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ABSTRACT
Systems based on the Pentium® III and Pentium® 4
processors enable the exploitation of parallelism at a fine-
and medium-grained level.  Dual- and quad-processor
systems, for example, enable the exploitation of medium-
grained parallelism by using multithreaded code that takes
advantage of multiple control and arithmetic logic units.
Streaming Single-Instruction-Multiple-Data (SIMD)
extensions, on the other hand, enable the exploitation of
fine-grained SIMD parallelism by vectorizing loops that
perform a single operation on multiple elements in a data
set.  This paper provides a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel® C++/Fortran compiler developed at the
Microcomputer Software Labs.

INTRODUCTION
The Pentium III and Pentium 4 processors are designed to
boost application performance and to provide
performance scalability.  The rich features of the Intel®

microprocessors, such as the streaming SIMD extensions
[9,10], enable compilers to exploit fine-grained
parallelism by vectorizing loops that perform a single
operation on multiple elements in a data set.  The
performance of the majority of scientific, engineering,
and multimedia applications with characteristics such as
inherent parallelism, a data independent control flow,
regular and re-occurring memory access patterns, and
localized re-occurring operations performed on the data
can be improved by taking advantage of the streaming
SIMD extensions.  Dual- and quad-processor systems
based on the 32-bit Intel® architecture provide
opportunities for the compiler to exploit medium-grained
parallelism by generating multithreaded code that uses
multiple control and arithmetic logic units.

In this paper, we present the high-level software
architecture of the automatic parallelization and
vectorization methods used by the Intel C++/Fortran
compiler developed at the Microcomputer Software Labs.

We describe the static and dynamic analysis technologies
implemented to enable the efficient generation of parallel
code.  We follow this with a description of multithreaded
and vector code generation.  A number of optimization
technologies, such as alignment optimizations, advanced
instruction selection, multi-entry threading technique, and
Profile-Guided-Optimization (PGO) of parallel code, are
also presented.  We also discuss the results of experiments
with automatic vectorization and parallelization on
systems based on the Pentium III and Pentium 4
processors.

COMPILER ARCHITECTURE
OVERVIEW
The approach taken by the Intel C++/Fortran compiler to
exploit implicit parallelism in serial code is organized into
three stages: program analysis, program restructuring, and
parallel code generation.

Program Analysis
Program analysis performs a control flow, data flow, and
data dependence analysis [1,3,4,11,12] to provide the
compiler with useful information on where implicit
parallelism in the input program can be exploited.

The data dependence analyzer is organized as a series of
tests, progressively increasing in accuracy as well as time
and space costs.  First, the compiler tries to prove
independence between memory references by means of
simple, inexpensive tests.  If the simple tests fail, more
expensive tests are used.

Eventually, the compiler resorts to solving the data
dependence problem as an integer linear programming
problem that is attacked by the powerful but potentially
expensive Fourier-Motzkin elimination method [7].

Program Restructuring
Program restructuring focuses on converting the input
program into a form that is more amenable to



Intel Technology Journal Q1, 2001

Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based Systems 2

parallelization.  For example, if static data dependence
analysis of a program fails to prove independence, then
the Intel C++/Fortran compiler has the ability to generate
dynamic data dependence tests to increase the
opportunities for exploiting implicit parallelism in a
program.  An example of this is given below.

void init(char *p, char *q) {
      int i;
      for (i = 0; i <= 255; i++) p[i] = q[i];
}

Without any further information, the compiler must
conservatively assume that the two pointers could refer to
overlapping regions in memory.  Conversion into multi-
version code, however, yields a fully data-independent
loop in the true branch that can be optimized accordingly.

void init(char *p, char *q) {
   int i;
   if (p+255 < q || p > q+255)
     for (i = 0; i <= 255; i++) p[i] = q[i]; /* dependence free */
   else
     for (i = 0; i <= 255; i++) p[i] = q[i];
}

Other examples of transformations that are done during
program restructuring are traditional compiler
optimizations (such as constant/copy propagation and
constant folding [1,3]), loop transformations (such as loop
interchanging or loop distribution [11,12]), and idiom
recognition (such as the detection of reductions or other
operations).  An example of the latter category is shown
below, where converting an if-statement into a “MAX”-
operator makes the loop more amenable for analysis and,
eventually, parallelization.

for (i = 0; i < N; i++) {                     for (i = 0; i < N; i++) {
    if (a[i] > x)  x = a[i];         ◊             x = MAX(a[i], x);
}                                                       }

Parallel Code Generation
Finally, parallel code generation consists of converting
serial code into semantically equivalent multithreaded
code or SIMD instructions.  Both these conversions are
outlined in the next sections.  An in-depth presentation of
vectorization is given in [5].

AUTOMATIC PARALLELIZATION
Automatic parallelization is a promising technique that
can take advantage of shared-memory multiprocessors
based on the Pentium III and Pentium 4 processors.

These systems can potentially deliver near supercomputer
performance to mainstream computing.  On a
multiprocessor system, however, parallelizing inner loops
usually does not provide sufficient granularity of
parallelism.  Thus, our focus for automatic parallelization
is to exploit medium-grained parallelism to utilize a
multiprocessor effectively.  In this section, we describe
the parallelization methods used by the Intel C++/Fortran
compiler for automatic multithreaded code generation.

Finding Parallel Loops
Finding effective parallelism is one of the critical steps in
generating efficient multithreaded code [6,8,11,12]. Based
on the control flow graph, the data flow graph and the
symbol table, the loop analyzer takes the following steps:

•  Finds all loops within the serial code and builds a
loop hierarchy structure.  It fills up loop parameters
such as trip count, lower bound, upper bound, and
pre-header.

• Performs data dependence analysis to classify loops.
Loops without loop-carried data dependencies are
marked as loops that can be made parallel.

• Performs static or dynamic granularity estimation for
each loop that can be made parallel.  Multithreaded
code for a parallel loop will be generated if and only
if parallelization of the loop is profitable.

An example of the optimization is shown below.

for (k=0; k < 1000; k++) {
       x[k] = k;
       w     = x[k];
       y[k] = w + x[k];
}

Parallel loop detection marks this loop as follows.

parallel for (k=0; k < 1000; k++) {
        private (k, w), shared (x, y)
        x[k] = k;
        w     = x[k];
        y[k] = w + x[k];
}

In this example, the loop is marked as a loop that can be
made parallel, and the variables “k” and “w” are marked
as private.  The arrays “x” and “y” are marked as shared.
In the next section, we discuss variable classification
based on liveness analysis.

Variable Classification
Liveness analysis [1,3] is well known and used in many
optimizations and transformations.  We use liveness
analysis to classify the variables in the lexical extent of a
loop that can be made parallel.

The private, firstprivate, and lastprivate attributes of
variables direct the multithreaded code generator to
implement privatization accordingly.

The shared attribute of a variable tells the multithreaded
code generator to generate code that shares the memory
location of this variable amongst multiple threads.

The following compilation rules are used to classify all
variables referenced in a parallel loop:

1. A variable is marked private if and only if it is not
live-in and not live-out on the current loop.

2. A variable is marked firstprivate if and only if it is
live-in and not live-out on the current loop.
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3. A variable is marked lastprivate if and only if it is
live-out and not live-in on the current loop.

4. A variable is marked shared if and only if it is live-in
and live-out on the current loop.

For the following example, the loop can be made parallel.
Liveness analysis yields var-set = {a, b, c, k, n, x}, live-
in-set = {a, b, c, n}, and live-out-set = {a, c, x}.

int foo(int b, int n, float c[]) {
      int   x = 101, k, a = 10;
      for (k=0, k < n; k++) {
            x = 5;
           c[k] =  x + a – b * k
      }
      return (a + x + c[0]);
}

Using compilation rules 1-4, variables “n” and “b” are
marked firstprivate.  Variables “a” and “c” are marked
shared.  Variable “x” is marked lastprivate.  Variable
“k” is a special form of a private variable: it is an
induction variable.  The data-race condition introduced by
such variables is removed by induction variable
privatization.

Static Granularity Estimation
Parallelizing a loop can result in slower execution if the
overhead of dispatching/scheduling threads and sharing
resources is significant compared to the total workload
performed by the loop.  The Intel C++/Fortran compiler
handles this by examining all the operations in the loop
body, estimating the grain-size per loop iteration on the
targeted microarchitecture, and multiplying this by the
loop trip count to arrive at an estimate of the total
workload of the loop.

For loops with known trip counts, this value is compared,
at compile time, to an experimentally determined
profitable workload threshold to see if the loop should be
multithreaded.  Loops with a workload exceeding this
profitable workload threshold will normally speed up
when executed in parallel threads.  For loops with
unknown trip counts, the workload is expressed as a
function of the trip count, and the compiler generates code
to dynamically evaluate this expression to determine
whether the loop should be executed with multiple
threads.

Note that this solution avoids all dispatching/scheduling
overhead and sharing of resources, if multithreaded
execution is not profitable.

For the following example, the compiler generates an
expression “(upper - lower) * grain-size” to compute the
workload at runtime, based on the lower and upper bound
and estimated grain-size.

       void  foo(int lower, int upper) {
                int i;
                for (i=lower; i<upper; i++) {
                   /* grain-size (in units of ops) */
                }
      }

The granularity estimation has the following form.

      trip_count  = upper - lower;
      workload   =  trip_count * grain-size;

      if (workload > (profit_probability *
                             PROFIT_WORKLOAD_THRESHOLD) {
             /* multithreaded execution of the loop */
      }
      else {
             /* serial execution of the loop */
      }

The profitable workload threshold (expressed in units of
ops) is a global constant applicable to all loops.  The
threshold comparison can be modified with a command
line option that sets the probability of profitable parallel
execution (“profit_probability”).  The workload is then
compared to the experimentally determined profitable
workload threshold multiplied by this probability.  The
value “0.0” causes the loop to be always executed as a
multithreaded loop, whereas the value “1.0” causes
multithreading to be used only if the workload exceeds
the profitable workload threshold.  The user can use any
intermediate value to cause multithreaded execution of
loops with low workloads that may still benefit from
being made parallel.

Profile-Guided Granularity Estimation
Beyond the static granularity estimation, in the PGO
mode of our compiler, we have implemented profile-
guided granularity estimation to evaluate the workload,
based on the execution count of basic blocks and branch
probability.  It is well known that compilers are often able
to generate better code with the knowledge of likely
execution paths.  It is even more important for a
parallelizing compiler to have the knowledge of the most
frequently executed regions in a program, in order to
determine if generating multithreaded code is profitable
or not.  Suppose that for the following code sample, we
have the train data set “lower = 0” and “upper = 100.”
The profiler computes a “branch-taken” probability of
“0.98” on the true branch and “0.02” on the false branch.
The execution count of the loop pre-header (viz “i =
lower”) is “1”, and the execution count of the loop header
is “100.”

       void  foo(int lower, int upper) {
                int i;
                for (i=lower; i<upper; i++) {
                    if (i>lower+1) {
                          /* TRUE-grain-size (in units of ops) */
                   }
                    else {
                           /* FALSE-grain-size (in units of ops) */
                    }
              }
      }

When these gathered execution measurements are fed
back into the second pass of PGO compilation, the
compiler compares “100 * (TRUE-grain-size * 0.98 +
FALSE-grain-size * 0.02)” with the profitable workload
threshold at compile time.  Multithreaded code will not be
generated if the comparison shows that parallelization is
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not profitable.  If, for example, the expression “TRUE-
grain-size” is very small, PGO may avoid the slowdown
introduced by parallelization.

MULTI-ENTRY THREADING
TECHNIQUE
The conventional technology for generating multithreaded
code is to generate an independent subroutine for each
parallel loop.  This is known as the outlining technology
[6].  In contrast to this conventional technology, we
propose a new technology called the mult i -entry
threading technique, which introduces three new concepts
in the control flow graph: T-entry (threaded-entry), T-ret
(threaded-return), and T-region (threaded-code-block).
The ideas behind the new technology are as follows:

•  The T-entry node contains the data environment for
each thread that is necessary to build communication
between the invoker (master thread) and the invokee
(worker thread).

•  The T-ret node informs the multithreaded runtime
system about termination of the thread.

• A T-region is defined by a [T-entry, T-ret] pair and is
kept inlined in the user-defined subroutine.

• Within a single user-defined subroutine, multiple [T-
entry, T-ret] pairs are permitted to represent multiple
T-regions.

•  The [T-entry, T-ret] pairs can be nested (e.g., [T-
entry, [T-entry, T-ret], T-ret]) to represent nested
parallelism.

The main feature of the multi-entry threading technique is
to keep all newly generated T-regions for parallel loops
inlined in the same user-defined subroutine, without
splitting them into independent subroutines.  This
technique provides subsequent compiler phases with more
potential to optimize the code.

The following is an example of multithreaded code
generation using the multi-entry threading technique.

float z[10000], w[10000];
void  foo(void) {
    int k, m, x[5000], y[5000];
    … …
    for (k=0;  k<5000; k++) {
        x[k] = x[k] + y[k] ;
    }
     for (m=0; m<10000; m++) {
        z[m] = z[m] * w[m];
    }
… …
}

There are two parallelizable loops in the subroutine “foo.”
The variables “k” and “m” are marked as private
induction variables; the arrays “x”, “y”, “z”, and “w” are
marked as shared.  The resulting multithreaded code is
illustrated below.  The Intel C++/Fortran compiler has

adopted the KAI* Guide runtime library for thread
creation and management.

float z[10000], w[10000];
void  foo(void)
{    int k, m, x[5000], y[5000];
      … …
     __kmpc_fork_call(loc, 2, T-entry(_foo_ploop_0), x, y)
     goto L1:
     T-entry _foo_ploop_0(loc, tid, x[], y[]) {
         lower_k = 0;
         upper_k = 5000;
        __kmpc_for_static_init(loc, tid, s, &lower_k, &upper_k, …);
        for (par_k=lower_k,  par_k<=upper_k; par_k++)  {
                   x[par_k] = x[par_k] + y[par_k] ;
        }
       __kmpc_for_static_fini(loc, tid);
       T-ret;
    }
L1:
    __kmpc_fork_call(loc, 0, T-entry(_foo_ploop_1));
    goto L2:
    T-entry _foo_ploop_1(loc, tid) {
        lower_m  = 0;
        upper_m = 10000;
        __kmpc_for_static_init(loc, tid, s, &lower_m, &upper_m, …);
        for (par_m=lower_m; par_m<=upper_m; par_m++)  {
             z[par_m] = z[par_m] * w[par_m];
        }
        __kmpc_for_static_fini(loc, tid);
        T-ret;
    }
 L2:
    … …
}

The multithreaded code generator inserts the thread
invocation call “__kmpc_fork_call” with the T-entry
point and data environment (e.g., line number “loc”) for
each loop.  This call into the KAI runtime library will fork
a number of threads that execute the iterations of the loop
in parallel.

The serial loops are converted to multithreaded code by
localizing the loop lower and upper bound, and by
privatizing the induction variable. Finally, multithreading
runtime initialization and synchronization code is
generated for each T-region defined by a [T-entry, T-ret]
pair.  The library call “__kmpc_for_static_init” computes
the localized loop lower bound, upper bound, and stride
for each thread according to a scheduling policy.  The
library call “__kmpc_for_static_fini” informs the runtime
system that the current thread has completed one loop
chunk.

Compared with the existing outlining technology, there
are three advantages to the multi-entry threading
technique for generating efficient multithreaded code:

•  The multi-entry threading technique does not create
separate compilation units for parallel loops, and the
required program transformations are very natural
and simple.  It reduces the complexity of handling
separate routines in the optimizer.

•                                                                         
* Kuck and Associates, Inc., an Intel Corporation.
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•  All generated T-regions for parallel loops are kept
inlined in the same compilation unit.  This minimizes
the impact on other optimizations such as constant
propagation, scalar replacement, loop transformation,
common expression elimination, and interprocedural
optimization.

•  Besides global and file-scope static variables, the
memory location of a local shared static variable can
be accessed naturally by multiple threads without
passing an argument on T-entry, since the generated
multithreaded code is kept inlined in the user-defined
subroutine.

AUTOMATIC VECTORIZATION
The Pentium III and Pentium 4 processors feature a rich
set of SIMD instructions on packed integers and floating-
point numbers that can be used to boost the performance
of loops that perform a single operation on different
elements in a data set.

The Pentium III processor introduced the 128-bit
streaming SIMD extensions [10], supporting floating-
point operations on 4 single-precision floating-point
numbers and some more instructions for the 64-bit integer
MMX™ technology.  The Pentium 4 processor further
extended this support for floating-point operations on two
double-precision floating-point numbers and widened the
integer MMX technology into 128-bit [9].  Because a
single instruction processes multiple data elements in
parallel, all these extensions are very useful to utilize
SIMD parallelism in numerical and multimedia
applications.

The Intel C++/Fortran compiler follows the standard
approach to the vectorization of inner loops [2,11,12].
First, statements in a loop are reordered according to a
topological sort of the acyclic condensation of the data
dependence graph for this loop.  Then, statements
involved in a data dependence cycle are either recognized
as certain idioms that can be vectorized, or distributed out
into a loop that will remain serial.  Finally, vectorizable
loops are translated into SIMD instructions.

Consider as an example the loop shown below.

double a[100], b[100], c[100];  /* assume arrays start at
                                                       16-byte boundaries */
…
for (i = 0; i < 100; i++) {
     a[i] = b[i] - c[i];
}

Since there are no data dependencies in this loop, the Intel
C++/Fortran compiler translates this loop into the
following SIMD instructions for the Pentium 4 processor.
Note that because double elements are eight bytes wide
and the vector loop processes two elements in each
iteration, the upper bound and stride for the offsets into
the arrays are 100x8=800 and 2x8=16, respectively.

SUB:
    movapd   xmm0, b[ecx]        ;   load       2 DP FP numbers

    subpd      xmm0, c[ecx]        ;   subtract 2 DP FP numbers
    movapd   a[ecx], xmm0        ;   store      2 DP FP numbers
    add          ecx, 16
    cmp         ecx, 800
    jl              SUB                      ;  looping logic

For loops with a trip count that cannot be evenly divided
by the vector length, a cleanup loop is used to execute any
remaining iteration serially.  In the PGO mode, a profile-
guided estimation of statically unknown trip counts is
used to determine whether vectorization is actually
worthwhile.

Alignment Optimizations
In the previous example, the aligned data movement
instruction “movapd” can be used because the compiler
has aligned the first elements of the three arrays at a 16-
byte boundary.  For unaligned (or unknown) access
patterns, the compiler must use unaligned data movement
instructions, like “movupd.”  Because there can be a
substantial performance penalty for unaligned data
references, the Intel C++/Fortran compiler has at its
disposal a variety of static and dynamic alignment
optimizations.

In the loop shown below, for instance, the compiler will
statically peel off one iteration to align all access patterns.

double a[100], b[100];   /* 16-byte aligned */
…                                                    a[1] = b[1] - 1;
for (i = 1; i < 100; i++) {                 for (i = 2; i < 100; i++) {
   a[i] = b[i] – 1;                   ◊              a[i] = b[i] – 1;
}                                                      }

For cases where the alignment of data structures cannot
be determined at compile time, the compiler uses a
dynamic loop peeling alignment strategy in which, at
runtime, first a few iterations are executed serially until
one or several access patterns become 16-byte aligned.

Consider, for instance, a simple initialization loop.

char *p = …;
…
for (i = 0; i < 100; i++)  p[i] = 0;

Without any further points-to information for “p”, the
compiler would have to conservatively assume that the
access pattern is unaligned.  Dynamically peeling off
some iterations based on the starting address of the array,
can, nevertheless, enforce aligned references.

peel = p & 0x0f;
if (peel != 0) {
    peel = 16 - peel;
    for (i = 0; i < peel; i++) p[i] = 0;
}
/* aligned access pattern */
for (i = peel; i < 100; i++) p[i] = 0;

Reductions
Although reductions give rise to data dependence cycles,
such idioms can be translated into SIMD instructions that
compute partial results in parallel.  Consider, for example,
the accumulation that occurs in the DDOT kernel.
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double d = 0.0;
for (i = 0; i < N; i++) {
     d += a[i] * b[i];
}

This reduction can be implemented as follows.  Note that
in this fragment, the size of double elements is accounted
for in the effective address computations.  As stated
before, serial cleanup code is generated after the vector
loop to deal with odd values of N.

        xorpd         xmm1, xmm1          ;   reset accumulator
DDOT:
        movapd     xmm0, a[ecx*8]        ;  load,
        mulpd        xmm0, b[ecx*8]       ;    multiply,
        addpd        xmm1, xmm0           ;      and accumulate
        add            ecx, 2                        ;       2 DP FP numbers
        cmp           ecx, N
        jl               DDOT                       ;  looping logic

        movapd     xmm0, xmm1          ;   postlude:
        unpckhpd  xmm0, xmm1          ;    add 2 partial
        addpd        xmm1, xmm0          ;       results into
        movsd       [esp], xmm1            ;              scalar d

Other reductions (based on any of the operators “+”, “-”,
“*”, “&”, “|”,  “MIN” or “MAX”) are handled similarly.

Short Vector Mathematical Library
The Intel C++/Fortran compiler comes with a Short
Vector Mathematical Library (SVML), developed at
Intel® Nizhny Novgorad Labs in Russia (INNL), that
provides efficient software implementations for
computing (inverse) trigonometric, (inverse) hyperbolic,
exponential, and logarithmic functions on (sub)arrays.
This library provides a clean interface to operate on
packed floating-point numbers.

The library allows the vectorization of loops that contain
any of these mathematical functions.  Consider, for
example, the following loop.

for (i = 0; i < 100; i++) {
      a[i] = sin(b[i]) + c[i];
}

Using the SVML allows the compiler to proceed with
vectorization of this loop as follows (an implementation
that passes arguments and results in the xmm-registers is
planned as well).

SIN:
        lea            ecx, b[esi]
        lea            eax, [esp+16]
        mov          [esp], ecx                  ;   define input address
        mov          [esp+4], eax              ;   define output address
        call           _vmldSin2                ;    call SVML
        movapd    xmm0, [esp+16]       ;    read result
        addpd       xmm0, c[esi]
        movapd    a[esi], xmm0
        add           esi, 16
        cmp          esi, 800
        jl              SIN                            ;   looping logic

Advanced Instruction Selection
Advanced instruction selection is used to vectorize certain
frequently occurring operations that can be efficiently
mapped onto the SIMD instructions of the Intel

architecture.  Consider, for example, the following loop
(the suffix letter “u” denotes an unsigned constant).

unsigned char x[256];
…
for (i = 0; i < 256; i++)
      x[i] = (x[i] >= 20u) ? x[i] - 20u : 0u;
}

The Intel C++/Fortran compiler recognizes the saturation
arithmetic done in this code fragment (if the result of the
subtraction would be negative, the result is saturated to
zero) and converts the serial loop into the following
SIMD instructions that operate on 16 unsigned characters
in each iteration.

        movdqa    xmm0, CONVEC  ;   load <20u,….,20u>
SAT:
        movdqa    xmm1, x[eax]
        psubusb    xmm1, xmm0        ;   perform  16 saturated
        movdqa    x[eax], xmm1        ;        subtractions
        add           eax, 16
        cmp          eax, 256
        jl              SAT                       ;   looping logic

The compiler also carefully selects the instructions that
are used to implement scalar expansions, certain type
conversions, and non-unit stride references. In addition,
the use of bit-masks supports the vectorization of singly
nested conditional statements.

For a detailed presentation of all the vectorization
methods used by the Intel C++/Fortran compiler, we must
refer to [5].

EXPERIMENTAL RESULTS
In this section, we discuss the results of some experiments
with automatic vectorization and parallelization.
Consider, for instance, the following code that computes
the product of a double-precision floating-point matrix
and vector.

for (i = 0; i < n; i++) {
   double d = 0.0;
   for (j = 0; j < n; j++) {
       d += a[i][j] * y[j];
   }
   x[i] = d;
 }

In the graph shown in Figure 1, we present the speedup
(uniprocessor vs. multiprocessor execution time) obtained
by automatic parallelization of the outermost loop in this
kernel on a dual 500MHz. Pentium III processor for
varying matrix orders. In the same figure, we also show
the speedup of serial vs. parallel execution obtained on a
quad 550MHz. Pentium III processor.  Speedups up to 3.2
and 1.6 are obtained for the quad and dual system,
respectively.
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Figure 1: Speedup for matrix x vector on a dual and
quad Pentium® III processor

As another example of automatic parallelization, consider
LU-factorization without pivoting.

  for (k = 0; k < n-1; k++) {
     for (i = k+1; i < n; i++) {
          a[i][k] = a[i][k] / a[k][k];
          for (j = k+1; j < n; j++)
               a[i][j] = a[i][j] - a[i][k] * a[k][j];
     }
  }

In this fragment, loop-carried data dependencies prohibit
parallelization of the outermost k-loop.  The iterations of
the i-loop, on the other hand, can be executed in parallel.
In Figure 2, we show the corresponding speedup on a dual
and quad shared-memory multiprocessor for varying
matrix orders. Despite the fact that the outermost loop has
to remain serial, speedups up to 1.3 and 2.6, respectively,
are still obtained.
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Figure 2: Speedup for LU-factorization on a dual and
quad Pentium® III processor

In Figure 3, we show the speedup (serial vs. vector
execution time) obtained on a 1.5GHz. Pentium 4
processor by automatic vectorization of a single-precision
dot-product kernel (SDOT) and a double-precision dot-
product kernel (DDOT) for array lengths ranging from 1
to 64K. For comparison, we also present the speedup
obtained by a hand-coded assembly version of the latter
kernel (ASM, courtesy Henry Ou).  Execution times were
obtained by running the kernel many times and dividing
the total execution time accordingly, so that for data sizes

that fit in the 256KB L1 cache, effectively “warm cache
behavior” is measured.
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Figure 3: Speedup for dot-product on a Pentium® 4
processor

The performance of the SDOT and DDOT kernels
observed after automatic vectorization (counting one
floating-point addition and multiplication per iteration)
exceeded 3.3 GFLOPS and 1.8 GFLOPS, respectively.

Automatic vectorization of a LINPACK benchmark
(available at   http://www.netlib.org.benchmark/  ) boosted
the performance of solving a system of linear equations
defined by a 100x100 double-precision matrix on a
1.5GHz. Pentium 4 processor from 582 MFLOPS to 700
MFLOPS.

In the last graph shown in Figure 4, we show the speedup
obtained on a 1.5GHz. Pentium 4 processor by automatic
vectorization of kernels of the form “x[i] = F(y[i])”.  The
experiments are done for three different double-precision
floating-point functions, supported by SVML, and array
lengths varying from 1 to 256, with input sets consisting
of uniformly distributed values in the range 0 through
2*_.
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Figure 4: Speedup for math functions on a Pentium®
4 processor

DISCUSSION
The experiments reveal that the automatic detection of
implicit parallelism in serial software can provide a very
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portable way of effectively exploiting SIMD instructions
or multiple CPUs on systems that are based on the
Pentium III and Pentium 4 processors.  Automatic
parallelization of the outermost loop in the matrix times
vector product starts to speed up for matrices with an
order that exceeds 32 on both the dual and quad
multiprocessor with an efficiency (Speedup / #processors
x 100%) going up to over 80% for larger matrices.
Likewise, automatic parallelization of the second
outermost loop in an implementation of LU factorization,
without pivoting, yields efficiencies of over 60%.

Automatic vectorization of the DDOT kernel yields
speedup comparable to the speedup obtained by a hand-
optimized assembly implementation.  Combining
vectorization with efficient software implementations of
frequently used mathematical functions already exhibits
speedup for arrays with a length of only 2.  Another clear
advantage of having a vector implementation of
mathematical functions is that vectorization of a loop does
not have to bail out in the presence of such function calls.

CONCLUSION
Explicitly exploiting parallelism in a program can be a
cumbersome and error-prone task.  It may require the use
of inline assembly to generate the appropriate SIMD
instructions or the use of a complicated threading library
to take advantage of the computing power available on a
multiprocessor.  Although such explicit techniques can be
extremely effective, they are not portable and greatly
complicate program development and maintenance.  An
alternative approach is to let a compiler do (at least part
of) the exploitation of fine- and medium-grained
parallelism automatically.  With this approach, the
compiler analyzes a program that is written in a sequential
language for implicit opportunities to exploit parallelism,
and it generates code that takes advantage of this implicit
parallelism.

In this paper, we provided a high-level overview of the
automatic parallelization and vectorization methods used
by the Intel C++/Fortran compiler developed at the
Microcomputer Software Labs.  We have shown that
these methods can obtain good speedup on systems based
on the Pentium III and Pentium 4 processors, without the
need for any source code modifications.  Hence,
automatically exploiting implicit parallelism provides a
convenient way for programmers who are not familiar
with the Intel architecture to boost the performance of
their applications.  In addition, it may even assist expert
programmers by minimizing the number of loops that
have to be hand optimized to exploit all available
parallelism.  Finally, the approach allows the automatic
parallelization and vectorization of existing serial
software, thereby avoiding the potentially huge
investments that would be required to hand optimize this
code.

More information on Intel’s high-performance compilers
can be found at

http://developer.intel.com/software/products/  
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