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ABSTRACT
The increasing main-memory capacity has allowed query ex-
ecution to occur primarily in main memory. Database sys-
tems employ compression, not only to fit the data in main
memory, but also to address the memory bandwidth bottle-
neck. Lightweight compression schemes focus on efficiency
over compression rate and allow query operators to process
the data in compressed form. For instance, dictionary com-
pression keeps the distinct column values in a sorted dictio-
nary and stores the values as index codes with the minimum
number of bits. Packing the bits of each code contiguously,
namely horizontal bit packing, has been optimized by using
SIMD instructions for unpacking and by evaluating predi-
cates in parallel per processor word for selection scans. In-
terleaving the bits of codes, namely vertical bit packing, pro-
vides faster scans, but incurs prohibitive costs for packing
and unpacking. Here, we improve packing and unpacking
for vertical bit packing using SIMD instructions, achieving
more than an order of magnitude speedup. Also, we opti-
mize horizontal bit packing on the latest CPUs and compare
all approaches. While no single variant is better in all cases,
vertical bit packing offers a good trade-off by combining the
fastest scans with comparably fast packing and unpacking.

1. INTRODUCTION
The increase in main-memory capacity has allowed small

to medium-sized databases to fit in main memory and the
bottleneck has shifted from disk access to the memory band-
width. In-memory query execution has raised the bar and
vendors strive to provide real-time evaluation of analytical
queries, even if a large portion of the database is accessed.

Column stores are a structural evolution of analytical data-
base systems to adapt to the memory bandwidth bottleneck.
By storing each column separately, we maximize the por-
tion of useful data transferred for queries that access a few
columns. To optimize the data fetching rate, we maximize
both the useful data per transfer and the rate of transfers.
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Sequential memory scans are preferred over random ac-
cesses. Dropping the indexes altogether in favor of linear
table scans is now a sensible design [21]. Cache-conscious
joins, sorting, and aggregation also eliminate non-sequential
accesses, while facilitating thread scalability. By tuning each
operator to the underlying hardware, database systems max-
imize performance close to the hardware limit. In this con-
text, memory bandwidth is the most important bottleneck.

Analytical databases are compressed, not only to fit the
data in main memory, but also to improve beyond the mem-
ory bandwidth. Compression schemes allow operators to
process the data directly on the compressed format [21, 24].
The most common scheme is dictionary compression. In its
pure form, the n distinct values of each column are kept
in a sorted dictionary and instead of storing the actual col-
umn values of each tuple, we store the dictionary indexes
as codes using dlogne bits. Joins and selections can process
the compressed codes instead of the actual values. Predicate
constants in the query are also converted into codes that
maintain the same order, by using the sorted dictionary.

Various techniques exist for packing the dictionary codes.
In the standard horizontal bit packing, we can accelerate
scans by wasting space to ensure word-alignment and allow
for in-register data-parallel predicate evaluation [8]. Other-
wise, we can still unpack the fully packed codes efficiently
using SIMD instructions [24]. To achieve optimal scan per-
formance by even skipping some parts of the data, we must
pack the bits vertically [12] by interleaving them. However,
the vertical layout is too expensive to generate and incurs
prohibitive costs for extracting a large portion of tuples.

In this paper we study both the horizontal and the vertical
bit packing layout, by focusing on three operations: packing,
unpacking, and scans. We optimize the horizontal layout, in-
cluding the word-aligned variant, using instructions that are
only available in the latest mainstream CPUs and achieve
significantly better instruction efficiency. Our novel con-
tribution is the design and implementation of packing and
unpacking for the vertical bit packing layout using SIMD
instructions, which increases performance by more than an
order of magnitude. Finally, we compare all approaches and
highlight strengths and weaknesses. While horizontal bit
packing is highly competitive, vertical bit packing combines
the fastest scans with comparably fast packing and unpack-
ing. Our work offers deep insights on the layouts and extends
the trade-off options for lightweight database compression.

Section 2 presents related work. Sections 3 and 4 discuss
horizontal and vertical bit packing respectively. Section 5 is
our experimental evaluation and we conclude in Section 6.



2. RELATED WORK
Modern analytical databases are tuned for main-memory

accesses [14]. Zukowski et al. discussed RAM to CPU-cache
decompression [27]. Abadi et al. incorporated compression
into query execution [1]. Holloway studied schema-tuned
query code generation [5]. Johnson et al. studied selection
scans on bit packed data [8]. Willhalm et al. optimized bit
unpacking [24]. Raman et al. discussed entropy compres-
sion [20] and applied multiple techniques [21]. Mülhbauer
et al. optimized data loading from CSV files [15]. Li et al.
proposed vertical bit packing [12] and denormalization with
compression to convert complex queries into scans [13]. Feng
et al. studied aggregation functions on bit packed data [4].

Many compression schemes focus on efficiency. Anh et
al. proposed pattern-based compression in processor words
[2], Schlegel et al. studied skew-friendly compression [22],
Stepanov studied vectorized variable-byte encoding [23], and
Lemire et al. discussed vectorized frame-of-reference [11].

SIMD instructions have been used in many database op-
erators. Zhou et al. used SIMD in linear scans, index scans,
and nested-loop joins [26]. Inoue et al. used SIMD in comb-
sort [6] and Chhugani et al. in mergesort [3]. Kim et al.
studied multi-way trees [9]. Inoue et al. optimized sorted
set intersections [7]. Polychroniou et al. studied aggregate
updates [16], range indexes [17], Bloom filters [18], hash ta-
bles and partitioning used in radixsort and hash joins [19].

3. HORIZONTAL BIT PACKING
Horizontal bit packing stores an array of integer codes

using a constant number of bits. We need b = dlogne bits
for codes in [0, n). The bits per code are stored contiguously.

3.1 Scalar Packing & Unpacking
Packing 32-bit codes to b-bit codes is shown below in

scalar C code. We iterate over the unpacked codes and con-
struct the next packed word using a 64-bit scalar register.

void pack(const uint32_t *unpacked, int8_t bits,
size_t codes, uint64_t *packed) {

size_t i, o; uint64_t word = 0; int8_t word_bits = 0;
for (o = i = 0; i != codes; i++) {

uint64_t code = unpacked[i];
word |= code << word_bits; word_bits += bits;
if (word_bits >= 64) {

packed[o++] = word; word_bits -= 64;
word = code >> (bits - word_bits); }}

Unpacking in scalar C code is shown below. We iterate
over the codes and branch to fetch the next packed word.
Both cases are simple and are shown for completeness;

void unpack(const uint64_t *packed, int8_t bits,
size_t codes, uint32_t *unpacked) {

uint64_t word = 0, mask = (1 << bits) - 1;
size_t i, o; int8_t word_bits = 0;
for (i = o = 0; o != codes; o++) {

uint64_t code = word & mask;
word >>= word_bits; word_bits -= bits;
if (word_bits < 0) {

uint64_t word_2 = *packed[i++];
word = word_2 >> -word_bits; word_bits += 64;
code |= (word_2 << word_bits) >> (64 - bits); }

unpacked[o] = code; }}

We can optimize the above methods for each b individ-
ually, by using constant stride shifts and by removing the
branch [11, 27]. We do not evaluate such optimizations here.

3.2 Word-Aligned Scalar Scanning
Based on previous work [8, 10], scanning the packed for-

mat to evaluate selective predicates can be done directly on
the packed format without unpacking. The C1 6= C2 boolean
expression in b-bit arithmetic is equal to the overflow bit of
(C1 xor C2) + (2b − 1). The C1 < C2 expression is equal
to the overflow bit of (C1 xor (2b − 1)) + C2. To parallelize
the process, we pack b′ = bw/(b + 1)c codes per processor
word using b+ 1 bits per code. The extra bit of each code is
used as the overflow bit and allows predicate evaluation to
occur in parallel for all the b′ codes packed in the processor
word, by ensuring that the addition does not propagate a
carry to the b+ 1 bits of the next packed code. Packing and
unpacking become simpler by using an inner loop for the b′

codes. However, the remaining w−b′ · (b+1) bits at the end
of each word are ignored, on top of the extra bit per code.

void scan(const uint64_t *packed, int8_t bits,
size_t codes, uint64_t *bitmap,
uint32_t min, uint32_t max) {

/* repeat constants using given bit range */
uint64_t mask_min = repeat(bits + 1, min)
uint64_t mask_max = repeat(bits + 1, max);
uint64_t mask_1_0n = repeat(bits + 1, 1ull << bits);
uint64_t mask_0_1n = mask_1_0n - (mask_1_0n >> bits);
/* full horizontal bit packing for the bitmap */
int8_t bm_wb = 0, bm_b = 64 / (bits + 1);
uint64_t bm_w = 0; size_t i, o, words = codes / bm_b;
for (o = i = 0; i != words; i++) {

uint64_t word = packed[i++];
/* evaluate column < min and max < column */
uint64_t lt_min = mask_min + (word ^ mask_0_1n);
uint64_t gt_max = word + (mask_max ^ mask_0_1n);
/* combine, extract, and compact resulting bits */
word = _pext_u64(lt_min | gt_max, mask_1_0n);
/* pack the predicate result bits into the bitmap */
bm_w |= word << bm_wb; bm_wb += bm_b;
if (bm_wb >= 64) {
bitmap[o++] = ~bm_w; bm_wb -= 64;
bm_w = word >> (bm_bits - bm_wb); }}

Scalar C code for scanning the word-aligned layout us-
ing the C1 ≤ column ≤ C2 predicate is shown above. The
helper function repeat(b,x) replicates x every b bits. The
overflow bits are extracted and compacted in the low bits of
the output register using the pext instruction (_pext_u64)
supported only by the latest CPUs. With so few instruc-
tions per processor word, scanning performance is reduced
proportionally to the wasted space. Using this technique on
the fully packed format is possible, but is not evaluated here.

3.3 SIMD Unpacking & Scanning
Based on previous work [24], unpacking the codes can be

done fast, even if no space is wasted. By using register
shuffling, we can replicate the packed bytes and unpack one
code per SIMD lane [24]. If each SIMD register fits l codes,
we unpack l codes at a time using the following steps:

1. Load the next l ·b bits from the input in a vector. If l = 8,
load the next b bytes using a byte-aligned vector load.

2. Shuffle the vector bytes to align codes at byte boundaries.
Bytes 4 · i to 4 · i+3 of the i-th 32-bit lane are pulled from
bytes j to j + 3 of the loaded vector, where j = bi · b/8c.

3. Shift the 32-bit lanes to align codes at bit boundaries.
The i-th 32-bit lane is shifted right by i · b modulo 8.

4. Bitwise-and the 32-bit lanes with 2b − 1 to eliminate the
high bits that belong to the next codes.

5. Use or store the l unpacked 32-bit lanes.



The SIMD code for unpacking horizontally bit packed
codes using 256-bit SIMD (AVX 2) is shown below. In
our evaluation, we manually unroll the loop four times to
eliminate most instruction latencies and maximize IPC. The
functions with the _mm prefix are intrinsics for SIMD in-
structions. We omit describing each instruction here due to
limited space. Detailed descriptions are available online.1

Specifically for the SIMD ISA that we use (AVX 2), byte
shuffling gathers bytes from each half of the register in iso-
lation. To shuffle bytes across all lanes, we copy each half to
both, shuffle bytes twice, and blend. If b ≤ 16, we use one
shuffle instruction and a 128-bit load instead of a 256-bit
load. If b ∈ {27, 29, 30, 31}, we use variable stride shifts in
64-bit lanes, because packed codes can span across 5 bytes.

void unpack(const uint64_t *packed, int8_t bits,
size_t codes, uint32_t *unpacked) {

int8_t shuffle[32]; uint32_t shift[8]; size_t i, j, o;
/* generate byte shuffle and bit shifting masks */
for (i = 0; i != 8; i++) {

for (j = 0; j != 4; j++) {
shuffle[i * 4 + j] = (i * bits) / 8 + j; }

shift[i] = (i * bits) % 8; }
__m256i mask_bits_lo = _mm256_loadu_si256(shift);
__m256i mask_bits_hi = _mm256_set1_epi32((1<<bits)-1);
__m256i mask_bytes_lo = _mm256_loadu_si256(shuffle);
__m256i mask_bytes_hi = _mm256_sub_epi8(mask_bytes_lo,

_mm256_set1_epi8(16));
/* byte alignment for input (unaligned SIMD loads) */
const int8_t *packed_b = (const int8_t*) packed;
if (bits <= 16) { /* 4+2 instr. (for load & store) */

for (i = o = 0; o != codes; i += bits, o += 8) {
/* load 128 bits and broadcast low part (cast) */
__m256i data = _mm_loadu_si128(&packed_b[i]));
data = _mm256_permute4x64_epi64(data, 0x44);
/* shuffle bytes to align by 32-bit lanes */
data = _mm256_shuffle_epi8(data, mask_bytes_lo);
/* align ints and clear high order bits */
data = _mm256_srlv_epi32(data, mask_bits_lo);
data = _mm256_and_si256(data, mask_bits_hi);
_mm256_store_si256(&unpacked[o], data); }}

else if (bits <= 26 || bits == 28) { /* 7+2 instr. */
for (i = o = 0; o != codes; i += bits, o += 8) {

/* load 256 bits and broadcast both parts */
__m256i data = _mm256_loadu_si256(&packed_b[i]);
__m256i lo = _mm256_permute4x64_epi64(data, 0x44);
__m256i hi = _mm256_permute4x64_epi64(data, 0xEE);
/* shuffle low and high 128 bits separately */
lo = _mm256_shuffle_epi8(lo, mask_bytes_lo);
hi = _mm256_shuffle_epi8(hi, mask_bytes_hi);
data = _mm256_blendv_epi8(lo, hi, mask_bytes_hi);
/* align ints and clear high order bits */
data = _mm256_srlv_epi32(data, mask_bits_lo);
data = _mm256_and_si256(data, mask_bits_hi);
_mm256_store_si256(&unpacked[o], data); }}

else { [...] /* 12+2 instr. (64-bit shift masks) */ }}

With 256-bit SIMD (AVX 2), we need 4 SIMD instruc-
tions per 8 codes if b ≤ 16, 7 instructions if b ≤ 26 or
b = 28, and 12 instructions if b ∈ {27, 29, 30, 31}. Evaluat-
ing the C1 ≤ column ≤ C2 predicate and extracting a bit-
mask adds 4 more instructions. Previous work using 128-bit
SIMD (SSE) reported 10 instructions per code [12], partially
due to emulating variable stride shifts via multiplications.

By viewing the input as l interleaved streams, we can ex-
tend the optimized per b packing and unpacking [27] to use
SIMD [11]. Each stream is processed by one of the l SIMD
lanes. Packing gets faster if not memory bound, but un-
packing saves very few instructions compared to the above.
1http://software.intel.com/sites/landingpage/IntrinsicsGuide/

4. VERTICAL BIT PACKING
In vertical bit packing [12], the b bits per code are not

stored contiguously, but are interleaved for groups of k codes.
The bits of the next k codes are interleaved in b k-bit words
and the i-th word has the i-th bit of each code. The layout
allows predicate evaluation on the packed format and exe-
cutes at most the same order of instructions as word-aligned
horizontal bit packing (Section 3.2), but without wasting any
bits. Word alignment is guaranteed by setting k so that w|k.

4.1 Scalar Packing & Unpacking
Scalar C code for vertical bit packing with k = 64 is shown

below. We extract one bit at a time and add it to the packed
word. The process is repeated b times per code, thus execut-
ing O(nb) operations. The high order bits are stored first.

void pack(const uint32_t *unpacked, int8_t bits,
size_t codes, uint64_t *packed) {

size_t i, o; int8_t b1, b2; uint64_t word;
for (o = i = 0; i != codes; o += bits, i += 64) {

for (b1 = bits - 1; b1 >= 0; b1--) {
for (b2 = 63; b2 >= 0; b2--) {
uint64_t code = unpacked[i + b2];
word += word + ((code >> b1) & 1); }

packed[o + b1] = word; }}}

Unpacking the vertical layout is symmetrical to packing.
Scalar C code using the same parameters is shown below.
We build each unpacked code by extracting one bit per
packed word at a time, again executing O(nb) operations.

void unpack(const uint64_t *packed, int8_t bits,
size_t codes, uint32_t *unpacked) {

size_t i, o; int8_t b1, b2;
for (i = o = 0; o != codes; i += bits, o += 64) {

for (b1 = 0; b1 != 64; b1++) {
uint64_t code = 0;
for (b2 = 0; b2 != bits; b2++) {
uint64_t word = packed[i + b2];
code += code + ((word >> b1) & 1); }

unpacked[o + b1] = code; }}}

The code we measure is further optimized, but the vertical
layout can still be more than an order of magnitude slower
than the horizontal, for both packing and unpacking.

4.2 SIMD Packing
The simplest version of SIMD vertical bit packing holds

all k unpacked codes in SIMD registers and extract one bit
per lane from each SIMD register. The process is repeated
b times for b-bit codes. If the CPU core provides 16 256-bit
registers, we can use 8 to hold k = 64 unpacked codes. We
process k unpacked codes at a time (l is the number of 32-bit
SIMD register lanes) and repeat the following steps:

1. Load the next k words in k/l SIMD registers.
2. Shift left the loaded k/l SIMD registers by 32− b.
3. Repeat b times:
(a) Extract the sign bits per 32-bit lane from the k/l SIMD

registers into k/l scalar l-bit bitmasks.
(b) Append k/l bitmasks (k bits) to the output.
(c) Double the k/l SIMD registers.

SIMD code is significantly faster than scalar code, even
though the complexity remains O(nb). First, avoid reloading
the unpacked codes several times from the L1 cache but keep
them resident in SIMD registers instead. Second, we extract
multiple bits per instruction, executing b/l bit extraction
instructions per code rather than b. For 256-bit SIMD, l = 8.

http://software.intel.com/sites/landingpage/IntrinsicsGuide/


Compared to the scalar code, we execute more than an
order of magnitude less instructions. To further improve the
number of bits extracted per instruction, we pack each byte
of the packed codes in fewer SIMD registers and extract bits
using 8-bit lanes. The steps per k codes are shown below:

1. Load the next k words in k/l SIMD registers.
2. Shift left the loaded k/l SIMD registers by 32− b bits.
3. Repeat db/4e times:
(a) Pack the k/l registers of k 32-bit codes into k/4l reg-

isters of k 8-bit codes using the most significant byte.
(b) Repeat 8 times or until out of bits:

i. Extract the sign bits per byte lane from the k/4l
SIMD registers into k/4l scalar 4l-bit bitmasks.

ii. Append the bitmasks (k bits) to the output.
iii. Double the k/4l SIMD registers.

(c) Shift the k/l registers right by 8 bits per 32-bit lane.

void pack(const uint32_t *unpacked, int8_t bits,
size_t codes, uint64_t *packed) {

__m128i shift = _mm_cvtsi32_si128(32 - bits);
__m256i order = _mm256_set_epi32(7,3,6,2,5,1,4,0);
size_t i, o; int8_t b1, b2;
for (o = i = 0; i != codes; i += 64) {

/* load 64 ints in 8 256-bit SIMD registers */
__m256i r1 = _mm256_load_si256(&unpacked[i]);
[...] /* 7 symmetrical lines omitted */
/* shift left to move b-th bit as MSB (sign bit) */
r1 = _mm256_sll_epi32(r1, shift);
[...] /* 7 symmetrical lines omitted */
for (b1 = 0; b1 + 8 < bits; b1 += 8) {

/* isolate the high order byte as the low byte */
__m256i s1 = _mm256_srli_epi32(r1, 24);
[...] /* 7 symmetrical lines omitted */
/* pack 32-bit into 16-bit in 1/2 of registers */
__m256i s12 = _mm256_packus_epi32(s1, s2);
[...] /* 3 symmetrical lines omitted */
/* pack 16-bit into 8-bit in 1/4 of registers */
__m256i s1234 = _mm256_packus_epi16(s12, s34);
__m256i s5678 = _mm256_packus_epi16(s56, s78);
/* restore order polluted by pack instructions */
s1234 = _mm256_permutevar8x32_epi32(s1234, order);
s5678 = _mm256_permutevar8x32_epi32(s5678, order);
for (b2 = min(bits - b1, 8); b2 != 0; b2--) {

/* extract one bit at a time per byte lane */
uint32_t lo = _mm256_movemask_epi8(s1234);
uint32_t hi = _mm256_movemask_epi8(s5678);
s1234 = _mm256_add_epi8(s1234, s1234);
s5678 = _mm256_add_epi8(s5678, s5678);
packed[o++] = append_2x32(lo, hi); }

/* shift the input registers left by 1 byte */
r1 = _mm256_slli_epi32(r1, 8);
[...] /* 7 symmetrical lines omitted */ }}

C with 256-bit SIMD (AVX2) is shown (k = 64). Using 8-
bit instead of 32-bit lanes to extract bits, reduces the SIMD
instructions per code from (16b + 8)/64 to (10b + 30)/64.

4.3 SIMD Unpacking
Unpacking the vertical bit packed format is based on the

same principles as packing, but performs the inverse opera-
tion. Instead of extracting one bit per SIMD lane, we con-
vert the packed bits to integer masks and insert one bit per
SIMD lane in the registers that hold the unpacked words.

1. Set the next k codes in k/l SIMD registers to zero.
2. Repeat b times:
(a) Load the next k bits from the input.
(b) Convert k bits to {0,-1} 32-bit masks in k/l registers.
(c) Double the k/l registers and subtract the 32-bit masks.

3. Append the k/l registers to the output.

Similarly to bit packing, we do not reload the input mul-
tiple times but keep the output unpacked codes in SIMD
registers. To improve the number of bits inserted per in-
struction, we use smaller SIMD lanes again. We extract bits
in byte lanes that are then up-converted and inserted in the
k/l output registers. The steps per k codes are shown below:

1. Set the next k codes in k/l SIMD registers to zero.
2. Repeat db/4e times:
(a) Reset k/4l SIMD registers to zero.
(b) Repeat 8 times or until out of bits:

i. Load the next k bits from the input.
ii. Convert k bits to {0,-1} 8-bit masks in k/4l registers.
iii. Double the k/4l registers and subtract the 8-bit masks.

(c) Shift the k/l registers left by 8 bits per 32-bit lane.
(d) Up-convert 8-bit lanes in k/4l registers to 32-bit lanes.
(e) Bitwise-or the up-converted registers with the results.

3. Append the k/l registers to the output.

void unpack(const uint64_t *packed, int8_t bits,
size_t codes, uint32_t *unpacked) {

size_t i, o; int8_t b; uint64_t
/* masks used to convert bits into byte masks */

m4=0x0404040404040404ull, m8=0x0808080808080808ull,
mC=0x0C0C0C0C0C0C0C0Cull, mP=0x8040201008040201ull;

__m256i shuf_lo = _mm256_set_epi64x(m8, 0,m8, 0);
__m256i shuf_hi = _mm256_set_epi64x(mC,m4,mC,m4);
__m256i bif_offset = _mm256_set1_epi64x(mP);
for (i = o = 0; o != codes; o += 64) {

/* initialize unpacked words by setting to 0 */
__m256i r1 = _mm256_setzero_si256();
[...] /* 7 symmetrical lines omitted */
for (b = bits; b != 0; ) {
__m256i r_lo = _mm256_setzero_si256();
__m256i r_hi = _mm256_setzero_si256();
for (; (b & 7) != 0; b--) {
/* load 64 bits and replicate to 64 bytes */
__m128i b_cmp = _mm_loadl_epi64(&packed[i++]);
__m256i b = _mm256_cvtepu8_epi32(b_cmp);
__m256i b_lo = _mm256_shuffle_epi8(b, shuf_lo);
__m256i b_hi = _mm256_shuffle_epi8(b, shuf_hi);
/* convert target bit to {0,-1} mask per byte */
b_lo = _mm256_and_si256(b_lo, bit_offset);
b_hi = _mm256_and_si256(b_hi, bit_offset);
b_lo = _mm256_cmpeq_epi8(b_lo, bit_offset);
b_hi = _mm256_cmpeq_epi8(b_hi, bit_offset);
/* shift left and add new bit per byte lane */
r_lo = _mm256_add_epi8(r_lo, r_lo);
r_hi = _mm256_add_epi8(r_hi, r_hi);
r_lo = _mm256_sub_epi8(r_lo, b_lo);
r_hi = _mm256_sub_epi8(r_hi, b_hi); }

/* shift the output registers left by 1 byte */
r1 = _mm256_slli_epi32(r1, 8);
[...] /* 7 symmetrical lines omitted */
/* up-convert first 8 bytes to ints (cast) */
__m256i b_lo = _mm256_cvtepu8_epi32(r_lo);
__m256i b_hi = _mm256_cvtepu8_epi32(r_hi);
/* merge 1 byte per code with the result */
r1 = _mm256_or_si256(r1, b_lo);
r2 = _mm256_or_si256(r2, b_hi);
/* rotate to process next 8 bytes */
r_lo = _mm256_permute4x64_epi64(r_lo, 0x39);
r_hi = _mm256_permute4x64_epi64(r_hi, 0x39);
[...] /* 18 symmetrical lines omitted */ }

/* store unpacked codes to output */
_mm256_store_si256(&unpacked[o], r1);
[...] /* 7 symmetrical lines omitted */ }}

C code with 256-bit SIMD (AVX) intrinsics for unpacking
is shown below. We execute 18b+ 30 SIMD instructions per
64 codes, which is O(nb). However, in practice we get com-
parable performance to O(n) SIMD horizontal unpacking.



4.4 Scanning & Bandwidth Saving
Predicate evaluation on vertically bit packed data can

proceed directly on the packed format without unpacking.
Equality to a constant is evaluated as the bitwise-and of the
bitwise-xnor of all b bits of the k words with the bits of the
constant. To evaluate “<” or “>”, we find the highest order
bit that the column value differs from the constant and copy
the target bit of the constant, for “<”, or its inverse, for “>”.

If the processor register has w bits and w|k, we execute
O(nb/w) operations during scanning. However, we do not
need to access all b w-bit words used to pack w codes. In-
stead, once a bit differs for all w codes, we can stop earlier.

For the predicate: column = C, the probability for one
code to reach the i-th word is: 21−i and for any of the w
codes: P (X ≥ i) = 1 − (1 − 21−i)w. For the predicate:
C1 ≤ column ≤ C2, the probability for one code to reach
the i-th word is: 1− (1− 21−i)2 and for any of the w codes:
P (X ≥ i) = 1− (1− [1− (1− 21−i)2])w = 1− (1− 21−i)2w.
The expected number of w-bit words accessed for w codes
using b bits is: E[X] =

∑b
i=1 P (X = i) · i =

∑b
i=1 P (X ≥ i).

void scan(const uint64_t *packed, int8_t bits,
size_t codes, uint64_t *bitmap,
uint32_t min, uint32_t max) {

/* shift constants to place target bit as sign bit */
int64_t min_up = ((int64_t) min) << (64 - bits);
int64_t max_up = ((int64_t) max) << (64 - bits);
size_t i, o, bitmasks = codes / 64; int8_t b;
for (i = o = 0; o != bitmasks; i += bits, o++) {

/* initialize bitmasks used as comparison results */
int64_t gt_min = 0, eq_min = -1, const_min = min_up;
int64_t lt_max = 0, eq_max = -1, const_max = max_up;
for (b = 0; b != bits; b++) {

int64_t word = packed[i + b];
/* broadcast sign bit and check if different */
int64_t bit_min = word ^ (const_min >> 63);
int64_t bit_max = word ^ (const_max >> 63);
/* update greater-than and less-than bits */
gt_min |= eq_min & bit_min & word;
lt_max |= eq_max & bit_max & ~word;
/* update equality and check for early exit */
eq_min &= ~bit_min;
eq_max &= ~bit_max;
if ((eq_min | eq_max) == 0) break;
const_min += const_min; const_max += const_max; }

/* store the comparison result in the bitmap */
bitmap[o++] = (gt_min|eq_min) & (lt_max|eq_max); }}

Scalar code for scanning to evaluate C1 ≤ column ≤ C2

is shown above. The shifts by 63 broadcast the sign bit.
Extending the code to use SIMD instructions is trivial if we
use a larger k. In such a case, the number of instructions
per code is reduced, but the register width w is increased
and so is the number of w-bit words accessed per w codes.

Scanning less than b words does not improve performance,
due to cache line granularity of RAM accesses and hardware
prefetching. Bitweaving [12] addresses this problem by ver-
tically packing b′ < b bits at a time separately. The extreme
is to store each bit separately [25]. Here, we increase k to
place low and high order bits of codes in distant cache lines.

Setting k > w can be handled by all vertical bit packing
operations with little overhead, if w|k. For packing, we store
the w-bit packed words with a k/w stride. For unpacking
and scanning, we load the packed w-bit words with a k/w
stride. Processing the first w codes out of k would place
packed words for the few next runs of w codes in the L1
cache and would be loaded from the L1 in the next runs.
When k exceeds one cache line of L bits, in order to find
the number of cache line accesses, we use the same E[X]
formula by setting w = L. Also, to compensate for hardware
prefetching of neighbor cache lines, we increase k beyond one
cache line up to the available L1 capacity. Finally, we can use
SIMD for scanning without increasing the false prefetches.

When fewer tuples are extracted, performance differs when
selectivity is low enough to skip cache lines. Then, vertical
bit packing with k ≥ L can be O(b) times slower than hori-
zontal, since we access 1 cache line per code bit rather than
1–2 cache lines per code. We do not evaluate this case here.

5. EXPERIMENTAL EVALUATION
The platform we use has one Intel Xeon E3-1275v3 CPU

at 3.5 GHz based on the Haswell micro-architecture. The
CPU has 4 cores with 2-way SMT and supports 256-bit
SIMD (AVX2). The RAM is dual-channel ECC DDR3 at
1600 MHz with 21.8 GB/s load bandwidth. We compile with
ICC 15 using -O3. We use synthetic uniform random data,
even though most methods with constant b are invariant
to the input value distribution. Simple integer compression
schemes, such as frame-of-reference, that vary b across small
groups of codes, are trivial extensions adding little overhead.

Figure 1 measures packing, unpacking, and scanning for
horizontal and vertical bit packing, by varying b and by us-
ing all hardware threads. The input is 109 codes. Output
materialization to memory saturates the bandwidth for both
packing and unpacking, thus is excluded and a checksum is
computed instead. For scanning, we use C1 ≤ column ≤ C2

as selective predicate and include bitmap materialization.
Packing typically saturates the bandwidth by loading the

unpacked input. Word-aligned horizontal packing is faster
than the fully packed version. Packing to the vertical bit
packed layout in SIMD code executes O(nb) operations, but
still saturates the bandwidth, even if b = 32. The vectoriza-
tion speedup is 1.1–27.4X and is maximized when b = 32.
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Figure 1: Multi-threaded packing, unpacking, and scanning for horizontal and vertical bit packing
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Figure 2: Single-threaded packing, unpacking, and scanning for horizontal and vertical bit packing

Unpacking the horizontal layout is faster than unpacking
the vertical layout (k = 64) by 1.4–1.6X, if both are written
in SIMD code, except for b = 9 and b = 10 that get 1.8X
and 1.7X. The vectorization speedup is 1.9–8.4X for hori-
zontal and 11–20X for the vertical layout. Increasing k to
8192 makes unpacking 10–15% slower. For larger b, vertical
unpacking in scalar code is prohibitively slow. For smaller
b, scalar unpacking of one code at a time is compute-bound.

Scanning the vertical layout in scalar code is faster than
scanning the horizontal in SIMD by 1.1–3.4X for b ≤ 5,
while the opposite is true by 1.05–1.25X for 6 ≤ b ≤ 12.
For larger b, both methods saturate the bandwidth. The
word-aligned layout loses performance by accessing a larger
data footprint. Evaluating the predicates after horizontally
unpacking in SIMD reduces performance by ≈ 30% for b ≤ 5
down to ≈ 5% for b > 16. With k = 64, even if we access
8–9 words in 1–2 cache lines per 64 codes, we prefetch all
cache lines. By increasing k beyond a cache line, we access
10–11 cache lines due to wider registers, but minimize the
false prefetches. Performance is constant for larger b and
outperforms all methods. For b = 32, scanning the vertical
layout effectively doubles the bandwidth. Also, with b = 32,
we can also encode the actual (32-bit) column values, not
the dictionary codes, while still providing twice faster scans.

Figure 2 repeats the experiment of Figure 1 in a single
thread to simulate higher memory bandwidth, making most
methods compute-bound. Using multiple threads makes us
memory-bound and reduces the gap between horizontal and
vertical unpacking. Vertical scanning gets 1.9–3.6X speedup
from SIMD and exposes the early exit for b ≥ 9 if k = 64 and
for b ≥ 12 for k = 8192, matching the analysis of Section 4.4.
Scanning uncompressed data gets a 5X speedup from SIMD
and is close to the fastest, highlighting that lightweight com-
pression is of limited use when we are not memory-bound.

6. CONCLUSION
We studied multiple bit packing layouts employed for light-

weight compression. For horizontal bit packing, we consid-
ered both the word-aligned and the fully packed variant, and
optimized previous techniques using the latest scalar and
SIMD instructions. For vertical bit packing, we designed
and implemented efficient packing and unpacking, by plac-
ing multiple codes in SIMD registers and by maximizing the
number of bit movements per instruction. All variants are
compared for packing, unpacking, and scanning. While the
horizontal schemes are highly competitive, vertical bit pack-
ing combines the fastest scans with comparably fast packing
and unpacking, extending the available trade-off options.
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