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Abstract

We demonstrate that a popular class of non-
parametric mutual information (MI) estima-
tors based on k-nearest-neighbor graphs re-
quires number of samples that scales expo-
nentially with the true MI. Consequently, ac-
curate estimation of MI between two strongly
dependent variables is possible only for pro-
hibitively large sample size. This important
yet overlooked shortcoming of the existing es-
timators is due to their implicit reliance on
local uniformity of the underlying joint dis-
tribution. We introduce a new estimator that
is robust to local non-uniformity, works well
with limited data, and is able to capture rela-
tionship strengths over many orders of mag-
nitude. We demonstrate the superior perfor-
mance of the proposed estimator on both syn-
thetic and real-world data.

1 Introduction

As a measure of the dependence between two random
variables, mutual information is remarkably general
and has several intuitive interpretations (Cover and
Thomas, 2006), which explains its widespread use in
statistics, machine learning, and computational neu-
roscience; see (Wang et al., 2009) for a list of various
applications. In a typical scenario, we do not know the
underlying joint distribution of the random variables,
and instead need to estimate mutual information using
i.i.d. samples from that distribution. A naive approach
to this problem is to first estimate the underlying prob-
ability density, and then calculate mutual information
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using its definition. Unfortunately, estimating joint
densities from a limited number of samples is often
infeasible in many practical settings.

A different approach is to estimate mutual informa-
tion directly from samples in a non-parametric way,
without ever describing the entire probability density.
The main intuition behind such direct estimators is
that evaluating mutual information can in principle
be a more tractable problem than estimating the den-
sity over the whole state space (Pérez-Cruz, 2008).
The most popular class of estimators taking this ap-
proach is the k-nearest-neighbor(kNN) based estima-
tors. One example of such estimator is due to Kraskov,
Stogbauer, and Grassberger (referred to as the KSG
estimator from here on) (Kraskov et al., 2004), which
has been extended to generalized nearest neighbors
graphs (P4l et al., 2010).

Our first contribution is to demonstrate that kNN-
based estimators suffer from a critical yet overlooked
flaw. Namely, we illustrate that if the true mutual
information is I, then kNN-based estimators requires
exponentially many (in I) samples for accurate esti-
mation. This means that strong relationships are ac-
tually more difficult to measure. This counterintuitive
property reflects the fact that most work on mutual
information estimation has focused on estimators that
are good at detecting independence of variables rather
than precisely measuring strong dependence. In the
age of big data, it is often the case that many strong
relationships are present in the data and we are in-
terested in picking out only the strongest ones. MI
estimation will perform poorly for this task if their
accuracy is low in the regime of strong dependence.

We show that the undesired behavior of previous kNN-
based MI estimators can be attributed to the assump-
tion of local uniformity utilized by those estimators,
which can be violated for sufficiently strong (almost
deterministic) dependencies. As our second major con-
tribution, we suggest a new kNN estimator that relaxes
the local uniformity condition by introducing a correc-
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tion term for local non-uniformity. We demonstrate
empirically that for strong relationships, the proposed
estimator needs significantly fewer samples for accu-
rately estimating mutual information.

In Sec. 2, we introduce kNN-based non-parametric en-
tropy and mutual information estimators. In Sec. 3,
we demonstrate the limitations of kNN-based mutual
information estimators. And then we suggest a correc-
tion term to overcome these limitations in Sec. 4. In
Sec. 5, we show empirically using synthetic and real-
world data that our method outperforms existing tech-
niques. In particular, we are able to accurately mea-
sure strong relationships using smaller sample sizes.
Finally, we conclude with related work and discussion.

2 kNN-based Estimation of Entropic
Measures

In this section, we will first introduce the naive kNN
estimator for mutual information, which is based on
an entropy estimator due to (Singh et al., 2003), and
show its theoretical properties. Next, we focus on a
popular variant of kNN estimators, called KSG esti-
mator (Kraskov et al., 2004).

2.1 Basic Definitions

Let x = (x1,22,...,24) denote a d-dimensional ab-
solute continuous random variable whose probability
density function is defined as p : R — R and marginal
densities of each z; are defined as p; : R — R,j =
1,...,d. Shannon Differential Entropy and Mutual In-
formation are defined in the usual way:

Hx) = - / p (%) logp (x) dx (1)
Rd
I(x) = /p(x)logdpidx (2)

Rd

l;[1 pj (5)

We use natural logarithms so that information is mea-
sured in nats. For d > 2, the generalized mutual in-
formation is also called total correlation (Watanabe,
1960) or multi-information (Studeny and Vejnarovi,
1998).

n

Given N ii.d. samples, X = {x(i)}izl, drawn from
p(x), the task is to construct a mutual information
estimator / (x) based on these samples.
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2.2 Naive kNN Estimator

Entropy Estimation The naive kNN entropy esti-
mator is as follows:

n
ﬁI/cNN,k (x) = —% ZIOgﬁk (X(i)) (3)
i=1

where

() - ()

7, (x9) in Eq. 4 is the Euclidean distance from x”
to its kth nearest neighbor in X. By introducing a
correction term, an asymptotic unbiased estimator is
obtained:

~ 1 <& N ;
Hivwi () = =— Y log i (x)
i=1

ko T(d/2+1
7d/2

(4)

n—1

()

where

Ve = = /Oo log (z) 28~ te % dx = (k) — log(k)
)" Jo

(k—1
(6)
where 9 (-) represents the digamma function.

The following theorem shows asymptotic unbiasedness
of Hpnn i (x) according to (Singh et al., 2003).

Theorem 1 (kNN entropy estimator, asymptotic un-
biasedness, (Singh et al., 2003)). Assume that X is ab-
solutely continuous and k is a positive integer, then

[ﬁkNN,k (X)} = Hinn k(%) (7)

i.€., this entropy estimator is asymptotically unbiased.

lim E

n—oo

From Entropy to Mutual Information To con-
struct a mutual information estimator from an entropy
estimator is straightforward by combining entropy es-
timators using the identity (Cover and Thomas, 2006):

d

> H(w;) - H(x)

i=1

1(x)

(®)

Combining Egs. 3 and 8, we have,

n

- 1
II/CNN,k (x) = n Z log
i=1

D (X(i))
(xy)) Dk (x(;)> Dk (x((ii))
()

denotes the point projected into jth dimen-

(4)
] .

density estimator projected into jth dimension of x(@,

where x§i)

sion in x( and Py (x}") represents the marginal kNN

Similar to Eq. 5, we can also construct an asymptoti-
cally unbiased mutual information estimator based on
Theorem 1:

kaN,k = fI/cNN,k - (d - 1) V& (10)
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Corollary 1 (kNN MI estimator, asymptotic unbi-
asedness). Assume that x is absolute continuous and
k is a positive integer, then:

lim E [IkNNk (x )} = Inw g (%)

n—oo

(11)

2.3 KSG Estimator

The KSG mutual information estimator (Kraskov
et al., 2004) is a popular variant of the naive kNN es-
timator. The general principle of KSG is that for each
density estimator in different spaces, we would like to
use the similar length-scales for k-nearest-neighbor dis-
tance as in the joint space so that the bias would be
approximately smaller. Although the theoretical prop-
erties of this estimator is unknown, it has a relatively
good performance in practice, see (Khan et al., 2007)
for a comparison of different estimation methods. Un-
like naive kNN estimator, the KSG estimator uses the
max-norm distance instead of L2-norm. In particular,
if €; 1 is twice the (max-norm) distance to the k-th
nearest neighbor of x(9), it can be shown that the ex-
pectation value (over all ways of drawing the surround-
ing N — 1 points) of the log probability mass within
the box centered at x(*) is given by this expression.

E, . log/ f(x) dx
' |x7x(i)|m§ei7k/2

P(k) —P(N)

(12)

We use ¢ to represent the digamma function. If we
assume that the density inside the box (with sides of
length €, 1) is constant, then the integral becomes triv-
ial and we find that,

log(f(x:)ef ) = v(k) — (N).

Rearranging and taking the mean over —log f(x()
leads us to the following entropy estimator:

q X
+ N ;logeiyk

(14)

(13)

Hysc.1(x) Y(N) —

Note that k, defining the size of neighborhood to use
in local density estimation, is a free parameter. Using
smaller k should be more accurate, but larger k re-
duces the variance of the estimate (Khan et al., 2007).
While consistent density estimation requires k to grow
with N (Von Luxburg and Alamgir, 2013), entropy es-
timates converge almost surely for any fixed k& (Wang
et al., 2009; Pérez-Cruz, 2008) under some weak con-
ditions.!

L This assumes the probability density is absolutely con-

tinuous but see (P4l et al., 2010) for some technical con-
cerns.
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To estimate the mutual information, in the joint x
space we set k, the size of the neighborhood, which
determines ¢, j for each point x(®, Next, we consider
the smallest rectilinear hyper-rectangle that contains
these k£ points, which has sides of length ef]k for each
marginal direction z;. We refer to this as the “max-
norm rectangle” (as shown in Fig. 1(a)). Let n.; be
the number of points at a distance less than or equal
to efjk /2 in the z;-subspace. For each marginal en-
tropy estimate, we use Nz, (i) instead of k to set the
neighborhood size at each point. Finally, in the joint
space using a rectangle instead of a box in Eq. 14 leads
to a correction term of size (d — 1)/k (details given
in (Kraskov et al., 2004)). Adding the entropy estima-
tors together with these choices yields the following.

Iisar(x) = (d—1)p(N) + (k) = (d— 1) /k
L
-5 Z Z Y(ng, (i (15)
i=1 j=1
ik o . L0 V(i)é
) €k |
(a) (b)

Figure 1: Centered at a given sample point, x(9, we
show the max-norm rectangle containing k& nearest
neighbors (a) for points drawn from a uniform distri-
bution, k = 3, and (b) for points drawn from a strongly
correlated distribution, k£ = 4.

3 Limitations of kNN-based MI
Estimators

In this section, we demonstrate a significant flaw in
kNN-based MI estimators which is summarized in the
following theorems. We then explain why these esti-
mators fail to accurately estimate mutual information
unless the correlations are relatively weak or the num-
ber of samples is large.

Theorem 2. For any d-dimensional absolute contin-
uous probability density function, p(x), for any k > 1,
for the estimated mutual information to be close to
the true mutual information, |Iynnk(x) — I(x)| < €,
requires that the number of samples, N, is at least,

N > Cexp (I(x) E) + 1, where C is a constant which
scales like O(%).

The proof of Theorem 2 is shown in the Appendix A.
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Theorem 3. For any d-dimensional absolute contin-
uous probability density function, p(x), for any k > 1,
for the estimated mutual information to be close to
the true mutual information, |Ixscr(x) — I(x)| < ¢,
requires that the number of samples, N, is at least,

N > Cexp (I(x)_s) n

521 ) + 1, where C =e™ % .
Proof. Note that 1(n) = H,_1 — v, where H,, is the
n-th harmonic number and v = 0.577 is the Euler-
Mascheroni constant.

Ixsep(x) < (d—1)(N)+ (k) — (d—1)/k
d
)AL
i=1 j—=1
= (d=1)®(N) - (k) —1/k)
= (d=1)(Hn-1—7—Hp1+~—1/k)
< (d—1)(og(N —1) + (k—1)/k)

(16)

The first inequality is obtained from Eq. 15 by ob-
serving that n,, (i) > k for any 4,j and that (k) is
a monotonically increasing function. And the last in-
equality is obtained by dropping the term —Hy_1 <0
and using the well-known upper bound Hy < log N +
1. Requiring that |Ixsex(x) — I(x)| < &, we obtain

N > Cexp (%) +1, where C' = e~ "% O

ko

The above theorems state that for any fixed dimension-
ality, the number of samples needed for estimating mu-
tual information 7(x) increases exponentially with the
magnitude of I(x). From the point of view of determin-
ing independence, i.e., distinguishing I(x) = 0 from
I(x) # 0, this restriction is not particularly troubling.
However, for finding strong signals in data it presents a
major barrier. Indeed, consider two random variables
X and Y, where X ~ #(0,1) and Y = X + (0, 1).
When n — 0, the relationship between X and Y be-
comes nearly functional, and the mutual information
diverges as I(X : Y) — log 1. As a consequence, the
number of samples needed ?or accurately estimating
I(X :Y) diverges as well. This is depicted in Fig. 2
where we compare the empirical lower bound to our
theoretical bound given by Theorem 3. It can be seen
that the theoretical bounds are rather conservative,
but they have the same exponentially growing rates
comparing to the empirical ones.

What is the origin of this undesired behavior? An intu-
itive and general argument comes from looking at the
assumption of local uniformity in kNN-based estima-
tors. In particular, both naive kNN and KSG estima-
tors approximate the probability density in the kNN
ball or max-norm rectangle containing the k nearest
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neighbors with uniform density. If there are strong re-
lationships (in the joint x space, the density becomes
more singular), then we can see in Fig. 1(b) that the
uniform assumption becomes problematic.

- - Theoretial Lower Bound (KSG)
~—— Empirical Lower Bound (KSG)

4 5 6 7 8
True Mutual Information (1)
Figure 2: A semi-logarithmic plot of Ny (number of
required samples to achieve an error at most ¢) for

KSG estimator for different values of I(X :Y). We
set e =0.1, k = 1.

4 Improved kNN-based Estimators

In this section, we suggest a class of kNN-based esti-
mators that relaxes the local uniformity assumption.

Local Nonuniformity Correction (LNC) Our
second contribution is to provide a general method
for overcoming the limitations above. Considering the
ball (in naive kNN estimator) or max-norm hyper-
rectangle (in KSG estimator) around the point x(*)
which contains k nearest neighbors, let us denote this
region of the space with V(i) C R, whose volume
is V(i). Instead of assuming that the density is uni-
form inside V(i) around the point x(V, we assume
that there is some subset, V(i) C V(i) with volume
V(i) < V(i) on which the density is constant, i.e.,
p(x) = W This is illustrated with a shaded re-
gion in Fig. 1(b). We now repeat the derivation above
using this altered assumption about the local density
around each point for H (x). We make no changes
to the entropy estimates in the marginal subspaces.
Based on this idea, we get a general correction term
for kNN-based MI estimators (see Appendix B for the
details of derivation):

Ipne(x) =1(x) —

where I(x) can be either Iy n(x) or Txsa(x).

If the local density in the k-nearest-neighbor region
V(i) is highly non-uniform, as is the case for strongly
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related variables like those in Fig. 1(b), then the pro-
posed correction term will improve the estimate. For
instance, if we assume that relationships in data are
smooth, functional relationships plus some noise, the
correction term will yield significant improvement as
demonstrated empirically in Sec. 5. We note that this
correction term is not bounded by N, but rather by
our method of estimating V. Next, we will give one
concrete implementation of this idea by focusing on
the modification of KSG estimator.

Estimating Nonuniformity by Local PCA
With the correction term in Eq. 17, we have trans-
formed the problem into that of finding a local volume
on which we believe the density is positive. Regard-
ing KSG estimator, instead of a uniform distribution
within the max-norm rectangle in the neighborhood
around the point x(*, we look for a small, rotated
(hyper)rectangle that covers the neighborhood of x(@
The volume of the rotated rectangle is obtained by
doing a localized principle component analysis around
all of x(’s k nearest neighbors, and then multiply-
ing the maximal axis values together in each principle
component after the & points are transformed to the
new coordinate system?. The key advantage of our
proposed estimator is as follows: while KSG assumes
local uniformity of the density over a region contain-
ing k nearest neighbors of a particular point, our es-
timator relies on a much weaker assumption of local
linearity over the same region. Note that the local
linearity assumption has also been widely adopted in
the manifold learning, for example, local linear embed-
ding(LLE) (Roweis and Saul, 2000) and local tangent
space alignment(LTSA) (Zhang and Zha, 2002).

Testing for Local Nonuniformity One problem
with this procedure is that we may find that, locally,
points may occupy a small sub-volume, i.e., even if the
local neighborhood is actually drawn from a uniform
distribution(as shown in Fig. 1(a)), the volume of the
PCA-aligned rectangle will with high probability be
smaller than the volume of the max-norm rectangle,
leading to an artificially large non-uniformity correc-
tion.

To avoid this artifact, we consider a trade-off between
the two possibilities: for a fixed dimension d and near-
est neighbor parameter k, we find a constant ay, 4, such
that if V' (i)/V (i) < a4, then we assume local unifor-
mity is violated and use the correction V (i), otherwise
the correction is discarded for point x(). Note that
if oy q is sufficiently small, then the correction term
will be always discarded, so that our estimator reduces

QNote_ that we manually set the mean of these k points
to be x when doing PCA, in order to put x* in the
center of the rotated rectangle.
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to the KSG estimator. Good choices of oy 4 are set
using arguments described in Appendix C. Further-
more, we believe that as long as the expected value of
E[V(i)/V(i)] > agq in large N limit, for some prop-
erly selected ay, 4, then the consistency properties of
the proposed estimator will be identical to the con-
stancy properties of the KSG estimator. A rigorous
proof of this hypothesis is left as a future work.

The full algorithm for our estimator is given in Algo-
rithm 1.

Algorithm 1 Mutual Information Estimation
with Local Nonuniform Correction

Input: points x() x®, . x™) parameter d (di-
mension), k (nearest neighbor), oy 4
Output: jLNC(X)
Calculate Txsg(x) by KSG estimator, using the
same nearest neighbor parameter k
for each point x(* do

Find % nearest neighbors of x(): kNN,
kNN .. kNN

Do PCA on these k neighbors, calculate the vol-
ume corrected rectangle V(i)

Calculate the volume of max-norm rectangle

V(i)
if V(i)/V (i) < ag,q then
LNC; = log 143
else
LNC; =0.0
end if
end for
Calculate LNC*: average  value  of

LNCy, LNCs, ..., LNCy
Itne = Ixsqg — LNC™

5 Experiments

We evaluate the proposed estimator on both synthet-
ically generated and real-world data. For the for-
mer, we considered various functional relationships
and thoroughly examined the performance of the esti-
mator over a range of noise intensities. For the latter,
we applied our estimator to the WHO dataset used
previously in (Reshef et al., 2011). Below we report
the results.

5.1 Experiments with synthetic data

Functional relationships in two dimensions In
the first set of experiments, we generate samples
from various functional relationships of the form Y =
f(X) +n that were previously studied in Reshef et al.

(2011); Kinney and Atwal (2014). The noise term 7
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is distributed uniformly over the interval [—o/2,0/2],
where o is used to control the noise intensity. We
also compare the results to several baseline estima-
tors: KSG (Kraskov et al., 2004), generalized near-
est neighbor graph (GNN) (P4l et al., 2010) 3, mini-
mum spanning trees (MST) (Miiller et al., 2012; Yu-
kich and Yukich, 1998), and exponential family with
maximum likelihood estimation (EXP) (Nielsen and
Nock, 2010) 4.

Y=4X® +X* 4X 9

—

Q

3711 37‘! 377 373 37.‘5 371 31 3711 375} 377 37')0373 371 31
y=2% 19

3711 37‘) 377 375 3715 371 31
a

Y=sin(87X) +1 Y=0.2sin(8X—4) + L12X-1) 41

— e

— KsG

— GNN
o ST

33937 3’5”3’3 371 3!

3133 T3 3Ty 3t 3333 3y g
Figure 3: For all the functional relationships above,
we used a sample size N = 5000 for each noise level
and the nearest neighbor parameter k = 5 for LNC,
KSG and GNN estimators.

Figure 3 demonstrates that the proposed estimator,
LNC, consistently outperforms the other estimators.
Its superiority is most significant for the low noise
regime. In that case, both KSG and GNN estimators
are bounded by the sample size while LNC keeps grow-
ing. MST tends to overestimate MI for large noise but
still stops growing after the noise fall below a certain
intensity®. Surprisingly, EXP is the only other estima-
tor that performs comparably with LNC for the linear
relationship (the left most plot in Figure 3). However,
it fails dramatically for all the other relationship types.
See Appendix D for more functional relationship tests.

Convergence rate Figure 4 shows the convergence
of the two estimators fKSG and fLNc, at a fixed
(small) noise intensity, as we vary the sample size.
We test the estimators on both two and five dimen-
sional data for linear and quadratic relationships. We

5We use the online code http://www.cs.cmu.edu/
~bapoczos/codes/REGO_with_kNN.zip for the GNN esti-
mator.

“We use the Information Theoretical Estimators Tool-
box (ITE) (Szabd, 2014) for MST and EXP estimators.

SEven if k = 2 or 3, KSG and GNN estimators still stop
growing after the noise fall below a certain intensity.

observe that LNC is doing better overall. In partic-
ular, for linear relationships in 2D and 5D, as well
as quadratic relationships in 2D, the required sample
size for LNC is several orders of magnitude less that
for T ksca. For instance, for the 5D linear relationship
K SG does not converge even for the sample size (10°)
while LNC converges to the true value with only 100
samples.

Finally, it is worthwhile to remark on the relatively
slow convergence of LNC for the 5D quadratic ex-
ample. This is because LNC, while relaxing the lo-
cal uniformity assumptions, still assumes local linear-
ity. The stronger the nonlinearity, the more samples
are required to find neighborhoods that are locally ap-
proximately linear. We note, however, that LNC still
converges faster than KSG.

Y=X4+U(-35/2,37%/2) L Y=X> 4uU(-375/2,378/2)

10"

10
s~ 1
-+~ e / P s *
» »
X2 *
» »
= » =~ ~
= =
= =
— Ground Truth — Ground Truth
*—e LNC e—e LNC
+ 4 KSG ) * - KSG
10° 10
007 10° 10* 10° 10% 10° 10* 10°
2D Linear 2D Quadratic
102 Y=X, +X, +X; +X, +U(-37" /237" /2) Y=X] +X7 +X] +X] +uU(-37/237%/2)
10"
- -
9 > .
.10 . _e-*"
< < et
- .- -+-"*"1 . 10°F e
Ll P - s Q 4
P 100 --e- Al
— — Ground Truth - — Ground Truth
= e LNC < e LNC
= + -+ KSG = * 4 KSG
10? 107
10° 10° 10* 10° 10% 10° 10* 10°
5D Linear 5D Quadratic

Figure 4: Estimated MI using both KSG and LNC
estimators in the number of samples (k = 5 and ay, g =
0.37 for 2D examples; &k = 8 and a4 = 0.12 for 5D
examples)

5.2 Experiments with real-world data
5.2.1 Ranking Relationship Strength

We evaluate the proposed estimator on the WHO
dataset which has 357 variables describing various
socio-economic, political, and health indicators for dif-
ferent countries 6. We calculate the mutual informa-
tion between pairs of variables which have at least 150
samples. Next, we rank the pairs based on their es-
timated mutual information and choose the top 150
pairs with highest mutual information. For these top
150 pairs, We randomly select a fraction p of samples
for each pair, hide the rest samples and then recal-
culate the mutual information. We want to see how

SWHO dataset is publicly available at http://www.
exploredata.net/Downloads
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mutual information-based rank changes by giving dif-
ferent amount of less data, i.e., varying p. A good mu-
tual information estimator should give a similar rank
using less data as using the full data. We compare
our LNC estimator to KSG estimator. Rank similari-
ties are calculated using the standard Spearman’s rank
correlation coefficient described in (Spearman, 1904).
Fig 5 shows the results. We can see that LNC es-
timator outperforms KSG estimator, especially when
the missing data approaches 90%, Spearman correla-
tion drops to 0.4 for KSG estimator, while our LNC
estimator still has a relatively high score of 0.7.

— 4 KsG

‘f:f::titii‘fj ~
Eey

Spearman Correlation

50 60 90

70
% of missing data(p)

Figure 5: Spearman correlation coefficient between the
original MI rank and the rank after hiding some per-
centage of data by KSG and LNC estimator respec-
tively. The 95% confidence bars are obtained by re-
peating the experiment for 200 times.

5.2.2 Finding interesting triplets

We also use our estimator to find strong multivari-
ate relationships in the WHO data set. Specifically,
we search for synergistic triplets (X,Y, Z), where one
of the variables, say Z, can be predicted by knowing
both X and Y simultaneously, but not by using ei-
ther variable separately. In other words, we search
for triplets (X,Y,Z) such that the pair-wise mutual
information between the pairs I(X : Y), I(X : Z)

and I(Y : Z) are low, but the multi-information
I(X Y : Z) is relatively high. We rank rela-
tionships using the following synergy score:” SS =

IX:Y:2)/max{I(X:Y),I(Y:2),1(Z:X)}.

We select the triplets that have synergy score above
a certain threshold. Figure 6 shows two synergistic
relationships detected by LNC but not by KSG. In
these examples, both K.SG and LNC' estimators yield
low mutual information for the pairs (X,Y), (Y, Z2)
and (X, Z). However, in contrast to KSG, our estima-
tor yields a relatively high score for multi-information
among the three variables.

For the first relationship, the synergistic behavior can
7Another measure of synergy is given by the so

called “interaction information”: I (X :Y)+ I(Y :Z) +
I1(Z:X)-1(X:Y:2).
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LNC = 0.10, KSG = 0.07 LNC = -0.04, KSG = -0.05
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1 LNC = 0.96, KSG = 0.83

3
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Figure 6: Two examples of synergistic triplets:

Ixsa(X:Y : Z) =014 and I ne(X Y : Z) = 0.95
for the first example; Iksa(X Y : Z) = 0.05 and
Itne(X 1Y : Z) = 0.7 for the second example

be explained by noting that the ratio of the Total En-
ergy Generation (V') to Electricity Generation per Per-
son (Z) essentially yields the size of the population,
which is highly predictive of the Number of Female
Cervical Cancer cases (X). While this example might
seem somewhat trivial, it illustrates the ability of our
method to extract synergistic relationships automati-
cally without any additional assumptions and/or data
preprocessing.

In the second example, LNC predicts a strong synergis-
tic interaction between Total Cell Phones (Y), Num-
ber of Female Cervical Cancer cases (Z), and rate of
Tuberculosis deaths (X). Since the variable Z (the
number of female cervical cancer cases) grows with
the total population, % is proportional to the average
number of cell phones per person. The last plot indi-
cates that a higher number of cell phones per person
are predictive of lower tuberculosis death rate. One
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possible explanation for this correlation is some com-
mon underlying cause (e.g., overall economic develop-
ment). Another intriguing possibility is that this find-
ing reflects recent efforts to use mobile technology in
TB control.?

6 Related Work

MI estimators There has been a significant amount
of recent work on estimating entropic measures such
as divergences and mutual information from sam-
ples (see this survey (Walters-Williams and Li, 2009)
for an exhaustive list). Khan et al. (2007) com-
pared different MI estimators for varying sample sizes
and noise intensity, and reported that for small sam-
ples, the KSG estimator was the best choice over-
all for relatively low noise intensities, while KDE
performed better at higher noise intensities. Other
approaches include estimators based on Generalized
Nearest-Neighbor Graphs (P4l et al., 2010), minimum
spanning trees (Miiller et al., 2012), maximum like-
lihood density ratio estimation (Suzuki et al., 2008),
and ensemble methods (Sricharan et al., 2013; Moon
and Hero, 2014). In particular, the latter approach
works by taking a weighted average of simple density
plug-in estimates such as kNN or KDE. However, it is
upper-bounded by the largest value among its simple
density estimates. Therefore, this method would still
underestimate the mutual information when it goes
larger as discussed before.

It has been recognized that kNN-based entropic esti-
mators underestimate probability density at the sam-
ple points that are close to the support boundary (Li-
itidinen et al., 2010). Sricharan et al. (2012) pro-
posed a bipartite plug-in estimator for non-linear den-
sity functionals that extrapolates the density estimates
at interior points that are close to the boundary in
order to compensate the boundary bias. However,
this method requires to identify boundary and inte-
rior points, which is a difficult problem when mutual
information is large, so that almost all the points are
close to the boundary. Singh and Poczos (2014) used
a "mirror image” kernel density estimator to escape
the boundary effect, but their estimator relies on the
knowledge of the support of the densities.

Mutual Information and Equitability Reshef
et al. (2011) introduced a property they called “suit-
ability” for a measure of correlation. If two variables
are related by a functional form with some noise, eq-
uitable measures should reflect the magnitude of the
noise while being insensitive to the form of the func-
tional relationship. They used this notion to justify a

8See Stop TB Partnership, http://www.stoptb.org.
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new correlation measure called MIC. Based on com-
parisons with MI using the KSG estimator, they con-
cluded that MIC is “more equitable” for comparing
relationship strengths. While several problems (Si-
mon and Tibshirani, 2014; Gorfine et al.) and al-
ternatives (Heller et al., 2013; Székely et al., 2009)
were pointed out, Kinney and Atwal (KA) showed that
MIC’s apparent superiority to MI was actually due to
flaws in estimation (Kinney and Atwal, 2014). A more
careful definition of equitability led KA to the con-
clusion that MI is actually more equitable than MIC.
KA suggest that mutual information estimation could
be improved by using more samples for estimation.
However, here we showed that the number of samples
required for KSG is prohibitively large, but that this
difficulty can be overcome by using an improved MI
estimator.

7 Conclusion

The problem of deciding whether or not two variables
are independent is a historically significant endeavor.
However, modern data mining presents us with prob-
lems requiring a totally different perspective. It is not
unusual to have thousands of variables which could
have millions of potential relationships. We have insuf-
ficient resources to examine each potential relationship
so we need an assumption-free way to pick out only the
most promising relationships for further study. Many
applications have this flavor including the health indi-
cator data considered above as well as gene expression
microarray data, human behavior data, to name a few.
How can we select the most interesting relationships?
Mutual information gives a clear and general basis for
comparing the strength of otherwise dissimilar vari-
ables and relationships. While non-parametric mutual
information estimators exist, we showed that strong
relationships require at least exponentially many sam-
ples to accurately measure using some of these tech-
niques. We introduced a non-parametric mutual in-
formation estimator that can measure the strength of
nonlinear relationships even with small sample sizes.
We have incorporated these novel estimators into an
open source entropy estimation toolbox.” As the
amount and variety of available data grows, general
methods for identifying strong relationships will be-
come increasingly necessary. We hope that the devel-
opments suggested here will help to address this need.
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