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Abstract

Skew is prevalent in many data sourcessuchas IP traffic streams.
To continually summarize the distribution of such data, a high-
biased set of quantiles (e.g., 50th, 90th and 99th percentiles) with
finer error guarantees at higher ranks (e.g., errors of 5, 1 and
0.1 percent, respectively) is more useful than uniformly distributed
quantiles (e.g., 25th, 50th and 75th percentiles) with uniform er-
ror guarantees. In this paper, we address the following two prob-
lems. First, can we compute quantiles with finer error guaran-
tees for the higher ranks of the data distribution effectively, using
less space and computation time than computing all quantiles uni-
formly at the finest error? Second, if specific quantiles and their
errorbounds are requesteda priori, can the necessaryspace usage
and computation time be reduced?

We answerboth questions in the affirmative by formalizing them
as the “high-biased” quantiles and the “targeted” quantiles prob-
lems, respectively, and presenting algorithms with provable guar-
antees, that perform significantly better than previouslyknown so-
lutions for these problems. We implemented our algorithms in the
Gigascope data stream management system, and evaluated alter-
nate approaches for maintaining the relevant summary structures.
Our experimental results on real and synthetic IP data streams
complement our theoretical analyses, and highlight the impor-
tance of lightweight, non-blocking implementations when main-
taining summary structures over high-speed data streams.

1 Introduction

Skew is prevalent in many data sources such as IP traffic
streams. Distributions with skew typically have long tails
which are of great interest. For example, in network man-
agement, it is important to understand what performance
users experience. An important measure of performance
perceived by the users is the round trip time (RTT) (which in
turn affects dynamics of the network through mechanisms
such as TCP flow control). RTTs display a large amount of
skew: the tails of the distribution of round trip times can
become very stretched. Hence, to gauge the performance
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of the network in detail and the effect on all users (not just
those experiencing the average performance), it is impor-
tant to know not only the median RTT but also the 90%,
95% and 99% quantiles of TCP round trip times to each des-
tination. In developing data stream management systems
that interact with IP traffic data, there exists the facility for
posing such queries [CKM+04]. However, the challenge
is to develop approaches to answer such queries efficiently
and accurately given that there may be many destinations
to track. In such settings, the data rate is typically high and
resources are limited in comparison to the amount of data
that is observed. Hence it is often necessary to adopt the
data stream methodology [BBD+02, GGR02, Mut03]: ana-
lyze IP packet headers in one pass over the data with storage
space and per-packet processing time that is significantly
sublinear in the size of the input.

Typically, IP traffic streams and other streams are sum-
marized using quantiles: these are order statistics such as
the minimum, maximum and median values. In a data set
of size n, the φ-quantile is the item with rank dφne1.The
minimum and maximum are easy to calculate precisely in
one pass but in general exact computation of certain quan-
tiles requires space linear in n [MP80]. So the notion of ε-
approximate quantiles relaxes the requirement to finding an
item with rank between (φ − ε)n and (φ + ε)n. Much at-
tention has been given to the case of finding a set of uni-
form quantiles: given 0 < φ < 1, return the approxi-
mate φ, 2φ, 3φ, . . . , b1/φcφ quantiles of a stream of val-
ues. Note that the error in the rank of each returned value is
bounded by the same amount, εn; we call this the uniform
error case.

Summarizing distributions which have high skew using
uniform quantiles is not informative because having a uni-
formly spread-out summary of a stretched distributiondoes
not describe the interesting tail region adequately. Mo-
tivated by this, we introduce the concept of high-biased
quantiles: to find the 1 − φ, 1 − φ2, 1 − φ3, . . . , 1 − φk

1We use the rank of an item to refer to its position in the sorted order
of items that have been observed.



quantiles of the distribution.2 In order to give accurate and
meaningful answers to these queries, we must also scale
the approximation factor ε so the more biased the quantile,
the more accurate the approximation should be. The ap-
proximate low-biased quantiles should now be in the range
(1− (1± ε)φj)n: instead of additive error in the rank±εn,
we now require relative error of factor (1± ε).

Finding high- (or low-) biased quantiles can be seen as
a special case of a more general problem of finding tar-
geted quantiles. Rather than requesting the same ε for all
quantiles (the uniform case) or ε scaled by φ (the biased
case), one might specify in advance an arbitrary set of
quantiles and their desired errors of ε for each in the form
(φj, εj). For example, input to the targeted quantiles prob-
lem might be {(0.5, 0.1), (0.2,0.05), (0.9,0.01)}, meaning
that the median should be returned with 10% error, the 20th
percentile with 5% error, and the 90th percentile with 1%.

Both the biased and targeted quantiles problems could
be solved trivially by running a uniform solution with ε =
minj εj . But this is wasteful in resources since we do not
need all of the quantiles with such fine accuracy. In other
words, we would like solutions which are more efficient
than this naive approach both in terms of memory used as
well as in running time, thereby adopting to the precise
quantile and error requirements of the problem.

Our contributions are as follows:

• We give the first-knowndeterministic algorithms for the
problem of finding biased and targeted quantiles with
a single pass over the input and prove that they are
correct. These are simple to implement, yet give strong
guarantees about the quality of their output.

• We consider the issues that arise when incorporating
such algorithms into a high speed data stream manage-
ment system (Gigascope), and develop a variety of im-
plementations of them.

• We perform a set of experiments that show our algo-
rithms are extremely space-efficient, and significantly
outperform existing methods for finding quantiles when
applied to our scenarios. We evaluate them on live
and simulated IP traffic data streams and show that our
methods are capable of processing high throughput net-
work data.

2 Related Work
Computing concise summaries such as histograms and or-
der statistics on large data sets is of great importance in
particular for query planning. Histogram summaries such
as equi-depth histograms and end-biased histograms have

2Symmetrically, the low-biased quantiles are the φ,φ2 . . . φk quan-
tiles of the distribution.

been studied extensively [Ioa03]. Note that our notion of
high-biased quantiles is quite distinct from high-biased his-
tograms [IC93] which find the most frequent items (i.e.,
the modes) of the distribution. There is a large body of
work on ways to compute appropriate histograms and order-
statistics in general; here, we describe prior work that com-
putes quantiles with one pass over the input data since this
is the focus of our work.

A lower bound of Ω(n) space was shown by Munro
and Paterson [MP80] in order to exactly compute the me-
dian of n values. In the same paper, they showed an algo-
rithm which finds any quantile in p passes and used mem-
ory O(n1/p logn). Manku et al [MRL98] observed that
after the first pass this algorithm finds bounds on the rank
of items, and so it can be used to answer ε-approximate
quantiles in spaceO( 1

ε log2(εn)). They also gave improve-
ments with the same asymptotic space bounds but better
constant factors. These algorithms require some knowledge
of n in advance: they operate with O(log(εn)) buffers of
size O( 1

ε log(εn)) each and so an upper bound on n must
be known a priori.3 Subsequent work removed this re-
quirement. Manku et al [MRL99] gave a randomized al-
gorithm, which fails with probability at most δ, in space
O(1

ε
(log2 1

ε
+ log2 log 1

δ
)).

Greenwald and Khanna made a significant contribution
to computing quantiles in one pass by presenting a deter-
ministic algorithm with space bounded by O( 1

ε log(εn))
and no requirement that n be known in advance. This al-
gorithm very carefully manages upper and lower bounds
on ranks of items in its “sample” and intuitively is more
informed in pruning items of non-interest than random-
sampling based methods. As a result, the worst case space
bound above is often pessimistic; on “random” data sets it
has been observed to use O( 1

ε ) space [GK01].
All these methods are designed to find uniform quantiles

on insert-only data streams. When items can be deleted as
well as inserted, Gilbert et al [GKMS02] gave a randomized
algorithm to find quantiles in space O( 1

ε2
log2U log logU

δ
),

where U is the size of the universe, ie the number of possi-
ble values of items; this has since been improved to space
O(1

ε log2 U log logU
δ ) in [CM04]. In the sliding window

model, where only the lastW data elements are considered,
there has been recent progress on finding quantiles [AM04]
in space O( 1

ε log 1
ε logW ).

In this paper, our attention is on extensions of the basic
quantile finding problem where some values are required
to greater accuracy than others. In [MRL99], the authors
study the “extreme values” quantile finding problem: for
given values of φ close to zero (or, symmetrically, close
to one), find an ε-approximation of the φ quantile using

3Although, if the estimate of n is too low, this will merely result in
a decline in the quality of the results and a requirement for some extra
buffers.



space significantly less than is required for maintaining ε-
accuracy for the whole data set. The algorithm randomly
samples at a rate k

nφ but only the k smallest elements of
the sample are retained. The largest of these k items is
returned as the approximate φ-quantile. Analysis sets k,
the memory requirement, to be O(φ

ε
log 1

δ
). In the case

where ε = ε′φ (that is, where the “local” ε is simply
the product of a global constant ε′ and the value of φ),
then this simplifies to O( 1

ε′ log 1
δ ). The problem of finding

biased quantiles was studied by Gupta and Zane [GZ03]
in the context of approximating the number of inversions
(disordered pairs of items) in a list. They presented a similar
algorithm of retaining k smallest elements after sampling at
an appropriate rate. This is then repeated for every quantile
of the form 1

ε (1 + ε)i up to n. This gives a total of
1
ε log εn parallel sampling routines. The 1

ε smallest items
can be stored exactly. Overall, the space requirement is
O( 1

ε2 log ε log 1
δ ).4

There is significant opportunity for improvement here;
for example, no information is shared between the differ-
ent samplers which operate independently of each other.
In this paper, we give a deterministic algorithm that also
keeps “samples” from the input stream of values and gives
ε-approximate biased or targeted quantiles. As in the result
of Greenwald and Khanna [GK01], we also carefully main-
tain upper and lower bounds on ranks of items (to different
levels of accuracy in different portions of the distribution
which is in contrast to [GK01] where the levels are uniform
over all the quantiles); as a result, we are able to make in-
formed decisions on pruning items of non-interest. Inter-
estingly, this improves the space needed greatly, and is also
faster to process each new item.

3 Biased Quantiles Problem
We begin by formally defining the problem of biased quan-
tiles. To simplify the notation, we present the material in
terms of low-biased quantiles; high-biased quantiles can be
obtained via symmetry, by reversing the ordering relation.

Definition 1 Let a be a sequence of n items, and let A be
the sorted version of a. Let φ be a parameter in the range
0 < φ < 1. The low-biased quantiles of a are the set of
values A[dφjne] for j = 1, . . . , log1/φ n.

Sometimes we will not require the full set of biased-
quantiles, and instead only search for the first k. Our algo-
rithms will take k as a parameter.

It is well known that computing quantiles exactly re-
quires space linear in n [MP80]. In our applications, we
seek solutions that are significantly sublinear in n, prefer-
ably depending on logn or small polynomials in this quan-

4In [GZ03], the space bound is proportional to 1
ε3

, but using the

sampler from [MRL99] improves this by a factor of 1
ε

.

tity. So we will allow approximation of the quantiles, by
giving a small range of tolerance around the answer.

Definition 2 The approximate low-biased quantiles of a
sequence of n items, a, is a set of k items q1, . . . , qk which
satisfy

A[
⌊
(1 − ε)φjn

⌋
] ≤ qj ≤ A[

⌈
(1 + ε)φjn

⌉
]

In fact, we shall solve a slightly more general problem:
after processing the input then for any supplied value φ′

we will be able to return an ε-approximate quantile q′ that
satisfies

A[b(1− ε)φ′nc] ≤ q′ ≤ A[d(1 + ε)φ′ne]
Any such solution clearly can be used to compute a set of
approximate low-biased quantiles.

3.1 Algorithm for biased quantiles
Our algorithm draws inspiration from the algorithm pro-
posed by Greenwald and Khanna [GK01], henceforth re-
ferred to as GK, for the uniform quantiles problem. The al-
gorithm keeps information about particular items from the
input, and also stores some additional tracking information.
The intuition for this algorithm is as follows: suppose we
have kept enough information so that the median can be es-
timated with an absolute error of εn in rank. Now suppose
that there is a large number of insertions of items above the
median, so that this item is pushed up to being the first quar-
tile (the item which occurs 1

4 through the sorted order). For
this to happen, then the current number of items must be
2n; hence if the same absolute uncertainty of εn is main-
tained, then this corresponds to a relative error of size 1

2ε.
This shows that we will be able to support greater accuracy
for the high-biased quantiles provided we manage the data
structure correctly.

As in GK, the data structure at time n, S(n), consists
of a sequence of s tuples 〈ti = (vi, gi,∆i)〉, where each vi
is a sampled item from the data stream and two additional
values are kept: (1) gi is the difference between the lowest
possible rank of item i and the lowest possible rank of item
i − 1; and (2) ∆i is the difference between the greatest
possible rank of item i and the lowest possible rank of item
i. The total space used is thereforeO(s). For each entry vi,
let ri =

∑i−1
j=1 gj . Hence, the true rank of vi is bounded

below by ri + gi and above by ri + gi + ∆i.
Depending on the problem being solved (uniform, bi-

ased, or targeted quantiles), the algorithm will maintain an
appropriate restriction on gi+ ∆i. We will denote this with
a function f(ri, n), which for the current values of ri and
n gives an upper bound on the permitted value of gi + ∆i.
For biased quantiles, this invariant is:

Definition 3 (Biased quantiles invariant) We set f(ri, n) =
2εri. Consquently we ensure that gi + ∆i ≤ 2εri for all i.



As each item is read, an entry is created in the data structure
for it. Periodically, the data structure is “pruned” of unnec-
essary entries to limit its size. We ensure at all times that the
invariant is maintained, which is necessary to show that the
algorithm operates correctly. The operations are defined as
follows:

Insert. To insert a new item, v, we find i such that
vi < v ≤ vi+1, we compute ri and insert the tuple (v, g =
1,∆ = bf(ri, n)c − 1). This gives the correct settings to
g and ∆ since the rank of v must be at least 1 more than
the rank of vi, and (assuming the invariant holds before the
insertion), the uncertainty in the rank of v is at most one less
than the uncertainty of vi, ∆i, which is itself bounded by
bf(ri, n)c (since ∆i is always an integer). We also ensure
that min and max are kept exactly, so when v < v0, we
insert the tuple (v, g = 1,∆ = 0) before v0. Similarly,
when v > vs−1, we insert (v, g = 1,∆ = 0) after vs−1.

Compress. Periodically, the algorithm scans the data
structure and merges adjacent nodes when this does not
violate the invariant. That is, find nodes (vi, gi,∆i) and
(vi+1, gi+1,∆i+1), and replace them with (vi+1, (gi+gi+1),∆i+1)
provided that (gi + gi+1 + ∆i+1) ≤ f(ri, n). This also
maintains the semantics of g and ∆ being the difference in
rank between vi and vi−1, and the difference between the
highest and lowest possible ranks of vi, respectively.

Query. Given a value 0 ≤ φ ≤ 1, let i be the smallest
index so that ri+gi+ ∆i > φn+ 1

2f(φn, n). Output vi−1

as the approximated quantile.

These three routines are the same for the different prob-
lems we consider, being parametrized by the setting of
the invariant function f . It generalizes the GK algorithm,
which is equivalent to the above routines with f(ri, n) =
2εn. Figure 1 presents the pseudocode of the algorithm.

3.2 Correctness of the Algorithm
Theorem 1 The algorithmcorrectly maintainsε-approximate
biased quantiles.

Proof: First, observe that Insert maintains the invariant
since, for the inserted tuple, clearly g + ∆ ≤ b2εric. All
tuples below the inserted tuple are unaffected; for tuples
above the inserted tuple, their gi + ∆i remains the same,
but their ri increases by 1, and so the invariant still holds.
Compress checks that the invariant is not violated by its
merge operations, and for tuples not merged, their ri is
unaffected, so the invariant must be preserved.

Next, we demonstrate that any algorithm which main-
tains the biased quantiles invariant means that the output
function will correctly approximate biased quantiles. Be-
cause i is the smallest index so that ri + gi + ∆i > φn+
f(φn, n)/2 = φn + εφn, then ri−1 + gi−1 + ∆i−1 ≤
(1+ε)φn. Using the invariant, then (1+2ε)ri > (1+ε)φn

and consequently ri > (1 − ε)φn. Hence (1 − ε)φn <
ri−1 + gi−1 ≤ ri−1 + gi−1 + ∆i−1 ≤ (1 + ε)φn. Recall
that that the true rank ofvi is between ri+gi and ri+gi+∆i:
so the derived inequality means that vi−1 is within the nec-
essary error bounds for biased quantiles.

This gives an error bound of ±εφn for every value of
φ. In some cases we have a lower bound on how precisely
we need to know the biased quantiles: this is when we
only require the first k biased quantiles. It corresponds to
a lower bound on the allowed error of εφkn. Clearly we
could use the above algorithm which gives stronger error
bounds for some items, but this may be inefficient in terms
of space. Instead, we modify the invariant as follows to
avoid this slackness and so reduce the space needed. The al-
gorithm is identical to before but we modify the invariant to
be f(ri, n) = 2εmax{ri, φkn}. This invariant is preserved
by Insert and Compress. The Output function can
be proved to correctly compute biased quantiles with this
lower bound on the approximation error using straightfor-
ward modification of the above proof.

/* n = #items, k = asymptote */
/* S = data structure, s = #samples */
Insert(v):
01 r0 := 0;
02 for i:= 1 to s do
03 if (vi < v) break;
04 ri := ri−1 + gi;
05 add (v, 1, bf(ri, n)c − 1) to S before vi;
06 n + +;

Compress():
01 for i := (s − 1) downto 1 do
02 if (gi + gi+1 + ∆i+1 ≤ f(ri, n)) then
03 merge ti and ti+1;

Query(φ):
01 ri := 0;
02 for i := 1 to s do
03 ri := ri−1 + gi−1;
04 if (ri + gi + ∆i > φn+ f(φn, n)/2)
05 print(vi−1); break;

Main():
01 for each item v do
02 Insert(v);
03 if (Compress Condition()) then
04 Compress();

Figure 1: Approximate Quantiles Algorithm



3.3 Time and Space Bounds

The running time of the algorithm to process each new up-
date v depends on (i) the data structures used to imple-
ment the sorted list of tuples, S, and (ii) the frequency with
which Compress is run. This is governed by the function
Compress Condition(), which can be implemented
in a variety of ways: it could always return true, or return
true every 1/ε tuples, or with some other frequency. Note
that the frequency of compressing does not affect the cor-
rectness, just the aggressiveness with which we prune the
data structure. The time for each Insert operation is that
to find the position of the new data item v in the sorted
list. With a sensible implementation (e.g., a balanced tree
structure), this is O(log s). With such a data structure we
can efficiently maintain ri of each tuple in the same time
bounds. Compress is much simpler to implement since it
requires just a linear pass over the sorted elements in time
O(s) but we must decide when to run Compress to bal-
ance the time cost and the space used by the algorithm. We
return to these issues later when we consider different im-
plementation strategies in Section 5.

In [GK01] it is shown that the GK algorithm requires
space O( 1

ε log εn) in the worst case. By analogy, the worst
case space requirement for finding biased quantiles is ex-
pected to be O(

k log 1/φ
ε log εn). Consider the space used

by the algorithm to maintain the biased quantiles for the
values whose rank is between n/2 and n. Here we main-
tain a synopsis where the error is bounded below by εn and
the algorithm operates in a similar fashion to the GK algo-
rithm. So the space required to maintain this region of ranks
should be bounded byO( 1

ε
log εn). Similarly for the range

of ranks n/4 to n/2, items are maintained to an error no
less than ε/2 but we are maintaining a range of at most half
as many ranks. Thus the space for this should be bounded
by the same amountO( 1

ε log εn). This argument can be re-
peated until we reach n/2x = φkn where the same amount
of space suffices to maintain information about ranks up to
φk with error εφk. The total amount of space is no more
than O(x

ε
log εn) = O(k log 1/φ

ε
log εn). If φ is not speci-

fied a priori, then this bound can be easily rewritten in terms
of k and ε. Also, we never need k log 1/φ to be greater than
log εn, which corresponds to an absolute error of less than
1, so the bound is equivalent to O( 1

ε
log2 εn).

We also note the following lower bound for any method
that finds the biased quantiles.

Theorem 2 Any algorithm that guarantees to find biased
quantiles φ with error at most φεn in rank must store
Ω(1

ε min{k log 1/φ, log(εn)}) items.

Proof: We show that if we query all possible values of φ,
there must be at least this many different answers produced.
Assume without loss of generality that every item in the

input stream is distinct. Consider each item stored by the
algorithm. Let the true rank of this item be R. This is a
good approximate answer for items whose rank is between
R/(1+ε) andR/(1−ε). The largest stored item must cover
the greatest item from the input, which has rank n, meaning
that the lowest rank input item covered by the same stored
item has rank no lower than n(1−ε)/(1+ε). We can iterate
this argument, to show that the lth largest stored item covers
input items no less than n(1− ε)/(1 + ε)l. This continues
until we reach an input item of rank at most m = nφk.
Below this point, we need only guarantee an error of εφk.
By the same covering argument, this requires at least p =
(nφk)/(εnφk) = 1/ε items. Thus we can bound the space
for this algorithm as p + l, when n(1 − ε)/(1 + ε)l ≤ m.
Then, since 1−ε

1+ε ≤ (1−ε), we have ln(m/n) ≥ l ln(1−ε).
Since ln(1−ε) ≤ −ε, we find l ≥ 1

ε ln n
m = 1

ε ln n
nφk

. This

bounds l = Ω( k log 1/φ
ε

), and gives the stated space bounds.
Note that it is not meaningful to set k to be too large,

since then the error in rank becomes less than 1, which cor-
responds to knowing the exact rank of the smallest items.
That is, we never need to have εnφk < 1; this bounds
k log 1/φ ≤ log(εn) and so the space lower bounds trans-
lates to Ω( 1

ε min{k log 1/φ, log(εn)}).

4 Targeted Quantiles Problem
The targeted quantiles problem considers the case that we
are only concerned with a set of quantile values with asso-
ciated error bounds that are supplied a priori. Formally, the
problem is as follows:

Definition 4 (Targeted Quantiles Problem) The input is
a set of tuples T = {(φj, εj)}. Following a stream of input
values, the goal is to return a set of |T | values vj such that

A[d(φj − εj)ne] ≤ vj ≤ A[d(φj + εj)ne].

As in the biased quantiles case, we will maintain a set of
items drawn from the input as a data structure, S(n). We
will keep tuples 〈ti = (vi, gi,∆i)〉 as before, but will keep
a different constraint on the values of gi and ∆i.

Definition 5 (Targeted Quantiles Invariant) We define the
invariant function f(ri, n) as

(i) fj(ri, n) =
2εjri
φj

, φjn ≤ ri ≤ n;

(ii) fj(ri, n) =
2εj(n−ri)

(1−φj) , 0 ≤ ri ≤ φjn

and take f(ri) = minj fj(ri). As before we ensure that for
all i, gi + ∆i ≤ f(ri, n).

An example invariant f is shown in Figure 2 where we
plot f(φn, n) as φ varies from 0 to 1. Dotted lines indicate
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Figure 2: Error function f(φn, n)/n computed for the input
{(1

8 , 0.02), ( 3
8 , 0.02), ( 6

8 , 0.04), ( 7
8 , 0.01)}

the constraints of type (i) when ri ≤ φjn and constraints
of type (ii) when ri ≥ φjn, to illustrate how the function is
formed. The function f itself is illustrated with a solid line
seen as the lower envelope of the fj’s. Note that if we allow
T to contain a large number of entries then setting

T = {( 1
n , ε), (

2
n , ε), . . . , (

n−1
n , ε), (1, ε)}

captures the uniform error approximate quantiles problem
solved by GK. Similarly setting

T = {( 1
n ,

ε
n ), ( 2

n ,
2ε
n ) . . . (n−1

n ,
(n−1)ε
n ), (1, ε)}

captures the biased quantiles problem. In both cases, the in-
variant function f computed by Definition 5 reduces to the
function used by GK and in Section 3 above, respectively.

4.1 Algorithm and Correctness
Insert, Compress and Query operations are the same
as in Figure 1 with the new invariant. Therefore, the run-
ning time is the same as before plus the time to compute the
invariant f which takes time at mostO(log |T |) per invoca-
tion. We will show that the operations maintain the invari-
ant and that if the invariant holds then targeted quantiles are
estimated to the required degree of accuracy.

Lemma 1 The targeted quantiles invariant is preserved by
Insert and Compress operations.

Proof: We will show that assuming the invariant holds for
each vi before an insertion, it must hold afterwards. For
the tuple that is inserted we the invariant trivially holds by
the setting of the values in the inserted tuple. However,
since the invariant depends on ri and n, it is possible that
the constraints on other tuples will change and we must
ensure that these do not violate the invariant. Note that if
the new value v is inserted before vi then ri increases by
1. Otherwise ri stays the same and n increases by 1 in
all cases. For each tuple vi, consider the error function f

and the fj that is tightest for the current value of vi. First,
suppose that before and after the insertion then the same fj
is tight. There are two cases:
(i) The invariant is 2εjri

φj
. Then whether ri increases or stays

the same, the invariant does not get tighter for vi, and so the
inequality is preserved.
(ii) The invariant is 2εj(n−ri)

(1−φj) . Then as n increases by one,
and ri either stays the same or increases, again this invariant
does not get tighter, so the inequality is preserved.

Now suppose that before the insertion vi was subject
to some fj and afterward is subject to some fk . There
are many cases to consider depending on the type of con-
straint of fj and fj′ . For example, suppose that vi was
initially constrained by 2εjri

φj
and is then constrained by

2εk((n+1)−(ri+1))
1−φk , with j < k. Then observe that there

must be some values of r′ ≥ ri so that 2εjr
′

φj
= 2εk((n+1)−(r′+1))

1−φk ,

since the constraints are linear. Writing χ =
εkφj

εj(1−φk) , then
the constraint is violated after the insertion if r

n−ri > χ =
r′

n−r′ . That is, if ri(n−r′) > r′(n−ri)⇒ ri > r′. But this
contradicts our assertion that r′ ≥ ri and so the constraint
cannot be violated.

There are several similar cases to work through; we omit
full details here. Finally note that compress operations
trivially preserve the invariant since we only delete tuples
when this does not violate the constraint; other tuples are
unaffected by deletions since ri and n are unchanged.

Theorem 3 If the biased quantiles invariant holds, then
running Output for all φj will find the specified quantiles
φj within the given error bounds εj .

Proof: Consider the quantile and error pair (φj, εj). The
Query function finds the smallest index i such that ri +
gi + ∆i > φjn+ 1

2f(φn, n) ≥ φjn+
εjφjn
φj

= (φj + εj)n

Then ri−1 +gi−1∆i−1 ≤ (φj + εj)n and ri+ (gi + ∆i) >
(φj + εj)n. Now, consider how gi + ∆i is bound by fj :
we know from Definition 5 that either case (i) or case (ii)
holds. If case (i) holds, then we are done, since we have
φjn ≤ ri ≤ (φj + εj)n. So suppose case (ii) holds. Then,

ri +
2εj(n−ri)

1−φj > (φj + ε)n

(1− φj)ri + 2εjn − 2εri > (φj + εj − φ2
j − εjφj)n

(1− φj)ri − 2εjri > (1− φj)(φj − εj)n
ri > (φj − εj)n

In both cases, we can bound (φj − εj)n < ri−1 + gi−1 ≤
ri−1 + gi−1 + ∆i−1 ≤ φjn. So we know that the true rank
of item vi−1 is in the range (φj ± εj)n.

Informally, we argue that the space used by this algorithm
is bounded if we set ε′ = minj εj as O( 1

ε′ log ε′n), by
applying the space bound argument of the Greenwald and
Khanna argument, and by observing that our algorithm
can prune more aggressively than the GK algorithm. In



practice, we would expect to see much tighter space bounds,
as even small εjs can be achieved in smaller space if the
corresponding φjs are sufficiently far from 1

2 . We expect

to see a dependency on the greatest value of φjεj by analogy
to the biased quantiles case.

Note that the algorithm is slightly more general than was
claimed. In addition to the targeted quantiles, information
about the whole distribution is kept. Given an arbitrary
value of 0 ≤ φ ≤ 1, the algorithm will find a value whose
rank is between (φn−f(φn, n)/2) and (φn+f(φn, n)/2).
For example, in Figure 2 which plots f against ε as φ
increases, we see that f is never more than 0.07n. Here we
have omitted formally discussing and proving such general
claims, for brevity.

5 Implementation Issues

As described, the algorithms presented in Sections 3 and 4
allow for much freedom in implementing them. In this sec-
tion, we present a few alternatives used to gain an under-
standing of which factors are important for achieving good
performance over a data stream. The three alternatives we
considered are natural choices and exhibit standard data
structure trade-offs, but our list is by no means exhaustive.

5.1 Abstract Data Types

Recall that the (biased) quantile summary S(n) is a se-
quence of tuples 〈ti = (vi, gi,∆i)〉. Operations on the quan-
tile summary, such as Compress and Output, require ac-
cess to adjacent tuples with respect to vi-values. Hence, to
give efficient access to the tuples we will maintain them in
sorted order on vi-values.

The periodic reduction in size of the quantile summary
done by Compress is based on the invariant function f
which determines tuples eligible for deletion (that is, merg-
ing the tuple into its adjacent tuple). Note that this objec-
tive function is rank-dependent: it depends not only on gi
and ∆i, but also on ri and n. Hence, it is not possible to
efficiently maintain candidates for compression incremen-
tally due to dynamically changing ranks. Instead, all of
our implementations sequentially scan through (a portion
of) the quantile summary and test tuples ti to see if they
can be safely merged. Instead of periodically running a full
Compress, we amortize this work by scanning a fraction
of the data structure for every insertion: we process s/2ε tu-
ples per item. The goal is to lower the worst-case process-
ing at any time step and thus keep up with the data stream.

5.2 Methods

We now describe three alternatives for maintaining the quan-
tile summary tuples ordered on vi-values in the presence of
insertions and deletions:

• Batch: This method maintains the tuples of S(n) in
a linked list. Incoming items are buffered into blocks
of size 1/2ε, sorted, and then batch-merged into S(n).
Insertions and deletions can be performed in constant
time, but the periodic buffer sort, occurring every 1/2ε
items, costs O((1/ε) log(1/ε)).

• Cursor: This method also maintains the tuples of S(n)
in a linked list. Incoming items are buffered in sorted
order and are inserted with the aid of an insertion cur-
sor which, like the compress cursor, sequentially scans
a fraction of the tuples and inserts a buffered item when-
ever the cursor is at the appropriate position. Main-
taining the buffer in sorted order costs O(log(1/ε)) per
item.

• Tree: This method maintains S(n) using a balanced bi-
nary tree. Hence, insertions and deletions costO(log s).
In the worst case, all εs tuples considered for compres-
sion can be deleted, so the cost per item is O(εs log s).

These methods were implemented in C++ and attempts
were made to make the three implementations as uniform
as possible for a fair comparison (for example, all methods
use approximately the same amount of space). The C++
STL list container type was used for storingS(n) in both
Batch and Cursor whereas a multiset container was used
for Tree.5 Cursor uses the priority queue from <queue>
to maintain the buffer of incoming items in sorted order.
As a disclaimer, there were many optimizations we did not
employ which would likely improve the performance of
all the methods such as parallelism, pre-allocated memory,
cache-locality, etc.

6 Experiments
In the first part of this section, we evaluate the accuracy/space
trade-off for both the biased quantiles and targeted quan-
tiles problems, in comparison to naively applying the GK
algorithm [GK01]. In accordance with [GK01], the algo-
rithms used here differ from that described in Section 3
in two ways: a new observation v is inserted as a tuple
(v, 1, gi+∆i−1), where vi−1 < v ≤ vi, and Compress is
run after every insertion intoS(n), to delete one tuple when
possible. When no tuple could be deleted without violating
the error constraint, the size of S(n) grows by one. Space
is measured by the number of tuples.

For biased quantiles, we consider the followingtwo ques-
tions. First, with error requirements that are non-uniform
over the ranks, can we achieve such accuracy in less space
than pessimistically requiring all the quantiles at the finest
error? We compare our proposed algorithm for finding the
first k biased quantiles against GK run with error εφk. Sec-
ond, how does space depend on the trail-off parameter k?

5Our implementation of STL uses red-black trees for <set>.



For targeted quantiles, we consider the following two
questions. First, if we know the desired quantiles and
their errors a priori, then can we focus the algorithm to
yield the required accuracy at only those quantiles to save
space? We illustrate using the case when a single order
statistic (e.g., φ = 0.5, aka the median) is desired within
error ε. Whereas GK allows all quantiles to be given at
this accuracy, our approach only provides this guarantee
for a specified φ-quantile and gives weaker guarantees for
other values. Second, how does the space usage of our
algorithm depend on the value of φ? It has been noted
in [MRL99] that, if the desired quantile is an extreme value
(e.g., within the top 1% of the elements), then the space
requirements of existing algorithms are overly pessimistic.
The authors showed that, when simply taking quantiles over
a random sample, probabilistic guarantees can be obtained
in less space for extreme values than for the median. Our
algorithm exhibits this same phenomenon. Furthermore,
we show that, for any quantile, if the desired error bounds
are known in advance, existing algorithms are also overly
pessimistic.

In the second part of this section, we evaluate and com-
pare the performance of the different implementation al-
ternatives described in Section 5 using the Gigascope data
stream system [CJSS03]. These alternatives vary in terms
of the different aspects of the algorithm they optimize, in
terms of their simplicity, and with respect to blocking be-
havior. The goal is to shed some light on which factors are
most important for performance.

6.1 Space Usage for Biased Quantiles

For these experiments, we compared the space usage of
our proposed biased quantile algorithm with that of GK. In
order to obtain pε error at quantiles p ∈ {φ, φ2, . . . , φk},
the GK algorithm must be run at the finest level of error,
yielding εφk-approximate quantiles. We set φ = 0.5
and tried different parameter values for k and ε. We used
a variety of different data streams: “hard”, sorted, and
“random” (the inputs used in [GK01]).6

Figure 3 reports space usage for different values of k and
ε on the “hard” input. Clearly, the proposed method uses
much less space with the gap increasing both with k and
inversely with ε. At time step n = 105 with ε = 0.001, the
ratio is approximately 4 with k = 4 and 19.5 with k = 6.
Figure 4 gives similar graphs for random input. Here we
observed similar trends at different values of ε so we only
present the graphs at ε = 0.001. At time step n = 105,
the ratio is approximately 4.4 with k = 4 and 11.8 with
k = 6. If the space for GK is bounded byO( 1

εφk log εφkn),

and our algorithm for biased quantiles byO( k log φ
ε log εn),

6The “hard” input is created by examining the current state of the
data structure and inserting items in order to try to force the worst-case
performance.

then for φ = 1
2

the ratio of their space usage should be
roughly 2k/k. For random input we in fact see values that
are similar to these: for k = 4 the theoretical ratio is 4
and for k = 6 it is 10.7; for the “hard” input, the ratios
were even higher. Figure 5 plots space as a function of
k, indicating an exponential dependence on k for GK and
a linear dependence on k for the proposed algorithm, as
predicted by the O( 2k

ε log εn) and O(kε log εn) bounds.
Figure 6(a) illustrates the space used by three competing

methods: GK run at error ε (denoted “GK1”), GK run at
error εφk (denoted “GK2”), and our proposed method. It
uses the random input, with ε = 0.01 and k = 6, and
the results are given at time step n = 106. Figure 6(b)
plots the bound on error as a function of p, that are required
for biased quantiles. Note that while GK1 uses the least
space, it does not satisfy the error bound. GK2, on the other
hand, is overly pessimistic, achieving the smallest error at
all p-values but requiring much more space than the other
methods. The proposed method achieves the least amount
of space while staying within the error bounds. In fact, its
space usage is much closer to that of the algorithm with the
weaker accuracy, GK1 (factor of 4 more) than that of GK2
(factor of 16.5 less).

6.2 Space Usage for Targeted Quantiles

Our targeted quantiles algorithm can find the bφncth order
statistic with a maximum error of ε; its precision guaran-
tees are weaker for other ranks. We compared against GK,
which is capable of finding any quantile within ε error. We
also considered the random sampling approach analyzed
in [MRL99], but this approach was unable to obtain reli-
able estimates for any of the data sets. Given the space used
by our proposed algorithm, we considered the probabilis-
tic accuracy guarantees that could be given by the sampling
algorithm. For the random input, the bounds gave guaran-
tees that held with 70% probability to find quantiles that
our algorithm found with absolute certainty. For the “hard”
input, which attempts to force the worst-case space usage,
the probability for the randomized algorithm improved to
around 95%, still far short of the low failure rates demanded
by network managers. Hence, we do not report further on
the results obtained by random sampling for the remainder
of this section.

Figure 7 presents space usage as a function of time step,
with a variety of φ-values from 0.5 to 0.99, for (a) hard and
(b) random inputs; ε = 0.001. The gap in space usage
between the two methods grows with increasing φ-value,
which is consistent with the observation in [MRL99] that
extreme values require less space.

6.3 Performance Comparison

We compared the three implementationalternatives described
in Section 5 (namely, Batch, Cursor and Tree) with respect
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Figure 3: Comparison of GK and proposed approach on “hard” input: (a) with k = 4; (b) with k = 6. Here ε = 0.01. (c)
with k = 4; (d) with k = 6. Here ε = 0.001.

to per-packet processing time and packet loss using the
User-Defined Aggregation Function (UDAF) facility of the
Gigascope DSMS, a highly optimized system for monitor-
ing very high speed data streams [CJSS03]. Gigascope has
a two-level query architecture: at the low level, data is taken
from the Network Interface Card (NIC) and is placed in a
ring buffer; queries at the high level then run over the data
from the ring buffer. Gigascope creates queries from an
SQL-like language (called GSQL) by generating C and C++
code, which is compiled and linked into executable queries.
To integrate a UDAF into Gigascope, the UDAF functions
are added to the Gigascope library and query generation
is augmented to properly handle references to UDAFs; for
more details, see [CKM+04].

For performance testing, we used two data sources. The
first data source is an Agilent Technologies RouterTester
5.0 traffic generator [Tec]. Using it, one can generate 1
Gbps of traffic (GigEth speed). The traffic generator is
not a sophisticated source of randomness; we could only
vary the packet length and payload, both independently and
uniformly random. The average packet length is always
782 bytes, which is equivalent to about 160,000 packets
per second at GigEth speed. Queries were run over the

generated stream using a 2.8 Ghz Pentium processor and
4 GBs of RAM. The second data source is real IP traffic
data obtained by monitoring the span port7 of the router
which connects AT&T Research Labs to the Internet via a
100 Mbit/sec link. Queries were run over this stream using
a 733 Mhz Pentium with 128 Mbytes of RAM.

Biased quantile queries were run over a single attribute
from these data sources and output at 1-minute intervals
over a total duration of 30 minutes; the parameter ε was set
to 0.01 and kwas set to 4, unless indicated otherwise below.
As a baseline, we also compared against the performance
of a “null” UDAF which computes the max aggregate, to
isolate out the processing overhead for UDAFs.

Table 1 reports the results from using the traffic generator
at OC-3 speed (155.5 Mbps). The algorithms were run
over the packet length field of IPv4 packet headers
(which were randomly generated). All methods were able
to keep up with this rate without incurring packet loss,
but were taxed at different levels. The Batch and Cursor
methods operated at ten times slower than the “null” UDAF,
with Cursor showing slightly better performance. The Tree

7A span port mirrors all traffic for monitoring purposes.
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Figure 4: Comparison of GK and proposed approach on random input: (a) with k = 4; (b) with k = 6. Here ε = 0.001.
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Figure 5: Space usage (at time step n = 106) versus k on random input with ε = 0.01 for (a) GK and proposed algorithms;
and (b) just the proposed algorithm.

method was yet four times slower than these, and had a very
high CPU utilization.

Algorithm CPU user time (µs)
Implementation utilization per packet
null 0.05% 0.481
Batch 11.99% 5.302
Cursor 11.88% 5.093
Tree 67.61% 21.969

Table 1: Per-packet processing time (µs) for the different
implementations, over traffic generated at OC-3 speed.

At GigEth speed (1 Gbps), the Tree method has reached
its limit and incurs so much packet loss that no useful statis-
tics could be reported (see Table 2). Batch incurs more traf-
fic loss than Cursor due to the periodic batch-sorting and
merge that is required after every 1/2ε items. Presumably,
the lower average CPU time for Batch compared to Cur-

sor is due to not processing the packets that get dropped.
To get a frame of reference, we also compared against uni-
form quantiles based on the GK algorithm run with er-
rors ε and εφk (denoted “GK1” and “GK2”, respectively).
GK2 dropped so many packets that we could not compute
a meaningful statistic. Note that GK1 does not achieve the
desired error bound; it is presented merely as a baseline. To
use the GK algorithm properly would requre the finer error
bound of GK2.

Table 3 reports the results on the real IP network data and
summarized by the average CPU utilization and user time
(in microseconds) per packet; we were unable to measure
packet loss. The algorithmswere run over theheader checksum
field of the packet headers. Although the overall traffic
load, averaging 50-75 Mbps, was much less than that of the
traffic generator, it is very bursty.

In summary, the choice of UDAF implementation is cru-
cial to the performance of the quantile algorithm, confirm-
ing observations in [CKM+04]. Whereas the Batch and
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Figure 7: Comparison of GK and targeted approach with different φ-values: (a) for “hard” input; and (b) for random input.
Here ε = 0.001.

Algorithm CPU user time (µs) packet
Implementation utilization per packet loss
null 6% 0.5 0%
Batch 75% 5.522 1.82%
Cursor 81% 5.613 0.26%
Tree — — —
GK1 18% 1.32 0%
GK2 — — —

Table 2: Per-packet processing time (µs) for the different
implementations, over traffic generated at GigEth speed.

Cursor approaches were able to process at GigEthspeed, the
Tree approach was not able to keep up, and even pushes its
limit at OC-3 speed. Although keeping the quantile sum-
mary in a tree is good for maintaining sort order, it incurs a
lot of overhead during Compress operations. Hence, ap-

Algorithm CPU user time (µs)
Implementation utilization per packet
null 3% 1.167
Batch 27% 11.514
Cursor 26% 11.164
Tree 33% 14.059

Table 3: Per-packet processing time (µs) for the different
implementations, over real IP network traffic data.

proaches with the more lightweightlist-based quantile sum-
maries perform better. Batch is the simplest of these, but
the blocking due to sorting results in more packet loss com-
pared to Cursor. Therefore, Cursor seems to strike the right
balance between simplicity and non-blocking behavior.



7 Conclusions and Future Work
We introduced the notion of biased and targeted quantiles
and presented one-pass deterministic algorithms that ap-
proximate these values within user-specified accuracy. Our
experimental work has shown that these algorithms are ex-
tremely effective in practice: the space needed is very small
and is smaller than that needed by existing algorithms that
give the same guarantees. We have shown they can be im-
plemented within a database management system that deals
processes high speed data streams resulting from IP net-
work traffic. We also observed that in these high speed
scenarios, implementation details can make significant dif-
ferences in practicality and amortizing computation cost to
avoid blocking but staying lightweight is vitally important.

We briefly discuss the feasibility of various extensions.
Previous work has extended the work on findingε-approximate
quantiles (uniformerror) to the slidingwindow model [AM04].
We claim that similar techniques based on keeping sum-
maries for previously seen subsequences of items of vari-
ous lengths can be applied to our algorithms. Other work
has studied the problem of approximating quantiles when
items can depart as well as arrive [GKMS02]. In this model,
we claim that no algorithm can guarantee to find all biased-
quantiles without keeping Ω(n) items. This is because the
problem insists that we must be able to recover the mini-
mum or maximum value exactly. If deletions are allowed,
after processing n insertions we could repeatedly request
and delete the minimum or maximum value, thus recover-
ing the whole set of inserted values. Likewise, solving the
k biased quantiles problems requires Ω(ε/2k) space, by a
similar argument. Meanwhile, it remains open to formally
characterize the space usage of the algorithms we have de-
scribed for biased and targeted quantiles to the tightest pos-
sible estimate.

More generally, our work was motivated by developing
appropriate statistics for summarizing skewed data. Data
skew is highly prevalent in many applications. We believe
that it is of interest to study further problems that do not
treat all input uniformly, but rather require non-uniform
guarantees dependent on the skew of the data.
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