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Abstract: Combinatorics is an important branch of mathematics. Binomial coefficients play an important role in the 
computation of permutations and combinations in mathematics. This paper describes a novel method of computing coefficients 
using Splay Trees. The performance in terms of space as well as time efficiency is compared, and conclusions on the technique 
are offered. We show how this technique is particularly effective in the expansion of a binomial expression. 
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1. Introduction 

Binomial coefficients have many specific and generic 
applications in mathematics as well as in computation, 
including computation of Catalan numbers and in statistics 
[1]. Additionally, binomial coefficients are used in 
multiplication of large numbers using binomial expansion, 
and are used in generating all possible 
permutations/combinations of sets. Therefore, owing to the 
cascading benefits, it is important to find an efficient 
method of computing binomial coefficients. The array 
implementation of binomial coefficients is a classic 
dynamic programming technique. In this paper, we explore 
a novel method of using a Splay Tree to compute binomial 
coefficients, as opposed to using an array. Furthermore, we 
discuss memory and space optimizations that have been 
implemented to further enhance the performance of the 
Splay Tree. Finally, we perform a comparative analysis of 
the performance of our technique alongside conventional 
arrays and the Binary Search Tree. 

The remainder of the paper is structured in the following 
manner: Section II describes the past work done in the field, 
Section III discusses the mathematical and computational 
foundations underlying our method, Section IV describes our 
framework as well as our algorithm, Section V contains an 
analysis of the results in comparison to other techniques, 
section VI describes how this technique specifically excels in 
the expansion of binomial expressions, and finally Section 
VII offers conclusions and direction for future work. 

2. Past Work 

Splay Tree is a data structure which is ideal for caching. 
Because of its insert and search rules Splay Trees have been 
used for this purpose. Eric K. Lee and Charles U. Martel 
have described in their paper [2] some applications splay 
trees are most suited for, such as faster query execution 
using better cache management. Subrata Mondal used Splay 
Trees in Cache replacement Algorithms [3]. Splay Trees 
have been found in the field of networking as well. 
Dynamic Scheme for Packet Classification was done by 
Nizar Ben Neji and Adel Bouhoula [4]. Wei Zhou, Zilong 
Tan, Shaowen Yao, and Shipu Wang proposed their work on 
Efficient Resource Location in P2P Networks [5]. Splay 
Trees have also been used in Data Compression Algorithms. 
D. W Jones in his work proposes the use of splay trees in 
arithmetic data compression [6]. Splay Trees were used in 
order to make Distribution Systems Evaluation simpler [7]. 
Splay Trees were used as cumulative frequency tables in 
order to maintain Dynamic arithmetic data compression [8]. 
Splay Trees were also used in memory hash tables for 
accumulating text vocabularies [9]. In a new approach 
proposed by us we use splay trees in a branch of 
mathematics for computing binomial coefficients. 
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3. Mathematical and Computational 

Foundations 

A.  Splay Trees 
Splay trees are self – adjusting binary search trees [10], i. 

e. they have special insert and search rules. When a node is 
being accessed for retrieval or insertion or deletion, special 
rotations [11] are performed on the tree, resulting in the 
newly accessed node becoming the root of the modified tree. 
This technique is called splaying and the tree derives its 
name from this operation. These rotations will ensure that 
nodes that are frequently accessed will always be closer to 
the root whereas unused nodes will get splayed away from 
the root. When a node is accessed, either a single rotation or 
a series of rotations are applied to move the node towards the 
root. The advantage of using Splay trees is that it does not 
require height or balance factors as in other trees (e. g. AVL 
trees, Red-Black trees.) Informally, one can think of the splay 
trees as implementing a sort of ‘most recently used’ policy on 
tree accesses. The nodes used most recently will come closer 
to the root and the ones not used recently will be away from 
the root. This is done because the tree dynamically adjusts 
itself after every insertion or search. This makes splay trees 
ideal for caching. Recently used nodes are closer to the root 
making splay tree lookup quicker than normal binary search 
tree lookup for these nodes. 

B. Pascal’s Triangle 
In mathematics, Pascal's triangle is a triangular array of the 

binomial coefficients [12]. It is named after French 
mathematician Blaise Pascal, Other mathematicians have 

studied similar pattern centuries before him in India 
(Bhaskaracharya, Pingala etc.), Iran, China, Germany, and 
Italy. 

The rows of Pascal's triangle are conventionally enumerated 
starting with row n = 0 at the top (the 0th row). The entries in 
each row are numbered from the left beginning with k = 0 and 
are usually staggered relative to the numbers in the adjacent 
rows. Having the indices of both rows and columns start at 
zero makes it possible to state that the binomial coefficient 
appears in the nth row and kth column of Pascal's triangle. A 
simple construction of the triangle proceeds in the following 
manner: In row 0, the topmost row, the entry is (the entry is in 
the zeroth row and zeroth column). Then, to construct the 
elements of the following rows, add the number above and to 
the left with the number above and to the right of a given 
position to find the new value to place in that position. If either 
the number to the right or left is not present, substitute a zero 
in its place. For example, the initial number in the first (or any 
other) row is 1 (the sum of 0 and 1), whereas the numbers 1 
and 3 in the third row are added to produce the number 4 in the 
fourth row. 

4. Framework and Algorithm 

C. System Architecture 
Figure 1 describes the architecture of our system in the 

form of a flow chart. Each stage is subsequently explained in 
further detail, along with the optimizations that have been 
implemented to further enhance the performance. 

 

Figure 1. System Architecture. 

D. Design of Splay Tree 
Splay Tree Node (STN): The Splay tree comprises of 

nodes with links between them. Each such splay tree node 
has fields’ n and k, A BigInteger object storing the value of 

n

k

 
 
 

 (A BigInteger object is needed as the values of 
n

k

 
 
 

 

become very large when the values of n and k are large). E. 

g. Value of 
100

50

 
 
 

spans 300 digits.) An element which is the 

unique key of a particular node is obtained from a hashing 
function described below. Every node also includes links to 
its left and right children and a link to its parent node.  

Splay Tree (ST): The Splay Tree comprises of several 
STNs which are connected to the root node which is initially 
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set to null. ST contains the insert, search and splaying 
methods. The insertion does a BST type insertion first and 
then calls the splay method. The splay method performs one 
or more rotations, to either make left child parent or right 
child parent, to move the last inserted node towards the root. 
Search or lookup method performs a binary search and splays 
the last non-null node encountered in the search, all the way 
to the root. Thus, the most recently used nodes are always 
closer to the root.  

It contains the hashing function and array of prime 
numbers used by the hashing function, counter for number of 
nodes in a tree. 

E. Hash Function 

We use a hash technique to map every unique 
n

k

 
 
 

 pair to 

a single unique number. This number serves as the key to a 
STN for insertion and search operations. This is achieved by 
mapping natural numbers to prime numbers. The nth natural 
number is mapped to the nth prime number. For example 7 is 
mapped to the 7th prime number which is 19. Hence we can 
map every value of n and k to a pair of prime numbers and 
for every unordered pair n and k, the product of these prime 
numbers is always unique and hence serves as a key for the 
splay tree. This hash function also ensures that there is no 
collision. 

F. Recursive algorithm to find
n

k

 
 
 

 

The third step is to implement the algorithm for finding 
n

k

 
 
 

 recursively and merge it with the splay tree as the 

lookup table. The algorithm implemented is: 
binomial(int n, int k) { 
if (k > n/2) 
k = n - k; 
if (k == 0) 
return 1; 
if (k == 1) 
return n; } 
v = table. search (n, k); // lookup cache table 
if (v != null) // if value was previously cached 
return v. result(); // return cached value 
v = binomial(n-1, k-1) + binomial (n-1, k); // compute 
table. insert(n, k, v); // and cache the result 
return v; 
The recursive formula underlying the algorithm is as 

follows: 

n

k

 
 
 

=
1n

k

− 
 
 

+
1

1

n

k

− 
 − 

 

G. Memory Optimizations 
To optimize memory, only the splay nodes used in the 

computation of a particular n and k, (instead of all cells 
within n*k in array implementation), are stored. 

n

k

 
 
 

=
1n

k

− 
 
 

+
1

1

n

k

− 
 − 

 

The formula has n & k defined in terms of previous values, 
n-1 and k-1. To avoid re-computation, the previous results 
can be cached in a global table in a recursive implementation. 
This technique called memoization has the further advantage 
of speeding up future invocations as long as the table 
(declared global) persists between calls. The table is 
implemented as a splay tree in our implementation.  

Generally calculating large Binomial Co-efficient takes 
significant time and memory, but with memoization 
technique and implementing using Splay Trees, the Binomial 
Coefficients are calculated in more efficient manner. 

 

Figure 2. User Interface. 

H. User Interface 
The user interface is implemented using Java’s SWING 

libraries. A window pops up containing input fields for N and 

K. A button to calculate the value of 
n

k

 
 
 

 is provided. The 

result is displayed with the help of JOptionPane. Such large 
numbers were represented with the help of Big Integer Class 
of Java. Additionally, we have also created an applet so as to 
be able to access the project from a website also. The user 
interface is shown in Figure 2. 

5. Analysis of Results 

The testing was carried out on a machine powered by Intel 
Core i3 processor with a clock speed of 2.2GHz and 4 
gigabytes of RAM. We compare the time and space 
efficiency of our method to existing techniques.  

I. Space Efficiency  
The splay tree method is more space efficient. In the 2-

dimensional array of Pascal’s triangle, memory is allocated 
for all cells even if they aren’t needed. However in ST 
implementation, only the necessary cell values are stored as 
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splay tree nodes (STN). For example, to calculate 
1000

500

 
 
 

, 

the array implementation requires 1000*500=5X105 nodes 
while the splay tree implementation only uses 124750 nodes 
being lot more space efficient (75% more efficient). This is a 
big advantage while calculating extremely large coefficients. 

E. g. 
4000

2000

 
 
 

can be computed by the splay tree 

implementation method on a 4GB machine whereas the array 
implementation runs out of memory.  

J. Time Analysis  
The branch of algorithmics is primarily concerned with 

time. Various known methods were implemented and 
compared, the results were computed, and time taken versus 
input size was plotted. 

 

Figure 3. Impact of Memoization. 

6. Impact of Memoization 

The first metric that needs to be assessed is if whether 
memoization has had any impact in improving the efficiency 
of the system. Figure 3 compares the system with and 
without memoization. 

It is observed that the system runs significantly faster 
when memoization is used. The reasons for the same can be 
explained using Figure 4, where we show how repeated 
calculations are avoided, when memoization is used. 

 

Figure 4. Repeated Computation in Binomial Coefficient calculation. 

Without memoization, the shaded nodes are recomputed 

multiple times making computation expensive, and the 
execution extremely slow. Figure 3 embodies these results: - 
The blue line (recursive implementation without memoization) 
has a near vertical rise, and proves that without memoization, 
calculation of binomial coefficients is impossible for even 
moderately large values. In comparison, the orange line 
(Dynamic array implementation using memoization) shows 
feasibility in computing even very large values. 

7. Comparison with Conventional Array 

Implementation 

In order to compare the conventional technique against 

ours, 
n

k

 
 
 

 was computed for all valid values of k, with n 

varying from n=1 to n=200. The time plotted for each 
calculation was tabulated, and the results of the tabulation are 
plotted in Figure 5. It can be inferred from the graph that our 
method performs faster than the array implementation, and is 
more time efficient. Therefore, our method outperforms the 
conventional implementation in both time and space 
efficiency. The obtained results have been plotted in Figure 5, 
where time of computation is compared against dataset size. 
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Figure 5. Array Implementation Versus Splay Tree Implementation. 

8. Comparison with Binary Search Tree 

We compared the performance of splay trees against a Binary search tree using the same methodology, and obtained the 
graph plotted in Figure 6. We see that splay trees are clearly faster, and the reasons for the same are as follows: The nature of 
the problem matches the structure of a splay tree, as splaying causes the most recently used nodes to come to the top, thereby 
making access faster. Splay trees are also easier to implement and faster than other such trees such as red black which needs 
colouring of nodes or AVL trees which requires computing balance factors [13]. 

 

Figure 6. Binary Search Tree Implementation Versus Splay Tree Implementation. 
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9. Application 

Our technique is particularly useful when the intermediate 
results are important as well. One such scenario in which this 
occurs is binomial expansion [1]. Regardless of the 
expansion, only a single splay tree is created. 

( )
0 0

n n
n n k k k n k

k k

n n
x y x y x y

k k

− −

= =

   
+ = =   

   
∑ ∑  

By creating the tree only once, all the binomial coefficients 
in the binomial expansion can be obtained much quicker than 
the Array implementation of Pascal’s triangle, and hence, the 
splay tree outperforms the array implementation and can be 
used to cache intermediate results of a binomial expansion. It 
is also noteworthy that the creation of the splay tree helps 
when next coefficient in line is to be calculated. 

10. Conclusion and Future Work 

In this paper, we have explored computation of Binomial 
Coefficients using Splay Trees to cache the intermediate 
results. This implementation is efficient both in memory and 
running time. The runtime performance is favorable 
compared to Pascal’s triangle, in which results are stored in 
an array. Furthermore, the Splay Trees requires less space by 
storing only those nodes that are required. We have also 
compared the performance with other implementations 
including the binary search tree. From these comparisons, we 
have shown that using splay trees, Binomial Expansions can 
be computed efficiently. The tabulation of our results can be 
found in Figure 7. 

Future work in the field includes further improving 
performance by using a Randomized Splay Tree as opposed 
to the conventional implementation of the splay tree, as 
proposed by Susanne Albers and Marek Karpinski [14]. 

 

Figure 7. Comparison Between Various Implementations. 
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