

Figure 2: The rooted-tree representation of the compacted trie associated with the set S of Figure 1, and
the related names. Arrows display the direction from the root to the external nodes.

where the summation ranges over all nodes of the trie, n D jS j and ` is the average length of the elements
of S . Actually, T .S/ is the number of edges of the standard (non-compacted) trie associated with S .

This measure is directly related to the number of bits required to encode the compacted trie associated
with S explicitly: indeed, to do this we just need to encode the trie structure (as a binary tree) and to write
down in preorder all the c˛’s. Since there are n external nodes (hence n � 1 internal nodes), writing a
concatenation of the c˛’s requires T .S/ � 2n C 2 bits; then we need log

�
T.s/
2n�2

�
additional bits to store

the starting point of each c˛ , whereas the trie structure needs just 2n � 2 bits (e.g., using Jacobson’s
representation for binary trees [Jac89]). All in all, the space required to store the trie is

T .S/C log

 
T .S/

2n � 2

!
:

More precisely, the above number of bits is sufficient to write every trie with n external nodes and measure
T .S/, and it is necessary for at least one such a trie (whichever representation is used) [FGGC08].

3 E D I C T

We start by generalizing the internal path formula for binary trees to an internal extent formula for com-
pacted binary tries:

Theorem 1 Let S be a nonempty prefix-free set of n binary strings with average length `, and consider
the compacted binary trie associated with S . Let E be the sum of the lengths of the external extents

3



(equivalently: E D n`, the sum of the lengths of the strings in S ), I the sum of the lengths of the internal
extents, and T the trie measure of S . Then,

E D I C T:

Proof. We prove the theorem by induction on n. The theorem is obviously true for n D 1, as in this case
E D jc˛j, I D 0 and T D jc˛j C 1 � 1 D jc˛j. Consider now the case of a trie with root ˛ and subtries
with their values n0, n1, E0, E1, I0, I1, T0, and T1. Then, using the definitions, we have

E D .E0 CE1/C .jc˛j C 1/.n0 C n1/

I D .I0 C I1/C .jc˛j C 1/.n0 � 1C n1 � 1/C jc˛j

D .I0 C I1/C .jc˛j C 1/.n0 C n1 � 1/ � 1

T D .T0 C 1/C .T1 C 1/C .jc˛j C 1/ � 1 D T0 C T1 C jc˛j C 2

n D n0 C n1:

Adding the equations Ej D Ij C Tj for j D 0, 1 (which hold by inductive hypothesis) we have

E0 CE1 D I0 C I1 C T0 C T1:

We add .jc˛j C 1/.n0 C n1/ to both sides, getting

E0 CE1 C .jc˛j C 1/.n0 C n1/ D I0 C I1 C .jc˛j C 1/.n0 C n1 � 1/C T0 C T1 C jc˛j C 1

E0 CE1 C .jc˛j C 1/.n0 C n1/ D I C 1C T � 1;

which entails the thesis.

As noted in the introduction, when all compacted paths are empty E is equal to the external path length,
I is equal to the internal path length, and the trie measure is exactly

�P
˛ 1
�
� 1 D 2n � 2. Thus, the

internal extent formula is truly a generalization of the internal path formula.

4 A simple application
We were lead to the equation E D I C T by the problem of bounding the average length of an internal
extent in terms of the average length of an external extent, that is, in terms of `, the average length of the
strings in S . This bound can now be easily obtained:

Corollary 1 Let S , with jS j � 2, be a set of binary strings. With the notation of Theorem 1,

I=.n � 1/ � ` � 3=2C 1=n:

Proof. We just divide both members of the internal extent equation by n:

E

n
D
I

n
C
T

n

D
I

n � 1
C
I

n
�

I

n � 1
C
2n � 2C

P
˛ jc˛j

n

D
I

n � 1
C
3

2
�
1

n
�
I � .n � 1/.n=2 � 1C

P
˛ jc˛j/

n.n � 1/

�
I

n � 1
C
3

2
�
1

n
:

4



To see why the last bound is true, note that in a trie with n � 1 internal nodes the contribution to I of the
edges (i.e., excluding the compacted paths) is at most .n�1/.n�2/=2 (the worst case is a linear trie). On
the other hand, the contribution of compacted paths to each internal path cannot be more than

P
˛ jc˛j,

so the overall contribution cannot be more than .n � 1/
P
˛ jc˛j. We conclude that

I � .n � 1/
�
.n � 2/=2C

X
˛

jc˛j
�
:

Note that the bound is essentially tight, as in a linear trie with empty compacted paths E D n.n C

1/=2 � 1 and I D .n � 2/.n � 1/=2, so E=n � I=.n � 1/ D 3=2 � 1=n.

5 A generalization to non-binary tries
Given an alphabet †, a compacted trie over † is defined as follows: it is either a single string x 2 †�,
or a string x 2 †� together with a subset X � † with jX j > 1 endowed with a function � that assigns a
compacted trie over † to each element of X .

Given a nonempty prefix-free set of strings S � †�, the associated compacted trie over † is:

• the only string in the set, if jS j D 1;

• otherwise, let p be the longest common prefix of the strings in S ; then, the trie associated with S
is given by p, the set X � † of all a 2 † such that pa is the prefix of some string in S , and by the
function � mapping a to the compacted trie associated with the set f x 2 †� j pax 2 S g.

Similarly to what happens for compacted binary tries, a compacted trie over † can be represented as
a rooted tree where each node is labelled by a (possibly empty) string over † and internal nodes have at
most j†j (but not less than two) children, each associated with a distinct symbol of †. The notation of
Figure 2 carries on easily, and the definition of trie measure is extended in the natural way.

We now want to generalize the internal extent formula (Theorem 1) to non-binary tries.

Theorem 2 Let S be a nonempty prefix-free set of n strings over an alphabet with � symbols, and con-
sider the compacted trie associated with S . For each d D 0; : : : ; � , let Y.d/ be the sum of the lengths of
the extents of nodes with d children, n.d/ be the number of such nodes, and T be the trie measure. Then,

E D

�X
dD2

.d � 1/Y.d/C T:

Proof. By induction on the number of nodes. This is true for a one-node trie; for the induction step,
suppose that the root of a trie has a compacted path of length c, and h subtries (2 � h � � ); for the i -th
subtrie, by induction hypothesis, since E D Y.0/ we have

Yi .0/ D

�X
dD2

.d � 1/Yi .d/C Ti : (1)

Observe that, for every d D 0; 2; 3; : : : ; � ,

Y.d/ D

hX
iD1

Yi .d/C .c C 1/

 
Œd D h�C

hX
iD1

ni .d/

!
� Œd D h�

5



where we used Iverson’s notation.5 Moreover

n.d/ D Œd D h�C

hX
iD1

ni .d/

so

Y.d/ D

hX
iD1

Yi .d/C .c C 1/n.d/ � Œd D h�:

Further

T D

hX
iD1

Ti C hC c:

Summing (1) memberwise, we obtain

hX
iD1

Yi .0/ D

�X
dD2

.d � 1/

 
hX
iD1

Yi .d/

!
C

hX
iD1

Ti

that is equivalent to

Y.0/ � .c C 1/n.0/C Œ0 D h� D

�X
dD2

.d � 1/ .Y.d/ � .c C 1/n.d/C Œd D h�/C T � h � c;

hence

Y.0/ D

�X
dD2

.d � 1/Y.d/ � .c C 1/

 
�X
dD2

.d � 1/n.d/ � n.0/

!
C h � 1C T � h � c:

Since
P�
dD2.d � 1/n.d/ D n.0/ � 1, we have

Y.0/ D

�X
dD2

.d � 1/Y.d/C T:

6 Acknowledgments
We would like to thank the anonymous referee for spotting subtle inconsistencies in the first version of
this paper.

References
[FGGC08] Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jeffrey S. Vitter. On search-

ing compressed string collections cache-obliviously. In Proceedings of the twenty-seventh
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 181–
190. ACM, 2008.

5For a given Boolean predicate �, we let Œ�� be 0 if � is false, 1 if � is true [Knu92].

6



[GHSV07] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compressed data struc-
tures: Dictionaries and data-aware measures. Theoretical Computer Science, 387(3):313–
331, 2007.

[Jac89] Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on Foun-
dations of Computer Science (FOCS ’89), pages 549–554, Research Triangle Park, North
Carolina, 1989. IEEE Computer Society Press.

[Knu92] Donald E. Knuth. Two notes on notation. American Mathematical Monthly, 99(5):403–422,
May 1992.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1, Fundamental Algorithms.
Addison-Wesley, Reading, MA, USA, third edition, 1997.

7


