Effective Computation of Biased Quantilesover Data Streams

Graham Cormode*
Rutgers University
graham@dimacs.rutgers.edu

S. Muthukrishnan’
Rutgers University
muthu@cs.rutgers.edu

Abstract

Skewisprevalentin many data sourcessuchas| P traffic streams.
To continually summarize the distribution of such data, a high-
biased set of quantiles (e.g., 50th, 90th and 99th percentiles) with
finer error guarantees at higher ranks (e.g., errorsof 5, 1 and
0.1 percent, respectively) is moreuseful than uniformly distributed
quantiles (e.g., 25th, 50th and 75th percentiles) with uniform er-
ror guarantees. In this paper, we addressthe following two prob-
lems. First, can we compute quantiles with finer error guaran-
tees for the higher ranks of the data distribution effectively, using
less space and computation time than computing all quantiles uni-
formly at the finest error? Second, if specific quantiles and their
error boundsarerequestedapriori, can the necessary spaceusage
and computation time be reduced?

We answer both questionsin the affir mative by formalizing them
asthe" high-biased” quantilesandthe“ targeted” quantilesprob-
lems, respectively, and presenting algorithmswith provableguar-
antees, that performsignificantly better than previously known so-
lutions for these problems. \We implemented our algorithmsin the
Gigascope data stream management system, and evaluated alter-
nate approachesfor maintaining the relevant summary structures.
Our experimental results on real and synthetic IP data streams
complement our theoretical analyses, and highlight the impor-
tance of lightweight, non-blocking implementations when main-
taining summary structuresover high-speed data streams.

1 Introduction

Skew is prevaent in many data sources such as IP traffic
streams. Distributionswith skew typically have long tails
which are of great interest. For example, in network man-
agement, it is important to understand what performance
users experience. An important measure of performance
perceived by theusersistheroundtriptime (RTT) (whichin
turn affects dynamics of the network through mechanisms
such as TCP flow control). RTTs display alarge amount of
skew: the tails of the distribution of round trip times can
become very stretched. Hence, to gauge the performance

*Supported by NSF ITR 0220280 and NSF EIA 02-05116.
T Supported by NSF EIA 0087022, NSF ITR 0220280 and NSF EIA
02-05116.

Flip Korn
AT& T Labs—Research
flip@research.att.com

Divesh Srivastava
AT& T Labs—Research
divesh@research.att.com

of the network in detail and the effect on all users (not just
those experiencing the average performance), it isimpor-
tant to know not only the median RTT but also the 90%,
95% and 99% quantilesof TCP roundtriptimesto each des-
tination. In developing data stream management systems
that interact with I P traffic data, there exists the facility for
posing such queries [CKM'04]. However, the challenge
isto devel op approaches to answer such queries efficiently
and accurately given that there may be many destinations
totrack. In such settings, the datarateistypically high and
resources are limited in comparison to the amount of data
that is observed. Hence it is often necessary to adopt the
datastream methodology [BBD 02, GGR02, Mut03]: ana-
lyze | P packet headersinonepassover thedatawith storage
space and per-packet processing time that is significantly
sublinear in the size of the input.

Typicdly, IP traffic streams and other streams are sum-
marized using quantiles: these are order statistics such as
the minimum, maximum and median values. In a data set
of size n, the ¢-quantile is the item with rank [¢n]*.The
minimum and maximum are easy to calculate precisaly in
one pass but in general exact computation of certain quan-
tiles requires space linear in n [MP80]. So the notion of e-
approximate quantil esrelaxes the requirement to finding an
item with rank between (¢ — ¢)n and (¢ + €)n. Much at-
tention has been given to the case of finding a set of uni-
form quantiles: given0 < ¢ < 1, return the approxi-
mate ¢, 2¢, 3¢, ..., |1/¢| ¢ quantiles of a stream of val-
ues. Notethat the error in therank of each returned valueis
bounded by the same amount, en; we cal this the uniform
error case.

Summarizing distributionswhich have high skew using
uniform quantilesis not informative because having a uni-
formly spread-out summary of astretched distributiondoes
not describe the interesting tail region adequately. Mo-
tivated by this, we introduce the concept of high-biased
quantiles: tofindthe 1 — ¢,1 — ¢, 1 — ¢>,...,1 — ¢F

1We use the rank of an item to refer to its position in the sorted order
of items that have been observed.

quantiles of the distribution.? In order to give accurate and
meaningful answers to these queries, we must also scae
the approximation factor ¢ so the more biased the quantile,
the more accurate the approximation should be. The ap-
proximate low-biased quantiles should now bein the range
(1—(1+€)¢?)n: instead of additiveerror intherank +en,
we now require relative error of factor (1 + ¢).

Finding high- (or low-) biased quantiles can be seen as
a specia case of a more general problem of finding tar-
geted quantiles. Rather than requesting the same ¢ for all
guantiles (the uniform case) or ¢ scaled by ¢ (the biased
case), one might specify in advance an arbitrary set of
guantiles and their desired errors of ¢ for each in the form
(95, €;). For example, input to the targeted quantiles prob-
lemmight be {(0.5,0.1), (0.2,0.05), (0.9,0.01) }, meaning
that the median should be returned with 10% error, the 20th
percentile with 5% error, and the 90th percentile with 1%.

Both the biased and targeted quantiles problems could
be solved trivialy by running a uniform solution with e =
min; e;. But thisis wasteful in resources since we do not
need all of the quantiles with such fine accuracy. In other
words, we would like solutions which are more efficient
than this naive approach both in terms of memory used as
well as in running time, thereby adopting to the precise
guantile and error requirements of the problem.

Our contributionsare as follows:

o Wegivethefirst-knowndeterministica gorithmsfor the
problem of finding biased and targeted quantiles with
a single pass over the input and prove that they are
correct. These are simpleto implement, yet give strong
guarantees about the quality of their output.

e We consider the issues that arise when incorporating
such agorithmsinto a high speed data stream manage-
ment system (Gigascope), and devel op a variety of im-
plementations of them.

e We perform a set of experiments that show our ago-
rithms are extremely space-efficient, and significantly
outperform existing methodsfor finding quantileswhen
applied to our scenarios. We evauate them on live
and simulated | P traffic data streams and show that our
methods are capabl e of processing high throughput net-
work data

2 Redated Work

Computing concise summaries such as histograms and or-
der statistics on large data sets is of great importance in
particular for query planning. Histogram summaries such
as equi-depth histograms and end-biased histograms have

25ymmetrically, the low-biased quantiles are the ¢, ¢2 . .. ¢* quan-
tiles of the distribution.

been studied extensively [l0a03]. Note that our notion of
high-biased quantilesis quite distinct from high-biased his-
tograms [1C93] which find the most frequent items (i.e,
the modes) of the distribution. There is a large body of
work onwaysto compute appropriatehistogramsand order-
gtatisticsin general; here, we describe prior work that com-
putes quantiles with one pass over the input data since this
isthefocus of our work.

A lower bound of Q(n) space was shown by Munro
and Paterson [MP80] in order to exactly compute the me-
dian of n values. In the same paper, they showed an algo-
rithm which finds any quantile in p passes and used mem-
ory O(n'/Plogn). Manku et al [MRL98] observed that
after the first pass this algorithm finds bounds on the rank
of items, and so it can be used to answer e-approximate
quantilesin space O(1 log?(en)). They also gaveimprove-
ments with the same asymptotic space bounds but better
congtant factors. These algorithmsrequire some knowledge
of n in advance: they operate with O(log(en)) buffers of
size O(L log(en)) each and so an upper bound on n must
be known a priori.® Subsequent work removed this re-
quirement. Manku et al [MRL99] gave a randomized al-
gorithm, which fails with probability a most ¢, in space
O((log® L +1log?log 3)).

Greenwald and Khanna made a significant contribution
to computing quantiles in one pass by presenting a deter-
ministic algorithm with space bounded by O(Z log(en))
and no requirement that n be known in advance. Thisal-
gorithm very carefully manages upper and lower bounds
on ranks of items in its “sample” and intuitively is more
informed in pruning items of non-interest than random-
sampling based methods. As aresult, the worst case space
bound above is often pessimistic; on “random” data sets it
has been observed to use O() space [GKO1].

All these methods are designed to find uniform quantiles
on insert-only data streams. When items can be deleted as
well asinserted, Gilbert et al [GKM S02] gave arandomized
agorithmto find quantilesin space O(% log? U log &%),
where U isthe size of the universe, ie the number of possi-
ble values of items; this has since been improved to space
O(L1og” Ulog &Y in [CMO4]. In the sliding window
model, where only thelast W dataelements are considered,
there has been recent progress on finding quantiles[AM04]
in space O(1 log 1 log W).

In this paper, our attention is on extensions of the basic
guantile finding problem where some values are required
to greater accuracy than others. In [MRL99], the authors
study the “extreme values’ quantile finding problem: for
given values of ¢ close to zero (or, symmetricaly, close
to one), find an e-approximation of the ¢ quantile using

3Although, if the estimate of n is too low, this will merely result in
a decline in the quality of the results and a requirement for some extra
buffers.

space significantly less than is required for maintaining e-
accuracy for the whole data set. The agorithm randomly
samples at arate ni but only the k£ smallest elements of
the sample are retained. The largest of these k items is
returned as the approximate ¢-quantile. Analysis sets k,
the memory requirement, to be O(% log 1). In the case
where e = ¢€'¢ (that is, where the “locd” ¢ is simply
the product of a global constant ¢ and the value of ¢),
then this simplifiesto O(4 log %). The problem of finding
biased quantiles was studied by Gupta and Zane [GZ03]
in the context of approximating the number of inversions
(disordered pairsof items) inalist. They presented asimilar
algorithm of retaining k& smallest e ements after sampling at
an appropriaterate. Thisisthen repeated for every quantile
of the form 1(1 + €)’ up to n. This gives a tota of
11ogen paralld sampling routines. The 1 smallest items
can be stored exactly. Overdl, the space requirement is
O(Z% logelog3).4

There is significant opportunity for improvement here;
for example, no information is shared between the differ-
ent samplers which operate independently of each other.
In this paper, we give a deterministic algorithm that also
keeps “samples’ from the input stream of values and gives
e-approximate biased or targeted quantiles. Asin the result
of Greenwald and Khanna[GK01], we a so carefully main-
tain upper and lower bounds on ranks of items (to different
levels of accuracy in different portions of the distribution
whichisin contrast to [GKO01] where thelevelsare uniform
over al the quantiles); as aresult, we are able to make in-
formed decisions on pruning items of non-interest. Inter-
estingly, thisimprovesthe space needed gresatly, and isaso
faster to process each new item.

3 Biased QuantilesProblem

We begin by formally defining the problem of biased quan-
tiles. To simplify the notation, we present the material in
terms of low-biased quantiles; high-biased quantilescan be
obtained via symmetry, by reversing the ordering relation.

Definition 1 Let o be a sequence of n items, and let A be
the sorted version of a. Let ¢ be a parameter in the range
0 < ¢ < 1. Thelow-biased quantiles of a are the set of
values A[[¢’n]] for j =1,...,log; 4.

Sometimes we will not require the full set of biased-
guantiles, and instead only search for thefirst . Our ago-
rithmswill take k as a parameter.

It is well known that computing quantiles exactly re-
quires space linear in n [MP8Q]. In our applications, we
seek solutionsthat are significantly sublinear in n, prefer-
ably depending on log n or small polynomialsin thisquan-

4In [GZ03], the space bound is proportional to E% but using the

sampler from [MRL99] improvesthis by afactor of %

tity. So we will alow approximation of the quantiles, by
giving asmall range of tolerance around the answer.

Definition 2 The approximate low-biased quantiles of a
sequence of n items, a, isa set of k items g, . . ., g, wWhich
satisfy

Al[(1 = e)¢?n]] < q; < A[[(1 + €)¢'n]]

In fact, we shall solve a dlightly more general problem:
after processing the input then for any supplied vaue ¢’
we will be able to return an e-approximate quantile ¢’ that
satisfies

Al —e)¢'n]] < ¢' < A[[(1 + €)¢n]]

Any such solution clearly can be used to compute a set of
approximate |ow-biased quantiles.

3.1 Algorithm for biased quantiles

Our agorithm draws inspiration from the agorithm pro-
posed by Greenwald and Khanna [GKO01], henceforth re-
ferred to as GK, for the uniform quantiles problem. The a-
gorithm keeps information about particular items from the
input, and al so stores some additional tracking information.
The intuition for this algorithm is as follows: suppose we
have kept enough information so that the median can be es-
timated with an absolute error of en in rank. Now suppose
that thereis alarge number of insertionsof items above the
median, so that thisitemis pushed up to being thefirst quar-
tile (theitem which occurs i through the sorted order). For
this to happen, then the current number of items must be
2n; hence if the same absolute uncertainty of en is main-
tained, then this corresponds to a relative error of size %e.
This shows that we will be ableto support greater accuracy
for the high-biased quantiles provided we manage the data
structure correctly.

As in GK, the data structure at time n, S(n), consists
of asequence of s tuples (t; = (vi, gi, A;)), where each v;
is a sampled item from the data stream and two additional
values are kept: (1) g; isthe difference between the lowest
possiblerank of item 7 and the lowest possible rank of item
i — 1; and (2) A; is the difference between the greatest
possiblerank of item 7 and the lowest possible rank of item
i. Thetotal space usedistherefore O(s). For each entry v;,
let r; = 23;11 g;. Hence, the true rank of v; is bounded
below by r; + g; and aboveby r; + g; + A;.

Depending on the problem being solved (uniform, bi-
ased, or targeted quantiles), the algorithm will maintain an
appropriaterestrictionon g; + A;. Wewill denotethiswith
afunction f(r;,n), which for the current values of r; and
n gives an upper bound on the permitted value of g; + A;.
For biased quantiles, thisinvariant is:

Definition 3 (Biased quantilesinvariant) Weset f(r;,n)
2er;. Consguently we ensure that g; + A; < 2er; for all 7.

Aseach itemisread, an entry iscreated in the data structure
for it. Periodically, the data structureis*pruned” of unnec-
essary entriestolimititssize. Weensureat al timesthat the
invariant is maintained, which isnecessary to show that the
algorithm operates correctly. The operations are defined as
follows:

I nsert. To insert a new item, v, we find ¢ such that
v; < v < w41, We compute r; and insert the tuple (v, g =
1,A = |f(ri,n)] — 1). Thisgivesthe correct settingsto
g and A since the rank of v must be at least 1 more than
therank of v;, and (assuming the invariant holdsbefore the
insertion), theuncertainty intherank of v isat most oneless
than the uncertainty of v;, A;, which is itsalf bounded by
|f(ri,m)| (Snce A; isaways an integer). We also ensure
that min and max are kept exactly, so when v < vy, we
insert the tuple (v,g = 1,A = 0) before vg. Similarly,
whenv > vs_1, weinsert (v, g = 1, A = 0) after vs_q.

Conpr ess. Periodically, the algorithm scans the data

structure and merges adjacent nodes when this does not
violate the invariant. That is, find nodes (v;, ¢;, A;) and

and consequently r; > (1 — €)¢n. Hence (1 — €)pn <
ric1+ gic1 < ric1+gi-1 + Q21 < (1 + €)¢n. Recall
that that thetruerank of v; isbetweenr;+g; and r;+g; +A;:
so the derived inequality means that v;_; iswithinthe nec-
essary error bounds for biased quantiles. [|

This gives an error bound of +e¢n for every value of
¢. In some cases we have a lower bound on how precisely
we need to know the biased quantiles: this is when we
only require the first k& biased quantiles. It corresponds to
a lower bound on the allowed error of e¢*n. Clearly we
could use the above algorithm which gives stronger error
boundsfor some items, but this may be inefficient in terms
of space. Instead, we modify the invariant as follows to
avoid thisslackness and so reduce the space needed. Theal-
gorithmisidentical to before but we modify theinvariant to
be f(r;,n) = 2e max{r;, $*n}. Thisinvariantispreserved
by I nsert and Conpr ess. The Qut put function can
be proved to correctly compute biased quantiles with this
lower bound on the approximation error using straightfor-
ward modification of the above proof.

(Vit1, gi+1, Ait1), andreplacethemwith (viy 1, (¢i+git1), Ait1)

prOVidaj that (gl + gi+1 + Ai+1) < f(rl-,n). This dso
mai ntains the semantics of g and A being the differencein
rank between v; and v;_1, and the difference between the
highest and lowest possible ranks of v;, respectively.

Query. Givenavaue(0 < ¢ < 1, let i bethe smallest
index sothat r; + g; + A; > ¢n+ 1 f(¢n,n). Output v,
as the approximated quantile.

These three routines are the same for the different prob-
lems we consider, being parametrized by the setting of
the invariant function f. It generalizes the GK algorithm,
which is equivaent to the above routines with f(r;,n) =
2en. Figure 1 presents the pseudocode of the agorithm.

3.2 Correctness of the Algorithm

Theorem 1 Thealgorithmcorrectly maintainse-approximate

biased quantiles.

Proof: First, observethat | nsert maintainsthe invariant
since, for the inserted tuple, clearly g + A < [2er;]. All
tuples below the inserted tuple are unaffected; for tuples
above the inserted tuple, their g; + A; remains the same,
but their r; increases by 1, and so the invariant still holds.
Conpr ess checks that the invariant is not violated by its
merge operations, and for tuples not merged, their r; is
unaffected, so the invariant must be preserved.

Next, we demonstrate that any algorithm which main-
tains the biased quantiles invariant means that the output
function will correctly approximate biased quantiles. Be-
cause i isthe smallest index so that r; + g; + A; > ¢n +
flon,n)/2 = ¢n + egn, thenr,_1 + gi—1 + Aj—1 <
(1+4€)¢n. Using theinvariant, then (1+2¢)r; > (1+¢€)¢n

/* n = #items, k = asynptote */

[* S = data structure, s = #sanples */
I nsert (wv):

01 1rp:=0;

02 for i¢=1to s do

03 if (vi <wv) break;

04 ri = 7"1',14*91';

05 add (v, 1,|f(ri,n)] —1) to S before v;
06 n-++;

Conpress():

01 for ¢ :=(s—1) downto 1 do

02 i f (gz+gl+1 +Ai+1 < f(rl,n)) t hen
03 nmerge t¢; and t;,q;

Query(¢):

01 r;,:=0;

02 for i:=11to s do

03 i i="Ti—1+gi—1;

04 if (rit+g+A4A;>dn+ f(én,n)/2)
05 print(v;_1); break;

Mai n() :

01 for each itemwv do

02 I nsert (v);

03 if (Compress Condition()) then
04 Conpress();

Figure 1: Approximate Quantiles Algorithm

3.3 Timeand Space Bounds

The running time of the a gorithm to process each new up-
date v depends on (i) the data structures used to imple-
ment the sorted list of tuples, S, and (ii) the frequency with
which Conpr ess isrun. Thisisgoverned by the function
Conpr ess_Condi ti on(), which can be implemented
in avariety of ways: it could always return true, or return
true every 1/e tuples, or with some other frequency. Note
that the frequency of compressing does not affect the cor-
rectness, just the aggressiveness with which we prune the
data structure. Thetimefor each | nsert operationisthat
to find the position of the new data item v in the sorted
list. With a sensible implementation (e.g., a balanced tree
structure), thisis O(log s). With such a data structure we
can efficiently maintain r; of each tuple in the same time
bounds. Conpr ess ismuch simpler to implement since it
requires just alinear pass over the sorted elementsin time
O(s) but we must decide when to run Conpr ess to bal-
ance the time cost and the space used by the algorithm. We
return to these issues later when we consider different im-
plementation strategiesin Section 5.

In [GKO]] it is shown that the GK agorithm requires
space O(2 log en) intheworst case. By analogy, the worst
case space requirement for finding biased quantiles is ex-
pected to be O(M logen). Consider the space used
by the algorithm to maintain the biased quantiles for the
values whose rank is between n /2 and n. Here we main-
tain a synopsiswhere the error isbounded bel ow by en and
the algorithm operates in a similar fashion to the GK ago-
rithm. So the space required to maintain thisregion of ranks
should be bounded by O (1 log en). Similarly for the range
of ranks n/4 to n/2, items are maintained to an error no
lessthan /2 but we are maintaining arange of a most half
as many ranks. Thus the space for this should be bounded
by the same amount O(2 log en). This argument can bere-
peated until we reach n/2% = ¢*n where the same amount
of space suffices to maintain information about ranks up to
¢* with error e¢*. The total amount of space is no more
than O(£ logen) = O(¥1%81/¢ 165 en). If ¢ isnot speci-
fiedapriori, thenthisbound can beeasily rewritteninterms
of k and e. Also, wenever need k log 1/¢ to begreater than
log en, which corresponds to an absolute error of less than
1, so the bound is equivalent to O(* log® en).

We also note the following lower bound for any method
that finds the biased quantiles.

Theorem 2 Any algorithm that guarantees to find biased
quantiles ¢ with error at most ¢en in rank must store
Q(L min{klog1/¢, log(en)}) items.

Proof: We show that if we query all possible values of ¢,
theremust be at | east thismany different answers produced.
Assume without loss of generdlity that every item in the

input stream is distinct. Consider each item stored by the
algorithm. Let the true rank of thisitem be R. Thisisa
good approximate answer for items whose rank is between
R/(1+¢€)and R/(1—e¢). Thelargest stored item must cover
the greatest item from the input, which hasrank »n, meaning
that the lowest rank input item covered by the same stored
item hasrank no lower thann(1—¢)/(1+¢). Wecan iterate
thisargument, to show that the/thlargest stored item covers
input items no lessthan n(1 — €) /(1 + €)!. This continues
until we reach an input item of rank at most m = n¢*.
Below this point, we need only guarantee an error of ep*.
By the same covering argument, thisrequires at least p =
(n@*)/(eng*) = 1/ items. Thus we can bound the space
for thisalgorithmasp + I, whenn(1 — €)/(1 + €)! < m.
Then, since ;=< < (1—¢), wehaveln(m/n) > IIn(1—¢).

Sinceln(l—¢) < —¢,wefindl > 1In & =11y g7 This

boundsi = Q(M), and givesthe stated space bounds.

Note that it is not meaningful to set & to be too large,
since then the error in rank becomes less than 1, which cor-
responds to knowing the exact rank of the smallest items.
That is, we never need to have en¢® < 1; this bounds
klogl/¢ < log(en) and so the space lower bounds trans-
lates to (L min{klog1/¢,log(en)}). | |

€

4 Targeted QuantilesProblem

The targeted quantiles problem considers the case that we
are only concerned with a set of quantile values with asso-
ciated error boundsthat are supplied apriori. Formaly, the
problemisasfollows:

Definition 4 (Targeted Quantiles Problem) The input is
asetof tuplesT = {(¢;, ¢;)}. Followinga stream of input
values, the goal isto return a set of |T'| values v; such that

All(¢5 — e5)n]] <vj < A[[(¢) +€5)n]].

Asinthe biased quantiles case, we will maintain a set of
items drawn from the input as a data structure, S(n). We
will keep tuples (t; = (v;, g:, A;)) as before, but will keep
adifferent constraint on the values of g; and A;.

Definition 5 (Targeted QuantilesInvariant) Wedefinethe
invariant function f(r;, n) as

(i0) fi(rin) =230 0 <r; < g

pn <r; <n;

andtake f(r;) = min; f;(r;). As beforewe ensure that for

An example invariant f is shown in Figure 2 where we
plot f(¢n,n) as ¢ variesfrom 0 to 1. Dotted linesindicate

f(pn,n)/n

Figure2: Error function f(¢n, n)/n computed for theinput
{(§,0.02),(3,0.02), (g,0.04), (£,0.01)}

the constraints of type (i) when r; < ¢;n and constraints
of type (ii) whenr; > ¢;n, toillustrate how thefunctionis
formed. Thefunction f itself isillustrated with asolid line
seen asthelower envelopeof the f;'s. Notethat if weallow
T to contain alarge number of entriesthen setting

T={(}..(2.0.....(%52,0). (L,e)}

captures the uniform error approximate quantiles problem
solved by GK. Similarly setting

T={(£ £),(2,2).. (22, 2l (1)

capturesthe biased quantilesproblem. In both cases, thein-
variant function f computed by Definition 5 reduces to the
function used by GK and in Section 3 above, respectively.

41 Algorithm and Correctness

I nsert, Conpress and Quer y operations are the same
as in Figure 1 with the new invariant. Therefore, the run-
ning timeisthe same as before plusthetimeto compute the
invariant f which takestimeat most O(log|T'|) per invoca
tion. Wewill show that the operations maintain theinvari-
ant and that if theinvariant holdsthen targeted quantilesare
estimated to the required degree of accuracy.

Lemmal Thetargeted quantilesinvariant ispreserved by
I nsert and Conpr ess operations.

Proof: We will show that assuming the invariant holdsfor
each v; before an insertion, it must hold afterwards. For
the tuple that isinserted we the invariant trivialy holds by
the setting of the values in the inserted tuple. However,
since the invariant depends on r; and n, it is possible that
the constraints on other tuples will change and we must
ensure that these do not violate the invariant. Note that if
the new value v is inserted before v, then r; increases by
1. Otherwise r; stays the same and n increases by 1 in
all cases. For each tuple v;, consider the error function f

and the f; that is tightest for the current value of v;. First,
suppose that before and after the insertion then the same f;
istight. There are two cases:

(i) Theinvariantis 2% Thenwhether r; increasesor stays
thesame, thei nvariant does not get tighter for v;, and so the
inequality is preserved.

(ii) Theinvariant is 25]'1(11;31') . Then as n increases by one,
and r; either staysthesamé or increases, again thisinvariant
does not get tighter, so the inequality is preserved.

Now suppose that before the insertion v; was subject
to some f; and afterward is subject to some f,. There
are many cases to consider depending on the type of con-
straint of f; and f;,. For example, suppose that v; was
initially constrained by 25]“ and is then constrained by

2¢e ((n+1)—(r;+1))
1—¢p

, with j < k. Then observe that there

must besomevaluesof r’ > r; sothat 25] = Mw
]
since the constraintsare linear. Writing y = — (El’“‘ﬁjm, then

(n—r")>r'(n—r;) =r; > T’. Butthis
contradicts our assertion that »’ > r; and so the constraint
cannot be violated.

There are severa similar cases to work through; we omit
full details here. Finaly note that compress operations
trivially preserve the invariant since we only delete tuples
when this does not violate the constraint; other tuples are
unaffected by deletionssince r; and n are unchanged. Wl

Theorem 3 If the biased quantiles invariant holds, then
running Qut put for all ¢; will find the specified quantiles
¢; withinthe given error boundse;.

Proof: Consider the quantile and error pair (¢;,€;). The
Query function finds the smallest index 7 such that r; +
gi+Ai > g+ L f(gn,n) > gyn+ L = (¢ + ¢;)n
Then Ti—1 +gi,1Ai,1 < (¢J + Ej)TL and r; + (gl + Al) >
(¢; + €j)n. Now, consider how g; + A; is bound by f;:
we know from Definition 5 that either case (i) or case (ii)
holds. If case (i) holds, then we are done, since we have

oin < r; < (¢; + €;)n. So suppose case (i) holds. Then,
T + %;:) > (¢j+e€)n
(1—@j)ri +2¢en —2er; > (¢;+ eJ —€jp;)n
(1—j)ri —2¢m > (1-—)(EJ)
ri > (¢ — EJ)

In both cases, we can bound (¢; — €;)n < ri—1 + gi—1 <
ri—1+ gi—1 + Ai—1 < ¢;n. Soweknow that the true rank
of itemv;_; isintherange (¢, + €;)n. [|

Informally, wearguethat the space used by thisal gorithm
is bounded if we set ¢ = min;e; as O(2loge'n), by
applying the space bound argument of the Greenwald and
Khanna argument, and by observing that our agorithm
can prune more aggressively than the GK agorithm. In

practice, wewoul d expect to see much tighter space bounds,
as even small ¢;s can be achieved in smaller space if the
corresponding ¢ ;s are sufficiently far from % We expect
to see a dependency on the greatest value of % by analogy
to the biased quantiles case. ’

Note that thealgorithmisdightly more genera than was
claimed. In addition to the targeted quantiles, information
about the whole distribution is kept. Given an arbitrary
vaueof 0 < ¢ < 1, thedgorithmwill find a value whose
rank isbetween (¢pn— f(¢n,n)/2) and (¢pn+ f(dn,n)/2).
For example, in Figure 2 which plots f against € as ¢
increases, we seethat f isnever morethan 0.07n. Herewe
have omitted formally discussing and proving such general
claims, for brevity.

5 Implementation Issues

As described, the algorithms presented in Sections 3 and 4
allow for much freedom in implementing them. In thissec-
tion, we present a few alternatives used to gain an under-
standing of which factors are important for achieving good
performance over a data stream. The three aternativeswe
considered are natural choices and exhibit standard data
structure trade-offs, but our list is by no means exhaustive.

5.1 Abstract Data Types

Recdll that the (biased) quantile summary S(n) is a se-
quenceof tuples(t; = (v;, g;, A;)). Operaionsonthequan-
tilesummary, suchas Conpr ess and Qut put , requireac-
cess to adjacent tuples with respect to v;-values. Hence, to
give efficient access to the tupleswe will maintain themin
sorted order on v;-vaues.

The periodic reduction in size of the quantile summary
done by Conpr ess is based on the invariant function f
which determines tupleseligiblefor deletion (that is, merg-
ing the tuple into its adjacent tuple). Note that this objec-
tive function is rank-dependent: it depends not only on g;
and A;, but dso on r; and n. Hence, it is not possible to
efficiently maintain candidates for compression incremen-
tally due to dynamicaly changing ranks. Instead, al of
our implementations sequentially scan through (a portion
of) the quantile summary and test tuples ¢; to see if they
can be safely merged. Instead of periodically runningafull
Conpr ess, we amortize thiswork by scanning a fraction
of thedatastructurefor every insertion: weprocess s/ 2¢ tu-
ples per item. The god is to lower the worst-case process-
ing a any time step and thus keep up with the data stream.

5.2 Methods

We now describethree alternativesfor maintai ningthe quan-
tilesummary tuplesordered on v;-valuesin the presence of
insertions and deletions:

e Batch: This method maintains the tuples of S(n) in
alinked list. Incoming items are buffered into blocks
of size 1/2¢, sorted, and then batch-merged into S(n).
Insertions and deletions can be performed in constant
time, but the periodic buffer sort, occurring every 1/2¢
items, costs O((1/¢€) log(1/e€)).

e Cursor: Thismethod also maintainsthetuplesof S(n)
in alinked list. Incoming items are buffered in sorted
order and are inserted with the aid of an insertion cur-
sor which, like the compress cursor, sequentially scans
afraction of thetuplesandinsertsabuffereditem when-
ever the cursor is at the appropriate position. Main-
taining the buffer in sorted order costs O(log(1/¢)) per
item.

e Tree: Thismethod maintains.S(n) using abalanced bi-
nary tree. Hence, insertionsand deletionscost O(log s).
Intheworst case, al es tuples considered for compres-
sion can be deleted, so the cost per itemis O(eslog s).

These methods were implemented in C++ and attempts
were made to make the three implementations as uniform
as possiblefor afair comparison (for example, al methods
use approximately the same amount of space). The C++
STL | i st container typewas used for storing.S(n) inboth
Batch and Cursor whereasanul ti set container wasused
for Tree.> Cursor uses the priority queue from <queue>
to maintain the buffer of incoming items in sorted order.
As adisclaimer, there were many optimizationswe did not
employ which would likely improve the performance of
all the methods such as parallelism, pre-allocated memory,
cache-locdlity, etc.

6 Experiments

Inthefirst part of thissection, we eval uatethe accuracy/space
trade-off for both the biased quantiles and targeted quan-
tiles problems, in comparison to naively applying the GK
algorithm [GKO1]. In accordance with [GKO01], the algo-
rithms used here differ from that described in Section 3
in two ways. a new observation v is inserted as a tuple
(v,1,9;+A;—1),wherev;_; < v < v;,andConpr ess is
run after every insertioninto S(n), to delete onetuplewhen
possible. When no tuple could be del eted without violating
the error congtraint, the size of S(n) grows by one. Space
is measured by the number of tuples.

For biased quantiles, we consider thefollowingtwo ques-
tions. First, with error requirements that are non-uniform
over theranks, can we achieve such accuracy in less space
than pessimistically requiring all the quantiles at the finest
error? We compare our proposed agorithm for finding the
first k biased quantilesagainst GK runwith error e¢®. Sec-
ond, how does space depend on the trail-off parameter £7?

50ur implementation of STL uses red-black treesfor <set >.

For targeted quantiles, we consider the following two
guestions. Firgt, if we know the desired quantiles and
their errors a priori, then can we focus the agorithm to
yield the required accuracy at only those quantiles to save
space? We illustrate using the case when a single order
statistic (eg., ¢ = 0.5, akathe median) is desired within
error e. Whereas GK allows al quantiles to be given at
this accuracy, our approach only provides this guarantee
for a specified ¢-quantile and gives weaker guarantees for
other values. Second, how does the space usage of our
algorithm depend on the value of ¢? It has been noted
in[MRL99] that, if thedesired quantileis an extreme value
(e.g., within the top 1% of the elements), then the space
requirements of existing algorithms are overly pessimistic.
Theauthorsshowed that, when simply taking quantilesover
arandom sample, probabilistic guarantees can be obtained
in less space for extreme values than for the median. Our
algorithm exhibits this same phenomenon. Furthermore,
we show that, for any quantile, if the desired error bounds
are known in advance, existing algorithms are aso overly
pessmistic.

In the second part of this section, we evaluate and com-
pare the performance of the different implementation al-
ternatives described in Section 5 using the Gigascope data
stream system [CJSS03]. These dternatives vary in terms
of the different aspects of the algorithm they optimize, in
terms of their simplicity, and with respect to blocking be-
havior. The godl isto shed some light on which factors are
most important for performance.

6.1 Space Usagefor Biased Quantiles

For these experiments, we compared the space usage of
our proposed biased quantile algorithm with that of GK. In
order to obtain pe error at quantilesp € {¢, ¢2, ..., ¢k},
the GK agorithm must be run at the finest level of error,
yielding e¢*-approximate quantiles. We set ¢ = 0.5
and tried different parameter values for k£ and e. We used
a variety of different data streams. “hard”, sorted, and
“random” (theinputs used in [GK01]).®

Figure 3 reports space usage for different values of £ and
€ on the “hard” input. Clearly, the proposed method uses
much less space with the gap increasing both with &£ and
inversely with e. At timestep n = 10° withe = 0.001, the
ratio is approximately 4 with & = 4 and 19.5 with & = 6.
Figure 4 gives similar graphs for random input. Here we
observed similar trends at different values of € so we only
present the graphs at ¢ = 0.001. Attimestepn = 10°,
the ratio is approximately 4.4 with k = 4 and 11.8 with
k = 6. If thespace for GK isbounded by O(x log e¢*n),

and our agorithm for biased quantilesby O(*1%2¢ log en),

8The “hard” input is created by examining the current state of the
data structure and inserting items in order to try to force the worst-case
performance.

then for ¢ = % the ratio of their space usage should be
roughly 2% /k. For random input we in fact see values that
are similar to these: for k = 4 the theoreticd ratio is 4
and for £ = 6 itis10.7; for the “hard” input, the ratios
were even higher. Figure 5 plots space as a function of
k, indicating an exponential dependence on & for GK and
a linear dependence on k for the proposed agorithm, as
predicted by the O(2 log en) and O(£ log en) bounds.

Figure 6(a) illustrates the space used by three competing
methods. GK run at error ¢ (denoted “GK1"), GK run at
error e¢® (denoted “GK2"), and our proposed method. It
uses the random input, withe = 0.0l and & = 6, and
the results are given a time step n = 10°. Figure 6(b)
plotsthe bound on error as afunction of p, that are required
for biased quantiles. Note that while GK1 uses the least
space, it does not satisfy theerror bound. GK2, on the other
hand, is overly pessimistic, achieving the smallest error at
all p-values but requiring much more space than the other
methods. The proposed method achieves the least amount
of space while staying within the error bounds. In fact, its
space usage is much closer to that of the algorithm with the
weaker accuracy, GK1 (factor of 4 more) than that of GK2
(factor of 16.5 less).

6.2 Space Usagefor Targeted Quantiles

Our targeted quantiles algorithm can find the | ¢n |th order
gtatistic with a maximum error of ¢; its precision guaran-
tees are weaker for other ranks. We compared against GK,
which is capable of finding any quantilewithin e error. We
also considered the random sampling approach analyzed
in [MRL99], but this approach was unable to obtain reli-
able estimatesfor any of thedatasets. Given the space used
by our proposed agorithm, we considered the probabilis-
tic accuracy guaranteesthat could be given by the sampling
algorithm. For the random input, the bounds gave guaran-
tees that held with 70% probability to find quantiles that
our agorithmfound with absol ute certainty. For the*“hard”
input, which attempts to force the worst-case space usage,
the probability for the randomized algorithm improved to
around 95%, till far short of thelow failureratesdemanded
by network managers. Hence, we do not report further on
the results obtained by random sampling for the remainder
of this section.

Figure 7 presents space usage as a function of time step,
with avariety of ¢-valuesfrom 0.5t0 0.99, for (a) hard and
(b) random inputs; ¢ = 0.001. The gap in space usage
between the two methods grows with increasing ¢-vaue,
which is consistent with the observation in [MRL99] that
extreme values require | ess space.

6.3 Performance Comparison

We compared thethreeimplementation alternativesdescribed
in Section 5 (hamely, Batch, Cursor and Tree) with respect

Space versus Time Step for hard Data
(eps=0.01, k=4)

3000 : ‘ ———cee
2500]

2000 |/
1500 |f
1000 |
500 |

space (items)

20 40 60 80 100
timestep (10"3)

@

Space versus Time Step for hard Data
(eps=0.001, k=4)

25000 . .
s]

20000 | d]
2 nd
& 15000 /
@ d
g 10000 1/
& /

5000 |/

/

20 40 60 80 100
timestep (103)

(©)

Space versus Time Step for hard Data
(eps=0.01, k=6)

12000
10000 o]
8000 [|

6000 -/

4000 | |

2000 |

space (items)

20 40 60 80 100
timestep (10°3)

(b)

Space versus Time Step for hard Data
(eps=0.001, k=6)

70000 : — &
60000 | €4 |
50000
40000 ¢
30000
20000 |
10000

space (items)

20 40 60 80 100
timestep (103)

(d)

Figure 3: Comparison of GK and proposed approach on “hard” input: (a) with k& = 4; (b) withk = 6. Heree = 0.01. (c)

with & = 4; (d) with £ = 6. Heree = 0.001.

to per-packet processing time and packet loss using the
User-Defined Aggregation Function (UDAF) facility of the
Gigascope DSMS, a highly optimized system for monitor-
ing very high speed data streams [CJSS03]. Gigascope has
atwo-level query architecture: atthelow level, dataistaken
from the Network Interface Card (NIC) and is placed in a
ring buffer; queries at the high level then run over the data
from the ring buffer. Gigascope creates queries from an
SQL-likelanguage (called GSQL) by generating C and C++
code, which iscompiled and linked into executable queries.
To integrate a UDAF into Gigascope, the UDAF functions
are added to the Gigascope library and query generation
is augmented to properly handle references to UDAFs; for
more details, see [CKMT04].

For performance testing, we used two data sources. The
first data source is an Agilent Technologies Router Tester
5.0 traffic generator [Tec]. Using it, one can generate 1
Gbps of traffic (GigEth speed). The traffic generator is
not a sophisticated source of randomness; we could only
vary the packet length and payload, both independently and
uniformly random. The average packet length is aways
782 bytes, which is equivalent to about 160,000 packets
per second at GigEth speed. Queries were run over the

generated stream using a 2.8 Ghz Pentium processor and
4 GBs of RAM. The second data source is red |P traffic
data obtained by monitoring the span port’ of the router
which connects AT& T Research Labs to the Internet viaa
100 Mbit/sec link. Queries were run over this stream using
a 733 Mhz Pentium with 128 Mbytes of RAM.

Biased quantile queries were run over a single attribute
from these data sources and output a 1-minute intervals
over atotal duration of 30 minutes; the parameter e was set
t00.01 and % was set to 4, unlessindicated otherwisebel ow.
As a baseline, we aso compared against the performance
of a“null” UDAF which computes the max aggregate, to
isolate out the processing overhead for UDAFs.

Table 1 reportstheresultsfrom using thetraffic generator
at OC-3 speed (155.5 Mbps). The algorithms were run
over the packet _| engt h field of IPv4 packet headers
(which were randomly generated). All methods were able
to keep up with this rate without incurring packet loss,
but were taxed at different levels. The Batch and Cursor
methods operated at ten timesslower thanthe“null” UDAF,
with Cursor showing dightly better performance. The Tree

7A span port mirrors all traffic for monitoring purposes.

Space versus Time Step for random Data
(eps=0.001, k=4)

16000
14000 |
12000 |
10000 | f“J
8000 | !
6000 | /
4000 |/
2000 |

space (items)

20 40 60 80 100
timestep (103)

@

Space versus Time Step for random Data
(eps=0.001, k=6)

55000
50000 r
45000 r
40000 r
35000 r
30000 r
25000
20000 r
15000
10000 r

5000 r

‘ naive.

space (items)

20 40 60 80 100
timestep (10°3)

(b)

Figure 4: Comparison of GK and proposed approach on random input: (a) with & = 4; (b) with £ = 6. Heree = 0.001.

Space versus k for random Data
(eps=0.01)

140000 ; : ‘

— GK
120000 r A
100000]
80000 r]
60000]
40000 r

20000 | -
0 b——

space (items)

@

Space versus k for random Data
(eps=0.01)

700
600 | |
500 kii :
300 _—

200 t
100 |

M prop‘gsed/

space (items)

(b)

Figure 5: Space usage (at time step n = 106) versus k on random input with e = 0.01 for (8) GK and proposed a gorithms;

and (b) just the proposed a gorithm.

method wasyet four times d ower than these, and had avery
high CPU utilization.

Algorithm CPU user time (u9)
Implementation || utilization per packet
null 0.05% 0.481
Batch 11.99% 5.302
Cursor 11.88% 5.093
Tree 67.61% 21.969

Table 1: Per-packet processing time (u:s) for the different
implementations, over traffic generated at OC-3 speed.

At GigEth speed (1 Gbps), the Tree method has reached
itslimit and incurs so much packet lossthat no useful statis-
ticscould bereported (see Table 2). Batch incurs moretraf-
fic loss than Cursor due to the periodic batch-sorting and
merge that is required after every 1/2¢ items. Presumably,
the lower average CPU time for Batch compared to Cur-

sor is due to not processing the packets that get dropped.
To get aframe of reference, we a so compared against uni-
form quantiles based on the GK algorithm run with er-
rors e and e¢” (denoted “GK1” and “GK2”, respectively).
GK?2 dropped so many packets that we could not compute
ameaningful statistic. Note that GK1 does not achieve the
desired error bound; it is presented merely asabaseline. To
use the GK agorithm properly would requre the finer error
bound of GK2.

Table 3 reportstheresultsonthereal 1P network dataand
summarized by the average CPU utilization and user time
(in microseconds) per packet; we were unable to measure

packet loss. Thea gorithmswererunover theheader _checksum

field of the packet headers. Although the overall traffic
load, averaging 50-75 Mbps, was much less than that of the
traffic generator, it isvery bursty.

In summary, the choice of UDAF implementationis cru-

cia to the performance of the quantile algorithm, confirm-
ing observations in [CKM*04]. Whereas the Batch and

Space Usage at n = 1 Million
for random Data (eps=0.01, k=6)

8000
7000
6000
5000
4000 r
3000
2000
1000

space (items)

GK1 proposed

Error versus @ for random Data

(=0.01, k=6)
0.01 ;
— GK1
0.008 —x-- proposed |
~ 0.006 /P/g:md 1
S 7
® 0.004 |
0002 | e)
O L L - L ~ * TR K
0.5 0.6 0.7 0.8 0.9 1
@-value
(b)

Figure 6: Comparison of GK, run with error e (“GK1") and €2—% (“GK2"), against the proposed approach on random input
withe = 0.01 and k = 6 at time step n = 106: (a) space usage; and (b) a posteriori error of biased quantiles.

Space versus Time Step for hard Data

(eps=0.001)
10000 ‘ : : : :
/w GK
% 1000 ¢ ke phi=0.75 -
g o phi=0.9
S 100t
Q
Q
s
@ 10

20 40 60 80 100
timestep (103)

Space versus Time Step for random Data
(eps=0.001)

1000
900
800
700
600
500
400 }
300
200 f
100

A GK |

-~ phi=0.75 |
- phi=0.9 |

Tt

space (items)

20 40 60 80 100
timestep (10"3)

(b)

Figure 7: Comparison of GK and targeted approach with different ¢-values: (a) for “hard” input; and (b) for random inpuit.

Algorithm CPU user time (1)
Implementation || utilization per packet
null 3% 1.167
Batch 27% 11.514
Cursor 26% 11.164
Tree 33% 14.059

@
Heree = 0.001.
Algorithm CPU user time (us) | packet
Implementation || utilization per packet loss
null 6% 0.5 0%
Batch 75% 5522 1.82%
Cursor 81% 5.613 0.26%
Tree — — —
GK1 18% 1.32 0%
GK2 — — —

Table 2: Per-packet processing time (u:s) for the different
implementations, over traffic generated at GigEth speed.

Cursor approacheswere ableto process at GigEth speed, the
Tree approach was not able to keep up, and even pushesits
limit at OC-3 speed. Although keeping the quantile sum-
mary in atreeisgood for maintaining sort order, it incursa
lot of overhead during Conpr ess operations. Hence, ap-

Table 3: Per-packet processing time (u:s) for the different
implementations, over red |P network traffic data.

proacheswith themorelightweight list-based quantilesum-
maries perform better. Batch is the simplest of these, but
the blocking dueto sorting resultsin more packet |oss com-
pared to Cursor. Therefore, Cursor seemsto striketheright
balance between simplicity and non-blocking behavior.

7 Conclusionsand Future Work

We introduced the notion of biased and targeted quantiles
and presented one-pass deterministic algorithms that ap-
proximate these val ues within user-specified accuracy. Our
experimental work has shown that these algorithms are ex-
tremely effectivein practice: the space needed isvery small
and is smaller than that needed by existing algorithmsthat
give the same guarantees. We have shown they can be im-
plemented within a database management system that deals
processes high speed data streams resulting from IP net-
work traffic. We also observed that in these high speed
scenarios, implementation details can make significant dif-
ferences in practicality and amortizing computation cost to
avoid blocking but staying lightweight is vitally important.

We briefly discuss the feasibility of various extensions.

Previouswork hasextended thework on finding e-approximate
quantiles(uniformerror) to thedidingwindow model [AMO04].

We claim that similar techniques based on keeping sum-
maries for previousy seen subsequences of items of vari-
ous lengths can be applied to our algorithms. Other work
has studied the problem of approximating quantiles when
itemscan depart aswell asarrive[GKM S02]. Inthismodel,
we claim that no a gorithm can guarantee to find all biased-
quantiles without keeping Q2(n) items. Thisis because the
problem insists that we must be able to recover the mini-
mum or maximum value exactly. If deletions are alowed,
after processing n insertions we could repestedly regquest
and delete the minimum or maximum value, thus recover-
ing the whole set of inserted values. Likewise, solving the
k biased quantiles problems requires Q(e/2%) space, by a
similar argument. Meanwhile, it remains open to formally
characterize the space usage of the algorithmswe have de-
scribed for biased and targeted quantilesto the tightest pos-
sible estimate.

More generally, our work was motivated by devel oping
appropriate statistics for summarizing skewed data. Data
skew is highly prevalent in many applications. We believe
that it is of interest to study further problems that do not
treat al input uniformly, but rather require non-uniform
guarantees dependent on the skew of the data.

Acknowledgements

Wethank Oliver Spatscheck and Theodore Johnsonfor their
stance with Gigascope and some useful discussions.

References

[AMO4] A. Arasu and G. S. Manku. Approximate countsand
quantiles over sliding windows. In Proceedings of
the Twenty-Third ACM Symposium on Principles of

Database Systems, pages 286—296, 2004.

B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream sys-

[BBD02]

[CJSS03]

[CKMT04]

[CMO4]

[GGRO2]

[GKO1]

[GKMS02]

[GZ03)]

[1C93]

[10a03]

[MP8O]

[MRL98]

[MRL99]

[Mut03]

[Tec]

tems. In Proceedingsof Symposiumon Principles of
Database Systems, pages 1-16, 2002.

C. Cranor, T. Johnson, O. Spatscheck, and
V. Shkapenyuk. Gigascope: A stream database
for network applications. In Proceedings of ACM
SIGMOD, pages 647-651, 2003.

G. Cormode, F. Korn, S. Muthukrishnan, T. Johnson,
O. Spatscheck, and D. Srivastava. Holistic udafs at
streaming speeds. In Proceedingsof ACM SSGMOD,
2004.

G. Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. Journal of Algorithms, 2004. in press.

M. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: You only get one look. In
Proceedingsof ACM SSIGMOD, 2002.

M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proceedings
of ACM SSGMOD, pages 58-66, 2001.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. How to summarize the universe: Dy-
namic maintenance of quantiles. In Proceedings of
28th International Conference on Very Large Data
Bases, pages 454465, 2002.

A. Guptaand F. Zane. Counting inversionsin lists.
In Proceedingsof the thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 253-254,
2003.

Y. E. loannidis and S. Christodoulakis. Optimal
histograms for limiting worst-case error propagation
in the size of the join radius. ACM Transactionson
Database Systems, 18(4):709—748, 1993.

Yannis E. loannidis. The history of histograms
(abridged). In Proceedings of 29th International
Conferenceon Very Large Data Bases, pages 19-30,
2003.

J.1. Munroand M. S. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
12:315-323, 1980.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate mediansand other quantilesin one pass
and with limited memory. In Proceedings of ACM
SIGMOD, pages426-435, 1998.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient on-
line computation of order statistics of large datasets.
In Proceedings of ACM SSGMOD, volume 28(2) of
SIGMOD Record, pages 251-262, 1999.

S. Muthukrishnan. Data streams: Algorithms and
applications. In ACM-SIAM Symposiumon Discrete
Algorithms, http://at hos. rut gers. edu/
“mut hu/ stream 1- 1. ps, 2003.

Agilent Technologies. Router tester. http:

/I advanced. comrs. agi | ent . com n2x/
i ndex. htm

