
Efficient Hash Probes on Modern Processors

Kenneth A. Ross
IBM T. J. Watson Research Center and Columbia University

kar@cs.columbia.edu

Abstract

Bucketized versions of Cuckoo hashing can achieve 95–
99% occupancy, without any space overhead for pointers or
other structures. However, such methods typically need to
consult multiple hash buckets per probe, and have therefore
been seen as having worse probe performance than con-
ventional techniques for large tables. We consider work-
loads typical of database and stream processing, in which
keys and payloads are small, and in which a large num-
ber of probes are processed in bulk. We show how to im-
prove probe performance by (a) eliminating branch instruc-
tions from the probe code, enabling better scheduling and
latency-hiding by modern processors, and (b) using SIMD
instructions to process multiple keys/payloads in parallel.
We show that on modern architectures, probes to a bucke-
tized Cuckoo hash table can be processed much faster than
conventional hash table probes, for both small and large
memory-resident tables. On a Pentium 4, a probe is two to
four times faster, while on the Cell SPE processor a probe
is ten times faster.

1 Introduction

Hashing is a commonly used technique for providing ac-
cess to data based on a key in constant expected time. It is
used in database systems for joins, aggregation, duplicate-
elimination, and indexing. Payloads may be pointers (or
record identifiers) to records, or they may represent values
of an aggregate computed using hash aggregation.

We use an open addressing hash scheme based on a
bucketized version of d-ary cuckoo hashing [4]. We will re-
fer to this data structure as a “splash table”.1 In this scheme,
probes always take a fixed, constant time, and access a small
fixed number of cache lines, typically 2, 3, or 4, depending
on the parameters chosen.

1As one entry is dropped into a hash bucket, it may cause another entry
to “splash” into another bucket. (We propose a new name to be able to refer
to it concisely, and to distinguish it from other Cuckoo hashing variants.)

Our main contribution is to enhance the probe phase of
this scheme in a way that significantly enhances its per-
formance on modern architectures for probing both small
(cache resident) and large (memory resident) data sets. Our
improvements rely on two ideas: (a) The use of probe
code that is free of conditional branches, and (b) The use
of Single-Instruction Multiple-Datastream (SIMD) instruc-
tions to process multiple keys and payloads in parallel. By
avoiding branches, we not only avoid branch mispredic-
tions, but we also allow more flexibile instruction schedul-
ing, leading to a higher degree of overlapping of latencies.

At first glance, it appears that Cuckoo-based hashing
would be worse than a standard scheme for large hash tables
because it requires at least two memory references. A stan-
dard scheme will typically need just one reference for most
probes. However, modern CPUs can support multiple out-
standing memory requests, and independent accesses can
be overlapped. While the required memory bandwidth for
splash tables is double that of a standard hash table, memory
bandwidth is typically not a performance bottleneck. Over-
lapping of memory accesses is not possible for conventional
hash methods because later memory accesses are dependent
on the state (such as the address of the overflow bucket) of
earlier memory accesses.

Zukowski et al. [12] have also used cuckoo hashing to
improve probe performance. Their work is similar to ours
in that it attempts to remove branch operations in order to
improve the overall number of cycles per instruction. How-
ever, there are several significant differences: (a) Their work
builds on [8] rather than [4], meaning that the space uti-
lization is about half as good. (b) They do not demon-
strate that probes scale beyond cache-resident tables. In-
stead, they propose a partitioning step that divides the data
into cache-sized units. In contrast, our probe results scale to
RAM-sized tables without partitioning. (c) Our evaluation
includes a modern architecture (the Cell SPE) that does not
provide out-of-order execution. (d) [12] does not use SIMD
instructions. (e) [12] does not use a universal hash function.

Dietzfelbinger and Weidling propose and analyze a dif-
ferent bucketized extension of cuckoo hashing [3]; the mea-
sured probe cost in their implementation on a Pentium 4 is

approximately 1900 cycles/probe for a large table, an order
of magnitude more expensive than the results achieved here.

We evaluate splash tables on several modern architec-
tures. Our primary platforms are a Pentium 4 machine, and
the Synergistic Processing Element (SPE) of the Cell Pro-
cessor [6]. A Cell chip contains eight independent SPEs,
each of which has a 256KB local store with a 6 cycle la-
tency. The Cell chip also contains a conventional PowerPC
core. The SPEs can be seen as specialized processors that
can be used to accelerate tasks that map well to their SIMD
design. For example, based on the present study, the SPEs
could be used to offload (from the conventional PowerPC
processor on the Cell chip) dimension table lookups for a
foreign key join with a large fact table. We will also exam-
ine probe performance on the Cell PowerPC processor, and
on an AMD Opteron processor.

Our probe results (Section 3) show improvements over
conventional hash tables, for both small and large tables,
on several modern architectures. Performance improves by
a factor of 2 to 4 on a Pentium 4, and by a factor of 10
on a Cell SPE. In applications where there are many more
probes than insertions (such as database joins where one
typically builds a hash table on the smaller relation) the net
result is a significant performance improvement.

2 Outline of the Approach

We shall assume that both keys and payloads are 32 bit
values. Longer keys and/or payloads are discussed in [10].
We assume that the hash table contains no duplicate keys2

and that zero is not a valid payload value.
We use multiplicative hashing, which is universal [2], ef-

ficiently computable [11], and amenable to vectorization, so
that we can compute multiple hash functions at once. We
do not require that the table size be a power of 2; arbitrary
tables sizes are handled efficiently, without the use of ex-
pensive division or modulus operations [10].

The build process is essentially the same as that de-
scribed by Erlingsson et al [4]. A key is hashed accord-
ing to H hash functions, leading to H possible locations in
the table for that key. Each location is a bucket capable of
holdingB entries.

When the table is close to full, the system may encounter
a key whose H candidate buckets are all full. In that case,
we follow a reinsertion procedure [5]. Choose a bucket b
at random from among the candidates, remove the key that
had been inserted earliest from that bucket, and place the
original key in b. The removed key is then inserted into one
of its H − 1 remaining candidate buckets. If all of these
are full, the process is repeated recursively. If, after some

2Duplicate keys can be handled by making the payload be a pointer to
a list of records with that key value.

large number3 of recursive insertions, there is still no room
for the key, then the build operation fails. One can typically
achieve very high space utilization (95–99%) without en-
countering an insertion failure [4, 10]. Hash buckets that
are not full are padded with records having a zero payload.

Given a hash table constructed as above, a probe needs
to compute H hash functions and consult H slots of the
hash table. For each slot, one compares each of the B keys
against the search key for each slot, and return the payload
of a match if one was found. Because we always do
the same number of comparisons, loop unrolling eliminates
loop branches within the probe operation.

We can also avoid branch mispredictions in the test for
a hash match by converting the control dependency into a
data dependency. A comparison operation generates a mask
that is either all 0’s (no match) or all 1’s (a match). Such
mask-generating comparisons are in the instruction sets of
modern processors. The mask can be applied to each of the
payloads, with the results ORed together. Since there are no
duplicate keys, at most one of the disjuncts will be nonzero.
An unsuccessful match returns zero.

A hash bucket is organized as follows. B keys are stored
contiguously, followed by B contiguous payloads. This ar-
rangement allows us to use SIMD operations to compare
keys and process payloads. For example, if a SIMD register
is 128 bits long (as in the Cell SPE and using SSE on the
Pentium) then four keys or four payloads can be processed
in parallel using a single machine instruction. As a result, a
good choice for B would be a small multiple of 4. Further,
when B = 8 the total size of a bucket is 64 bytes, which
fits within the typical L2 cache line of modern processors.
Thus there would be no more than H cache-line accesses.

A flowchart for the vectorized probe algorithm is given
in Figure 1 for H = 2 and B = 4, using generic SIMD in-
structions that are close to the Pentium’s SSE2 instructions.
Solid lines represent the flow of data, usually in 128-bit vec-
tors, while dashed lines represent a memory reference. If
keyK7 matches the probeK, then the output contains pay-
load P7 in the leftmost SIMD slot. Note that even if an
invalid key in a partially full bucket accidentally matches
the hash probe, the corresponding payload is zero and the
match will not affect the result.

3 Experimental Results

We focus on the performance of the probe algorithms.
For a comparison of the build times, see [10]. We have im-
plemented the various probe algorithms in C. On the Pen-
tium 4 we use Intel’s icc compiler (version 9.0), which
generated slightly more efficient code than gcc. On the
Cell, we used IBM’s xlc compiler (version 050418y) for
the SPE. Maximum optimization was employed.

3We use a value of 1000 as the limit for our experiments.

K4K3K2K1P4P3P2P1

Bucket 1, 4 keys, 4 payloads

K8K7K6K5 P8P7P6P5

Bucket 2, 4 keys, 4 payloads

��������	
�

KKKK

Search Key K

��������	
�

������
� ������
��������

�������	������ P7

�����
����

TT

M2M1

Hash multipliers (little endian)

���������

H2H1

Table size

���������
S2S1

Table slots

Hash values

mask mask

Figure 1. Probe flowchart (K7 matches K).

We implemented an open addressing hash table with
quadratic probing, and chained-bucket hashing with bucket
size S set to 64 bytes. This code contains no architecture-
specific optimizations, and compiles on both the Pentium
4 and the Cell SPE. Unless otherwise mentioned, both hash
table variants are populated with a load factor of 0.75. Table
size is set to a power of two, so that a logical AND opera-
tion (rather than a remainder computation) can be used to
calculate the hash slot.

The two other code versions are splash table probes im-
plemented as described in Section 2. One of these versions
uses SPE-specific SIMD instructions, while the other uses
Pentium-4-specific SSE2 instructions. In both cases, these
instructions were invoked using compiler intrinsics. When
the table size fits in 16 bits, specialized versions of the hash
and probe routines are used to save several instructions.
Since the local store of the SPE is limited to 256KB, we
limit the size of tables used on the Cell SPE. All code vari-
ants use multiplicative hashing.

The Cell SPE code is evaluated using IBM’s spusim,
which simulates the Cell SPE architecture, and is close to
cycle-accurate. spusim allows one to determine how cy-
cles were spent during program execution. For validation
purposes, we also measure the performance of code running
on a 2.4GHz IBM Cell blade. The Pentium 4 code is run on
a 1.8 GHz Pentium 4 that is used solely for these experi-
ments. The machine runs linux 2.6.10 and has a 256KB L2
cache, an 8KB L1 data cache, and 1GB of RAM. We mea-
sured the L2 latency, L1 latency, and TLB miss latency of
the machine using the calibrator tool [7]; they were 273, 17,
and 56 cycles respectively. During code execution we mea-
sured the values of hardware performance counters using
the perfctr tool [9]. The branch misprediction penalty
of the Pentium is assumed to be 20 cycles. (It is 18 cycles
on the Cell SPE [6].)

When presenting our results on the Pentium, we will be
interested to know the effects of cache misses, branch mis-
predictions, and TLB misses on the final number of cycles

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

8M256K (L2,TLB cap.)8K (L1 cap.)

C
yc

le
s/

pr
ob

e

Total Hash Table Size

Total time
Branch misprediction
(overestimated) L2 miss
(overestimated) L1 miss
(overestimated) TLB miss

Figure 2. Chained-bucket hashing: Pentium.

needed. We multiply the counts for these events (obtained
using the performance counters) by the latencies mentioned
above. While this gives a reasonably accurate measure of
the impact of branch mispredictions, it can overestimate the
impact of cache misses and TLB misses because (a) they
can be overlapped with other work, including other misses,
and (b) multiple references to the same cache-line may be
flagged as a miss multiple times even though a single miss
penalty is paid. As a result of this overestimation, it may ap-
pear as though the aggregate L2 cache miss penalty exceeds
the total execution time, an obviously inconsistent result.
Nevertheless, it is very difficult to measure the overlapping
and overcounting effects mentioned above to get a better
estimate. We therefore include the results in this overesti-
mated form, with the understanding that the true impact is
some fraction of the plotted number of cycles.

We measure all Pentium 4 performance numbers in cy-
cles. The Cell SPE is designed to operate at frequencies
between 3 and 5 GHz [6]. Thus it is reasonable to assume
that a cycle on an SPE is roughly the same amount of time
as a cycle on the most recent Pentium 4 models.

Our performance results measure a large number of
probes in a tight loop, simulating (part of) the probe phase
of a hash join. The number of probes is large enough that
probe costs dominate the initialization overheads. For the
generic code, we interleave probes that are successful with
probes that are unsuccessful. Splash table performance is
not sensitive to whether or not the search is successful.

The x-axes of some figures show the total data struc-
ture size. This choice makes it easy to see transitions that
happen when the table size goes beyond milestones such
as the cache capacity. Splash tables can fit more entries
into a fixed amount of memory than hash tables [4]. Thus,
comparing the two methods at a given data structure size is
somewhat biased in favor of hash tables.

To achieve good probe performance, we have optimized
the probe phase of one hash algorithm so that (a) it does not

 0

 50

 100

 150

 200

 250

64M8M256K (L2,TLB cap.)8K (L1 cap.)

C
yc

le
s/

pr
ob

e

Total Splash Table Size

Total time
(overestimated) L2 miss*

(overestimated) L1 miss
(overestimated) TLB miss

Figure 3. Splash tables: Pentium.

use conditional branches, and (b) it uses SIMD instructions.
To be fair, we should try to use the same optimizations to
improve the performance of competing algorithms. When
we attempted these transformations on conventional hash
algorithms, the performance worsened [10].

3.1 Pentium

Figure 2 shows the performance (measured in cycles per
probe) of chained-bucket hashing on the Pentium 4. For ta-
bles that fit comfortably in the L2 cache, the performance is
between 108 and 135 cycles/probe. However, once the hash
table exceeds the L2 cache size of 256KB (which is also the
TLB capacity) the cost increases dramatically, exceeding
500 cycles/probe. The branch misprediction penalty does
not seem to depend on the table size. For L2-cache resi-
dent tables, the branch misprediction penalty accounts for
about 20% of the total cycles. The number of instructions
retired per probe for these experiments was 55, independent
of hash table size. The performance of quadratic probing is
slightly better than chained-bucket hashing for small tables,
but substantially worse for large tables [10].

Figure 3 shows the performance of a splash table with
B = 4 and H = 2 on the Pentium 4. (See [10] for other
values of B and H .) The L2 cache miss measurement is
anomalous, and should be ignored.4 For tables that fit com-
fortably in the L2 cache, the performance is between 45
and 63 cycles/probe. Once the splash table exceeds the
L2/TLB capacity the cost increases modestly, to about 100
cycles/probe for a 64MB table. The branch misprediction
penalty is essentially zero, and is not shown in the figure.
The number of instructions retired per probe for these ex-
periments was 27 when the table size fits in 16 bits, and 33
for larger table sizes.

4It appears that the Pentium 4 cache-miss performance counter has a
design flaw that causes it to ignore certain kinds of L2 misses [1], including
the kind encountered in this code.

The difference between Figures 2 and 3 is dramatic: a
factor of two for small tables, and a factor of four for large
tables. The improvement is attributable to several factors:
(a) Eliminating the branch misprediction penalty; (b) Re-
ducing the number of instructions needed per probe through
the use of loop unrolling and SIMD operations; (c) Over-
lapping multiple cache misses, because the elimination of
branching allows the CPU to better schedule multiple de-
pendency chains through the instruction pipeline.

For tables smaller than the L2 cache, the time perfor-
mance of splash tables is comparable to the performance of
a 10% full hash table, while the hash table uses 9.5 times
as much space [10]. However, for tables larger than the L2
cache, splash tables perform about three times better [10].

The number of cycles per probe in [12] appears smaller
than what is presented here for L1-cache resident tables.
However, [12] is measuring a probe method that does less
work. In particular, the probe returns when it has the index
of the matching record rather than the value of the payload
itself, and a non-universal hash function is used.

3.2 Cell

Figure 4 compares the total number of cycles taken by
a splash table with H = 2, B = 4, and the two hashing
methods on the Cell SPE. Since the SPE has no caching
mechanism, the performance is not sensitive to the hash ta-
ble size. The configuration shown corresponds to a splash
table of size 128KB, and a hash table of size 155KB con-
taining the same number of entries. (Recall that the SPE
has only 256KB of local memory.) The total number of in-
structions per probe for the splash table is 29, comparable
to that for the Pentium. These 29 instructions are executed
in 20.5 cycles according to the simulator. When run on an
actual Cell SPE processor, the time taken was 21.1 cycles
per probe. The SPE has two execution pipelines that can
execute memory operations in parallel with computation.
About half of the useful cycles were spent executing two
instructions (“dual cycle” in the figure). The 20.5 cycles
for the splash table is an order of magnitude better than the
250 cycles needed for the hash table.

The chained-bucket hash table needed 125 cycles per
probe, double that of the Pentium. The Cell SPE has
very simple branch-prediction logic that (in the absence of
compiler-generated hints) predicts that a conditional branch
will not succeed. The SPE therefore suffers a higher mis-
prediction penalty than the Pentium, as can be seen in Fig-
ure 4. The final component of the time taken for the hash
table is the dependency-related stalls. Because the code
branches often, it effectively becomes a single dependency
chain. In contrast, the splash table implementation allows
the compiler to interleave instructions from several consec-
utive probes. Because each probe is independent, there are

0

50

100

150

200

250

300

Splash Chained Hash Quadratic
probing (0.75)

Quadradtic
Probing (0.1)

Cycles on Cell: Splash vs. Hash

Dependency stall
Branch-related stall
Single Cycle
Dual Cycle

Figure 4. Simulated Cell SPE Performance.

far fewer dependency-induced stalls. The quadratic prob-
ing results are similar to those for chained-bucket hashing.

It appears that on conventional code such as chained-
bucket hashing, the Pentium 4 outperforms a Cell SPE by a
factor of two (assuming the same clock frequency). Yet for
specialized code such as the splash table code that is free
of branches, the SPE outperforms the Pentium 4 by a factor
of 3.5. For an explanation of why these architectures have
such contrasting performance characteristics, see [10].

3.3 Other Architectures

We examine whether the nice scaling results demon-
strated for a 1.8 GHz Pentium 4 in Section 3.1 hold for other
architectures. Figure 5 shows the results for two Pentium 4
machines, the Cell Power processing element (PPE), and
an AMD Opteron. The PPE code was compiled using the
IBM xlc compiler version 1.0, while the Opteron runs the
same code as the Pentiums, generated using icc. The ver-
tical scale shows the probe cost as a fraction of the memory
latency. (Memory latencies are measured using the Calibra-
tor tool [7].) If this fraction is less than 1, it means that the
amortized time for a probe is less than the latency of an L2
cache miss. For tables much larger than the L2 cache, this
number can be less than 1 only if there is significant overlap
of memory latency with other work/latency.

For both Pentiums and the Cell PPE, the ratio is about
0.5 for almost all of the memory range. Each probe incurs
two cache misses, meaning that the system typically has at
least four memory references in flight at the same time. The
ratio for the Opteron is somewhat higher, due in part to its
low memory latency that means that other parts of the com-
putation have a larger relative impact on the overall time.

4 Conclusions

Past work has shown that extensions of cuckoo hashing
can achieve good space utilization. However, it has typi-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
pe

r p
ro

be
 a

s
a

fra
ct

io
n

of
 L

2
m

is
s

la
te

nc
y

Table size (bytes)

Pentium 4 (1.8GHz, 1GB RAM, 256K L2, latency 154ns)
Pentium 4 (3.0GHz, 2GB RAM, 1M L2, latency 112ns)
Cell PPU (2.1GHz, 512M RAM, 384K L2, latency 274ns)

Opteron (2.0GHz, 4GB RAM, 1M L2, latency 66ns)

Figure 5. Probe cost ÷ memory latency.

cally been assumed that these schemes perform no better
than (and probably worse than) conventional hash tables
since they require additional memory references and hash
evaluations. The main contribution of the present work is
to show that one can achieve both superior space utilization
and superior probe time for bulk probes of small keys and
payloads, for small or large tables.

References

[1] IA-32 Intel Architecture Software Developer’s Manual, Vol-
ume 3: System Programming Guide, September 2005.

[2] M. Dietzfelbinger, T. Hagerup, J. K. Jainen, and M. Pent-
tonen. A reliable randomized algorithm for the closest pair
problem. J. Algorithms, 25(1):19–51, 1997.

[3] M. Dietzfelbinger and C. Weidling. Balanced allocation
and dictionaries with tightly packed constant size bins. In
ICALP, pages 166–178, 2005. Extended version available at
http://www.tu-ilmenau.de/fakia/md-papers.html.

[4] U. Erlingsson et al. A cool and practical alternative to tra-
ditonal hash tables. In Workshop on Distributed Data and
Structures, 2006.

[5] D. Fotakis et al. Space efficient hash tables with worst case
constant access time. Theory Comput. Syst., 38(2):229–248,
2005.

[6] J. A. Kahle et al. Introduction to the cell multiprocessor.
IBM Journal of Research and Development, 49(4/5), 2005.

[7] S. Manegold. The calibrator: a cache-memory and
TLB calibration tool. (version 0.9e). Available from
http://homepages.cwi.nl/˜manegold, 2004.

[8] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms,
51(2):122–144, 2004.

[9] M. Pettersson. Perfctr (version 2.6.18).
http://user.it.uu.se/˜mikpe/linux/perfctr/.

[10] K. A. Ross. Efficient hash probes on modern proces-
sors. IBM Research Report RC24100, 2006. Available at
http://domino.watson.ibm.com/library/CyberDig.nsf.

[11] M. Thorup. Even strongly universal hashing is pretty fast.
In SODA, pages 496–497, 2000.

[12] M. Zukowski et al. Architecture-conscious hashing. In
Workshop on Data Management on New Hardware, 2006.

