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Contribution

e Fastest sorting performance for modern
computer architectures

 Implementation of the Multi-Way Merge
e Avoiding expensive unaligned load/store ops



Developments in Architecture

e Evolution of different features over time that
have brought a substantial performance
improvement in algorithmic implementation

e Parallelism at different levels
1.1LP

2.DLP

3.TLP

4. MLP




ILP

Instruction Level Parallelism eg. Branch prediction, out
of order execution

DLP

eData Level Parallelism
*SIMD

TLP

*Thread level parallelism eg. hyperthreading
*Relies on cache design

MLP

Memory level parallelism eg. Hardware prefetchers




SIMD (Sim — D)

e Single Instruction Multiple Data

MMX Registers



e Streaming SIMD
Extensions

e Enhanced Instruction
Set

e Accounts for both
types of registers
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SIMD Advantages/Disadvantage:
A.Does uniform computation extremely quickly

D. Not applicable to non-uniform
transformations

For advanced computation, we need a shuffle
operation.

Al A2 A3 A4, B1 B2 B3 B4 — we want to compare
adjacent elements.



SIMD Instructions

ADDPS - Add Packed Single-Precision FP Values
ADDSS - Add Scalar Single-Precision FP Values

ANDPS: Bitwise Logical AND For Single FP

CMPccPS: Packed Single-Precision FP Compare

MOVAPS: Move Aligned Packed Single-Precision FP
Values

MOVUPS: Move Unaligned Packed Single-Precision
FP Values



Mergesort and the Proposed
Algorithm

For the remainder of the paper. we use the following no-
tation:
N : Number of input elements,
F : Number of processors.
K o SIMD width.
C : Cache size (L2) in bytes.
M : Block size (in elements) that can reside in the cache.
£ : Size of each element (in bytes).
BW,,: Memory Bandwidth to the core (in byvtes per cycle).

Idea: Take advantage of cache by dividing dataset into chunks
If Cache size is C, Block size = C/2*E



Algorithm

Divided into 2 phases
I

1.Divide input data into blocks of size C/2E
- Merging networks

2. P sorted lists (P threads) merged together

End of phase 1:N/M sorted blocks of size M



Algorithm - ctd

|
1.log(N/M) iterations of merging sorted lists

2.Use multi-way merging to optimize and avoid
memory bandwidth issues



Merging Networks
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Figure 1: Odd-Even merge network for merging se-
guences of length 4 elements each.
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Figure 2: Bitonic merge network for merging se-
quences of length 4 elements each.



Merging 2 sorted lists

2 sorted lists X,Y (length L)
Assume 4 wide SIMD
Sorting code runs (2L/4 -1) times

Latency between operations is a major
problem

Min/Max operation takes 3 cycles, shuffle
takes 1 cycle.



Solutions

1. Using a wider network (16x16 bitonic)
2.5X speedup

2. Simultaneously merge multiple lists
3.25X speedup



Exploiting Multiple Cores

Bandwidth becomes the new bottleneck

Multiple threads can share the last-level
caches

Divide the M-size blocks among the P threads,
M’ =M/P

For each pair of consecutive threads, find the
median of their merged list.

Median points may not be aligned locations



MultiWay Merge

Compute individual lists and merge using a
binary tree

At any node, if there is an empty slot in its
FIFO queue and each of its children has at
least one element in its queue, smaller of
the two elements is moved into the node’s
gueue from the child’s queue.

Process these ‘ready’ nodes in a 4K by 4K
network in parallel.




Analysis

* Single Thread Scalar Implementation

Using cache, we can ignore the memory access
time for one block compared to the
computation of another.
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e Single Thread SIMD Implementation

Let a be the min/max latency, b be the
shuffle latency, c be the communication
latency/inter functional unit latency.

We want to find total running time based
on these and K.

Generalized expression:
((a+b+2c+2)log2K + (b+c+22))/4K = 3
cycles/element on a 4 wide SSE
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Figure 7: Timing diagram for the two functional
units during the execution of the merging network.




 Time barrier for synchronization is
proportional to the number of cores
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Results

No. of | ciox | 1M | aM | 16M | 64M | 256M
Elements

Scalar 101 101 ] 1011 101 ] 101 101

SIMD 50 | 20 [ 20 | 30 | 31 33

Table 3: Single-Thread Performance (in cycles per
element per iteration).

Parallel Speedup
%]

Mumber of Cores
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