

International Journal on Data Science and Technology
2016; 2(1): 15-20
Published online January 29, 2016 (http://www.sciencepublishinggroup.com/j/ijdst)
doi: 10.11648/j.ijdst.20160201.14

Efficient Computation of Binomial Coefficients Using Splay
Trees

Vinayshekhar Bannihatti Kumar, Karthik Radhakrishnan, Aman Kishore Achpal

Computer Science Department, PES Institute of Technology, Bangalore, India

Email address:
vinayshekhar000@gmail.com (V. B. Kumar), karthikradhakrishnan96@gmail.com (K. Radhakrishnan),
aman.achpal@gmail.com (A. K. Achpal)

To cite this article:
Vinayshekhar Bannihatti Kumar, Karthik Radhakrishnan, Aman Kishore Achpal. Efficient Computation of Binomial Coefficients Using
Splay Trees. International Journal on Data Science and Technology. Vol. 2, No. 1, 2016, pp. 15-20. doi: 10.11648/j.ijdst.20160201.14

Abstract: Combinatorics is an important branch of mathematics. Binomial coefficients play an important role in the
computation of permutations and combinations in mathematics. This paper describes a novel method of computing coefficients
using Splay Trees. The performance in terms of space as well as time efficiency is compared, and conclusions on the technique
are offered. We show how this technique is particularly effective in the expansion of a binomial expression.

Keywords: Binomial Coefficients, Splay Trees, Pascal’s Triangle, Memoization, Dynamic Programming, Combinatorics

1. Introduction

Binomial coefficients have many specific and generic
applications in mathematics as well as in computation,
including computation of Catalan numbers and in statistics
[1]. Additionally, binomial coefficients are used in
multiplication of large numbers using binomial expansion,
and are used in generating all possible
permutations/combinations of sets. Therefore, owing to the
cascading benefits, it is important to find an efficient
method of computing binomial coefficients. The array
implementation of binomial coefficients is a classic
dynamic programming technique. In this paper, we explore
a novel method of using a Splay Tree to compute binomial
coefficients, as opposed to using an array. Furthermore, we
discuss memory and space optimizations that have been
implemented to further enhance the performance of the
Splay Tree. Finally, we perform a comparative analysis of
the performance of our technique alongside conventional
arrays and the Binary Search Tree.

The remainder of the paper is structured in the following
manner: Section II describes the past work done in the field,
Section III discusses the mathematical and computational
foundations underlying our method, Section IV describes our
framework as well as our algorithm, Section V contains an
analysis of the results in comparison to other techniques,
section VI describes how this technique specifically excels in
the expansion of binomial expressions, and finally Section
VII offers conclusions and direction for future work.

2. Past Work

Splay Tree is a data structure which is ideal for caching.
Because of its insert and search rules Splay Trees have been
used for this purpose. Eric K. Lee and Charles U. Martel
have described in their paper [2] some applications splay
trees are most suited for, such as faster query execution
using better cache management. Subrata Mondal used Splay
Trees in Cache replacement Algorithms [3]. Splay Trees
have been found in the field of networking as well.
Dynamic Scheme for Packet Classification was done by
Nizar Ben Neji and Adel Bouhoula [4]. Wei Zhou, Zilong
Tan, Shaowen Yao, and Shipu Wang proposed their work on
Efficient Resource Location in P2P Networks [5]. Splay
Trees have also been used in Data Compression Algorithms.
D. W Jones in his work proposes the use of splay trees in
arithmetic data compression [6]. Splay Trees were used in
order to make Distribution Systems Evaluation simpler [7].
Splay Trees were used as cumulative frequency tables in
order to maintain Dynamic arithmetic data compression [8].
Splay Trees were also used in memory hash tables for
accumulating text vocabularies [9]. In a new approach
proposed by us we use splay trees in a branch of
mathematics for computing binomial coefficients.

16 Vinayshekhar Bannihatti Kumar et al.: Efficient Computation of Binomial Coefficients Using Splay Trees

3. Mathematical and Computational

Foundations

A. Splay Trees
Splay trees are self – adjusting binary search trees [10], i.

e. they have special insert and search rules. When a node is
being accessed for retrieval or insertion or deletion, special
rotations [11] are performed on the tree, resulting in the
newly accessed node becoming the root of the modified tree.
This technique is called splaying and the tree derives its
name from this operation. These rotations will ensure that
nodes that are frequently accessed will always be closer to
the root whereas unused nodes will get splayed away from
the root. When a node is accessed, either a single rotation or
a series of rotations are applied to move the node towards the
root. The advantage of using Splay trees is that it does not
require height or balance factors as in other trees (e. g. AVL
trees, Red-Black trees.) Informally, one can think of the splay
trees as implementing a sort of ‘most recently used’ policy on
tree accesses. The nodes used most recently will come closer
to the root and the ones not used recently will be away from
the root. This is done because the tree dynamically adjusts
itself after every insertion or search. This makes splay trees
ideal for caching. Recently used nodes are closer to the root
making splay tree lookup quicker than normal binary search
tree lookup for these nodes.

B. Pascal’s Triangle
In mathematics, Pascal's triangle is a triangular array of the

binomial coefficients [12]. It is named after French
mathematician Blaise Pascal, Other mathematicians have

studied similar pattern centuries before him in India
(Bhaskaracharya, Pingala etc.), Iran, China, Germany, and
Italy.

The rows of Pascal's triangle are conventionally enumerated
starting with row n = 0 at the top (the 0th row). The entries in
each row are numbered from the left beginning with k = 0 and
are usually staggered relative to the numbers in the adjacent
rows. Having the indices of both rows and columns start at
zero makes it possible to state that the binomial coefficient
appears in the nth row and kth column of Pascal's triangle. A
simple construction of the triangle proceeds in the following
manner: In row 0, the topmost row, the entry is (the entry is in
the zeroth row and zeroth column). Then, to construct the
elements of the following rows, add the number above and to
the left with the number above and to the right of a given
position to find the new value to place in that position. If either
the number to the right or left is not present, substitute a zero
in its place. For example, the initial number in the first (or any
other) row is 1 (the sum of 0 and 1), whereas the numbers 1
and 3 in the third row are added to produce the number 4 in the
fourth row.

4. Framework and Algorithm

C. System Architecture
Figure 1 describes the architecture of our system in the

form of a flow chart. Each stage is subsequently explained in
further detail, along with the optimizations that have been
implemented to further enhance the performance.

Figure 1. System Architecture.

D. Design of Splay Tree
Splay Tree Node (STN): The Splay tree comprises of

nodes with links between them. Each such splay tree node
has fields’ n and k, A BigInteger object storing the value of

n

k

 
 
 

 (A BigInteger object is needed as the values of
n

k

 
 
 

become very large when the values of n and k are large). E.

g. Value of
100

50

 
 
 

spans 300 digits.) An element which is the

unique key of a particular node is obtained from a hashing
function described below. Every node also includes links to
its left and right children and a link to its parent node.

Splay Tree (ST): The Splay Tree comprises of several
STNs which are connected to the root node which is initially

 International Journal on Data Science and Technology 2016; 2(1): 15-20 17

set to null. ST contains the insert, search and splaying
methods. The insertion does a BST type insertion first and
then calls the splay method. The splay method performs one
or more rotations, to either make left child parent or right
child parent, to move the last inserted node towards the root.
Search or lookup method performs a binary search and splays
the last non-null node encountered in the search, all the way
to the root. Thus, the most recently used nodes are always
closer to the root.

It contains the hashing function and array of prime
numbers used by the hashing function, counter for number of
nodes in a tree.

E. Hash Function

We use a hash technique to map every unique
n

k

 
 
 

 pair to

a single unique number. This number serves as the key to a
STN for insertion and search operations. This is achieved by
mapping natural numbers to prime numbers. The nth natural
number is mapped to the nth prime number. For example 7 is
mapped to the 7th prime number which is 19. Hence we can
map every value of n and k to a pair of prime numbers and
for every unordered pair n and k, the product of these prime
numbers is always unique and hence serves as a key for the
splay tree. This hash function also ensures that there is no
collision.

F. Recursive algorithm to find
n

k

 
 
 

The third step is to implement the algorithm for finding
n

k

 
 
 

 recursively and merge it with the splay tree as the

lookup table. The algorithm implemented is:
binomial(int n, int k) {
if (k > n/2)
k = n - k;
if (k == 0)
return 1;
if (k == 1)
return n; }
v = table. search (n, k); // lookup cache table
if (v != null) // if value was previously cached
return v. result(); // return cached value
v = binomial(n-1, k-1) + binomial (n-1, k); // compute
table. insert(n, k, v); // and cache the result
return v;
The recursive formula underlying the algorithm is as

follows:

n

k

 
 
 

=
1n

k

− 
 
 

+
1

1

n

k

− 
 − 

G. Memory Optimizations
To optimize memory, only the splay nodes used in the

computation of a particular n and k, (instead of all cells
within n*k in array implementation), are stored.

n

k

 
 
 

=
1n

k

− 
 
 

+
1

1

n

k

− 
 − 

The formula has n & k defined in terms of previous values,
n-1 and k-1. To avoid re-computation, the previous results
can be cached in a global table in a recursive implementation.
This technique called memoization has the further advantage
of speeding up future invocations as long as the table
(declared global) persists between calls. The table is
implemented as a splay tree in our implementation.

Generally calculating large Binomial Co-efficient takes
significant time and memory, but with memoization
technique and implementing using Splay Trees, the Binomial
Coefficients are calculated in more efficient manner.

Figure 2. User Interface.

H. User Interface
The user interface is implemented using Java’s SWING

libraries. A window pops up containing input fields for N and

K. A button to calculate the value of
n

k

 
 
 

 is provided. The

result is displayed with the help of JOptionPane. Such large
numbers were represented with the help of Big Integer Class
of Java. Additionally, we have also created an applet so as to
be able to access the project from a website also. The user
interface is shown in Figure 2.

5. Analysis of Results

The testing was carried out on a machine powered by Intel
Core i3 processor with a clock speed of 2.2GHz and 4
gigabytes of RAM. We compare the time and space
efficiency of our method to existing techniques.

I. Space Efficiency
The splay tree method is more space efficient. In the 2-

dimensional array of Pascal’s triangle, memory is allocated
for all cells even if they aren’t needed. However in ST
implementation, only the necessary cell values are stored as

18 Vinayshekhar Bannihatti Kumar et al.: Efficient Computation of Binomial Coefficients Using Splay Trees

splay tree nodes (STN). For example, to calculate
1000

500

 
 
 

,

the array implementation requires 1000*500=5X105 nodes
while the splay tree implementation only uses 124750 nodes
being lot more space efficient (75% more efficient). This is a
big advantage while calculating extremely large coefficients.

E. g.
4000

2000

 
 
 

can be computed by the splay tree

implementation method on a 4GB machine whereas the array
implementation runs out of memory.

J. Time Analysis
The branch of algorithmics is primarily concerned with

time. Various known methods were implemented and
compared, the results were computed, and time taken versus
input size was plotted.

Figure 3. Impact of Memoization.

6. Impact of Memoization

The first metric that needs to be assessed is if whether
memoization has had any impact in improving the efficiency
of the system. Figure 3 compares the system with and
without memoization.

It is observed that the system runs significantly faster
when memoization is used. The reasons for the same can be
explained using Figure 4, where we show how repeated
calculations are avoided, when memoization is used.

Figure 4. Repeated Computation in Binomial Coefficient calculation.

Without memoization, the shaded nodes are recomputed

multiple times making computation expensive, and the
execution extremely slow. Figure 3 embodies these results: -
The blue line (recursive implementation without memoization)
has a near vertical rise, and proves that without memoization,
calculation of binomial coefficients is impossible for even
moderately large values. In comparison, the orange line
(Dynamic array implementation using memoization) shows
feasibility in computing even very large values.

7. Comparison with Conventional Array

Implementation

In order to compare the conventional technique against

ours,
n

k

 
 
 

 was computed for all valid values of k, with n

varying from n=1 to n=200. The time plotted for each
calculation was tabulated, and the results of the tabulation are
plotted in Figure 5. It can be inferred from the graph that our
method performs faster than the array implementation, and is
more time efficient. Therefore, our method outperforms the
conventional implementation in both time and space
efficiency. The obtained results have been plotted in Figure 5,
where time of computation is compared against dataset size.

 International Journal on Data Science and Technology 2016; 2(1): 15-20 19

Figure 5. Array Implementation Versus Splay Tree Implementation.

8. Comparison with Binary Search Tree

We compared the performance of splay trees against a Binary search tree using the same methodology, and obtained the
graph plotted in Figure 6. We see that splay trees are clearly faster, and the reasons for the same are as follows: The nature of
the problem matches the structure of a splay tree, as splaying causes the most recently used nodes to come to the top, thereby
making access faster. Splay trees are also easier to implement and faster than other such trees such as red black which needs
colouring of nodes or AVL trees which requires computing balance factors [13].

Figure 6. Binary Search Tree Implementation Versus Splay Tree Implementation.

20 Vinayshekhar Bannihatti Kumar et al.: Efficient Computation of Binomial Coefficients Using Splay Trees

9. Application

Our technique is particularly useful when the intermediate
results are important as well. One such scenario in which this
occurs is binomial expansion [1]. Regardless of the
expansion, only a single splay tree is created.

()
0 0

n n
n n k k k n k

k k

n n
x y x y x y

k k

− −

= =

   
+ = =   

   
∑ ∑

By creating the tree only once, all the binomial coefficients
in the binomial expansion can be obtained much quicker than
the Array implementation of Pascal’s triangle, and hence, the
splay tree outperforms the array implementation and can be
used to cache intermediate results of a binomial expansion. It
is also noteworthy that the creation of the splay tree helps
when next coefficient in line is to be calculated.

10. Conclusion and Future Work

In this paper, we have explored computation of Binomial
Coefficients using Splay Trees to cache the intermediate
results. This implementation is efficient both in memory and
running time. The runtime performance is favorable
compared to Pascal’s triangle, in which results are stored in
an array. Furthermore, the Splay Trees requires less space by
storing only those nodes that are required. We have also
compared the performance with other implementations
including the binary search tree. From these comparisons, we
have shown that using splay trees, Binomial Expansions can
be computed efficiently. The tabulation of our results can be
found in Figure 7.

Future work in the field includes further improving
performance by using a Randomized Splay Tree as opposed
to the conventional implementation of the splay tree, as
proposed by Susanne Albers and Marek Karpinski [14].

Figure 7. Comparison Between Various Implementations.

Acknowledgement

We would like to thank Professor Srinivasa Murthy from

Computer Science Department of P. E. S Institute of
technology for his continued guidance and support, without
whom this project would have been difficult to complete.

References

[1] Wikipedia, "Binomial Theorem", 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Binomial_theorem. [Accessed:
19- Dec- 2015].

[2] E. Lee and C. Martel, "When to use splay trees", Softw: Pract.
Exper., vol. 37, no. 15, pp. 1559-1575, 2007.

[3] Mondal, Subrata. (2013). Study of Splay Tree for use in Cache
Replacement Algorithm. (Master’s thesis, Jadavpur
University, West Bengal, India.)

[4] N. Neji and A. Bouhoula, "Dynamic Scheme for Packet
Classification", Advances in Soft Computing, vol. 53, pp. 211-
218, 2009.

[5] W. Zhou, Z. Tan, S. Yao and S. Wang, "A Splay Tree-Based
Approach for Efficient Resource Location in P2P Networks",
the Scientific World Journal, vol. 2014, pp. 1-11, 2014.

[6] D. Jones, "Application of splay trees to data compression",
Communications of the ACM, vol. 31, no. 8, pp. 996-1007,
1988.

[7] É. Rivièr and P. Felber, "SPLAY: Distributed Systems
Evaluation Made Simple", USENIX symposium on
Networked systems design and implementation, vol. 6, pp.
185-198, 2009.

[8] P. Fenwick, "A new data structure for cumulative frequency
tables", Softw: Pract. Exper., vol. 24, no. 3, pp. 327-336,
1994.

[9] J. Zobel, S. Heinz and H. Williams, "In-memory hash tables
for accumulating text vocabularies", Information Processing
Letters, vol. 80, no. 6, pp. 271-277, 2001.

[10] Wikipedia, "Splay tree", 2015. [Online]. Available:
https://en.wikipedia.org/wiki/Splay_tree. [Accessed: 19- Dec-
2015].

[11] Mount, David. "Splay Trees", University of Maryland, 2001.
Lecture.

[12] J. Grossman, K. Rosen and J. Grossman, Student's solutions
guide to accompany discrete mathematics and its applications.
New York: McGraw-Hill, 2012.

[13] B. Pfaff, "Performance analysis of BSTs in system software",
ACM SIGMETRICS Performance Evaluation Review, vol.
32, no. 1, p. 410, 2004.

[14] S. Albers, "Randomized splay trees: Theoretical and
experimental results", Information Processing Letters, vol. 81,
no. 4, pp. 213-221, 2002.

